Compilation of Thermal Properties of Hydrogen in Its Various Isotopic and Ortho-Para Modifications

By Harold W. Woolley, Russell B. Scott, and F. G. Brickwedde

Abstract

New developmenta in acience and industry are aided by accurate krowledge of the behavior of important substances. The great abundance of chemical processes and compounds in which hydrogen is involved make it of partipular interast. The experimental and derived data presented here for hydrogen extend over a large range of temperature. Lofr temperatures are required for the liquid and sold, and moderate and high temperatures oceur in chemical reactions.

The available thermal data for $\mathrm{H}_{2}, H \mathrm{D}$, and D_{2} in solid, liquid, and gaseous atates have been brought together, including the distinctive properties of ortho and pars forma of H_{2} and D_{2}. Some data not previously published have been sided. The thermal data include thermodyoamie functions for the ideal gan state, equilibrium constante, data af state, viscosity, and thermal conductivity with dependenee on the pressure, vapor preasure, solidd-liquid equilibris, apecific heats, and latent heats. Values of state derivatives useful in thermodynamic calculations have been given for normal hydrogen, and the related differmess between thermodynamic functions for real and ideal gas atatea bave been evaluatedA temperature entropy diagram for normal H_{2} in the range of experimental dats is also given. The compiled thermal properties of hydrogen are presented in 38 tables, 33 graphb, and numeroug equations. The souree of tho data have been given in an exterteive bibliography.

I. Introduction

It was recommended by the National Research Council Committee on Thermal Data for Chemical Induetries ${ }^{1 z}$ and by others that the thermal data on substances of industrial importance should be reexamined with the intention of preparing consistent tables of thermal data of especial interest to chemical engineers and investigators.

In this paper thermal data on hydrogen in its various isotopic and ortho-para modifications are compiled and correlated. Data on properties of the gaseous, liquid, and solid states are presented in tables and graphs, and by use of formulas. Thermodynamic properties are given for the ideal gas state. In addition, tables based on the PVT data for the real gas furnish the additional information roquired for the calculation of the thermodynamic properties of the real gas. For the con-

[^0]densed phases, directly observable properties are given. Because of the industrina importance of flow and heat-transfer problems, correlations of viscosity and of thermal conductivity are included and their dependence upon pressure diseussed briefly. A number of topics are discussed in detail to explain the fundamental principles invoIved. Most of the data included were taken from published papers. However, a small proportion are based on unpublished measurements made at the Bureau.

The following are the symbols and values of physical constants and conversion factors used in this paper.

1. Symbols

Many symbols that are not used extensively in this paper have been omitted from this list. A, constant in an equation for \& PVT isotherm.
B, second virial coefficient in equation of state of gas.
B_{p}, rotational spectroscopic constant.
b, b, constant in an equation for a PVT isotherm; also, a constant in an equation of state.
C, C, constant in an equation for a PVT isotherm; also, the Sutherland constant in a viscosity formula.
O^{\prime}, constant in an equation for a PVT isotherm.
$C_{p,}^{\infty}$ molar beat capacity (molar specific heat) at constant pressure for ideal gas.
C_{2} molar beat capacity (molar specific heat) along a saturation curve.
C_{0}°, molar heat capacity (molar specific heat) at constant volume for ideal gas.
c, c, velocity of light; also a constant in an equation for a PVT isotherm.
$c_{2,}$, radiation constant $h c / k$.
D_{f}, rotational spectroscopic constant.
E, a thermodynamic function, internal energy per mole.
E^{*}, E for a substance in the ideal gaseove state.
E_{0}°, E° at the absolute zero of temperature when for each molecule the energy associated with internal degrees of freedom is at its lowest quantized value.
F, a thermodynamic function, molar free onergy $F=E+P V-T S$.
F°, F for a substance in the ideal gaseous state at a pressure of 1 atmosphere.
F_{v}, rotational spectroscopic constant.
$F_{0, i}$, or F, term value.
f, a thermodynamic function, fugaeity:
$G_{c,}$ vibrational term value.
ρ, statistical weight of a quantum level.
H, a thermodynumic function, molar heat content or enthalpy, $H=E+P V$.
H°, H for a substance in the ideal gaseous state. H_{θ}, rotational spectroscopic constant.
h, Planch's constant.
i, nuclear spin.
J, rotational quantum number.
K, equilibrium constant.
k, k, Boltzmann constant; also, thermal. conductivity.
$L_{k 1}$ latent heat of vaporization.
M, molecular weight.
m, reduced mass for molecule.
N, total number of molecules considered.
N_{n}, number of molecules in a given quantum level.
N_{0}. Avogadro's number.
\mathbf{P}, pressure.
P_{s}, pressure at the critical point.
P_{n}, pressure of 1 standard atmosphere, $1.01325 \times$ 10^{6} dynes cm^{-7} by definition.
p, momentum corresponding to generalized coordinate q.
q, a generalized coordinate.
R, molar gas constant.
r, atomic separation.
r_{ϵ}, atomic separation r for minimum potential energy.
S, a thermodynamic function, molar entropy.
S°, S for a substance in the ideal gaseous state at a pressure of 1 atmosphere.
T, absolute temperature on the Kelvin scale.
T_{e}, temperature T at criticel point.
T_{0}, Kelvin temperature T of the ice point, that is, of $0^{\circ} \mathrm{C}$.
U, intramolecular potential energy.
U_{11}, ratio of mean free path lengths for diffusion and viscosity.
V, molar volume.
V_{e}, molar volume at the critical point.
$V_{0,}$, molar volume of gas at 1-atmosphere pressure and the ice point.
\%, molar volume of liquid at zero pressure.
v, vibrational quantum number.
Z, abbreviation for $P V / R T$.
γ, ratio of spocific heats, C_{p} / C_{r}.
ϵ, energy for a quantum state.
$\pi_{\text {, }}$ viscosity.
θ, a characteristio Kelvin temparature for a crystal lattice in Debye's theory of specific heats.
A, length of mean free path.
μ, Joule-Thomson coefficient.
ξ, fractional increase in atomic separation beyond that for minimum potential energy.
p, density in Amagat units.
σ, a correlation function for PVT data.
x, a function in one equation of state.
φ, a correlation function for PVT data,

2. Values Used for Some Physical Constants and Conversion Factors

(Numbers in parentheses refer to the referencels given below)
c (velocity of light $=2.90776 \times 10^{10} \mathrm{em} \mathrm{sec}^{-1}$ (1).
c_{2} (radiation constant) $=\frac{h c}{k}=\frac{N_{0} h e}{R}=1.4384 \quad \mathrm{~cm}$ deg (2).
h (Planck's constant $=6.624 \times 10^{27} \mathrm{~cm} \mathrm{sec}(1)$.
N_{0} (Avogadro number) $=6.0228 \times 10^{28} \mathrm{~mole}^{-1}(1)$.
P_{0} (pressure of standard atmosphere) $=1.01325 \times$ 10^{8} dynes $\mathrm{cm}^{-2}(3)$.
R (molar ges constant) $=N_{0} t=8.3144 \times 10^{7}$ erg $\mathrm{mole}^{-1} \mathrm{deg}^{-1}$ (1).
$=1.98714$ thermechennical cal mole ${ }^{-1} \mathrm{deg}^{-1}(4)$.
T_{0} (Kelvin temperature of iee point) $=273.16^{\circ} \mathrm{K}$ (5).

Atomic weight of hydrogen (H^{1}) on chemical scale $=1.000786$ (1).
Atomic weight of deuterinm ($\mathrm{D} \mathrm{or} \mathrm{H}^{2}$) on chemical scale $=2.01418$ (1).
I thermochemical calorie $=4.1833$ internationai joules (5).
1 international joule $(\mathrm{NBS})=1.000165$ absolute joules (6).
(1) Raymond T. Birge, Rev. Modern Phyp, 13, 233 (1941).
(2) Birge's value (Rev. Modern Phys. 13, 233 (1941)) adjuated for later NBS value of the ratio international coulomb/absolute coulomb $=0.99885$; see also reference (7).
(3) Definition.
(4) Birge's value (Rev. Modern Phys. 13, 283 (1941)) adjusted to thermochemical calorie and NBS value for ratio international joulefabzolute joule.
(5) Definition,
(6) NBS Technica! News Bullatin 31, 49 (1947).
(7) R. W. Curts, R. L. Driseoll, and C. L. Critehfield, J. Research NBS 28, 133 (1942).

II. Thermodynanic Properties for the Hydrogens in the Ideal Gas State

1. General Principles of Calculation

For a gas in \mathfrak{a} state of extreme rarefaction the energy of interaction between molecules forms a minute part of the total energy of the gas. At such low pressures the thermodynamic properties of the gas may be ealculated from the spectroscopically determined energies of the single molocules and the general physical constants without considering the energy of interaction of one molecule with another. Some thermodyaamic properties, as for examplo molar entropy and free energy, do not approach a definite value as the pressure of the gas goes to zero. For this reason, values of thermodynamic functions of a gas at low pressure are often indicated by giving values for a pressure of 1 atm for a fictitious ideal gas having in the limit of low pressure the same thermodynamic functions ns the actual gas. The result is then said to be for the gas at a pressure of 1 atmosphere in the hypothetical ideal gas state. Data of state may be used to calculate the differ-
eaces between properties in the real and ideal gas states.

The procedure for calculating the themodynamic properties of a substance in the ideal gas state has been diecussed by many writers [3,30 , 31, 32]. ${ }^{3}$

In outline, it involves the following ideas: The average number n_{I} of molecules in a quintum state of energy e_{I} is related to the average number, n_{2} of molecules in another state of energy ε_{2} by the Boltzmann distribution law

$$
\begin{equation*}
n_{1} i n_{2}=e^{-1 / A T} / e^{-1 / 2 / k T}=e^{-\left(k_{1}-n\right) ; R T} \tag{2.1}
\end{equation*}
$$

where k is the Boltzmann constant t_{f} and T is the absolute temperature.

As there are often several states having the same energy, the number of molecules in a given energy level 4 is also proportional to the number of states, g. If $N_{1}, N_{2}, N_{3}, \ldots$ are the numbers of molecules in the levels $e_{1}, \epsilon_{2_{f}} \epsilon_{2}, \ldots$, respectively, the number of molecules in any one level is
where N, the total number of molecules being considered, is equal to ΣN_{j}. If properties are to be expressed on the basis of 1 mole, N is taken erfual to A vogudro's number, N_{0}.

The quantum states are specified by means of quantum numbers, the integer values which certain natural variables have when a molecule lias a stationary value of energy. The magnitude of the energy is gencrally expressed in terms of these numbers. In diatomic molecules, the quantum numbers of interest are J, the rotational quantum number, K_{s} the rotational quantum number apart from spin, and y, the vibrational quantum number. The elcetronic state is also similarly quantized, and quantum numbers appropriate to it may likewise be assigned. The nuclear spins of the two constituent atoms are designated by i_{1} and i_{2}. In terms of theso numbers, the statistical weight, g, of a level of a diatomic molecule composed of unlike atoms, as for example HD, is g. $\left(2 i_{1}+1\right)\left(2 i_{2}+1\right)(2 J+1)$, where g_{c} is the weight of the electronic level of the mole-

[^1]cule. The ground electronic level of HD, and of H_{3} and D_{2}, also, is a singlet state e_{1} and accordingly g_{e} is 1 .

The proton and deuetron spins are $1 / 2$ and 1 , respectively. For diatomic molecules composed of like atoms, as for example, H_{2} and D_{2}, there is a division of the xotational levels of the molecule into two groups referred to as the ortio and para series, one of which is composed of the even numbered and the other of the odd numbered rotational levels. Ordinarily, transitions between ortho and para levels are relatively rare, so that the gas can be considered as a mixture of two distinct components. The high temperature equilibrium mixture of the two forms is called the normal mixture, and the more abundant component of the normal mixture is called the ortho component. The statistical weights of the two series depends upon the quantum statistics applicable to the nuclei. For H_{2} it is the Fermi-Ditac statistics, for D_{2} the Bose-Einstain statistios.

Fermi-Dirac statistics:

$$
\left.\begin{align*}
& g\left(\text { para series, even } J^{\prime} \mathrm{s}\right)= \tag{2,3}\\
& g_{c}(2 i+1) i(2 J+1) \\
& \left.g \text { (ortho series, odd } J^{\prime} \mathrm{s}\right)= \\
& g_{e}(2 i+1)(i+1)(2 J+1)
\end{align*} \right\rvert\,
$$

Bose-Einstein statiztics:
$\left.\begin{array}{l}\left.g \text { (ortho series, even } J^{\prime} \mathrm{s}\right)= \\ g_{\cdot}(2 i+1)(i+1)(2 J+1) \\ g\left(\text { para series, odd } J^{\prime} s\right)= \\ g_{\cdot}(2 i+1) i(2 J+1)\end{array}\right\}$
The energy per mole due to molecular rotation and intramolecular vibration is
where the e's are the energies of the rotationalvibrational levels relative to the lowest energy level of the molecule. The translational energy, $3 / 2 N_{0} k T$ or $3 / 2 R T$, is added to this to get $E^{\circ}-E_{0}^{\infty}$, the total internal energy per mole for the ideal gas above the chosen zero in which there would be no translational energy and each mole-
cule would be in the lowest energy state arailable to any form of the molecule. ${ }^{6}$

The superseript zero is used to indicate the ideal gas stete.

The enthalpy H°, the specific heats C°, and $C_{\mathrm{p}}^{\mathrm{P}}$ the entropy S^{0}, and the free energy F° for the ideal gas state are derivable in accordance with familiar methods of thermodynamics from (1) the internal energy $E^{\square}-E_{0,}^{0}$ (2) the equation of state $P V=R T$, and (3) the translational entropy $S_{\text {, of }}^{0}$ an ideal gas of molecular weight M. The equations for these proparties as functions of ($\epsilon, / k T$) are

$$
\begin{align*}
& \frac{E^{\square}-E_{0}^{\infty}}{B T}=\frac{\Sigma_{g_{5}}\left(\epsilon_{j} k T\right) e^{-\varepsilon_{f} / k T}}{\Sigma g_{j} e^{-t_{j} / T T}}+\frac{3}{2} . \tag{2.7}\\
& \frac{H^{\circ}-E_{0}^{a}}{R T}=\frac{E^{\circ}-E_{0}^{o}}{R T}+1 . \tag{2.8}
\end{align*}
$$

$$
\begin{align*}
& \frac{C_{g}^{\circ}}{R}=\frac{C^{\circ}}{R}+1+ \tag{2.10}\\
& \frac{S^{0}}{R}=\ln \Sigma_{j} g_{j} e^{-c_{j} t \tau}+\frac{\Sigma_{j} g_{j}\left(e_{j} / k T\right) e^{-e_{j} t \tau}}{\sum_{i} g_{j} e^{-c / t \tau T}}+\frac{S_{L}^{6}}{R} . \tag{2.11}\\
& \frac{\mathbb{S}_{i}^{0}}{R}=\frac{5}{2} \ln T+3 / 2 \ln M-\ln \left(P / P_{0}\right)+\ln \frac{(2 x)^{9 / 2} R^{5 / 2}}{h^{5} N_{0}^{6} P_{0}}+\frac{5}{2} .
\end{align*}
$$

$$
\begin{gather*}
\frac{S_{i}^{\circ}}{R}=\frac{3}{2} \ln T+3 / 2 \ln M+\ln V+\ln \frac{(2 \pi R)^{3 / 2}}{N^{6} N_{6}^{4}}+\frac{5}{2} \tag{2.13}\\
\frac{F^{\bullet}-E_{0}^{\circ}}{R T}=\frac{H^{\circ}-E_{0}^{\circ}-T S^{\circ}}{R T}=-\ln \underset{j}{\Sigma_{j} e^{-c_{j} i t \tau}}+\frac{5}{2}-\frac{S_{i}^{\circ}}{R}
\end{gather*}
$$

I Accordingly for orthohydragen and paradeuteriam Eno la not the internal energy at $0^{\circ} \mathbf{K}$. For these gulastances at $0^{\circ} \mathrm{K}$ the internal eneryg above the chooen zeto $(J=0, v=0) 18$ the rotatimal euergy per mole of molectles in the

In eq 2.12, P and P_{0} are the pressure of the gas and standard atmospheric pressure, respectively, with both expressed in dynes cm^{-2}. The ratio P / P_{0} is the pressure expressed in atmospheres.

For a monatomie gas in which the ground state is so far below the others in energy that it alone makes appreciable contribution to the state-sum, $\sum_{j} g e^{-e^{-/ k T}}$, eq 2.7 to 2.14 are simplified considerably. With ϵ_{i}, the energy of the ground state, taken as zero, the state-sum reduces to the constant g_{1}
As a result, $\left(E^{\circ}-E_{0}^{0}\right) / R T=3 / 2 ;\left(H^{\circ}-E_{v}^{0}\right) / R T=$ $6 / 2 ; \quad C_{*}^{*} / R=3 / 2 ; C_{p}^{*} / R=5 / 2 ; S^{\circ} / R=\ln g_{1}+S_{t}^{*} / R$, and $\left(F^{\circ}-E_{n}^{0}\right) / R T=-\ln g_{2}+5 / 2-S_{i}^{0} / R$. When the nuclear spin is included, g_{1} contains ($2 i+1$) as a factor.

Normal hydrogen is a mixture 75 percent of orthohydrogen and 25 percent of parahydrogen, and normal deutfrium 66% percent of orthodeuterium, and $331 / \%$ percent of paradeuterium. The molar entropy and free energy of a mixture of ideal gases present in the mole fractions x_{1}, x_{2}, . . . are

$$
\begin{align*}
& S_{\text {mikcorn }}=\sum_{j} x_{j} S_{y}^{\circ}-R \Sigma_{j} x_{j} \ln x_{j} \tag{2.15}\\
& F_{\text {maxtume }}=\Sigma_{j} x_{j} F_{j}^{\circ}+R T \sum_{j} x_{j} \ln x_{j} \tag{2.16}
\end{align*}
$$

where S°, and $F^{\circ}{ }_{f 1}$ the molar entropy and free energy of the ideal gas j in a pure state at the pressure of the mixture, are given by eq 2.11 and 2.14, using eq 2.12 for the ovaluation of $S^{\circ}{ }_{t}$. The summation $-R \Sigma x_{j} \ln x_{j}$ is called the entropy of mixing. Using eq 2.13 for the evaluation of S_{i}, and setting V equal to the molar volume of the constituent, that is, the volume of the mixture divided by the moles of constituent present, is equivalent to using partial pressures in eq 2.12 , in which case the entropy and free energy of the mixture are equal simply to $\Sigma x_{j} S_{j}^{\circ}$ and $\Sigma x_{j} F_{j}^{0}$,

2. Energy Values From Spectroscopic Data

The values of ϵ, to be used in evaluating the equations of the preceding section are derived from analysis of molecular spectra. In general, banded electronic absorption and emission spectra, infrared, rotation-vibration absorption spectra, and Raman spectra are considered. But as the H_{2} and D_{2} molecules have no electric dipole moments in their normal states, they have no rotation-vibration absorption spectra. Similarly, no such spectra have been observed for HD, although lack of symmetry permits it to have a very weak dipole moment.

The spectroscopic energy level data for hydrogen are represented by a series in which the energies of the levels relative to the ground level, $y=0$, $J=0$, divided by he are expressed as a function of the rotational and vibrational quantum numbers J and v, see eq 2.17 . The quantity $\varepsilon_{j} / h e$ is called the term achue of the level and is designated by the symbol F. Term values are determined experimentally from differences between the wave numbers of spectrum lines and are expressed in terms of reciprocal centimeters as a unit. Here $F_{0, N}$ is the term walue for the level $v, J ; F_{0,0}$ for the ground state being zero.

Up to $25,000 \mathrm{~cm}^{-1}$, the term values on which tables 4, 7, and 8 are based, can be represented by

$$
\begin{align*}
F_{0 J}= & G_{\mathrm{p}}-G_{0}+B_{5} J(J+1)+D_{p} J^{2}(J+1)^{2}+ \\
& F_{\Downarrow} J^{3}(J+1)^{3}+H_{0} J^{3}(J+1)^{4}+ \\
& \left.\overline{F_{v} J^{3}(J+1)^{3}-H_{0} J^{4}(J+1)^{4}}\right) \tag{2.17}
\end{align*}
$$

where the subscripts used indicate the quantum numbers on which the different symbols depend for their values.

The functions $G_{\theta}, B_{6}, D_{*}, F_{v}$, and H_{*} for $\mathrm{H}_{2}, \mathrm{HD}$ and D_{a} are as follows:
For H_{2} :

$$
\begin{aligned}
& G_{\mathrm{r}}=4405.3(p+1 / 2)-125.325(v+1 /)^{2}+1.9473(v+1 / 2)^{3}-0.11265\left(v+\frac{1}{v}\right)^{4} \\
& B_{v}=60.8483-3.06635(v+3)+0.068361(v+1 /)^{8}-0.0065(v+16)^{5} \\
& D_{\mathrm{r}}=-0.046435+0.0014904(p+1 /)-0.000063648(v+1 /)^{2} \\
& F_{\mathrm{r}}=4.93203 \times 10^{-5}+0.02800 \times 10^{-6}(v+1 / 0) \\
& H_{\mathrm{r}}=-6.7217 \times 10^{-8}
\end{aligned}
$$

For HD:

$$
\begin{aligned}
& G_{0}=3817.09(v+1 / 2)-94.958(v+1 /)^{2}+1.4569(v+1 /)^{3}-0.07865(p+/)^{2} \\
& P_{v}=45.6549-1.992721(v+1 / 2)+0.038482(v+1 / 2)^{2}-0.00318885(v+1 /)^{0} \\
& D_{*}=-0.026136+0.00072661(v+7 / 2)-0.0000268773(v+1 / 2)^{2} \\
& F_{\mathrm{s}}=2.0827 \times 10^{-5}+0.01024 \times 10^{-3}(9+\text { 汭 }) \\
& H_{z}=-2.1295 \times 10^{-8}
\end{aligned}
$$

For D_{2} :

$$
\left.\begin{array}{l}
G_{\mathrm{p}}=3118.46(v+/ / 2)-64.10(v+/ /)^{2}+1.2514(v+/ /)^{2}-0.10612(v+/ /)^{2}+0.00034(v+1 /)^{9} \\
F_{i}=30.4286-1.04917(v+/ / 2)+0.0057934(v+/ /)^{2}-0.00027486(v+/ /)^{2} \\
D_{v}=-0.011586+0.000151(v+1 /)+0.000058(v+/ /)^{2} \\
F_{s}=6.22 \times 10^{-8}+0.105 \times 10^{-6}(v+/ 2) \\
H,=-0.442 \times 10^{-8}
\end{array}\right\} 2.20
$$

The numerical values of the coefficients in eq 2.18 to 2.20 are based on the latest available spectroscopic measurements due principally to Rasetti [2], Hyman [5, 6], Jeppesen [6, 7, 12, 15, 24], Beutler [20, 21], and Teal and Mac Wood [22]. The data of Fujioka and Wada [23] were not used and the data of Mie [16] on HD only through its influence on the formula for G. The cquations G_{0} for H_{2} and HD are those given by Teal and Mac Wood [22], and that for D_{2} by Jeppesen [24]. The equations for B_{r} are essentially Jeppesen's [12,24] equations expressed for use with $J(J+1)$. The constants in the equations for D_{v}, F_{*}, and $H_{\text {s }}$ were obtained from theory using the equations for Q_{a} and B_{e} and the formulas of Dunham [10] without his correction terms.

In the case of hydrogen as for many other substances, extrapolations of spectroscopic formtilas have to be made into regione of large rotational quantum numbers for which no wavelength measurements are availsble in order to obtain valucs for the energies $\epsilon_{;}$of the higher quantum states. The energy values for large rotational and vibrational quantum numbers nro influenced by the law of internuclear force of the molecule for large separations of the nuclei. Special consideration has been given to this point in the present work and two methods were developed whereby more reliable values of the energics of the unobserved higher rotational levels were obtained.

The first improvement was the addition of the
final term in eq 2,17, $\left[H_{r} J^{4}(J+1)^{4}\right]^{2} /\left(F_{\mathrm{w}}{ }^{2}(J+1)^{3}-\right.$ $\left.\left.H_{\mu} J^{4}(J+1)^{2}\right)\right]$. Without the final term, eq 2.17 is of the form in which spectroscopic data have heretofore been represented, but in that form it is not a good approximation for large values of J. The third, fourth, fifth, and sixth terms of eq 2.17 are of eltermate sign and for H_{2} the third, fourth, and fifth terms are approximately equal for $J=28$. This suggested that the serics be extended with successive terme in constant ratio. The final term of oq 2.17 is the sum of the geometric series of added terms in which the term to term ratio is that between the fifth and sixth terms of eq 2.17 .

This change in the formula for the energies of the rotational-vibrational levels of the normal ($1 s^{1} \Sigma$) electronic state of hydrogen has only a small effect on the energy values of the observed spectrum lines. Thus the mean difference between Jeppesen's [12] observed and calculated term values for the $2 p^{\prime} \Sigma-1 s^{\prime} \Sigma$ band for H_{2} was $1.032 \mathrm{cmi}^{-1}$, whereas using eq 2.17 in place of Jeppesen's equation for the $1 s^{\prime} \Sigma$ state the mean difference betwreen observed and calculated valucs is $1.030 \mathrm{~cm}^{-1}$.
As a second improvement, for the calculation of thermodynamic properties above $2,000^{\circ} \mathrm{K}$, an alternative determination of the highest rotational levels was mude. Iostead of using the power series eq 2.17, the energies corresponding to any degrec of rotation and vibration were determined from the potential energy. This was
carried out in effect by (1) determining the potential energy U of the nonrotating H_{2} molecule as a function of the internuclear separation, (2) adding the rotational energy $h^{2} J(J+1) / 8 \pi^{2} I_{t}\left(r / r_{\theta}\right)^{2}$ to U to obtain an effective potential energy, U^{\prime}, for a molecule with rotational quantum number J, and
(3) using the quantum condition $\oint_{q N} d q=\int(2 m)^{1 / 2}$ ($\left.\epsilon_{n} . J-U^{\prime}\right)^{1 / 2} d r=(b+1 / 2) / 4$ to determine the energy e_{n}, of the quantom state v, J.

The coefficients of a power series used to represent the molecular potential energy were evaluated for the \mathbf{H}_{2} molecule using Dunham's [10] theoretical relations and the rotational and vibrational data for \mathbf{H}_{2} :

$$
\begin{align*}
U= & 79734 \xi^{2}\left(1-1.6082 \xi+1.8598 \xi^{2}-1.8882 \xi^{3}+\right. \\
& \left.1.7118 \xi^{4}-1.450 \xi^{6}+1.421 \xi^{9}\right), \tag{2.2L}
\end{align*}
$$

where ξ is $\left(r-r_{e}\right) / r_{\theta}, r_{e}$ being the equilibrium value of the internuclear separation, and U is expressed in reciprocal centimeters. Although this series is a poor representation of U for internuclear separations twice the equilibrium value (i. e., at $\xi=1$), it is very good for small values of ξ. Therefore, this serics whs not used for the potential
energy function finally accepted for internuclear separations much greater than the equilibrium value, but it was used for internuclear separations less than the equilibrium value. At dissociation the minimum value of r for classical motion is more than half of r_{a} (i. e., $|\xi|<0.5$), and the series determines the inner portion of the potential energy curve with sufficiont reliability for the present purposes.

The ranges of internuclear oscillation, $\xi_{\max }-\xi_{\text {mia }}$, for different values of the encrgy needed to fix the outer portion of the potential energy curve, were determined from (1) the vibrational levels of the nonrotating molecule, symbolized by G_{0} in eq 2.17 to eq 2.20 , which have been accurately measured to within $140 \mathrm{~cm}^{-1}$ of dissociation [5, 12, 20, 21] and (2) the quantum condition.

$$
\begin{equation*}
\oint p d q=\left(2 m r^{2} h c\right)^{1 / 2} \oint\left(G_{s}-U\right)^{1 / 2} d \xi=(v+1 / 2) h \tag{2.22}
\end{equation*}
$$

The method used to obtain ($\xi_{\max }-\xi_{\text {mad }}$) by eatisfying eq 2.22 was essentially that of Rydberg [8] and Klein [9]. Calculated values of the potential energy U in wave numbers are given in table 1 .

Figund 1. Potential-energy curtes for H_{2}.

Table 1. Molectiar potential energy Ufor H_{2} as a function of $\xi=\left(r-r_{0}\right) / r_{*}$, the change in iniernuclear separation

\leqslant	\boldsymbol{T}	5	U	ξ	U
	cm-1		6\|irl		¢石-1
- ${ }^{\text {a }}$ B	68, 648	0.9	20, 540	2.3	36,828
-. 1	27, 130	1.0	20,322	2.1	37,100
-. 3	12, 88\%	1. 1	24, 10	25	27,328
-. 2	4, 611	1.2	24,810	2.6	37,500
-1	P12	1.8	28,506	27	37, 350
0	D	1.4	50,009	2.8	37_{5} Tat
. 1	883	1.6	51, 8\%\%	2.9	37.87
-2	3, 360	1.8	52,472	9.0	$2{ }^{2} 960$
, 0	4,628	1.7	33,455	3.1	98, 5008
. 4	7,293	1.8	31, 282	3.2	38, 061
. 5	9,908	1. B	$35.50]$	9.3	38, 102
. 0	12,744	2.4	35, 508	3. 4	38, I39
. 7	18, 4010	2. 1	36,1082	ง. 5	38,187
. 9	18, 0 解	2.2	36,496	*	38, 290
$\mathrm{r}_{4}=4.814 \times 10 \times \mathrm{Cm}$					

The effective potential energy curves for rotating molecules obtained by adding to U for the nonrotating molecule the energy of rotation, $J(J+1) B_{d} f(1+\xi)^{2}$, in cm^{-1}, are illustrated in figure 1. By applying the quantum integral,

$$
\begin{equation*}
\oint p d_{q}=\left(2 m r^{2} h c\right)^{1 / 2} \oint\left(F-U^{\prime}\right)^{1 / 2} d \xi=(v+1 / 2) h, \tag{2.23}
\end{equation*}
$$

to the effective potential energy curves, U^{\prime}, a set of corresponding palues of energy (F) and wibrational quantum number was determined for each

Figder 2. Energy contouy diagrom for \mathbf{B}.
of a few large values of the rotational quantum number. In table 2 these corresponding values are given together with the maximum and minimom values of the energy (F) for different values of $J(J+1)$. The data were used to determine the constant energy lines in the v versus f diagram in figure 2.

Tablin 2, Corresponding values of $\mathrm{v}, J(J+1)$, and P oblained by evaluating $\oint p d_{\mathrm{Y}}=(v+1 / \mathcal{L}) h$

 anchading many atatonary states.]

$\begin{gathered} P \\ \text { Cabove } \\ \text { nt } \mathrm{F}-\mathbf{0}) \end{gathered}$	$\sqrt{(3+1)}$	*
CNO-1		
38.280	800	E.348y
34, 280	300	6. 2971
30,230	300	4. 5015
26, 289	350	2 R_{1}
22, 288	300	I. EHFI
59, 288	fno	4. 8278
34, 388	600	2. 7208
20, 396	800	1.0757
38.200	900	1.4032
42,200	1, 200	0.4846
Maximum falues of F and 5 tor siven values of $\sqrt{ }(J+1)$		
73, 288	0	15. 050
39, 088	200	0. 019
40,392	800	6, 815
41,859	000	2. 929
43,712	1,800	1.703
10, \%	1. 800	-0.072
Mbiman rahuee of s and of for - Diven ralucs ot $J(J+5)$		
D	0	-0. 5
15,027	300	-. 5
25,347	800	-. 6
34,111	900	- 0
40,606	1,200	-6
48,601	1,800	-6

Table 3 shows that over a wide range of J values the results of the numerical integration just described are in good agreement with the rotational energy formula (eq 2.17) when the last term, corresponding to a geometric serics contimuation, is included. For the larger values of J there are appreciable differcnces; yet, when it
is observed how large the final term of eq 2.17 is in these cases，it seems surprising that the discrepancies between F（table 2）and F（eq 2.17 are as small as they are．In another publication ［27］a more rapidly converging series representing $J(J+1)$ a function of the rotational energy has been auggested．

Tarle d．Comparioen of rotaitonal－mibrational energies Pfrom table \＆and from equation $\$.17$

$J(\sqrt{ }+1)$	t	$\begin{gathered} F \text { toble } \\ 2 \text {) } \end{gathered}$		Final term of eq 2.17
		citt－t	CN4 ${ }^{\text {a }}$	cin－t
300	4． 5015	30,289	－54	15
300	6． 2675	34，289	－34	184
000	1．0757	30，260	－77	6，004
900	1．4038	38，289	－300	24， 162
1，200	0．4845	42， 289	761	E6， $\mathrm{S}_{5} 5$

3．Details of the Colculations and Results

In the evaluation of the series of section II， 1 for the calculation of the thermal properties， direct summation was employed for temperatures below $2,000^{\circ} \mathrm{K}$ ．The resulting values to $2,000^{\circ}$ K for the various thermodynamic functions \mathbb{S}° ， $H^{\circ}-E_{0}^{0},-\left(F^{\circ}-E_{0}^{\circ}\right) / T$ ，and $C_{r}{ }^{\circ}$ for the ideal gas state at one atmosphere pressure are tabu－ lated in tables 4，5，and 6，for $\mathrm{H}_{2}, \mathrm{HD}$ ，and D_{2} ． For $\pi-\mathrm{H}_{2}$ for temperatures above $2,000^{\circ} \mathrm{K}$ ，the contributions duc to levels below $25,000 \mathrm{~cm}^{-1}$ were calculated by direct summation，whereas for levels above $25,000 \mathrm{~cm}^{-1}$ a less laborious method was used involving the determimation of the number of levels within successive equal steps of $2,000 \mathrm{~cm}^{-1}$ in the rotational vibrational energy， using the results of the calculations of the last section which led to figures 1 and 2．For these

Table 4．Thermadynomic functions for H_{8} in the ideal paseous state

Temperature	S^{5} ， cal mole ${ }^{-1}$ dog ${ }^{-1}$			$H^{\text {a }}=\mathrm{F}_{0}^{0}$ ，and mole ${ }^{-1}$								
	$\boldsymbol{-} \mathrm{H}_{1}$	0－E4	A－H．	$\mathrm{p}_{-1} \mathrm{H}_{2}$	－ $\mathbf{H z}_{7}$	$\square \cdot \mathrm{Hz}$	f0． F_{1}	OH_{2}	刀－ H ：	D－H：	$0-\mathrm{H}_{2}$	n－ H_{1}
${ }^{\circ} \mathrm{K}$												
10.	11.813	10，481	15007	48． 8285	398， 387	768088	8． 287	－23． 259	－14．780	4088	£ 䅂	4868
	14608	10，024．	19.050	D9．357	438006	$35^{3} 384$	0.6100	－2．876	1.382	4008	4988	4.888
20.70.	14.754	19．120	12． 146	101．200	474.943	365.281	9．7．7	－2 467	1．721	4981	4988	48988
30.	12.672	21.089	2I．DCA4	143．036	493． 684	408.622	11． 306	4．788	7．695	4088	4988	4.968
$32.1 ~$	17． 181	21.587	21.559	1th． 437	500．4065	418.428	12．108	B． 8189	8.141	4.988	4088	4．908
	18． 102	22．488	28.59	188．779	597.363	452.705	13.194	Q． $0^{\text {des }}$	1L． 178	4.683	4.968	4.969
$\mathbf{*}$	19.234	23．576	23．605	248.581	587.041	502128	14.83	11． 538	12． 654	500	4．968	4.958
60.	22.136	21.492	24.513	2898.108	Eses． 722	552318	15． 150	13． 670	15．307	8． 116	4.969	6． 505
	20.688	35． 245	$2 \mathrm{c}, 589$	551， 202	658．422	8082	15．921	18． 442	10．6．59	5．303	4.72	5.061
	21.669	25.913	25．968	406， 015	78．179	B38 638	16．644	18．710	12．799	5.648	5． ga^{8}	5.148
9）	䞨55	25．500	26． 581	464． 385	78.088	705．660	17．107	17． 7 \％	18.741	6.088	5． $0_{0} 8$	6． 251
100.	28014	27.029	27．142	520． 637	8\％． 277	768.10	12.745	18807	12.554	4.455	5．068	6．392
120．．．．．．．．．．．．．．	24.258	27． 885	28.151	689.782	183． 227	889.609	18．729	20．140	20.804	7.204	6． 170	6． 878
150.	28.945	2t． 143	29.481	E96，705	1，088．78	$1,045.6$	20.007	21． 825	22.188	7.807	6． 489	4， 0.06
	28．202	30.808	31.275	I，2982． 70	1,387 ． 80	L， 3 BL ． 61	21． 788	22.859	24．486	7．742	6． 110	6． 618
250.	29.899	29， 225	32.758	L，880．40	1，705．80	1，f89L47	22.248	25， 402	25.681	7．390	4． 665	6． 770
298．18．	31.108	23． 404	33．963	2，009．99	2．049， 24	2.04875	24，423	36， 108	2 T .175	7.158	6．Eres	6． 898
200	31.212	33.446	94000	2，022， 10	$2,040.87$	2，436，44	24， 468	24．643	2 T .217	7.152	6． $\mathrm{B}_{8} \mathrm{O}$	6． 894
200.	52 308	34.505	95． 073	2，377．84	2，384 38	2， 2884	25． 512	27.493	28． 285	7.064	8． 817	8．831
	33．24	36． 432	38.003	2．724．19	2， 781.64	2， 740.25	25． 421	23， 008	29.175	7.010	6．003	\＆．975
1500．．．．．．．．．．．．．．．	3LEOA	36． 890	37.561	3，429．24	5，472．59	3， 129.46	75．948	30． 131	30.702	6． 989	6． 928	4， 938
400	38.1080	陉286	38．E59	4，129．18	4，129． 52	4．124．61	29． 300	SL． 383	31． 955	7.010	7.009	7．009
700.	27．145	38.345	38.580	$4{ }_{4} 821.85$	1．801．66	4，891． 66	30.263	28， 16	23018	\％． 018	7．085	7.085
1，000．．．－－－	38， 701	41.884	42． 455	．．．．．．		4，988， 23	32735	34.918	86， 490	－－－－－		7.218
1，500．．．．－－－－．．－－－	42．720	44.904	46， 475	．．．．．－	．．．．．．．．．．．	10，687， 20	36． 38	37.780	28．343	－－－－－		7.720
2，000	45，007	47.180	47． 7 ¢0			14，670，2	37，009	32.861	40． 422			8． 100
3，000．．．－－－－－．．．－	－．．－－－	－－．．．．	51． 222	－－－－－		23，230．9	－－－－－－	－．－．．．－－	43.478	－－－－－		8.859
\＄，000．．		－－－．．．－	53，839			32， 345.	－－－－－－		55.753	－－－－－		0.342
8，000．．．．．－－．．．．．－	－－	－－．．．．	55．9龟	－－－－－－	．	11，820．	－	－－－－－－．．	47.590	－		2.748

Table 5．Thermodynamic funetion for $H D$ in the ideal
gras 8tale

Temperaturo	8	$H^{\circ}-E_{0}$	$-\frac{F^{2}-E \%}{T}$	$c_{p}^{\text {a }}$
	cal moler		calt mole－	Cal
${ }^{\circ} \boldsymbol{K}$	Hfor ${ }^{-1}$	col mole -1	dif ${ }^{-1}$	deg－t
	15．662	19．6．61	11.014	4771
20	19.197	100.600	15．488	5． 3285
22.19.	20.050	112 Fs	14．978	5． 5 ed
30.	21．831	159.200	1t． 553	6．367
4.	3． 782	236， 310	18．129	4．981
\＄0．	25．355	297．473	19．425	2． 149
	226800	268，	20.801	7.128
\％	27.72	439．914	21． 488	7．078
10.	28．714	\＄10．484	22.383	7.097
80．－－－－．．．－－	29， 542	560.708	23.069	7.013
100.	30． 279	850.738	29． 772	E8898
129.	31.654	T90． 692	24．986	8．689
150.	39． 112	1，002，02	26．443	（1）．978
210	35.119	$1,748.82$	28．375	E． 9.5
250．－－－－－．．－－－－	3.48	1，69\％．62	29.883	B． 877
208．15－	37．005	2，093． 66	81.048	B． 5 \％
300.	37．948	2，448． 50	31．125	B． 97%
400.	38.857	2， 744.72	33．045	B． 988
500	41． 517	3，443．85	34．829	B． 929
000	42 T 9	4.144 .90	35.888	7．035
700．．	4． 88.8	4，40． 60		7.072
$1,1000$.	（6．447	7，007． 50	78.48	5，379
1，500．	19． 827	10，821，${ }^{\text {a }}$	42.318	7． 908
2，000．．．．．．．．	31． 881	14， 8084	44， 42 l	8， 376

higher levele having characteristic temperatures above $36,000^{\circ} \mathrm{K}$ ，the exact placement of each individual level is not important for calculations up to $5,000^{\circ} \mathrm{K}$ ．

Figure 1 shows that the effective potential energy curves for rotational quantum numbers other than 0 have broad potential energy barricrs above the minimum dissociation energy， 38,296 cm^{-1} ，for $J=0$ ．As a result there are above 38,296 cm^{-1} ，the minimum dissociation energy，quantized rotational－vibrational levels belonging to the sequences of levels below $38,296 \mathrm{~cm}^{-1}$ ．These states are represented by the points in figure 2 between the dashed curve and the full line die－ sociation energy curve passing through（ $J=0$ ， $v=15.1)$ and $(J=32.5, v=-1 / 2)$ ．

It seemed proper to include in the calculations of the thermal properties of hydrogen above $2,000^{\circ}$ K these quantized or partially quantized rotation－ al－vibrational states．The values of the thermo－ dynamic functions for $n-\mathrm{H}_{2}$ from $2,000^{\circ}$ to $5,000^{\circ} \mathrm{K}$ in table 4 are based on this convention．

The effect of the quantized rotational－vibration－ al levels albove the minimum disbociation energy of H_{2} on the most sensitive of the functions cal－ culated，namely the molecular heat capacity，is represented in figure 3．Curve A represents the

Table 6．Thermodynamic functions for D_{2} in the idalal gabeothe atate
values for 5° and $-\left(F^{\circ}-E_{0}\right) / T$ include nuclear spln

Temperature	s^{6} ，cesl mole－1 dek ${ }^{\text {d }}$						$-\frac{F^{\prime \prime}-\sqrt{10}}{T}+\text { cs] mole=1 } \mathrm{Heg}^{-1}$					
	$\mathrm{p}^{1} \mathrm{D}_{2}$	$\mathrm{a}-\mathbf{I}_{3}$	ri^{-1}	$\mathrm{p}^{-\mathrm{D}_{2}}$	$0-\mathrm{D}_{\boldsymbol{t}}$	\％－ D_{1}	$\mathrm{P}^{2} \mathrm{D} / 2$	$1-192$	\＃－ D_{1}	p－12 ${ }^{\text {s }}$	$0-\mathrm{D}_{2}$	＊－1）
10．．．．．．	17.845	16．898	18． 372	220.505	48.878	176.821	－1408	11． 1781	7．810	4． 888	1． $\mathrm{af15}$	1．Af8
	21.088	20.283	21．Bl6	270．183	28．34	156.7008	7． 578	15.315	14.001	4． ABE	4． 872	4． 075
20.87	21.004	21.104	22．803	267． 918	117． 189	174．065	A．RS9	18． 131	15． 248	4．06\％	4． 0 ＋ 49	4．002
	23.102	22.315	20.842	31988	149.614	2006.297	12.440	1\％．311	1f．Ath	4． OAS	5．10\％	5．069
	24.533	23.843	25． 238	3 man Sx	202．736	266.378	16．20x	18．74	18． $\mathbf{4}$ ¢ 48	4． 8880	5.617	8． 614
	25．649	25．184	25．600	410．609	268．411	816．048	17．237	19．983	20．209	5082	8． 412	5． 552
60.	27． 578	26． 118	27．738	470． 420	y3n． B_{6}	377.349	12． 734	20， 904	21.488	b． 154	7.183	B． 485
	27． 3.14	27．54x	安枵	522． 148	H6． 198	413.414	12． 413	21． 775	22.418	5.348	7.864	fl． 8 S\％
	29.114	28．801	29．304	575.588	$182 \mathrm{Dag7}$	514．528	2 Cl 8 B	22． 564	23．272	5． 589	7．8．62	3.100
	29．784	29.627	30．540	tic． 706	561.871	3FS． 019 A	21.834	29． 287	24．085	5．688	7．800	7.187
100.	29，414	30．30	31.304	694． 3003	689.876	B89．018	22．471	23．0．44	24.784	820．0）	7.751	7．193
120.	30， 565	91． 788	92611	819.906	201．908	（111．270	23．720	25．139	25．635	6． 460	7． 434	2.125
	32.041	93．366	94． 143	1， 819.62	1，011k 97	1，413， 42	25.244	26．129	27．432	6． 7 \％	7．149	7．420
200.	H1．023	35． 385	38． 202	I， 368.45	1，392． 60	1，3es． 27	27．${ }^{\text {20，}} 2$	28．680	290888	6． 2077	4，968	4．0000
208.18	38.805	38．169	188．888	2．048． 17	2，O48，DE	2.048 .04	29.438	31.318	32． 118	B． 977	せ． 978	8． 8 F\％
300.	36.848	38．225	38.181	2． 180.98	2．Onf． 88	2， 160.82	22．978	31．45s	32.181	6． 877	6． 878	fr． 878
400.	29.857	40， 234	41.040			2，758． 18	31．854	S3． 398	3． 142	－－．．．	－－－．．	6． 8 Ea
\＄00．	40.419	41． 76	12．802		…－．．．		32.500	34．877	25． 188	\cdots	\cdots	7.019
80.	41.704	43.061	43． 885			4，104．00	34.768	3 k .141	6． 6046			7．0\％
T 1×1	42802	44.172	44．${ }^{\text {ges }}$			4，876．20	28.895	37.812	38.018	－．－．－	．．．．．	7．173
10000	45． 922	46． 900	47.005			7，004．35	38.88	39.710	40．6in	－－－．．	－－－－	7． 6.6
1，50］．	48．611	48.988	50．764	－－－．．．．．－	．－．－－－－－	11，427， 3	41．209	42.697	43． 442	－－－－－	－－－．．	8．178
2000．	81.087	5803	532210	．．．．．．．．．	．．．．．．．．	15.228	43． 411	44.788	45， 604	－－－－－	．．．．	E． 588

Figure 3. Specific heat of mormal hydrogen at constant pressure.

Table 7. Thermodynamic ftrmetions for $\mathrm{H}_{\mathbf{2}}$ in ideal gaseous state
[Based only on levels below mintrintm ctassoctation enerrs]

T	Entropy	Enthalpy	$-\frac{F^{*}-E_{6}^{\prime}}{T}$	Speotfic Deest
${ }^{*} \boldsymbol{K}$	cal mander	eat modes	sot mate 	$\text { cal mole } \underset{d \in \nabla^{-1}}{ }$
3,000....--.........	61. 221	27,230. 8		8830
1,000...----.......	123 639	32, 361	45.763	2, 341
$5,000$.	66, 980	41,854	47.584	0875

molecular heat eapacity if the quantized rota-tional-vibrational levels above the minimum dissociation energy are included as molecular levels, and curve B represents the molecular heat capac-
ity if the molecular levels are regarded as extending only up to the minimum dissociation energy. In table 7 are tabulated the values of the thermodynamic functions for $n-\mathrm{H}_{2}$ based on calculations involving only energy levels below the minimum dissociation energy.

For convenience in the calculation of the thermodynamic functions of the real gas $n-\mathrm{H}_{2}$, values for $n-\mathrm{H}_{8}$ in the ideal gas state at all temperatures for which there are entries in the tables of PVT data were obtained from table 4 by interpolation and are tabulated in table 8. The interpolated values of $S^{\circ},-\left(F^{\circ}-E_{0}^{*}\right) / T$, and C_{s}° agree to within ± 0.001 with values that would have been ob-
tained by direct summation．In the case of $H^{\circ}-E_{0}^{o}$ ，the agreement is within three in the last digit carried．

Table 8．Thermodymamic functions for normal H_{2} in the ideal gaseoth state

Table 8．Thermodynamic functiona for norntal H_{2} in the ideal gaseoths thate－Continued

T	s^{*}	$H^{\prime \prime}-E_{0}^{p}$	$-\frac{F^{*}-E^{*}}{T}$	c_{7}^{*}
${ }^{9} \mathrm{H}$		cal mate－	$\begin{gathered} \text { cat wile -t } \\ \operatorname{der}^{2}-1 \end{gathered}$	$\begin{gathered} \text { cat mode }-1 \\ \text { dep }=-1 \end{gathered}$
200．．．．．．．．．．．．．．．．	32． 197	1，848．88	25.415	6．088
240.	22， 483	1，820，96	${ }^{25} 70{ }^{\text {d }}$	6．${ }^{3} 1$
250．．．．．．－．．．．．．．．．．	22．768	$1,404.47$	25.981	6． 780
200．	26．024	1，牊38	23.548	C． 803
770．－．－－－－．．．．－－－．．．	34． 282	1，830． 49	25． 502	6． 893
280．－－－－－－－．．．－－－．	\＄． 501	1．888．92	23， 749	4858
300.	$3 \mathrm{S.005}$	2,0884	27.217	E8891
320	K． 188	2，174．	24．036	6．922
346.	34.872	2，213， 28	28，06t	8．943
300．．．．．．．．．．．．．．－－2	35.889	2，462， 29	28．157	6． 007
30．．．．．．．．．．．．．．．．	35.656	2．561． 69	28．825	6． 268
400	38.006		22 175	6． 675
480	$3{ }^{\text {免 } 344}$	2． $\mathrm{ExO} . \mathrm{Cl}$	29．800	6． 180
440.	48689	3． OJO 11	29．388	6．B6t
180.	50，879	3 ，149．95	32.131	6． 987
150．．－－－－．．．．－－－－－．	37． 274	3，259．02	31． 422	6． 1000
500．．．．－－－．．．．．．－－．	37． 181	3， 429.46	30． 708	6．003
580	37．897	3， 860.34	20．973	6.906
54.	36． 100	3，700．28	91． 231	6．090
500.	3 l 36t	3，489， 30	81．481	7.002
\＄80．．．．．．．．．．．．．．．．－	38.800			2．005
＋020．	38．83	4，129．61	31.868	7.009
880.	施． 808	4，1EC． 18	32，503	7.081

The contributions to the entropy and to the re－ lated free energy functions arising from（1）the nuclear spins，（2）the triple degeneracy of the low－ est rotational state of o－ H_{2} and $p-\mathrm{D}_{2}$ and（3）the mixing of the ortho and para varieties in $n-\mathrm{H}_{2}$ and $n-D_{2}$ have been included through eq 2．3，2．4，2．15， and 2.16 in all the tables．A comparison of the entropies and free energies of hydrogen and deuter－ ium calculated from calorimetric data with values in the tables must take into account the degener－ acies existing in the solid state at the lowest temp－ erature of the calorimetric measurements．There must accordingly be added to the calorimetric val－ ues of entropy calculated from data extending from $10^{\circ} \mathrm{K}$ to higher temperatures，the entrooies of table 9 ．In calculations concerning chemical re－ actions above room temperature nuclear spin en－ tropies are customarily omitted for all components of the reactions．

To obtain entropies of $n-\mathrm{H}_{2}, \mathrm{HD}$ ，and $n-\mathrm{D}_{2}$ suitable for such use above room temperature， there should be subtracted from table values of the entropies $R \quad l n\left(2 i_{1}+1\right)\left(2 i_{2}+2\right)$ where i_{1} and i_{2} are the two nuclear spins within the mol－ ecule［14］．For $n-\mathrm{H}_{2}$ this is equal to $R \ln 4=2.755$

Table 9. Low-hemperature ($10^{\circ} \mathrm{K}$) entropy contributions arising from rotational and nuclear-spin degeneracies

Varrety Values of J.	H_{1}		HD	D)	
	$\begin{aligned} & \text { Pars } \\ & \text { Eved } \\ & 1 \\ & 1 \\ & 0 \end{aligned}$		Only 1 Both odd and even 1 6 R ln 6=3.5nt an mole -ldeg - ا.	$\begin{aligned} & \text { Orthe } \\ & \text { Even } \\ & 1_{1}^{1} \\ & 0 \\ & R \text { in } 6-3.600 \text { cal } \\ & \text { mole -14eril. } \end{aligned}$	```Para Odd 3 3 R 的 9-4.98b cal mole "3dese-1.```
Welght of lowest rotational Jeved ($2 f+1$).					
Nucteat spta welight, sea eq 2.3 and					
Total aldiod entrapy....----..----					
		${ }^{+} \cdot \mathrm{H}_{\mathbf{2}}$		*.D.	

cal mole ${ }^{-1} \mathrm{deg}^{-1}$; for HD, $R \ln 8=3.560 \mathrm{cal} \mathrm{molc}^{-1}$ dag^{-1}, and for $n-\mathrm{D}_{2}, R \ln 9=4.366 \mathrm{cal}$ mole ${ }^{-1}$ deg ${ }^{-1}$.

The reliability to be expected in thermodynamic functions for the ideal gas state calculated from spectroscopic data has been considered by earlier writers on the basis of the reliability of spectroscopic constants and the gas constant R. The former estimate of one or two hundredths of a calorie mole ${ }^{-1} \mathrm{deg}^{-1}$ for the probable error in the free energy function, specific beat and entropy, appears reasonable. Over much of the temperature range it is probably a more liberal estimate than necessary, as more recent and presumably better spectroscopic data and values for the physical constants have been used. A larger allowance may be necessary for the higher temperatures, however, possibly twice much at $5,000^{\circ} \mathrm{K}$.

The results of the present calculations below $2,000^{\circ} \mathrm{K}$ are in fairly close agreement with those of Giauque [4], Johoston and Long [18], Davis and Johnston \{17], and Wagman, et al. [28]. Above $2,000^{\circ} \mathrm{K}$ the effect of the new calculations of the high rotational levels of H_{2} is apparent.

This can be seen in figure 3 in which the results of Davis and Johnston (eurve C) for the specific heat of hydrogen, the most sensitive property calculated, are compared with table values of this paper (curves A and B). Curve A, corresponding to table 4, is based on the inclusion of the quantized rotational-vibrational levels above the minimum dissociation energy as molecular levels, and curve B, corresponding to tablo 7 , is based only on levels below the minimum dissociation energy.

In figure 3 are plotted also a large number of scattered points representing the experimental obsorvations of many investigators. [33 to 37, 40 to $46,50,51,56$]. In cases where mean specific heats were reportod, they have been plotted for the mean temperatures of the experimental intervals. At room temperatures and below, the theoretical and experimental specific heats are in good agreement, as has been the case since the correct treatment of the ortho and para forms by Denmison [1] in 1927. Above $1,200^{\circ} \mathrm{K}$ the observations obtained by the explosion method lie above the theoretical curve. The difficulties of the explosion method are great and the accuracy not high [53], consequently the authors feel that the calculated curve and table are more reliable.

At atmospheric pressure and a temperature of $2,000^{\circ} \mathrm{K}$, there is a amall but perceptible dissociation of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}. As the heat of dissociation of hydrogen is large there are significant differences between the calculated properties of molecular $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, tables 4 to 6 , and the properties of the dissociating gases. At $2,000^{\circ}$ K the table value of C_{7} for molecular H_{7} is 8.195 cal mole ${ }^{-1} \mathrm{deg}^{-1}$, whereas for an ideal gas mixture of molecular and atomic bydrogen in equilibrium at atmospheric pressure the value is 8.797, a difference of $0.60 \mathrm{cal}^{2} \mathrm{~mole}^{-1} \mathrm{deg}^{-\mathrm{t}}$. For HD and D_{2} the differences between the two specific heats are 0.41 and 0.57 cal mole ${ }^{-1} \mathrm{deg}^{-1}$, respectively. The effect of pressure upon the specific heat of dissociating hydrogen is illustrated in figure 4 and discussed in section III. At temperatures where there is appreciable dissociation of HD, equitibrium mixtures of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, are established.

III. Equilibrium Constants for Dissociation, Isotopic Exchange, and Ortho-Para Conversion

The equilibrium constant K of a gaseous reaction

$$
\begin{equation*}
\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3} \ldots=\beta_{1} B_{1}+\beta_{2} B_{2}+\beta_{3} B_{3} \ldots, \tag{3.1}
\end{equation*}
$$

in which each of the participating gases A_{1}, A_{2}, . . . $B_{1}, B_{2,}$. . . has the equation of state $P V=R T$, is related to the partial pressures of the gases and to their free energies, F^{*}, at unit pressure by the equation

$$
\begin{align*}
& -\left(\Sigma \beta, F_{s_{j}}^{*}-\Sigma \alpha, F_{厶_{j}^{\prime}}^{*}\right)=-\Delta F^{*} . \tag{3.2}
\end{align*}
$$

Equilibrium constants for dissociation, isotopic exchange, and ortho-para conversion of hydrogen may be calculated by using the $-\left(F^{\circ}-E_{0}^{\circ}\right) / T$ values of tables 4,5 , and 6 . E_{0}^{0} is the internal energy per mole of molecules without translational motion in the lowest energy level $J=0, v=0$ and in the ideal gas state, and F° is for the ideal

[^2]gas state and a pressure of 1 atm : Using $-\left(F^{\circ}-E_{0}\right) / T$ instad of $F^{* *}$,
\[

$$
\begin{equation*}
R \ln K=\Delta \frac{-\left(F^{\circ}-E_{0}^{\circ}\right)}{T}-\frac{\Delta E_{0}^{\circ}}{T} \tag{3.3}
\end{equation*}
$$

\]

The values of $\Delta E_{0}{ }^{\circ}$ for the reactions considered in this section are given by the spectroscopic data used in the previous section. Using free energy ralues as given in the tables of this paper, the atmosphere is the unit of pressure for K and P in the mass action law,

Deviations from the laws of ideal gases can be taken into account by use of fugacities or activities in place of partial pressures and the forms of eq $3.2,3.3$, and 3.4 for K are retained. When fugacities or activitics are substituted for partial pressures, F^{*} becomes the free energy at unit fugacity or activity. For a fuller discuasion of the use of fugacities and activities the reader is referred to references [29 to 32].

The entropies of monatomic H and D (see p. 383) must include the nuclear and electron spin entropies besides the entropy of translation, eq

Ftoune 4. Curves shonoing effect of disaociation on specrific heat of H_{3}.
2.12, when used with table values of the entropy and free energy of molecular $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, in the calculation of equilibrium constants for dissociation. Accordingly for H,

$$
\begin{align*}
-\frac{F^{\circ}-E_{0}^{\circ}}{R T}= & \frac{5}{2} \ln T-2.2603 \text { and } \frac{S^{\circ}}{R}= \\
& \frac{5}{2} \ln T+0.2337, \tag{3.5}
\end{align*}
$$

and for D,

$$
\begin{align*}
-\frac{F^{\circ}-E_{0}^{\diamond}}{R T}= & \frac{5}{2} \ln T-0.8223 \text { and } \frac{S^{\circ}}{R}= \\
& \frac{5}{2} \ln T+1.6777 \tag{3.6}
\end{align*}
$$

in the ideal gas state at a pressure of 1 atm for the range of temperatures covered by the tables.

1. Dissociation of $\mathrm{H}_{2}, \mathrm{D}_{2}$, and HD

The chemical equations for dissociation and the corresponding mass action equations are

$$
\begin{align*}
& \text { (a) } \mathrm{H}_{2} \leftrightharpoons 2 \mathrm{H} ; \quad \frac{P_{\mathrm{H}}^{2}}{P_{\mathrm{H}_{2}}}=K_{\mathrm{H}_{2}} \tag{3.7}\\
& \text { (b) } \mathrm{D}_{2} \leftrightarrows 2 \mathrm{D} ; \quad P_{\mathrm{D}_{\mathrm{D}_{2}}^{2}}^{2}=K_{\mathrm{D}_{2}} \tag{3.8}\\
& \text { (c) } \mathrm{HD} \leftrightarrows \mathrm{H}+\mathrm{D} ; \quad \frac{P_{\mathrm{H}} P_{\mathrm{D}}}{P_{\mathrm{HD}}}=K_{\mathrm{HD}} \tag{3.9}
\end{align*}
$$

For these reactions, ΔE_{0}° of eq 3.3 is the diiference between the internal energy of 2 moles of dissociated atoms and 1 mole of molecules in the rotational-vibrationel state $J=0, v=0$. Beutler's value [21], $36,116 \pm 6 \mathrm{~cm}^{-1}$, was accepted for the dissociation of H_{2} from its ground state. Aesuming that the total depth of the potential energy curve is the same for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, the dissociation energies of HD and D_{2} were obtained from the zero-point vibrational onergies. These zero point energies were calculated by adding to G_{0} (see eq 2.17), the term which Dunham [10] included in the energy of the ground state relative to the bottom of the potential energy curre and designated Y_{00} in his system. The values thus obtained for the zero point energies of $\mathrm{H}_{3}, \mathrm{HD}$, and D_{2} were respectively $2,179.6,1,891.0,1,546.6$ cm^{-1}, and the corresponding energies of diesociation for HD and D_{2} from the ground state 36,404 . and $36,749.0 \mathrm{~cm}^{-1}$, respectively.

The heats of dissociation of $\mathbf{H}_{2}, \mathrm{HD}$, and D_{2} in the ideal gas state at temperature T are equal to $\Delta E_{0}^{\circ}+5 R T-\left(H H^{\circ}-E_{0}^{\circ}\right)$, where $\left(H^{\circ}-E_{0}^{\circ}\right)$ is the table value of the enthalpy at temperature T. The heats of dissociation at 0° and $298.16^{\circ} \mathrm{K}$ are given in table 11. The theoretical value for the heat of dissociation of $n-\mathrm{H}_{2}$ at $298^{\circ} \mathrm{K}$ agrees well with the calorimetrie value $105,000 \pm 3,500 \mathrm{cal}$ mole ${ }^{-1}$ obtained by Bichowsky and Copeland [47].

On the assumption that the atomic and molecular forms of hydrogen and deuterím are individually ideal gases, the fraction of the originally totally nondissociated hydrogen which has dissociated is $\sqrt{ } K /(K+4 P)$, where K is the dissociation constant and P is the total pressure in atmospheres.

The dissociation constants K and fractions of originally undissociated diatomic molecules, dissociated at 1 -atmosphere pressure, are given in table 10 for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}.

The experimental values of the equilibrium dissociation constants of H_{2} as determined by Langmuir and Mackay [32], and by Langmuir [39], are in agreement with the theoretical values of table 10. Langmuir's s-values are 0.17 percent at

Tabian 10. Dibrociation constants, K, and fraction dissoniated, x, at 1 -atm presture

$2,000^{\circ} \mathrm{K}, 1.6$ percent at $2,500^{\circ} \mathrm{K}, 7.2$ percant at $3,000^{\circ} \mathrm{K}$, and 21 percent at $3,500^{\circ} \mathrm{K}$.

Table 11. Heats of disoociabion of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{3} in cal mole ${ }^{-1}$

T	p-H1	- $-\mathrm{Hz}_{2}$	*- H_{5}	HD	$\mathrm{O}^{-\mathrm{D}_{2}}$	p-1/4	$n+\mathrm{D}_{4}$
${ }^{\circ} \mathrm{K}$							
0.-.------	109, ${ }_{\text {cos }}$	10200	102, ${ }^{\text {2 }}$ 85	104, ${ }^{1} 6$	104, 048	$10 \mathrm{H}_{\mathrm{r}}^{5 / 7}$	10-5, 891
2081818.	10, 191	104, 173	104, 177	104, 898	105, 268	106, 068	105 , 589

An equation of state for 1 mole of molecular $\mathrm{H}_{3}, \mathrm{HD}$, or D_{2} capable of forming 2 moles of atoms when completcly dissociated, assuming as before that atoms and molecules individually behave as ideal gases, is

$$
\begin{equation*}
\frac{P V}{R T}=1+\sqrt{\frac{K}{K+4 P}} \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{P V}{R T}=1-\frac{K V}{8 R T}\left(1-\sqrt{1+16 \frac{R T}{K V}}\right), \tag{3.11}
\end{equation*}
$$

where K is a function of T determined by eq 3.3 and V is the volume per $2 N_{0}$ atoms uncombined or combined as molecules.

The thermodynamic properties of an equilibrium mixture of atomic and molecular hydrogen in the ideal gas state can in principle be calculated from the properties of atomic hydrogen at low pressures and the equation of state (eq 3.10) or (eq. 3.11). It is simpler, however, to determine the properties of the mixture from the properties of the atomic and molecular varieties and the fraction dissociated.

The equation gived by Epstein [30] for the heat eapacity of a reacting gas mixture, when applied to the heat capacity of an equilibrium mixture of atomic and molecular hydrogen, is
where x is the fraction of the originally totally nondissociated hydrogen that has dissociated, $\left(C_{p}^{\circ}\right)_{\text {atomio }}$ and $\left(C_{p}^{0}\right)_{\text {motecular }}$ are heat capacities per mole of atoms and molecules respectively in the ideal gas state, and $\left(C_{0}^{\circ}\right)_{\text {mixture }}$ is for a mixture
containing $2 N_{0}$ of atorns combined or uncombined, the components being in the ideal gas state. $\left(C_{z}^{*}\right)_{\text {murare }}$ is a function of P as well as T since x is a function of P. In figure 4, curves D, C, and B show the variation of $\left(C_{p}^{\mathrm{p}} / R\right)_{\text {mixture }}$ for H_{2} with temperature for pressures of $0.01,1$, and 100 atmospheres, respectively. Curve A drawn for comparison is the heat capacity of 1 mole of undissociated H_{2}, that is, $\left(O_{3}^{0} / R\right)_{\text {mulmootar }}$. It appears from these curves that when dissociation has its greatest importance, thermal effects originating in other ways are likely to be dwarfed by comparison. Wildt [19] has calculated the ratio of specific heats of hydrogen at high temperatures using principles similar to those employed bere. The results obtained have application to stellar atmospheres.

2. Ortho-Para Equilibrium

$$
\begin{align*}
& o-\mathrm{H}_{z} \leftrightarrows p-\mathrm{H}_{2}, \frac{P_{p-\mathrm{H}_{2}}}{P_{\rho-\mathrm{H}_{2}}}=\left(\frac{p-\mathrm{H}_{2}}{\sigma-\mathrm{H}_{2}}\right)=K . \tag{3.13}\\
& p-\mathrm{D}_{2} \leftrightarrows \theta-D_{2}, \frac{P_{\rho-\mathrm{D}_{2}}}{P_{p-\mathrm{D}_{2}}}=\left(\frac{o-\mathrm{D}_{2}}{p-\mathrm{D}_{2}}\right)=K . \tag{3.14}
\end{align*}
$$

The equilibrium constants of the ortho-para conversion of H_{2} and D_{2} in the ideal gas state are independent of P. Accordingly, pressure does not appreciably change the ortho-para ratio under equilibrium conditions. Although the lowest rotational levels of the ortho and para varieties differ, ΔE_{0}° for the two reactions (eq 3.13 and eq 3.14) is zero, because in the calculations for both the ortho and para varieties the ground state of the molecule, $J=0$ and $g=0$, was arbitrarily selected as the origin of energies.

In table 12 are given values of the percentage para composition in the ideal gas state of equilibrium mixtures of ortho-para varieties calculated from the state-sums, $\Sigma g_{e^{-}} e^{f / \pi r^{\prime}}$, see eq 2.2 and aq 2.14. These values are in close agreement with earlier values obtained by Harkness and Deming [11] and are in agreement with the variations in the relative intensities of the ortho-para spectral lines and with estimates of the ortho-para compositions based on measurements of thermal conduction from heated wires. The success in explaining the heat capacity of gaseous hydrogen at moderate and low temperatures is also corroborating evidenco for table 12 [48].

Fiavire 5. The equilibritum constant for $\mathrm{H}_{*}+\mathrm{D}_{9} \rightleftharpoons 2 \mathrm{HD}$.

Table 12. Ortho-para composition at equitibrium

T	Peroentage in finial rotrin for H_{1}	Percentage fir para form for D_{1}
${ }^{\circ} \mathrm{K}$		
10.	89. P989	0.0275
20.	89. 821	1. POB
2036.	69. 769	----------
28.51.	...--...	3.78I
30.	67, 021	7.884
33. 10.	96, 034
40.	88.727	14.789
50.	7.0.064	2 ch 718
60.	65. 580	2 L .181
71.	55.897	家1012
81,	49.597	30. 141
10.	42882	81.36
100.	38120	32184
120.	32 Ca	32.816
150.	\%9. 603	33. 2416
200.	28.074	38.387
250.	25.264	--.....---
288. 16.	25.076	32383
300	25072	33.38
350.	25.019	.
400.	25.005	--
500.	25.000	----......

3. Igotopic Exchange

The chemical and mass action equations for isotopic exchange are

$$
\begin{equation*}
\mathrm{H}_{\mathbf{2}}+\mathrm{D}_{3} \Longrightarrow 2 \mathrm{HD} ; \frac{P_{\mathrm{HD}}}{P_{\mathbf{H}_{2}} P_{\mathrm{D}_{2}}}=\frac{(\mathrm{HD})^{2}}{\left(\mathrm{H}_{2}\right)\left(\mathrm{D}_{2}\right)}=K_{4 z} . \tag{3.15}
\end{equation*}
$$

The equilibrium constant $K_{* z}$ of the isotopic exchange reaction (eg 3.15) is related to the dissociation constants K of eq $3.7,3.8$, and 3.9 by the equation

$$
K_{v x}=\frac{K_{\mathrm{F}_{2}} K_{\mathrm{D}_{2}}}{K_{\mathrm{HD}}^{3}}
$$

The bquilibrium constant $K_{e z}$ for isotopic exchange in the ideal gas state is independent of P, and accordingly the relative equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} are also independent of pressure in the ideal gas state. For this reaction the ΔE_{0}° of eq 3.3, the difference between twies the energy of the ground state of HD minus the sum of the enargies of the ground states of H_{2} and D_{2}, is equell to twice the zero-point vibrational energy of HD minus the sum of the zeropoint vibrational energies of H_{2} and D_{2}. Using the values given in section III, 1 for the zero point energies, ΔE_{0}^{0} is 159.5 cell for the formation of 2 moles of HD.

In figure 5 are plotted experimental values of K_{k}, whereas the curve was derived from spectroscopic data as has been indicated. The data of Rittenberg, Bleakney, and Urey [54] were obtained from measurements on hydrogen-deuterium mixtures prepered by the decomposition of mix-
tures of HI and DI, and those of Gould, Bleakney, and Taylor [55] were obtained with mixtures of hydrogen and deuterium that had been adsorbed on various ceatelysts or had been diffused through palladium. Some of the observations of Gould, Bleakney, and Taylor plotted in figure 5 were not plotted by them in their published article.

Although the theoretical curve of figure 5 is thought to be more reliable than the experimental data, it is to be pointed out that the uncertainties in the zero-point energies of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} can give rise to perceptible shifts in the eurve. Thus a change in ΔE_{0}° of 3 cal mole ${ }^{-1}$, which is equivalent to about $1 \mathrm{~cm}^{-1}$ in $2\left(G_{0}\right)_{H D^{-}}\left(G_{0}\right)_{B A}{ }^{-}\left(G_{0}\right)_{D 2}$ changes $K_{\text {sz }}$ by about 1.5 percent at $100^{\circ} \mathrm{K}$. It secms doubtful that ΔE_{0}^{β} is known better than to a very few calories per mole, for while it is plausible, it is apparently not certain that D_{e}, the dissociation energy above the minimum of the potential energy curve, is so nearly the same for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} [25]. The theoretical values of Urey and Rittenberg [13] are, therefore, practically as reliable as the newly calculated ones.

IV. PVT Data and Relations for Hydrogen and Deuterium

In order to calculate the thermodynamic properties of gaseous hydrogen at high densities (in principle at any densities other than very low) from values of the properties for the hypothetical ideal gaseous state, it is necessary to have information concerning the relations between pressure, volume, and temperature for each temperature in question extending from very low to high densities.

1. Hydrogen

The available PVT data for hydrogen fall between 14° and $700^{\circ} \mathrm{K}$. They consist, in general, of measurements of volume of known amounts of gas at several different pressures along selected isotherms. The quantities usually reported are values of $P V$ or $P V / P_{0} V_{0}$ at the measured pres-
sures or densities. In this report this information is presented in the form of tables in which integral values of the variables of state are spaced closely enough to allow accurate interpolation.

The dependent variable Z appearing in the tables is $P V / R T$. Through the definition of R, this quantity has the value 1 at extremely low densities, and it is of the same order of magnitude over a very extended range of densities. The independent variables chosen are 7, the Kelvin temperature, and ρ, the Amagat density, which is defined as the ratio of the observed density to the density at standard conditions ($0^{\circ} \mathrm{C}$ and 1 atmosphere). Density was chosen as an independent variable of state in preference to pressure because this resulted in simpler representation of the $P V / R T$ isotherms. The Amagat density is also the ratio of the volume V_{0} of the gas at standard conditions to its observed volume.

$$
\begin{equation*}
=\frac{\text { observed density }}{\text { density at standard conditions }}=\frac{V_{0}}{V} . \tag{4.1}
\end{equation*}
$$

The best value for V_{0}, the molar volume of bydrogen at standard conditions, is 22.4279 liters or $22428.5 \mathrm{~cm}^{3}$, according to the values of $R T_{0}$ obtained by Cragoe $[90]$ and the value of $P V / R T$ for bydrogen at standard conditions as given by Cragoe and the present corrolation. The density of hydrogen at standard conditions is 0.089888 gram liter ${ }^{-1}$.

Values of $P V / R T$, or Z for $n-\mathrm{H}_{2}$ are given in table 13 for different values of T and p. Corresponding values of P and of the derivatives $(d Z / d T)_{p},\left(d^{2} Z / d T^{2}\right)_{p}$ and $\left(d Z / d_{\rho}\right)_{r}$ needed for the calculation of some of the more important thermal propertics of the real gas from ideal gas values (sce section V) are given as functions of the same variables of state ρ and T in tables $14,15,16$, and 17, respectively. The temperature intervals used are of graduated size, being as small as 2 degrees at low temperatures and as much as 20 deg above $0^{\circ} \mathrm{C}$. The density interyals, except for entries at $\rho=1,2,3,6$, and 10 , are uniformly equal to 20 Amagats from $\rho=0$ to $\rho=600$.

Tempersture	＊－1	2	8	6	10	20	40	60	80	100	120	140	160	180	200
${ }^{9} \mathrm{~K}$															
42，．．．．．．．．．．－	0．${ }^{\text {cosers }}$	D．P85892	0.96384	0.6853	0．97054	0，06072	0.62125	D． 89818	0． 8197	O． 5168	0． 7855	4.7680	0．7童等	0.7020	0．6730
	． 928110	．P8028	． 90484	－Rengr	． 98130	－ 0 exica	． 28775	． 9842	． 8888	． 8281	． 6087	， 274	． 7680	．7文的	． 7071
45	． 50882 l	． 960068	． $9 \mathrm{H} / 88$	－ 29963	－ 28.89	． Ba ¢0，	－Tesed	． 90288	． 8887	，84822	．	． 7901	． 7734	． 7524	． 7830
48	． 906590	．908802	－P96209	，9000463	，98417	．Axst？	． Ec 968	．91074	． 8881	． 8120	． 8 ere	． 918 d	． 78×9	． 7760	． 7667
	． 90869	． 6 ¢0itz	－9855e3	． 091189	， 28841	．DFIIS	． 94384	． 9178	． 8083	． 8707	，Brix	． 8298	． 8108	．7938	． 7783
59．．．．．．．．．．．．	．PR938	－ 887280	．900025	－961881	．980bt	． 97848	． 9488	． 82955	． 00284	． 8.814	－ 86.9	． 8488	． 8272	． 8150	． 7980
	．Eregris	． 067488	．900238	． 8988807	． 8875	． 17754	．015255	． 92060	． 81018	， 8911	． 6738	． 8572	． 8478	，8\％87	． 8188
＊	． 58989	．caters	． 998688	，proues	．P08， 4	． 97749	．85615	．98089	． 9175	． 000200	． 8942	，9006	．8560	． 8450	． 8334
	．9\％8080	－ 90×886	－988800	． 9090028	－28944	． 97980	，DSE568	． 91188	， 0243	． 010810	． 8941	． 8808	． 8888	． 6592	． 8180
炀．－－－－．．．．．．－－	． 900013	． 48080	． 968049	． 904125	． 90027	． 08084	，Deters	． 24615	－ 28068	，918831	． 90820	． 8014	． 88.80	．E7L5	． 8636
${ }^{8} 5$	． $9 \mathrm{PA196}$	． 8 \％estich	． 907606	． 985214	． 09808	，094坆	． 28089	D56RE	． 94454	． 08351	，02388	． 91.98	，90738	． Dalcg 2	，8890
	． W （2448	． 5 ¢98pe9	．988063	．Paring	． 00800	， 06746	． 27547	． 08555	． 26818	．0v75	． 04657	． kS^{47}	．02003	．98613	．0287
		．prgan	． $929 \mathrm{SH4}$	－989810	，9\％${ }^{\text {co }}$	． 89004	． 88106	． 97208	－98811	，9axay	． 855937	． 85183	． 01904	． 284764	．9476
60.	－BCO580	．908188	． 989776	．c97833	－ 89880	． $\mathrm{PO} \times 24$	． 98548	． 97908	． 81470	． 070082	PLT988	． 96028	． 96651	，12617	． 9080
85．．．．．．．．．．．．．	． BOCOg 8	． 908974	． 809068	．908181	－89803	． 09415	，20062	． 985	， 288217	，\％007	． 97890	． 57898	． 08002	，自至新	． 88807
	． 80970	． 9008642	． 9000318	． 909868	． 9 9780	．pase	． 98206		．2987］	． 08819	． 2×60	． 9004	．992888	．B0est	1.0012
	，00984i	． 9000690	． 909879	． 900 urg	． 608084	．09730	． 28544	． 02654	． $09+18$	．906505	．Whit	． 5809	1，00888	1．DOSSS	1．0150
100.	． 000108	．980921	． 98983	． 909488	，60919	． 99680	．980ㅇN	．DR3d 1	－99982	1.00173	1．00477	1．060．78	L．01385	1，08309	1． 0787
］U6．－．．－－－－－．．．	． 000 c 名	． 08080	． 930911	． 20891	，90\％\％	．9907t	1． 00038	1.00196	1.00420	L00741	1．0115s	1．01865	1．02280	1，03000	1.689
110．．．．－－－－－－－．	1.000021	1． 000036	1． 000034	1．000158	1.00057	1．00082	1． 100241	1． $00+96$	L000330	1.01250	1． 01782	1.0275	1.03084	1．103560	1.046
115	1．040088	1．000141	1．000212	1.000412	1．00078	1．00174	1．DO434	1．0073	1.01270	1.01710	1.02811	1． 68009	1.008008	1.04713	1.0079
120.	1.000112	1．0n0238	1． 000563	1． 000803	1.00121	1．001028	1． 00804	B． 01028	1.01585	1.02127	1.02898	1． 60588	L0413t	1．06445	1．0669
125.	1.000152	1．2003077	1．000465	1． 00006818	1．00181	1.00841	1．007en	1． 101960	1.01842	1.020001	1． 138285	1.04114	1.05038	1．005113	1.0727
130	1．0001\％	1.000379	1．200572	1．101190	1． 00197	1.00412	1.00000	1． 11473	1．02124	1.02880	1．403044	1． 04.490	L0EBID	1.05725	1.03 H
135	1.000281	1．000044	1.000572	1．001356	1． 00235	1．00479	1．01035	1．blecs	1．02083	1．02183	1.04008	1． 10×94	1.08113	1．07285	1．0958
140.	1．00023／2	3．000605	1．0007es	1．001542	1． 0023 Al	1． 000640	1．0t18	1．01847	1． 0082	1． 68479	1．04422	1． 05468	1．08576	1．07\％7	1． 0812
145.	1．000289	1． 0083882	L000897	1.001710	1．00289	1． 1.0506	1.01287	1．42014	1．02942	1．09368	1.04748	1．03E30	1． 65002	1.08838	1． 18964
$1 / 0$.	1．000307	1.000613	1．80092\％	1．001889	1． DCOS 15	1． 000648	1.01370	1.42169	1． 1×3047	1．040197	1．05080	1．00279	1．07398	1.0605	1． 1012
150	1．000332	1．000603	1001000	1．002016	1．D0040 ${ }^{\text {a }}$	I． 00697	1.0146	1．47212	1． 032 sc 3	1．04212	1．458350	1． 06502	1． 67788	1.09114	I． 105
180	I． 0000353	1．000731	1．00t069	1．002154	1．Dothe	I． $0^{1} 1743$	1.010 战	1．42447	1． 03419	1． 04180	1．46590	1．08sots	1． 08102	1．004982	I． 1088
1＊5．	1． $\mathrm{Cu} \times 1876$	1．00076	1．001133	1．0020382	1．00094	1． 00780	1．01041	1．48571	1． 0357	1.04863	1．048st	1．Ofugz	1．69417	1．00e4t	I． 1888
170.	1．000806	1．000743	1．001172	1．002098	1.00405	t． 00022 d	1．01\％15	1.02384	1． 03729	1.05850	1.06052	1．D73ss	1．tay 10	1． 10715	1． 1172
$1{ }^{1} 8$.	1． 1000430	1．000882	1．001206	1．002307	1． 000 A 38	1．D084	1． 01868	1.02891	1． 00001	1．08186	1． 06851	1．D7797	1． 02228	1． 1074	1． 12 L 5
190.	1． 00004 id	1．000926	1．001960	L002785	1．00469	1． 00855	1． 01878	1.03072	1．0033s	1．05478	1．Offrs	1． 18.189	1．OPRV1	L 1124	1． 1298
200.	1． 000400	1．000981	1．001474	L 0v2a38	1.00 NF	1． 11010	I． 020 P 5	L03231	1．04447	1． 05786	1．07100	1．08541	1． 1008	l． 1187	1． 1388
210.	1． 0000015	1．001091	1.001698	1009106	1.00521	1．D105s	1．4918）	1.08378	1．04632	1． 0.05004	1．03370	1． 010850	1．1041	1． 1895	1． 1378
20.	1． 000357	1.001075	1.001814	1．009241	L 00543	I．DIICP	I． 02287	1． 0349	1． 017898	1．08167	1． 67810	1.09126	I． 1072	1.1289	1． 1415
250	I． 000558	1．001113	1．001833	1．002356	1.00583	1．01141	1． 10294	1.03811	1．04948	1．06848	1.07823	1． 09370	I． 1009	1． 1270	I．1488
240.	1． 000573	I． 001147	1． 001725	1． 0 cesefi	1.00580	1．0178	1．08411	1． 04.710	1.05076	1．O6，08	1． 080011	1．00397	I．113	1.1297	I． 1197
250.	1．000588	1．D01178	I． 001771	1．00865s	1．00608	1.01208	1． 08480	1．69078	1.03192	1． 06049	L． 0817	1.0977	1．lisol	1．1280	1．1000

Tilil Ill

为为管各等 			
		\％	
		臬手完要皃	家家家家家

Properties of Hydrogen 399

:	
:	
:	
:	
:	
:	

뚤 헐 둠		

Temperature	S=1	2	3	8	10	24	4)	fo	(0)	100	120	140	160	180	201
${ }^{8} \boldsymbol{E}$															
18--->....----	0.05800	C. 11488	C. 1788												
18............	.08885	, 18171	. 110391	0.37898											
20......----.	.07209	. 14441	. 21516	. 12765	0,08364										
2....-----...	.00062	. 15912	. 2783	4en29	.79300										
24...	. 06736	.1789	. 25901	. 51085	.83892	1.59080									
20...	.004er	. 1886	. 28152	. 46×38	. 60878	L 7 [10	3.1418								
28.	. 14298	.20023	. 30362	, comes	,26ass	1.88805	3. 4333	4. 7375							
301.---	. 10838	. 2170	, 32671	. 04425	1.05628	2.08902	3.7805	58307	6. 6987	7. 3886					
3\%----1..-----	. 11000	. 292882	. 95600	. 68879	1.13285	2.19178	40067	6.7318	7.1183	8. 2375	P. 2005	9.941	30,007	10.008	
\$4.---.....---	. 12412	. 1738	.90868	. 73823	1. 20754	2.3187	44114	6.2801	7.7879	9.1383	10. 278	11.298	12.107	12.678	12133
30.-...........	. 13198	28821	. 38195	.7775	1. $2 \operatorname{cosin} 9$	24855	4. 7252	6.7069	8.485	8.808	11.84	12.406	13.498	14.208	14.083
88............	. 19888	. 27838	. 11402	. 82105	1.82852	2 E 470	5. 0388	7. 11004	6. 1212	10.848	12389	13.760	14.958	18000	17.074
40.............	. 14802	. 2918	. 43818	83632	1.43090	27889	5.3505	7.6744	9.730	11. 700	13.498	L. 6.14	16.444	17.746	18.103
42......----...	.16334	.80500	. 4834	. 91065	1. creaz	290.04	5. 8004	8. 1597	10.45	12588	L5. 182	18.283	17. 908	18.433	20. 8.6
	p-203	240	230	288	380	320	340	380	330	400	420	410	40	490	800
\$--	12. 611	19.700	19.04	14.148	14.874	14.392	14.183	14.344	14.78	14.887	10.090	16.389	14.724	20.233	16.902
36.	15. 382	14.232	188, 854	17. 188	17\%:888	17.800	18.200	18.006	12.019	19.463	20.647	20.708	21.400	2243	23.842
38.....-.......	17.874	18.855	19.375	${ }^{20.051}$	2 za 208	21.350	21.200	贺659	z3, 363	24.190	20, 001	20. 108	27. 223	20.720	30.406
40.............	${ }^{20.089}$	21. 080	22.80	23 ces	[. 1910	24.829	25.785	25.726	23.750	28. 878	30, 148	3 L .67	88. 2098	38.066	37.206
42......--....	${ }^{22} 189$	23.470	20.709	28.505	27.106	29, 313	29. 5.55	30.834	39.185	59. 5 ¢8	96, 234	372. 106	39, 138	41.428	44. 104
	$\mathrm{p}=530$	540	660	680	00	Ema	(1)	$0{ }^{0}$	0%	700					
\$4.	17.180	183032	27. 103	223.100	26.461	30.179	34.9089	6.811	49.028	66.703					
36.	25.170	${ }^{27.001}$	20, 460	32405	Se. 012	40, 372	40.3080	51.883						
${ }^{38}$	32.433	3. 962	388009 66.565	41.664	46.018.										
40....--.......	39.782	12.830	6. 565												
42............	17.003	30, 090													
	, $=1$	2	s	${ }^{8}$	10	20	44	0	Bo	100	130	140	180	180	200
6.	0. 1638	0. 30008	0.48814	0.910×5	1. 50042	29890	6.6804	R. 1557	10.45	12.518	14. 162	18.258	17.808	18.483	2 ch 800
4. 18098	. 32074	,	. 24408	1. 570088	3.1006	6.9739	8 cess	11. 108	12.385	15. 585	17. 511	19.339	2 L 115	2\% 760
46 18880	. 33512	. 50236	.20020	1. 65400	3. 2816	4.251	Q. 1180	11.893	14.241	18.50s	18.757	20. 820	29798	24.672
48............	. 17383	. 35010	. 58481	1.04* 81	L 72882	3. 4034	B. $\mathbf{2 9 5 4}$	2.504	12,427	10.005	17.007	34000	22.270	34, 469	${ }^{21} 5157$
t0......-----....	. 182808	. $3 * 478$. 56238	L09372	190231	s. 5631	B. PCAz	10.063	15.977	16, 283	18.64a	21.285	28. 731	26. 138	28. 475
52.	. 18000	.37043	- De8al	1. 1323	1. Brese	ง. $70 \leq s$	7. 8168	t0. 554	19.732	18.768	19.07	22.327	25. 180	27.800	30.371
64...---	. 19782	. 3 914	. HPO 48	1. 17805	1. 8 ¢510	3. 8545	7.5290	11.031	14.385	17.605	20. 210	23.430	26.622	29,470	72. 278
55.	. 2044	.40881	-61201	1.20072	2.0420	4. 0051	7. 8899	11. 509	15. 089	IE. 43	21. 739	24. 040	2s, 080	\$1.134	3. 100
36.	. 21197	.42840	,6438	1.28608	2.01027	4. 1557	8. 1405	11.008	15.682	19.290	2. 2.767	${ }^{28.167}$	29.487	32.730	\$4.031
80.	. 21890	-fself	. 66089	1.20005	2.17300	4. 2086	8.4046	12.480	16.343	27114	29.789	27.385	50. 8083	34.45	37.015
65............	.2702	. 47886	. 7117	1.42002	2.34026	4. 8921	9.2918	12. 831	17.970	22.200	20,308	30.481	34, 604	38. 600	42815
70..---	. 25593	. 6115	. 78881	1. 133060	2 54402	A0078	\%.1974	14.837	19.500	34. 277	28×12	33.514	38.101	42.403	47.312

		整点昜 定安安	 		 	安是管 	 		 	
$\begin{aligned} & \text { 空 } \\ & \text { 畐 } \end{aligned}$	罗园		 边客处	品筑筑昜 	 					
答 - ※	要会出宽	8点習品 	 道家晏点		 	思时管案 	 	 	 感宛悹要	
占管 界路	気事急总 安守利雷	 		 定家出	弯紊室条各 		点佥曾蓸思等 		患筑尘点 	
		高予空 언영	 多置		 	 委宫啶弟兑	 	 		
봏․․․ 安安	 点点品落		 令盖客		 	 	 		产氨丞宽羂 家色完感皆	
$\begin{aligned} & \text { 管篦 } \\ & \text { 표 } \end{aligned}$	葉高管笑事界舁界	営察管哭 		娄学築 寝家室	氞気思䈏 	可点需買 	 	 	章罾置思夸务罢行畐	委委空势気
	 	 宊	害点量 	部突落	$\text { 定多守 } 4$	 두눙여웅		 		
$\begin{aligned} & \text { 雳 } \\ & 5 \end{aligned}$	 	空客害密 刿边 흑	新密窝 엄	采密普辰 	 	 	 			
					敄笑总总营营			 	 	
열 흘									总空䙳緊築客事点 of α of os	
委㺢										
$\begin{gathered} \hline \dot{\vdots} \\ \vdots \\ \vdots \\ \mathbf{F} \mathbf{8} \end{gathered}$		ồ ốa ón of	종ㅉㅇ연	불 봉	客导会品感			8 옹훙		客雰雪客客
Prop	cties of	Iydrog								403

$\begin{aligned} & 8 \\ & 8 \end{aligned}$	 	 		菷室管宗	 			守等严要	 		
\％	 	罣等算吾点 		定案贾首	高和吉志気要会需		놈鹵落 2 	 	 		管等
客	㔛古憵予占 	 	安思お虫 	ある贵： 奚家密家		$8 \text { \& }$ 高昜家家	要要采麔衣学空		 		
实	 	 	 敋等运留		 	 		あ事占点 	 		
条	为安等新	 	晨呂深 	红區出息 		思號 		万零占知虫 	 		
\％	害臬禹要害 	 		28效等受等忘	 			 		$\begin{aligned} & \text { ge } \\ & \text { 商令 } \end{aligned}$	兼曻
嘸	为荌号䛧富 	 	喜念要思 	웋 累密采罦		あ品ニ卑 	品ぎき番書要	管芯む哭哭 			E혐 点荡
寅	 合気家的复	 	冢雨是 安安㡙总				5家雨 	 	 	$\begin{aligned} & \text { 点各 } \\ & \text { 条筞 } \end{aligned}$	
空	 	 	审综䁂	罗罥客点 트․ 畕宽	缶吉路守空果息	半留占 8 茜安密家	$\bar{w} 8 \overline{3}$ 	 	 		
令	（ m	 누녕영형	番要置罧 	电㫥家定 			盖思等示 	 			
층	 	 孚䖝郘연	 	出家畐总	通雨䢒安		※x= 	器思天里卑 		क 	䗑宽 ${ }_{5}^{5}$
気	 国察畐总	 	였율옃움出案定定㐫	思쳠 		 				寻电 熔 명	曷品送落
踢	 	 	占事点象 	品占完	お留マニ照然过哥						喈昆
－	号密会雨気 	甹象苦总晏 	 			モ叐宽农 困室总墑			 		男鼻 爱克
\％	 	 	莫䓂哭最 क	置上置 	家害等点 	圂突等客 		を国家客客	 		
	six si m	家古出家				国密营		皆要客葸佥		骨家	$\stackrel{5}{6}$

$\begin{aligned} & \text { 总蕐 } \\ & \text { 要密 } \end{aligned}$			 －＝～～～～	
	苃等哥 			
				 テー～～～
䇴 第管		紫要筑告窎晏		
		曾管紫 島高总		点需学
$\begin{aligned} & \text { 密 } \\ & \text { 要要 } \end{aligned}$	崇害空 害裉	 案宽		总旁务密期 ごニニー
$\begin{aligned} & \text { 罗罗 } \\ & \text { 彩荡 } \end{aligned}$	要要 	喿复营 면 면		 がュ゙ュ
	耳忽答 悹兵息	品管镜 案害空	 	
鱼 悊等	築害案 要密导	落吉荞 		
$\begin{aligned} & \text { 咸果 } \\ & \text { 空学 } \end{aligned}$	突突 慈点			
		罗至要 发安客	 	
	宽需需宑壆	氡产晏安等结	 	
	空泉点 登晏			等等是営嵒
	客要葛労弯		 	
$\begin{aligned} & \text { 窸烒 } \\ & \text { 霛 } \end{aligned}$		落萦密 突擎鼻		
				忘定宾害妄

Propertios of Hydrogen 408

Tablin 15 . Values of ($d Z / d T$), at integral palues of T, the

Table 15．Voitues of（ $d Z / d T)_{p}$ at iniegrai malues of T_{1} the abablute

	Temperature	I	2	3	6	10	20
	－ \boldsymbol{K}	${ }^{*} \mathrm{~K}^{-1}$	${ }^{9} \boldsymbol{K}^{-1}$	${ }^{*} \mathbf{K}^{*}$	${ }^{*} \mathrm{~K}-1$	${ }^{*} \mathrm{~K}-1$	${ }^{6} \mathrm{~K}-1$
14S．	－－－－．．．－	4． 1×1010	8． $3 \times 10{ }^{-4}$	$12.4 \times 10-9$	24.8×10^{-9}	4L 2×1000	$88 \times 10-1$
170.		9． 8	7.6	11.4	220	29． 2	76
150.		2.8	fl． 6	0.9	12.9	38.1	88
100．		2.0	5.8	8.8	17.0	28.3	68
800.		2.6	6． 2	\％． 7	16.8	26.0	\＄1
210.		2.3	4.6	0.0	13.9	20． 1	45
280		2.1	4.1	8． 2	12.4	20.1	4
230.		18	3． 6	5.4	10.7	18．	33
340.		16	ง． 2	4．B	0.5	180	32
250.		14	2.8	4． 3	8． 6	14.4	29
280		1.3	2.6	4． 0	7.9	12.1	20
270.		1． 200	2．386	3． 034	7．16\％	11．00	23.67
	$0^{\circ} \mathrm{C}$	1． 184	2． 325	8． 484	B． 047	11． 18	28.84
280		1．1889	2.178	8． 2509	B． 4 P9	10.79	21． 35
	$0^{6} \mathrm{C}$	0.9169	1.889	2． 74	5． 478	2．0．65	17．08
300.		． 2014	1．84］	9． BEG	8． 375	8． 821	17．64
380.		． 7517	1． 602	2． 219	4． 458	T． 431	14.67
340.	．	－6S06	l． 258	1.885	2． 767	1328	1297
380.		－ 5915	1.081	1． 000	3．168	A젼	10.32
	$10{ }^{\circ} \mathrm{C}$.	． 4759	－ 4.8503	1． 123	2． 638	4．feg	0.219
890.		． 4806	． 8897	1.344	2． 8 275	4．427	8.80
400		．zalt	． 7814	L． 140	2.268	3．760	7． 355
$4{ }^{2} \mathbf{0}$	－－－－－－－	． 3241	． 6408	0．0083	1． 828	3． 181	4． 277
440.		． 2756	． 6800	． 8231	1． 835	2.700	5． 27.4
180.		．234	－4678	－8098	1．3R9	2． 2 ¢1	c． 464
130.		． 1890	5970	5989	1．178	1． OH 1	3． 771
800		． 1888	． 336	， 10029	0．10\％ 5	1．650	2．175
1820.		－1424	． 2838	． 4243	． 8392	1.330	2． 080
140.		－ 1100	－2883	． 3601	． 7139	1． 14.5	2.215
660.		．0908	，100\％	．2967	， 6 ¢ 55	0． 2588	1．828
580.		，D0， 21	－1899	． 2447	， 18.18	． 7807	l． 488
000.	－－－－－－	．0675	． 1893	．1897	． 3811	． 8361	1．IB3
		220	240	250	安0	300	8320
42.	－．．．r．a．．．．．	$188 \times 10-4$	$174 \times 10-1$	$185 \times 10-1$	$196 \times 10-1$	$2 \mathrm{~m} \times \times 104$	$218 \times 10{ }^{-1}$
1.		147	158	1 s	178	188	10
46.		134	144	1s3	168	172	188
48.		122	121	140	149	If8	167
50.		112	121	128	137	146	153
52.		108	111	118	126	128	140
54.		O6． 3	103	110	111	123	129
3 A．		88.3	時． 4	172	108	114	120
83.		82.4	89.0	82． 4	101	107	113
0.	－	77.2	83.6	8 Ra ． 1	95． 8	102	40
65．．		ars 4	50．${ }^{\text {a }}$	$7{ }^{7}$	81.5	St． 8	81， 4
To．		56， 0	80.8	6s． 1	64.6	73.9	78.3
75.		48.1	620	\＄5．8	58.6	69.4	67.1
00．		41．6	4，9	4R2	51.6	64． 7	b5．9
85．－		36.1	3 O 0	41.9	44.8	47.7	50.4
90．－		31.8	34.4	87.0	538	2．0	4． 4
55．－		23.6	30.8	纤 0	35． 2	37.3	36.4
100.	－．．．．．．．．．．	25．5	20．0	20.6	31.5	36.5	35.1
105.		3.0	24． 1	28． 5	282	2 Cl 8	31.1
110.		20.7	32.3	28.5	25.3	28.8	29.2
115.		18.6	20.1	21.5	228	24.2	25．
120.	－－－－－－－－－－	168	18.2	10.5	20.7	21.4	23.0

temperature，and ρ ，the deneity in Amagat units－Continued

40	60	80	1100	120	140	180	180	200
${ }^{3} \mathrm{~K}^{-1}$	${ }^{8} \mathrm{~K}^{\prime}-4$	${ }^{*} \mathrm{~K}$－1	${ }^{4} \boldsymbol{K}=1$	$\mathrm{B}_{\boldsymbol{K}-1}$	${ }^{\text {d }} \boldsymbol{K}$－-1	${ }^{6} \boldsymbol{K}$－ 1	${ }^{*} \boldsymbol{K}-1$	${ }^{+1} \mathrm{~K}^{-1}$
$1 \mathrm{~F} 2 \times 1 \mathrm{~lm}$	20 $\times 1010$	$518 \times 10{ }^{-}$	380×10	480×10^{-4}	53.4×10^{-5}	（104）$\times 104$	672×10^{-4}	733×10^{-1}
181	238	283	241	429	4981	640	82	（9）2
131	194	254	312	370	427	488	538	S
114	169	927	278	323	872	410	481	077
101	180	197	242	285	825	30\％	406	442
g1	131	175	215	253	2904	325	369	301
81	118	156	102	223	258	\％9	910	\＄48
71	105	189	170	200	2997	278	288	908
${ }^{13}$	98	128	151	178	208	58	251	274
58	6	109	134	188	150	200	322	242
51	75	9	120	141	161	150	168	213
46，21	63.00	69， 63	108.4	127．0	14． 7	101． 2	178，0	190.7
44． 76	65． 74	86． 76	104.8	122.8	139．7	$10^{6} .6$	170.3	169.7
41． 81	61.84	72.18	97． 10	114.1	129． 7	14.1	187.6	169．6
S5．DS	51． 26	66． 68	80． 19	$0 \cdot 42$	106． 8	118.2	129．5	187．7
5． 43	50.39	65． 40	78.51	928 68	105． 8	115．0	12．）． 9	1348
29．38	41． E_{3}	53.87	f5． 24	75	85． 22	89． 74	101.2	107.6
29． 62	34.51	4． 81	（59．80）	62． 13	66． 58	7h． DP	81.62	86． 13
10．20	多 88	37.08	44． 38	31.10	68．0）	61． 67	85．87	68.10
17． 78	25．000	32．88	\％6．34	18．04	49．04	59．00	57．If	56.40
16．7	2． 18	80， 90	36．91	42． 18	46.64	50． 20	E8， 08	54． D_{4}
14． 12	20.77	25．74	30， 62	34.75	\％8．15	40.78	42． 69	49．64
11.80	17． 00	2I． 50	25.37	28． 58	31.10	32.90	28．08	34． 17
10.08	14.25	17.50	20． 87	23.41	25.21	36.19	然矣	26.38
8． 414	11． 92	14.98	17． 25	19．088	20.23	20.81	20．70	19．88
7.088	\＄2023	12.27	14.09	15.86	16．08	14.15	15．82	14.42
6．022	8．221	10.08	11． 38	12.21	1240	12.20	IL 32	9.81
4．019	6． 6	8． 144	3080	9.610	9．499	8． 183	7.685	5． 208
4．050	5． 484	8．404	7．076	7． 102	6.825	8．063	．4． 149	2598
3285	4．38s	5．074	6． 350	5． 190	4． 5 t 4	3．473	1． 880	－1．2＊0
28389	3．13	3.834	3． 858	3． 458	2.027	1.945	－0．414	－2678
2.058	2． 3 S 5	2784	2． 548	1． 851	0.943	－0．198	－2．38\％	－4．751
340	450	590	400	420	440	480	48）	500
$250 \times 10-4$	240×10^{-4}	$280 \times 10-4$	$280 \times 10-1$	$270 \times 10-1$	$280 \times 10-1$	289 $<10 \sim 4$	$\mathrm{z} 29 \times 10 \cdot 0$	$8 \mathrm{si} \times 10 \mathrm{~T}$
209	220		240	249	277	285	272	378
182	201	2 II	220	209	235	243	248	254
175	181	183	202	210	218	230	238	239
181	169	177	185	182	19	205	2051	214
149	155	162	189	175	162	189	198	188
136	143	140	156	182	167	173	170	189
126	132	138	141	14	155	160	tet	171
118	124	129	184	140	145	150	156	161
112	117	122	126	131	137	188	188	10^{6}
甠1	101	106	109	114	115	129	127	192
82.7	Ef． 6	80． 6	9． 3	䢕1	108	100	110	118
70． 8	74． 5	7 B .0	81.4	84.7	87.9	01.0	O， 1	97． 2
81.0	He． 1	87.2	70． 3	78．${ }^{\text {\％}}$	75.8	78.6	81.0	835
35．0	556	H2． 3	80.8	83． 2	65.4	6 6． 6	60.8	321
46．0	48.8	11.0	53.1	55.2	67.2	50． 1	61.0	82.9
41.4	43.3	46.9	47.1	4E． 9	60.6	52． 5	62． 4	6， 5
369	88.7	40.4	42.0	43.6	55.1	＊8．${ }^{\text {B }}$	48． D	40． 3
83.0	34.5	86.0	87.0	38． 0	423	41.6	22.8	43.9
29.6	30.9	32.2	28.6	34.8	360	27.2	新 2	新 2
28． 6	27.8	20.0	30.2	31.3	3 al 3	29.3	ง． 2	85.0
241	2.1	23.2	27.8	2×3	＊1	29.9	30． 8	31.3

Table 15. Vatue of $(d Z / d T)^{\prime}$ at integral values of T, the andadute

temperature, and ρ, the densily in Amagat units-Continued

350	380	387	400	420	440	400	4 EO	\$00
${ }^{9} \mathrm{~K}=1$	${ }^{*} \mathbf{K}^{-1}$	${ }^{+\boldsymbol{E}}{ }^{\boldsymbol{1}}$	${ }^{0} \boldsymbol{N K}-1$	${ }^{8} \boldsymbol{K}$-1	${ }^{8} \boldsymbol{K}{ }^{-1}$	${ }^{*} \boldsymbol{R}-1$	${ }^{\circ} \boldsymbol{K}=1$	${ }^{\bullet} \boldsymbol{K}-1$
81.9×10^{-1}	22.0×10^{-1}	23.9×10^{-1}	24.8×10^{-4}	$25.6 \times 10-1$	$2 \mathrm{4} .3 \times 10-1$	28.0×10^{-1}	$27.6 \times 10-1$	29, $1 \times 10 \rightarrow$
\$0.1	21.0	27.8	22.5	23.2	20.8	24.4	24.9	25.3
18.4	19.2	19.8	20.5	31.1	21.7	22.1	225	28.9
16.9	17.6	İ. 2	18. E	12.5	2 E .8	20.2	20.6	20.8
15.5	141	16. 7	17,2	17.7	188 1	18. 5	18.	19. D
14. ${ }^{\text {d }}$. 148	15.3	15,8	182	1 f .6	IA, 1	17.1	17.3
13.2	13.7	14. I	14, 6	14.8	15.1	15,3	18.8	15.8
12.2	127	12.0	13.3	125	13.7	13.9	14.0	14.0
II. 2	11.0	11.9	12.1	12.8	12.5	12. 6	12.8	12.8
$1080 \times 10{ }^{-1}$	1050×10^{-4}	1084×10^{-6}	$1110 \times 10-4$	113×10^{-6}	114×10^{-4}	1140×10^{-4}	1149×10^{-4}	(140) ${ }^{10} 0^{-4}$
883	898	918	P4	858	97	960	985	98
740	$\pi 1$	782	810	525	897	846	852	554
OEA	\%78	696	511	722	330	738	74	745
580	509	813	693		640	(14	6/48	B47
511	87	389	848	2 CH	868	860	681	\$69)
4.45	404	470	$4{ }^{1}$	480	492	492	481	470
389	399	406	110	412	422	410	* ${ }^{\text {\% }}$	462
320	384	84	750	350	348	34	\$37	328
200	295	E/7	297	25	298	289	278	268
250.6	259.	258	250.5	246.1	239.5	290.2	218.3	20.5
230.1	240.3	239.7	297.0	23820	294. 7	214.9	2022.4	187.0
215. 7	215. B	212.9	210.0	2 al 2.5	195.8	186. 3	170.7	15. 2
1e9. ${ }^{\text {d }}$	181.4	137.0	150.5	1420	131.1	117.9	103.1	80. 60
159.5	168. 7	100.0	140. 4	138.0	126.6	119.2	98. 25	7. 58
116.8	112.1	100.6	98. 22	86.80	74, 34	52. 57	42.89	22.64
E3. 05	垵价	T0, 30	Cf, 83,	49.5	3819	20.78	2.011	-17.11
58, 40	51.65	43.15	$\mathbf{3 5}$. 06	21. 31	7. 481	-8.218	-28, 0	-4809
44, 64	37. 40	28.67	18.34	4.314	-7.407 \|	-23.21	-40.90	-80.73
38.29	30.90	22. DS	11. 6 I	-0. 457	-14. z	-29. 25	-47. 51	-6r, 30
22 ${ }^{\text {d }}$	1460	5. 500	-5.nsg	-17.18	-30. 68	-18.34	-03. 81	-8\% 82
0. 574	1. 6 AR	-7.529	-IE 08	-30.08	-43. 68	-58.70	-75. 52	-94. 4
-0.685	-8. 6×8	-17. ${ }^{83}$	-2831	-40 11	-59.83	-68.94	-91.33	-102. 3
-8.c84	-18.97	-96.08	-38 ${ }^{2}$	-47.02	-60.79	-75.06	-90.81	-103.1
-15. 79	-20.64	-32. 78	- 42.72	- 5 3.98	- 86.19	-80, 80	-85. 48	-112.1
-21.20	-29,08	-37.88	-47.72	-156	-72 96	-8. ${ }^{\text {d }} 14$	-5s. 76	-11. 7
-25.67	-38.38	-42 63	- 51.8		- 74.08	-80. 91	-101.0	-110.3
-2. 32	-30.39	-40.34	-84. 7	-8k 04	-76.38	-88.82	-109.4	-117. 1
-32, 60	- 38.72	-47.06	-57.08	-63. 10	- 36.08	- 00.00	-103.1	-117.4
-34.72	-41. 8	-50.03	-68.94	-69.80	- 78.8	-90.78	-103. 3	-119.9
-36.44	-43.78	-5i. 83	-60.24	-69.66	-78. 02	-91. DS	-103.2	- 218.2

Tısum 16. Values of $\left(-d^{2} Z / d T^{7}\right)$, af infeqral tagives of T,

the absotute temperature, and ρ, the density in Anagat untits

Tabli 16. Valtes of $\left(-d^{2} Z / d T^{2}\right)$, at integral values of T, the

Temperature	$p=1$	2	3	B	10	20
${ }^{*} \mathrm{H}$	${ }^{*} \mathbf{K}^{*}$	${ }^{1} \mathrm{~K}-1$	${ }^{*} \mathrm{~K}^{-4}$	${ }^{\circ} \mathrm{K}^{\mathbf{\prime}}$-s	${ }^{\circ} \mathrm{K}^{-1}$	${ }^{6} \mathrm{~K}-\mathrm{P}$
170.	0. $50 \times 10 \mathrm{l}$	L 1×10^{-5}	1. 8×10^{-5}	3. 1×10^{-7}	b. $0 \times 111{ }^{\text {P }}$	$11 \times 10 \%$
180.	. 41	0.88	1.3	2.6	4.3	9.3
100.	. 38	. 78	1.1	2.2	3. 7	7.5
200	. 38	. 60	1.6	20	s. 2	8.2
210	, 20	. 68	D. 87	1.8	2.7	0.4
2 D .	. 26	. 51	. 78	1.6	2.1	4. 7
230.	. 23	. 45	. 6	L4	9. 2	4. 2
20.	. 21	. 40	. 68	L2	9.0	\$. 7
250.	. 17	. 34	. 62	1.0	1.7	3.2
230	. 14	. 28	. 30	0.86	1.4	2.1
200...........-.............	, 1185	.	. 2864	.7101	1. 182	2. 356
0° C....	. 1140	. 60	. 3419	. 580	1. 287	2. 271
280....	. 10501	. 21800	. 3148	. 0880	1.047	2.088
$45^{\circ} \mathrm{C}$.08510	. 1701	.2601	. 5004	0.8476	1.691
200	. 08080	. 1668	.24ted	. 4890	. 8802	1.thes
3 F 20	. 066006	. 1341	. 2010	. 4019	.6674	1. 325
340.	. 020480	. 1091	. 1658	. 3288	. 6880	1.090
\$50...---------------	.01490	. 68980	. 1345	. 2 2 ¢5	. 5489	0.888\%
$10^{3} \mathrm{C}$. 0368	, 07852	. 119	. 2 S3	. 34.45	. 7837
380------------	.08727	. 0748	. 1118	. 2228	. 5702	. 7400
*00.--------	. 03119	. 068 zas	. 020812	. 1864	. 3097	. 6143
20.	.02659	. 0.52 LH	.arses	. 1571	. 25009	. 8178
440.	.07231	.0468	- Cose 2	. 1338	. 2213	. 8 885
480.	.D1805	, CPSOB	-0306	-113:	. 1689	. 978
480.-.-.	. DLes5	. 103306	. 04589	. 06758	- 1980	. 5205
500.	. 01410	.08817	, 048821	-08414	. 1238	. $23 \mathrm{AK1}$
520.	. 01281	. 020440	, 138*00000	.0720\%	. 12×80	. 2399
540.	. 01068	. 102192	. 03180	. 06830	, 1081	. 2008
560.	- 00088	. 018.58	. 06876	. 05080	. 09109	- 1810
1880	- 00812	. 0118	.02432	. 04885	. 08087	- 159
600...--...	.10714	-01480		. 04.4264	. 07048	. 1390
	. $=220$	240	280	2\%0	900	380
d2..	$8{ }^{2} \times 10^{-6}$	$85 \times 10-4$	202010-4	(7) $\times 10-4$	101×10^{-4}	100×10^{-1}
14.	71	75	\%	84	E7	90
48.	61	65	08	73	78	\$0
48.	5	57	81	85	6	72
F0. .----	47	50	\$4	5	+1	b
52.	12	4	47	51	51	57
54.	5	38	41	44	48	4
56	35	85	\%	35	40	12
58.	28	21	37	3	5	37
00,-...-.....u-........	28	2	30	31	22	54
65.	21	23	25	25	27	\%
T0	17	18	31	2	23	24
75..........	14	16	17	18	19	29
80.....................	12	14	14	16	15	16
85.................	9.7	10	11	12	13	13
\$9.--...........	7.8	S. 3	8.9	9.8	10	II
O5........	5.1	6.8	7.6	81	K. 6	D. 1
to0.,......	5.5	0.0	6.6	7.0	7.5	8.0
105.	4.8	5.3	5.7	事 1	6.5	6.9
110.	4.8	4.6	5.0	83	5.6	8.4
116.	3.7	4.0	4. 5	4.4	4.9	5. 2
180......--	3.2	d. 6	S. $\mathrm{S}^{\text {d }}$	4.0	4.3	4. 6
128.....--	2.8	0.1	3. 3	3.6	3.7	3.8
120.	26	2.7	2.9	3.1	3.2	3. 7
136.	2.2	24	2.3	2.7	2.8	8.0
	1.0	21	23	2.1	2.8	2.7

absolvte temperature，and ρ ，the denatity in Anagat units－Continued

． 40	（4）	80	100	120	140	1810	180）	270
${ }^{0} \boldsymbol{E}-1$	${ }^{*} \mathbf{K}^{-2}$	${ }^{\mathbf{K}} \mathbf{K} \mathbf{- 1}$	${ }^{9} \mathrm{~K}=1$	${ }^{4} \mathrm{E}^{2 / 2}$	＊${ }^{\text {K－2 }}$	${ }^{9} \mathrm{~K}$	${ }^{4} \mathrm{~K}-\mathrm{z}$	${ }^{9} \mathrm{~K}$
22×10^{-7}	$92 \times 10{ }^{-7}$	43×10^{-1}	69×10^{-7}	84×10^{-2}	75×10^{-1}	（1）$\times 10^{-1}$	（5）＜100 ${ }^{+}$	100×10^{-1}
29	27	35	4	53	EI	70	78	E E_{7}
15	22	29	36	43	60	68	65	72
12	18	24	29	35	41	47	5	5
10	15	28	28	29	34	89	4	48
4． 6	14	18	28	20	29	33	37	41
8． 5	12	17	20	28	25	29	32	$3{ }^{2}$
7.6	11	16	18	20	23	25	29	32
6.6	2.1	13	16	18	20）	23	25	2
5． 5	8.0	10	15	16	18	2］	23	26
4． 8884	E．${ }_{\text {d }}$	9．264	12.52	13． 76	16． 82	19．19	20.38	23．86
4． 608	B．76\％	9． 9 Pt	12．13	13． 35	15．31	17． 8 6	10．79	20．91
4．142	b． 171	8． 175	10． 15	1． 111	14．05	15．06	17． g 8	10． 75
3．358	b． $\mathrm{C01}$	6． 820	B． 218	9．788	11.33	19.86	14．3b	16.81
3．278	4． 872	b． 410	T． 881	9．498	10．18	12．45	19.80	15．30
2.829	3． 800	5． 145	6． 282	J． 55%	E． 718	a． 861	10．68	12．09
2.132	3． 180	1190	5． 25	6． 0882	7.602	7．908	E． 768	6．688
1．748	2． 188	3.400	4． 159	4.951	5.48	E 385	7.085	7．729
1.548	2290	3.004	2.887	4265	50ng	5． 684	6.811	（f． ifg
1．4＊）	2． 236	2.806	3.450	4．000	4．604	529	5.78	＊． 2885
1． 2×28	1．705	9， 2002	2868	3.373	3.857	4.815	4.751	5． 198
1． 816	1．40\％	1．이나	2.397	2.814	2.314	8． 50	2.96	4286
0．3802	1． 246	1．661	2.019	2．368	2 P	8.004	3289	－ 5150
． 7826	1． 076	1． 402	1． 311	2 O 04	2.870	258	2.762	2 mos
，Bifl	0.9198	1． 196	1．488	5． 7 cta	1．981	2.141	238	2508
． 5308	． 7897	1． 028	1． 2 速	1．406	1． 640	1．881	1． 978	2.116
． 4566	．6914	0.6539	1．Oft	1．259	1． 410	1．306	1． 888	1.797
． 4045	． 5003	． 7 dis	0.9296	1.078	1． 212	1． 23	I． 440	1． 681
． 3622	． 5132	－ 0 Ms5	． 8028	D． 9290	I． 040	1． 147	1． $2 \mathbf{3} 6$	1． 308
． 3077	． 4428	． 5 FIT	． 8675	． 58081	0.9058	0． 2802	1． 0.6	1． 141
．2806	． 391 l	.6045	，MCTE	． 7011	． 7838	． 8554	0．930	0． 9680
340	360	390	400	420	440	460	480	500
$104 \times 10{ }^{-1}$	105×10^{-7}	$108 \times 15-1$	109×10^{-5}	119×10^{-1}	118×10^{-1}	197×10^{-1}	$137 \times 10-5$	148910－1
\＄8	05	18	$1 t 1$	104	109	115	129	152
84	87	01	96	俱	102	106	111	116
715	80	84	89	02	98	97	89	101
48	78	7	B1	86	87	87	97	요
41	B5	69	13	76	77	77	37	78
16	Br	61	B4	66	61	0	67	65
4t	4	51	84	48	18	57	67	56
39	40	4	45	47	4	49	40	4
36	38	37	88	11	42	44	46	46
29	30	\＄1	32	\＄	34	施	83	36
25	28	87	28	29	30	31	＊	34
21	22	108	24	25	26	27	29	20
15	18	18	20	22	会	23	24	25
14	15	18	17	19	19	19	21	20
11	12	13	14	11	15	15	18	16
9.6	10	10	11	I］	12	12	13	18
8． 4	8． 8	9.1	D． 5	9．8	10	11	11	11
2.8	7.7	8.0	8.1	8.7	9.1	9.4	10	10
0.4	4． 7	7.0	7.3	7.6	8.0	B．3	B． 0	E． 9
6.5	5.8	6.0	5.3	6.6	6.0	7.3	7.8	7.1
4． 7	4.9	5.2	E． 5	5.8	6.0	6.3	8.8	A．${ }^{\text {P }}$
4.0	42	4.4	48	5.1	8.3	0.6	6.8	B．D
3.5	S． 7	40	42	4.4	4.6	4.8	6.0	52
32	3.1	3.6	3.7	8.8	4.6	4.2	4.4	45
2.0	3.1	2.2	3.3	31	\＄．B	9.7	8.8	39

Table 16. Valuet of $\left(-d^{2} Z / d T^{2}\right)_{p}$ at integral adues of T, the

	Themperstore	$a=200$	240	260	280	300	320
	${ }^{\square} \boldsymbol{K}$	${ }^{1} \mathrm{~K}$ -	${ }^{9} \mathrm{~K}-1$	${ }^{\circ} \mathrm{F}=1$	${ }^{\square} \mathrm{K}^{\prime}-$	${ }^{8} \mathrm{~K}$-1	${ }^{\square} \boldsymbol{K}-3$
145		1.7×10^{-4}	18×10^{-4}	2.0×10^{-1}	2. 1×10^{-4}	2.3×10^{-4}	2.4×10^{-1}
150		15	1.6	1.8	1.9	21	2.2
155		1.1	1.5	1. 18	1.10	1.9	2.0
180		13	1.4	1. 5	17	1.8	Le
185.		1.2	1.4	1. 5	1.6	1. 6	1.E
170		$110 \times 10-7$	130×10^{-1}	1300×10^{-1}	$140 \times 10 \sim$	180×10^{-9}	170×10^{-4}
180		00	100)	110	120	120	130
190		78	83	87	91	日 8	99
210		63	87	70	73	78	85
210		60	80	喊	03	88	69
220		45	49	83	66	80	02
220		40	44	4	51	63	56
240		36	40	4	40	48	st
250		52	35	38	40	42	46
260		28	31	33	36	97	40
270		24.73	23.88	29. 48	S1. 17	39.30	35. 12
	$0^{\circ} C_{u}$	24.01	28.09	29. 15	30. 20	32. 3	32.24
280	-.........-	21.00	22.41	20.20	87.07	39.85	3082
	$84^{\circ} E^{\circ}$	17.25	18.08	20.04	21.89	22.68	27.90
300.		18.6)	18.04	12.37	20.67	21.04	28.17
320		13. cid $^{\text {d }}$	14.09	18. 08	16.088	10.68	17.80
340.		10.59	11. 18	11. 68	12.68	12.24	15.91
360		B. 584	8. $8 \times$	0.480	9.194	T0. 48	10.90
	$100^{\circ} G_{-}$	7.293	7. 785	8. 242	E. 888	0.006	9, 385
s90.		4.787	7. 218	7.835	E. 017	8. 380	E. 664
		5.589	5. 885	(4. 202	E 595	(6. 733	8. 92
		4. 580	4.894	1. 178	5.285	5. 481	5. 601
44.		8.75	3.9n8	4. 18.1	4.335	4.458	4. 547
430.		2. 161	2.225	8.484	3.575	\# 858	3. 300
480		2 cos	2.760	2.884	2.902	2.014	2. 088
500	.1..........	2230	2.884	2.411	2 dts	2489	2.406
500		1. 898	1.90]	2.022	2.06	2007	2063
\$40.		1.015	I. 608	1.701	1. 720	1. 718	1. 8 da
560		1.357	1. 406	1. 434	1.441	1. 429	1.39\%
1850		1. 188	I. 196	I. 2 Il	1. 208	1. IBS	1. 149
000.		0. 9.97	I. Ots	1029	1.014	0. 888	0.945

Temmerature	$\mathrm{p}=0$	1	2	3	6	10	20
${ }^{\text {® }} \boldsymbol{K}$							
	$-9,100 \times 10^{-4}$	-0,067 $\times 10-4$	-2,070 $\times 10^{-4}$	$-8,062 \times 10^{-1}$		--1...-...-
18.	-7,709	-7,694	-7,679	-7, 1044	$-7,680 \times 10^{-4}$		
20....	-8, 8×3	-6, 627	-5, 5 (0)	-1, 58.5	-6. 0^{607}	$-6,506 \times 10^{-4}$	-
22.	-6,781	-5,770	-6.2.0.	- 5,748	-5,7is	-6,670	
24.	-6,087	-3.077		-5,058	-3,029	-4,980	$-4.802 \times 10{ }^{-4}$
26	-4, 612	-4, 504	-1,494	-4, 185	-4,4cto	-4,426	-4, 338
88.	-4,007	-4,010	-4, 011	$-4,003$	-8, 80	-3.9818	-3, 871
30	-3,615	-3,009	-3.801	-3.594	-3, 572	-3,544	-3,474
32.	-3, 250	-8, 255	-3,240	$-3,242$	-3, 7 \%	$-3,10{ }^{\text {\% }}$	-3, 182
84.	-2, 0.63	-2.214	-2,043	-2,897	-2. 018	-2, 808	-2,844
36.	-2, 408	-2, 888	-2, 678	-2, ¢121	-2,854	$-2,882$	-2.577
\%	-2,463	-2,448	-2.448	-2.459	-2,422	-2,408	$-2, \$ 50$
40.	-2,245	-2,240	-2.35	-2. 3×1	-2, 218	-2,197	-2,149
42.	-2,054	-2,054	-2,050	-2,045	-2,082	-2, 014	-1.069

aboolute temperature, and ρ, the devity is Amagat units-Continued

440	360	390	* 0	520	410	180	480	100
${ }^{\circ} \mathrm{K}-1$	${ }^{9} \mathrm{~K}^{-1}$	${ }^{4} \mathbf{K}$ - ${ }^{\text {a }}$	${ }^{*}{ }^{-1} 1$	${ }^{0} \boldsymbol{H}^{-1}$	${ }^{2} \mathbf{E}-1$	25-2	${ }^{9} \boldsymbol{K}-\mathbf{2}$	${ }^{6} \mathrm{~K}-{ }^{\text {a }}$
2.6×10-5	2.8×10^{-4}	$2.9 \times 10-1$	$3.0 \times 10-4$	3. 1×10^{-1}	3.3×10^{-6}	3.4×10^{-5}	3.4×10^{-1}	$3.5 \times 10-1$
23	2.6	28	2.7	20	30	3.2	3.2	3.3
21	2.2	2.3	25	2.7	2.8	20	3.1	d. 2
20	2.1	2.2	2.5	2.6	20	2.7	2.2	3.0
20	2.1	2.2	28	2.4	2.5	2.6	2.6	2.7
$150 \times 10-1$	190×10^{-7}	$180 \times 10-5$	180×10^{-2}	190×10^{-9}	200×10^{-9}	$200 \times 10^{-}$	$200 \times 10 \sim 5$	210×10^{-7}
140	140	140	150	150	150	150	150	100
100\%	100	110	110	130	120	120	120	120
88	88	88	pa	98	日6	98	100	100
72	76	78	81	83	85	57	88	89
65	68	71	73	76	77	\%	81	81
60	63	65	67	69	71	74	\%	75
55	58	60	82	64	86	85	6	30
4	52	54	E	58	80	68	64	65
4	48	4	E	52	54	59	59	00
27. 35	37, 88	41.71	4.78	15, 23	47.86	42.87	51.85	68. 60
34.23	\%8. 19	40. 13	49.06	43. 183	44^{78}	47.60	40.38	B1. 12
32.35	36. 08	36. 77	37.44	39.07	4. 68	428	43.78	46. 19
25. ${ }^{\text {d }}$	23.38	27. $\mathrm{CA}^{\text {d }}$	28.60	20,88	30.67	31.60	32.47	69. 27
24.37	25. 63	26. 84	73.71	28.74	22.70	360.61	31,45	92. 22
18. 83	19.4	30. 14	32.82	21. 44	21.99	72.48	22.00	29. 23
14, 42	1494	15. 41	1583	16. 18	16.47	16.6)	18.89	18.89
11.29	II. 63	11.92	17148	12.33	12.4	12.48	12.4	1234
9.848	9.925	10.32	10.27	10.38	10. 39	1038	10.25	10,08
8. 20.5	9. 139	9.305	9.417	9.478	9.488	R. 387	\$256	9.039
7.110	7. 236	7.314	7.344	7.319	7.4*)	7.094	6.896	6.605
5. 705	6. 765	5. 7 Te4	5. 760	0.578	4.517	8.368	\& 110	4.795
1.801	4. 818	4. 504	4. 527	4. 415	4.253	4.039	8.76	3.498
3. 7×1	3.713	3. 60	3. 587	9. 483	3.208	2.088	2.746	2611
3.038	2980	2. 978	2812	2. 884	2.475	2234	1.281	1.690
2.471	2.416	2.331	2212	2.057	1. 1834	1. ESI	1.354	1.038
2.016	1. 051	2. 8807	1. 732	L574	1. 562	1. 153	0.684	6.875
1.840	1. 678	1. 174	1.246	1.189	1. 000	0. 778	. 517	, ${ }^{\text {c20 }}$
1.342	1.254	1.188	1. 085	(0.889	(0. 885	- 480	.231	-.002
L. 000	1. 010	0.908	0.782	, 620	. 452	. 245	.107	-. 362
D. 388	0.80]	. 700	. 570	.428	. 277	. 0 ¢ $\%$	-167	-. 4272

absolute temperatrye, and p, the density in Amagat units

Table 17. Values of $(d Z / d p$, f at integral walues of T, the absolute

temperatare, and ρ, the density in Amaral thits-Continued

Table 17. Values of $(d Z / d \rho)_{t}$ at integral ualuces of 7 , the

'Tempersture	${ }^{\prime}=0$	1	2	3	0	10	20	
$280 \ldots \ldots \ldots$	817.7×10^{-6} save. 4	4191×10^{-6} 520.8	$480,5 \times 10^{-4}$ 628.2	$\begin{aligned} & 621.8 \times 10^{-4} \\ & 620.5 \end{aligned}$	$\begin{aligned} & 038,2 \times 10^{-1} \\ & \text { 638.8 } \end{aligned}$	$83 L 9 \times 10-4$ 829	$\theta+1.4 \times 10^{-6}$ 058.8	
$0^{\circ} \mathrm{C} . .$.	843.8	\$4.19	688.3	O4F. 5	051.8	0678	671.2	
380--.--	㫢5. 2	640.6	047.9	649. 3	659.	Toks	672. ${ }^{\text {a }}$	
323-.,	8651.7	66.0	60, 4	685	${ }^{669.7}$	076	fre. 5	
340	B775. 5	Ere. 8	68.1	67\% 4	eg. 2	638. 4	711. 6	
300 -.	867.1	6584	639.8.	e90. 9	64. 6	689. 7	7225	
$t\left(0^{\circ} \mathrm{Cr}\right.$	Bex 7	*20.0	Cex, 2	697.4	701.1	700.1	71R, 7	
280.	Afec 9	608. 1	(\%90,4	700.4	7 m 2	789.2	791. 5	
500	700. 2	700. 4	708.0	T00.8	712.4	717.2	73.3	
420	2123	78.4	714.6	715. ${ }^{\text {a }}$	76.9	7240	T36.4	
440.	7183	78.4	7en 5	721.7	725.1	筇, 7	741.a	
480	729.4	724	725. 5	728. 7	73.1	7346	745.9	
450	727.7	78.8	72.9	731.0	73.8	738.7	78.8	
5×10	781.4	7325	7345	73.5	737.8	76.1	780	
580.	734, 5	т30. $\square^{\text {¢ }}$	738.5	735. 5	740.8	755 0	7595	
140	78.1	738.2	239.2	74.2	748, 3	747, 5	2680	
500	73.12	7×0.3	741.4	742.4	765.4	749, 6	709. B	
tedo	741.2	742.2	742.1	74.1	76.1	751.2	$7 \mathrm{Al}$.	
600	74.7	74s. 8	744.6	745.6	749.6	76. 5	76.8	
Temperature		-2300	240	260	290	300	320	
42-...-...		-1,04x 0^{0-4}	$-\mathrm{ana} \times 10 \mathrm{C}$	-867×10^{-4}	-758×10-4	- $0888 \times 10-4$	$\begin{aligned} & -3 N \times 10^{-1} \\ & -401 \end{aligned}$	
44.-...--		-841	-847	-761				
46.		-837	-347	-053	-655	- 464	-231	
		-656	-	-477	-3s0	-2it	-174	
54.		-579	-489	- 5 ¢	-301	-200	-	
		-415	-34	-289	-191	-51		
				-355	-108	-9s	+30+86	
		-353	-342	- 59		-10+4		
60...........	-287	-211	-131	-102 -46		${ }_{1}^{+88}$	
		-137	-62	+15	+94	17	254	
70--	\cdots	+64	197	${ }^{213}$	209	376	
75.		+699	189	241	915	383	175	
\$0.	-.-----		250	391	403	430	160	
${ }^{2} 5$.		220	239	* 08	dsa	506	(1938	
${ }^{80}$ O5.		${ }_{4}^{502}$	408467	$\begin{aligned} & 476 \\ & 534 \end{aligned}$	${ }_{60}{ }_{6}$	820		
		725				000 751		
			457	530	59	ess	T/9	
		507	ses	62	08	7es	840	
110.		552	EII	87	73	807	878	
110		898	885	711	775	${ }_{50} 81$	81	
		745		807	${ }^{67}$	and		
125			680	FIE	375	838	900	988
180.		8 88	744	8,		925	${ }^{992}$	
		718740	$\begin{aligned} & 770 \\ & 704 \end{aligned}$	827850	$\begin{aligned} & 808 \\ & 0006 \end{aligned}$	$\begin{aligned} & 948 \\ & 074 \end{aligned}$	$1,014$	
140..--							
		$\begin{gathered} 302 \\ 308 \\ 783 \end{gathered}$	815	B71	890	900	1.88	
		88	891	OH_{8}	1.008	L,070		
155.			834	908	988	1,024	1.005	
			819	87	924	2954	1,058	1.096
1785.		$\begin{aligned} & 896 \\ & 8999 \end{aligned}$	$\begin{aligned} & 888 \\ & 889 \\ & \hline 9 \end{aligned}$	$\begin{aligned} & 1838 \\ & 851 \end{aligned}$	$\begin{array}{r} 098 \\ 1,005 \end{array}$	$\begin{aligned} & \mathbf{1}, 061 \\ & \mathbf{1}, 062 \end{aligned}$	$\begin{aligned} & \mathbf{1}, 111 \\ & \mathbf{1 , 1 2 \downarrow} \end{aligned}$	

aboolute temperature，and p ，the density in Amagat units－Continued

40	60	81	I（ 01	123	140	180	180	200
878.1×10^{-1} 08.2	$76.7 \times 10-4$ 713.6	788.4×10^{-0} 744.8	$771.0 \times 10-6$ 737.1	804.0×10^{-1} 810.8	$838.8 \times 10-1$ 848.2	E76． 1×10^{-8} 821.1	$\begin{aligned} & 912,6 \times 10-1 \\ & 918.2 \end{aligned}$	$\begin{aligned} & 962.6 \times 10^{-4} \\ & 956.7 \end{aligned}$
GEES 8	720． 2	548． 7	791.2	E2S． 7	850.4	602．a	029.4	065． 8
701.3	7307	781， 0	792.4	E36．${ }^{\text {a }}$	858.8	ge3． 2	889.2	9818． 5
7162	744． 7	774， 2	ST4， 7	Ras． 2	888.5	902.5	1837．4	［73． 5
728.4	76	734.8	S14， 3	845． 1	874． 7	9ne． 5	Or2． 3	D79 4
739.8	705－0	7035	822.3	86.1	892，${ }^{\text {P }}$	814.7	047.6	＊1， 6
744． 4	770.9	70． 1	E20． 8	85d 9	896.1	917.3	693． 6	933．0
747．1	273.4	800.8	E29， 1	857.8	858.4	918． 6	9tos 5	9380
7542	78．9	308.4	xer 7	301．$\%$	621． 1	221.2	4， 4	18945
780.1	785.2	s11．D	E27． 7	885.2	803.7	9r3iol	259.1	89.7
Thas 1	\％ 8 \％ 5	\＄14，8	840.8	867.7	885.5	924 1	D59． 7	894.3
5 HO 2.2	703． 1	817.8	843.3	800． 5		P24 6	BE9． 5	883 3
772.6	700．0	820.2	845， 1	sath 8	807.3	824．4	952.8	89， 9
778．4	7083	822.19	846.4	871． 5	897.5	P24．2	201， 8	480.2
市6． 0	800.2	829.4	847.3	871.9	907.3	023.5	200.4	978， 2
77． 5	8 ck \％	E24． 4	887.8	871.4	800， 8	022.4	OHR． 9	\％\％6．1
780.9	802.8	K85．0）	84B． 0	$8{ }_{6} 1.7$	\＄06． 1	\％21． 2	047．1	978．8
782：	300.4	\＄25． 3	847． 8	671． 2	885.1	919． E	945.2	6713
2829	809．${ }^{\text {P }}$	820.4	847.1	E\％O． 5	894.0	818.2	12183 1	Higa
340	3817	380	400	43，	440	440	140	500
-485×10^{-6}	$-358 \times 10-4$	-231×10^{-4}	-111×10^{-4}	424×10^{-0}	178×10^{-6}	321×10^{-4}	$478 \times 10-1$	$1830 \times 10{ }^{-4}$
－352	－2F4	－139	－15	＋130	209	f01	563	207
－250	－149	-42	＋76	209	\％	471	612	759
-1.57	－57	＋48	182	291	d 4 H	551	$80 \cdot 1$	bot
－33	＋27	130	240	253	488	598	215	349
＋2	102	204	310	418	528	643	785	691
＋18	188	$2{ }^{2} 8$	873	478	5RS	（tG7	815	839
12s	228	930	401	Cl_{4}	640	760	964	bed
183	232	392	494	587	662	800	918	1．03I
24	432	491	532	＠LI	740	848	961	1，029
355	450	517	fry 7	752	801	578	1， 1008	1，210
464	556	459	751	855	廄	1．075	1， 191	1，312
－581	451	745	B 12	OH	1，050	1，180	1，294	1，394
644	333	884	919	1，018	I， 122	1，291	1， 515	$1_{4} 586$
715	802	882	Ded	1，091	1． 189	1，291	1．416	1． 528
776	860	948	1．039	$1{ }_{1} 184$	1，294	1，240	1， 454	i． 578
829	911	607	1，065	1， 180	1，259	1，294	1，488	$1 \mathrm{r}_{1} \mathrm{Eld}$
876	986	1，041	1，129	1，\％ $\mathbf{z 1}$	1，318	1，422		1，848
916	900	1， 080	1，107	t，268	1，355	1，4．6	1， 581	1， 8 \％
459	1， 1232	1，135	1，201	1，381		1，4\％	1，587	1，6es
296	1，064	1，148	4281	1，8820	1，4］4	1，511	1， 011	1，715
1． 014	1，002	I，17S	1，257	1，345	1，43；	1，13x	1， 68	1，783
1.081	1.117	1，187	1，390	1，386	1，457	1,652	1， 6 as	1，754
1.044	1， 140	1， 218	1，299	1． 384	1,473	1,66	1，\％${ }^{\circ}$	1．769
1．095	1，159	1，238	1，314	1，3B8	1,167	1,860	1，678	1，顽
1， 108	1， 178	1，202	1． 331	1，113	1，500	1，591	1， $\mathbf{N O}_{\mathbf{*}}$	1，789
1，120	1． 191	1．2840	1，345	1，423	1，511	1，600	1，629	1，790
1，138	1，205	1，278	1， 356	1，46t	1，500	1， 007	1，698	1， 796
1，160	1，218	1，200	1，30，	1，444	1，NS	1，812	1，704	1， 76
1，182		1， 800	1，274	1，451	1，531	1，510	1， 207	1，\＄01
1．17d	1，240	1． 200	1，玉1	1，467	1，930	1，819	1，707	1,800
1，189	1，248	1，967	1，\％8y	1，402	1． 530	1，620	1，906	

Table 17. Values of $\left(d Z / d_{p}\right)^{2}$ at integral vatuea of T, the absolute

Temperature	p-320	240	280	280	300	88
180.	$874 \times 10-\mathrm{C}$	922×10^{-4}	1872 $\times 1000$	1. 023×100^{-1}	$1,061 \times 10^{-4}$	1,140 ${ }^{10} 10^{-4}$
180.	695	945	982	1,048	1, 0 ces	1, 186
200.	P13	681	1, 018	1,060	1,113	1, 169
210.	829	576	1,084	1,074	1,12t	1,180
320.	0 N 3	B69	1.057	1, C9A	1, 187	1,100
230.	958	1,001	1, 048	1, 000	I, 1\& ${ }^{\text {B }}$	1,168
240	907	1,011	1.085	1, 104	1, 154	1,205
200	975	1,020	1,065	1,114	1,180	1.291
2 Cu	094	1,02\%	1,072	1,117	1, 185	1,215
2 SO	D01.0	1,083. 1	1,678.8	1, 1281	1, 169.3	1,218, 3
$0^{\circ} C$	P82. 9	4,034.7	1,078. 2	1,183. ${ }^{\text {a }}$	1 172.	1, $\mathbf{1} 19.0$
280.	EN6. 3	1, OUS D	1,091.0	1, 125.8	1,1784	$1,2 \mathrm{SO} 2$
$0^{5} \mathrm{C}$	1, 004.5	1,044.7	1, 098, 4	1, 129.7	1, 174.7	t, z21.4
300.	1, 005.7	1,046, 3	1, 088.8	1, 980.0	1, 174,8	I, 221.4
3;0.	1,011.0	1, 049.8	J, $000 . \mathrm{t}$	1, 181.8	I, ith 1	1,220. 1
340.	1,014.7	1, 050.2	1, 0401.3	1, 181. 7	1, 178. 6	1.217. 1
200.	1,016.9	1,053.4	5,0e1.2	1, 130. 8	1, 120.9	1, 212 F
$\mathrm{fac}^{\circ} \mathrm{C}$	1, ©17.6	1,003.4	1.000.1	1, 128.8	1, 163. 5	1.200. 7
	1,017.8	1,483.2	1, UE9.9	1,17. F	I, 167.2	1,207.9
400.	1,017.8	1, 0.52 .2	1,0E7.8	1,124.7	1. 1 粗 9	1,202. 4
120.	1.017 .1	1,400. 6	1,045. 2	1,121.0	1, 158iol	1, 196.4
140.	1,015.8	1.048 .4	1,1082	1.116,9	1,1429	5. 100.2
480.	1,014.0	1.045 .8	1,078.4	1.1126	1, 147.6	1, 183.8
419.	1,011.9	1,042.9	1,074.9	1, 1080	J, 142 1	$1,177.1$
500.	1,000. 5	1.099.8	1.051.0	1, 102,3	1,13* 6	I, 17L 0
580.	1,000.9	1, 0208.6	1,00.0	1, 0698.6	1, 191.0	1,18A.6
640.	1, $\mathrm{COH}_{1} 2$	1, 动s. 1	1.082.9	1,089. 7	I, 125.4	1,168.2
deot	1,001.2	1, 02\%, B	1, 059.7	1, 098. B	1, 119. ${ }^{\text {B }}$	1,151.2
d30	CRS. 2	1,028. 6	1,051. 8	1, CSf. 0	1, 114.4	1.145.7
000.	595.1	1,022.3	1, 050.3	1,079.2	1, 109.9	1,138, 5

temperature, and ρ, the density in Amagat wits-Continued

\$40	380	390	40	420	440	400	480	400
1, 201×10^{-4}	1,254 $\times 10^{-6}$	1, 380×10^{-6}	1,300 $\times 10 \rightarrow$	1,471) 10°	1, $645 \times 10-4$	1,828 $\times 10^{-1}$	1, 705×10^{-4}	1,794 $\times 10^{-6}$
$\mathrm{t}_{1} \mathbf{2 1 5}$	1,2]	1,341	L 418	1, 478	I, 550	1,628	1, 707	1,798
I, 227	I, 298	1, 450	L, 118	1,484	1. 550	4.629	1. Fin	1,790
1, 287	1,2098	1, 358	1, 422	1,489	1, 554	1,642	1, 208	1,788
1,246	1,304	1,385	1.428	I, 498	1.561	1,683	1, ${ }^{\text {A }} 8$	1,767
1,259	1,310	1.370	1.482	1,496	1, 502	1,633	1.708	1,765
1,259	1,318	1.373	1,434	1, 497	1, bid	1,623	4.816	1, 763
1,254	1,919	1,376	1,438	1.18	I, 565	1,681	1.702	1,778
1,25\%	4. 321	1,378	1. 4×8	1.197	I, 581	I, 629	1,697	1, 717
1,259. 9	1,32024	1,97\% в	1. 435.2	1, 185. 1	1, 557.4	1, $\mathbf{6} 89.8$	1, $090 . \mathrm{K}$	1, 7ti.s
1,269. 7	1, 399.5	$1,37 \mathrm{~T} .4$	1.454.6	1.180 .9	1,555.3	1, 62],1	1,688, 5	
1,270.3	1,8224	1, 376. 6	I, 433.1	1.101 .9	1, 553. 2	1, 817.1	1, 1063. 7	1.764, 1
1.268 .9	1,32023	1.372 8	1.427.3	1.484. 1	1,543.8	1, 604.8	1, 0 cts, 0	1,785.8
1.262. 7	1, 320.0	1.372 .3	1. 4×8.5	1,1832	1, 34i. 2	1.663, 5	1,007. 4	1, 734.0
1. 256.8	$1,315.9$	1.308. 7	1,418, 1	$1,472.5$	1,329.2	L.588 1	1,848. 5	1, 713.4
1, 2t2.2	1,309.0	11257.7	1, 506. 2	1,400. ${ }^{\text {d }}$	1, 515.1	1571. B	1, 83n.E	1,802. 0
1, 256.6	1,301.8	1.34.3	1.397. 5	1,4480	I, 500. 3	3.555. 1	1, AlE.E	1, 870. 2
1, 252.1	1. 298.7	1,3420	1, ser. 2	1.438 .6	1, 490.9	1,544.1	1, 509. 4	1, 808. 8
1.2502	1. 2 sat :	1. 330.3	1, 239. 4	1.185 .2	1,485.8	1, 539. 4	1, 568. 0	1.049.7
12488	1.285.6	1,329.6	1.375, 1	1,4223	1, 471,2	1, 521. 7	1.574.5	1,629.2
1,202. 1	1. 27 \%. 2	1,310.7	1.369. 8	1,400.4	1, 456.7	1,501, 8	1.500. 5	1, 0109.3
1,289.7	1.259.6	1,900.9	1,362. ${ }^{\text {B }}$	1,308.8	1, 442.6	1, 400, 0	1.589. 2	1,590.1
1,221.9	4, 280.1	1. \%00. 1	1.341. 3	11384.5	1,429.0	1, 574. ${ }^{\text {B }}$	1.022 4	1,571. 6
4213.3	1. 251.6	1,240.5	1, $530 . \mathrm{B}$	1,9724	I, 410.5	1, 460.1	1. 506.2	1, 53\% ${ }^{\text {a }}$
1, 200.5	1.243. 3	1,281. 1	1. 320.2	1,360.7	1,402.6	1,44.5.8	1, 590. $\mathrm{B}^{\text {c }}$	15356
4188.2	1.234\%	1, 271.8	1,310. ${ }^{\text {d }}$	1.318.4	1,860 1	1, 459.1	1,475. ${ }^{\text {B }}$	1,580. 5
1,188.0	1,2248	1, 28888	1. 200.0	1, 338.4	1,378.0	1,419.9	I, 461.2	L, SOH .8
1, 184. 9	1,218.9	1, 2×840	1. 280,3	2,327, 7	1,860.3	1,408. 2	1,447.3	1, 489,8
1, 177.9	1,2ti. 2	1,243.5	t, 2\%0, ${ }^{\text {b }}$	1,313.4	1,3650	1.393.8	1, 484.0	1,475.4
1, 17.1.]	1.373.4	1. 2 A ¢7-2	1.24]. 7	1,305. 4	1,344, 1	1,382.0	1. 121.2	1,481.5

Many themodynamie equations involve derivatives in which P, V, and T are the variables of state. Applications of the talles of this paper in which the variables are Z, p, and T to calculations of propertios involving derivatives in which the variables are P, V, and T may be facilitated by means of equations relating the P, V, T and the Z, f, T derivatives. The following are adequate for many ordinary uses:

$$
\begin{gather*}
\frac{T}{P}\left(\frac{d P}{d T}\right)_{V}=\frac{T}{P}\left(\frac{d P}{d T}\right)_{P}=\frac{T}{P}\left(\frac{d \Phi}{d V}\right)_{T}=1+\frac{T}{Z}\left(\frac{d Z}{d T}\right)_{\rho} \tag{4.2}\\
-\frac{V}{P}\left(\frac{d P}{d V}\right)_{T}=\frac{\rho}{P}\left(\frac{d P}{d \rho}\right)_{T}=1+\frac{\rho}{Z}\left(\frac{d Z}{d \rho}\right)_{T} \tag{4.3}\\
-\frac{T}{V}\left(\frac{d V}{d T}\right)_{P}=\frac{T}{\rho}\left(\frac{d_{\rho}}{d T}\right)_{P}=\frac{T}{V}\left(\frac{d S}{d P}\right)_{T^{\prime}}:-\frac{1+\frac{T}{Z}\left(\frac{d Z}{d T}\right)_{\rho}}{1+\frac{\rho}{Z}\left(\frac{d Z}{d \rho}\right)_{T}} \tag{4.4}
\end{gather*}
$$

The Joule-Thomson coefficiont μ may be utilized to illustrate the use of these formulas. Thus for purposes of calculations with the tables of this paper, the familiar cquation

$$
\begin{equation*}
\mu=\left(\frac{d T}{d P}\right)_{H}=\frac{V}{C_{p}}\left[\frac{T}{V}\left(\frac{d V}{d T}\right)_{p}-1\right] \tag{4.5}
\end{equation*}
$$

is put in the form

$$
\begin{equation*}
\mu=\left(\frac{d T}{d P}\right)_{H}=\frac{V_{0}}{\rho} C_{0}\left[\frac{1+\frac{T}{Z}\left(\frac{d Z}{d T}\right)_{\rho}}{1+\frac{\rho}{Z}\left(\frac{d Z}{d \rho}\right)_{T}}-1\right] \tag{4.6}
\end{equation*}
$$

where V_{0} is the molar volume of hydrogen at standard conditions and C_{p} is the molar heat capacity at the given conditions of T and P or T and p.

In correlating the PVT data for hydrogen the function

$$
\begin{equation*}
\sigma=\frac{T}{T_{0}} V_{0}^{\prime} \log _{1 \pi} \frac{P V}{h T} \tag{4.7}
\end{equation*}
$$

wes used, where T_{q} is the Kelvin temperature of the ice point. Reported temperatures were reduced wherever possible to a thermodynamie scale having the ice point temperature 273.16°. All available data were considered in this work but only those appearing most reliable were used and these were weighted according to their apparent
precision. The data used $[59,61,63,65,66,67$, 70 to $74,76,79,81,85,88,91,177]$ are plotted in figure 6 with the exception of a fow observations at temperatures below $29^{\circ} \mathrm{K}$ and at densities lower than $\rho=10$, which were omitted because in these regions of low precision the scattering is so great that the points would be confusing.

A lower boundary to the σ versus ρ gas-liquid diagram in figure 6 is furnished by the vapor: liquid saturation line and the freazing curve. These are represented in figure 6 by dashed lines. The saturation line for the vapor rises steeply onto the diagram at low densities and with decreasing slope approaches tangency to the eritical isotherm at the eritical point which is indicated by an asterisk. The saturation line for liquid bydrogen is a nearly straight and horizontal line from a density somewhat grenter than the critical to the triple point. The freezing curve, which represents the values of a for liquid when for a given temperature the pressure is great enough to cause the liquid to freeze, rises nearly vertically from the triple point and bends towards higher densities.

The saturation curve on the vapor side was oblained with the help of the vapor pressure equation (eq 7.2) and the PVT representation given by eq 4.14 and table 19. On the liquid side it was obtained from the same vapor pressure equation and the volumes of the liquid at saturation pressure, given in table 31 and discussed in section VIII. The freezing curve was obtained from the melting point-pressure relations given in table 30 combined with extrapolations based on the higher density observations of Bartholome for the isotherms of the liquid which are given in table 32.

The isothermal curves of figure 6 represent final table values. The curves are not necessarily the best fit for the experimental data for each individual isotherm inasmuch as the curves and table values are the result of correlating all the data and include the temperature dependence which, while it does not affect the relative position of points on one isotherm, may shift the whole isotherm somewhat. Isotherms that depended upon only a few individual observations and covered only a small range of densities were given less weight than others. For a given isotherm, data at higher densities, corresponding to larger deviations from the idenl gas law, were ubually given

Figdre 6, Plot of PVT data for H_{2} in the gituid atates.
greater weight them data at low densitics. In fact in some instances the low density data were given zero weight. Data at the highest temperatures do not appear to be very reliable, probably because
of penetration of the containers by hydrogen. At wery low temperatures the deviations from the ideal gas law have not been measured very precisely because the pressure range over which
measurements can be made is limited by condensation.

Cragoe has shown that for densities up to $\rho=500$ the $0^{\circ} \mathrm{C}$ isotherm is fittod to within experimental accuracy by the equation $\sigma=b+c p$. Figure 6 shows that, although this linear relation between a and ρ fails at low temperatures, it is valid within experimental error over a considerable range of temperatures above $200^{\circ} \mathrm{K}$. This relation was made the basis for the correlation of the PVT data above $0^{\circ} \mathrm{C}$. The different method used for correlating the data below $0^{\circ} \mathrm{C}$ is deseribed under (b).

$$
\text { (a) Hegion Above } 0^{\circ} \mathrm{C}
$$

Above $0^{\circ} \mathrm{C}$, equations of the form $\sigma=b+c \rho$ were fitted to the PVT data plotted in figure 6 , and b and c_{T} the intercept and slope of an isothermal line, were determined as functions of T. The quantity $Z=P V / R T$ thus obtained as a function of T and ρ,

$$
\begin{align*}
P V / R T= & \exp 2.30259 \frac{T_{0}}{T}\left[b(1) \rho+c(T) \rho^{2}\right]= \\
& \exp \left[B(T) \rho+C(T) \rho^{2}\right] \tag{4.8}
\end{align*}
$$

was used for the calculation of the tables of Z. $P,(d Z / d \rho)_{r},(d Z / d T)_{s}$, and $\left(d^{2} Z / d T^{2}\right)_{\rho}$.

Before fitting functions of T to b and c, small corrections were applied to some of the lata. A constant error in T and constant factor errors along an isotherm in P, V, and the number of moles of gas, cause deviations from the true isotherm that are very nearly proportional to $1 / \rho$. Such hyperbolic deviations from a straight line are most easily detected in data extending from low to high densities. A change in V by 0.2 percent is sufficient to considerably straighten the $573.16^{\circ} \mathrm{K}\left(300^{\circ} \mathrm{C}\right)$ isotherm of Wiebe and Gaddy, and raise the line drawn through their adjusted data so that it intersecte the a axis of figure 6 only 0.7 unit below the table line for $573.16^{\circ} \mathrm{K}$ and crosses the table line at $\rho=550$. Wiebe and Gaddy call attention in their paper to an estimated error of 0.05 to 0.10 percent in the volume of their high pressure steel pipette at 200° and $300^{\circ} \mathrm{C}$. It would seem that some part of the 0.2 -percent adjustment, which straightens the $300^{\circ} \mathrm{C}$ isotherm of Wiebe and Gaddy, might be attributed to small temperature and pressure errors and to some loss of hydrogen in the steel.

Hyperbolic adjustments proportional to $1 / \rho$ of

Bartlett's higher temperature data straighten the isotherms and improve their agreement with the lines representing the tables. A comparison of the observations of Michels, Nijhoff, and Gerver [79] at different temperatures for nearly constant values of p, revealed apparent small hyperbolic trends of the data for the separate isotherms superposed on one larger though small random pattern of scattering common to all their isotherms. Using their $0^{\circ} \mathrm{C}$ isotherm as a reference line, their other data were adjusted to remove the hyperbolic deviations. The points of figure 6 represent reported data adjusted only to the Kelvin seale having 273.16° at the ice point.

Lenst square determinations were made of the straight lines fitting the adjusted σ versus ρ isuthermal data for the different observers separately. From these, values of intercept b and slope e were obtained for the different observers at each temperature of meusurement. Holborn's data above $0^{\circ} \mathrm{C}$, however, were used only for obtaining intercepts, the slopes of adjacent isotherms of other observers being used with his date.

Expanding the exponential of eq 4.8 ,

$$
\begin{align*}
& P V / R T=1+B \rho+\left[(1 / 2) B^{2}+C\right] \rho^{2}+\left[(1 / 6) B^{3}+B C\right] \rho^{3} \\
& \quad+\left[(1 / 24) B^{4}+(1 / 2) C^{2}+(1 / 2) B^{2} C\right] \rho^{4}+\ldots \quad(4.9) \tag{4.9}
\end{align*}
$$

shows that $B(T)$ is the second virial coefficient and that a correlation of intercepts b of q-isotherms is essentially a correlation of values of the second virial coefficients of hydrogen. Formulas expressing the dependence of the second virial coeffieient on temperature have been derived theoretically on the assumption of simple laws of intermolecular forces. One of the most satisfectory formulas is based on a law of intermolecular force of the form $\lambda_{R} r^{-\#}-\lambda_{m} r^{- \text {-ra }}$ and is dae to LemnardJones. For $n=13$ and $m=7$, the Lennard-Jones formula for B is

$$
\begin{equation*}
B=B_{1} T^{-1 / 4}+B_{n} T^{-3 / 4}+B_{3} T^{-3 / 4}+\ldots \tag{4.10}
\end{equation*}
$$

where all the coefficients B_{1} of this infinite series are determined by λ_{n} and λ_{m}. Following essentially a procedure used suceassfuily by F. G. Keyes [89], we used only the first three terme of this series and selected values for E_{1}, F_{2}, and E_{3} which resulted in the best fit of a three constant nquation with the intercepts of the σ-isotherms. Our formula,
$B=0.0055478 T^{-1 / 4}-0.036877 T^{-3 / 4}-0.22004 T^{-3 / 4}$,
intended for use above $0^{\circ} \mathrm{C}$, passes through the intercept of the $-50^{\circ} \mathrm{C}$ isotherm determined by the correlation below $0^{\circ} \mathrm{C}$.

The slopes of the a-isotherms were represented by a two term empirical formula without theoretical jastification, except that it involves powers of T which make C go to zero as T grows very lerge.

$$
\begin{equation*}
O=0.004788 T^{-3 / 2}-0.04053 T^{-2} \tag{4.12}
\end{equation*}
$$

The exponents of T were chosen so as to simplify the temperature function coefficients in the power series in ρ of eq 4.9 .

The tables from 270° to $600^{\circ} \mathrm{K}$ have been computed on the basis of these formulas, and in
0.06 percent for the $100^{\circ} \mathrm{C}$ isotherm, and for the other isotherms it is of this approximate magnitude or minaller. At low densities the deviation for the $0^{\circ} \mathrm{C}$ isotherm does not appear to be systematic. On the other hand, it will be seen that there is a systematic deviation at densities greater tham 500 with the experimental values for σ less than those obtained by linear extrapolation from the intermediate densities. This trend is supported by the high pressure data of Kohnstamm and Walstra [61, 81], also shown in the figure. If the representation of the σ isotherm by an equation is extended beyond $\rho=500$, it will be necessary to include a small quadratic term in the expression for σ.

Figure 7. 4 piot of part of the $P V T$ data for H_{2} and D_{2} from $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
this temperature range the various derivatives trabulated have been calculated analytically.

It was not until considerably after the preparation of the tables on hydrogen that we were able to examine the data of Michels and Goudeket published in Physica 1941 [91]. Values of σ for these data on H_{2} are shown as solid circles in figure 7 with the tables represented by the solid straight lines. The agreement for H_{2} is not complete but scems fairly satisfactory at moderate densities. At low densities there are discrepancies, roughly hyperbolic, which have the appearance of the hyperbolic deviations resulting from small systematic errors discussed earlier in this section. If the hyperbolic deviation is attributed to a systematic error in the volume, the error amounts to

(b) Region Below $0^{\circ} \mathrm{C}$

At low temperatures the σ versus ρ isotherms are curved; making it difficult to decide how the isotherm should be drawn at low densities where the data were meager and the precision was low. Another function, $T^{2 / 2} V / V_{0}\left(1-\frac{P V}{R T}\right)$, plotted against $\rho=V_{0} / V$ as nbscissa gave lincs which appeared to be straight at low densitiea for temperatures below $56^{\circ} \mathrm{K}$, though there is considerable curvature at high densities. In figure 8, $T^{3 / 2} V / V_{0}\left(1-\frac{\mathrm{PV}}{R T}\right)+0.0006 \rho=\psi$ is plotted against p, the term $0,0006 \rho$ being added to make isotherms nearly horizontal at low densities and thus increase the scale of the plot. The sersitivity to
small changes of $P V / R T$ at $\rho=200$ and $T=55^{\circ} \mathrm{K}$ is 18 times greater in figure 8 than in figure 6 and 14 times greater at $\rho=200$ and $T=33^{\circ} \mathrm{K}$. The curves of figure 8 were drawn to fit the data for each particular isothern considered independently, and though the curves do not represent the tables exactly they agree closely with them. Below $31^{\circ} \mathrm{K}$ the data were not sufficient and precise enough to determine consistent isothermal curves when the isotherms were considered independently. The data lower than $29^{\circ} \mathrm{K}$ were not plotted because the double valued nature of ψ causes the data below $29^{\circ} \mathrm{K}$ to fall in the same region on the diagram as is covered by the data above $29^{\circ} \mathrm{K}$.

At first it appeared that the critical isotherm in figure 8 could be represented by a straight line from ρ equal to zero to ρ greater than the critical density. However, the conditions that $(d P / d V)_{r}$ and $\left({ }^{2} P / d V^{2}\right)_{r}$ be zero at the critical point impose upon the slope and eurvnture of the isotherm at the critical point the conditions

$$
\left.\begin{array}{l}
\left(\frac{d \psi}{d_{p}}\right)_{t:}=\frac{T_{t}^{3 / 2}}{\rho_{0}^{2}}\left(2 \frac{P_{t} V_{t}}{R T_{t}}-1\right)+0.0006, \\
\left(\frac{d^{2} \psi}{d d_{p}^{2}}\right)_{T_{t}}=\frac{2 T_{s}^{3: 2}}{\rho_{t}^{3}}\left(1-3 \begin{array}{c}
P_{c} V_{t} \\
R T_{c}
\end{array}\right) . \tag{4.13}
\end{array}\right\}
$$

In addition, values for the critical temperature and pressure should satisfy the vapor-pressure equation.

Only a single determination has been made of the critical temperature and pressure of hydrogen [62]. The critical isotherm was located somewhere between the 2 measured isotherms at $32.94^{\circ 7}$ and $33.29^{\circ} \mathrm{K}$, and was at the time (1917) considered to be $33.19^{\circ} \mathrm{K}$ with a certainty of about 0.1°, though in 1925 it was stated in a footnote to Leiden Communication 172a that T_{s} should be about 0.1° lower. The critical pressure inferred from the P versus V isotherms in 1917 was 12.80 atm. Later in 1917 [142] the vapor pressure equation of H_{2} above the boiling point was determined and the value 12.75 atm deduced for P_{6} using $T_{c}=33.18^{\circ} \mathrm{K}$ (on besis of $T_{0}=273.09$). Two determinations [62] were made of the critical density based on the cxtrapolation of the rectilinear diameter. These gave $p_{c}=345$. The values reported in later Leiden Communications have not in all cases been the Iatcst determined values. The most recently reported Leiden values [69] are

[^3]

Fiaure 8. Plot of PV ' data for H_{7} at low temperatares.
$T_{\varepsilon}=33.19^{\circ} \mathrm{K}$ (on basis of $T_{0}=273.16$), $P_{c}=12.751$ atm and $1 / \rho_{c}=0.02900$ or $\rho_{c}=344$. The lower critical temperature $33.1^{\circ} K$ inferred from Leiden Communication 172 a is supported by the agreement of the vapor pressure 12.81 atm , calculated from vapor pressure equation (eq 7.2) with the critical pressure determined in 1917 from the P versus V isotherms.

Difficulties are encountered in obtaining agreement with the experimental PVT data (fig. 8)
vapor pressure equation (7.2). These critical constants are listed in table 18.

Table 18. Critical constants of hjudrogen

T_{r}	$P_{\text {c }}$	$p_{c}=\frac{V_{0}}{V_{0}}$	\boldsymbol{v}	$\frac{P_{s} V_{t}}{\boldsymbol{R} \boldsymbol{T}_{\boldsymbol{c}}}$
$\begin{gathered} { }^{4} \boldsymbol{K} \\ 32.19 \end{gathered}$	$\underset{12.48}{a+m}$	383		0.2191

It seemed reasonable to assume that the iso-

Froune 9. Intercepta and stopes from fatere S.
on the basis of $T_{c}=33.1^{\circ}$ and $P_{c}=12.81$ atm, however, unless the eritical density is inferred to be about 320 , in Amagat units, instead of the reported values 345 or 344 . This difference in critical density scemed too large on the basis of the probable precision of the density measurements The adjustment has instead been so made and the critical isotherm in figure \& so drawn that $T_{\varepsilon}=$ $33.19^{\circ}, P_{\varepsilon}=12.98 \mathrm{~atm}$, and $\rho_{c}=335$. This value of P_{6} is consistent with the PVT data and with
therms of figure 8 are straight lines up to $\rho=200$. This essumption was used in correlating the observed data below the critical temperature where the data were scarce and the precision low. In figure 9 the intercepts A and the slopes C^{\prime} of the isotherms of figure 8 are plotted as functions of the temperature. The curve for the slope was extrapolated smoothly to lower temperatures as slopes could not be obtained from the data below $33^{\circ} K$.

Also shown in figure 9 are velues for A calculated from second virial coefficients determined experimentally by Schafer [85]. Schāfer reported the results of his PVT measurements as virial coefficienta $B^{\prime}(T)=d(P V / R T) / d P$ at constant temperature and at $P=0$. The values of $A=-\left(R T^{\text {t/2 }}\right)$ $\left.V_{0}\right) B^{\prime}(T)$ obtained from Schäfer's results agree well with those obtained from date of the Leiden Laboratory as shown by figure 9 . Schäfer observed no eonsistent difference between the second virial coefficients of para hydrogen, normal hydrogen. and a one to one mixture of ortho and para varieties.

The equation for the straight part of the ψ isotherms of figure 8 may be written

$$
\begin{equation*}
\frac{T^{3 / 2}}{\rho}\left(1-\frac{P V}{R T}\right)=A+C \rho, \tag{4.14}
\end{equation*}
$$

where $C=C^{\prime \prime}-0.0006, O^{\prime}$ being the slopes plotted in figure 9 of the ψ-isotherms in figure 8 . Values of A and C and thair derivatives are given for hydrogen in table 19. The values of PV/RT from $p=0$ to $p=200$ and from $T=14^{\circ}$ to $T=56^{\circ} \mathrm{K}$ in

Tarle 19. Hydrogen values of A and C (and deriuatives) in the equatron fer itotherms

$$
T^{2}, \frac{V}{V_{0}}\left(1-\frac{P}{R} \bar{T}\right)=A+C_{\rho}
$$

[Applefenble git Amutrat dentsitlez pess than mon)

T	A	c	$d A / d T$	dCld ${ }^{\text {a }}$
${ }^{\circ} \boldsymbol{K}$	${ }^{1} \mathrm{H}^{213}$	- $\mathrm{K}^{\text {cti }}$	${ }^{\text {a }} \boldsymbol{K}^{1 / 8}$	- K\%
14.	0.8754	-3.621×10 ${ }^{-7}$	1000888	- $\mathrm{Pa} \times 1 \mathrm{O}^{-8}$
16.	. 59.27	-5, 6.85	.00230	-82
18.	. 5987	-5, 653	. 0028 A	-00
20.	. 5933	-5, 872	. D0182	-10.4
22.	5868	$-5,808$. 00118	-112
24.	. 5881	-5,718	. 000040	-127
23.	. 5881	-5, 745	-.00032	-145
28.	. SSet	-5,764	-. OMR197	-185
320	. 5010	-5, 80.18	-. 00154	-187
33.	. 5101	-3,848	-.00202	-713
34.	. 48.59	-5,962	-.00243	-293
36.	. 68008	-5,048	-. 002880	-282
38.	. 3746	-6.008	-.00237	-320
40.	. 678	- 0.0101	-.00330	- 218
49	. 06004	-6.146	-. 000297	-396
44...	. 3021	-6. 229	-.00438	- 438
46.	. 489	-6.32)	-.000475	-478
48.	, 6300	-6, 430	-. 00600	- $\mathbf{L S O}^{2}$
50.	, 8 2is	-6, 629	-. 000540	-6AK
52.	, 5114		-.00672	-803
	. 4×80	-6.730	-. 00060	-136
58.	. $48 \overline{\mathrm{f}} \mathrm{I}$	-6, 200	- 00000	-884

Table 20. Pressure, densily, and PV/RT for saturated H_{2} vapor

table 13 were calculated tasing eq 4.14 with table 10. Table 20, giving the pressure, density, and value of $P V / R T$ for saturated H_{2} vapor, was prepared similarly using the vapor pressure equation for $n-\mathrm{H}_{2}$ (eg 7.2). For certain uses eq 4.14 with table 19 may be more convenient than the tables of $P V / R T$ and its derivatives.

For temperatures below $56^{\circ} \mathrm{K}$ and densities greater than $\rho=200$ where 4 conld not be represented by a simple function of ρ, a table was made of values of ψ for each ρ and T entry in the 7-table. The ψ-values of this table were obtained from figure 8 by graphical interpolation. Large plots of ψ-isochores, 20 Amagat units apart, on ψ versus T graphs were made of values of ψ read from figure 8. Values of ψ at 2-degree intervals were read from the isochores. $A Z(\rho, T)$ table was calculated from the $\psi(p, T)$ table.

From 56° to $273^{\circ} \mathrm{K}$, the σ-function rather then the ψ-function was used because above $56^{\circ} \mathrm{K}$ the o-isotherms approach linear functions of the deneity. The method of graphical interpolation used below $56^{\circ} \mathrm{K}$ was used above, also, to obtain a table of α-values for the p and T entries of the 7-table. The accuracy of graphical interpolation was improved by using more sensitive plots than figure 6 of modified $\boldsymbol{\sigma}$-functions obtained by adding to σ simple functions of T and ρ, which brought the isotherms and isochores closer together so that they could be casily plotted to a large scale. Values of a were obtained at densities as high as $\rho=500$, although between 70° and $200^{\circ} \mathrm{K}$ measuremente were not available at densities this high. This region was filled in by extrapolation of ocarves to higher densities along isotherms and by interpolation along isochores between the upper
and lower temperature regions where there were data to determine the trend. From the $\sigma(\rho, T)$ table a $Z(\rho, T)$ table was obtained by calculation.

The $Z(\rho, T)$ table obtained through graphical interpolation of the ψ and σ isotherms as has just been described was smoothed along isotherms and along isochores by inspection of second differences. In general the Z-tables are smooth to onc unit in the last digit.

The tables of $(d Z / d T)_{\rho}$ and $(d Z / d \rho)_{T}$ bolow $0^{\circ} \mathrm{C}$ were for the mosi part calculated from the smoothed Z table by the method of Rutledge [179] for the calculation of derivatives from smooth sets of tabular values of data. ${ }^{8}$ In the region below $53^{\circ} \mathrm{K}$ and $\rho=200$, where the ψ versus p isotherms are straight lines, the following equations, obtained by differentiating eq 4.14, were uned with table 19 to calculate the denivatives

$$
\begin{align*}
& \left(\frac{d Z}{d T}\right)_{\rho}=\frac{3}{2} \frac{(1-Z)}{T}-\frac{\rho}{T^{3 / 2}} \frac{d A}{d T}-\frac{\rho^{2}}{T^{3 / 2}} \frac{d O}{d T} \tag{4.15}\\
& \left(\frac{d Z}{d \rho}\right)_{T}=-\frac{1}{T^{3 / 2}}\left[A+2\left(C^{\prime}-0.0006\right) \rho\right] \tag{4.16}
\end{align*}
$$

Where the derivatives could be obtained both by the method of Rutledge and by eq 4.15 and 4.16 , the agreement was very satisfactory. The $(d Z / d \rho)_{r}$ and ($d Z / d T$), tables were also smoothed along isotherms and isochores by inspection of second differences.

The ($\left.d^{2} Z / d T^{2}\right)_{n}$ table below $0^{\circ} \mathrm{C}$ was obtained throughout by the method of Rutledge from the smoothed ($d / / d T)_{\text {s }}$ table and was also smoothed. The equation for ($d^{2} Z / d T^{2}$), corresponding to eq 4.15 for the first derivative was considered too involved for easy computation.

In general, the tables of derivatives are smooth to the last digit recorded.

(c) Reliobility of Tables of PVI Deta

By inspecting figures 6 to 8 it is possible to arrive at some general conclusions regaraing the deviations of the observed data from the $Z(\rho, T)$ table. It may be noted that, except at low densities, the deviations of the observational values of σ from the curves representing the table are of about the same magnitude at different densities along a given isotherm up to $\rho=500$. ${ }^{\text {8 }}$ This means that deviations of ($P V / L T /$)-1

[^4]along an isotherm are approximately proportional to the density. At low dersitites the deviations are large because the sensitivity of the a and ψ plots approaches infinity as ρ approaches zero. It is difficult to make an estimate of the probable error in PV/RT based on the deviations because, as is senn, the greatest deviations are the systematic differences between the results of different observers and are not accidental crrors as should be the case if error theory were to apply. The user of the tables can make an estimate of the mean difference betwen the observed and tabulated values of PVIRT, in any particular region of temperature and density by noting the deviations shown on the graph and from these calculating the corresponding deviations in PV/RT. For temperatures below $80^{\circ} K$ it would be best to use figure 8 for this purpose as it is ploted to a larger seale than is figure 6 .

In constructing the tables for the intermediate temperature regions where anslytical equations of state were not used, just enough digits were retained so that changes made in amoothing would be confined to the last digit. As a considerable amount of smoothing resulted from the graphiral methods used, many of the irregularities in the measured values were not apparent in the unsmoothed tables.

It is belicved that throughout the table the values were carried out to at least as many significant figures as were at all justified by the data, and that the last digit recorded should be considered very uncertain. In that part of the table between 77° and $200^{\circ} \mathrm{K}$ which was filled in by interpolation and extrapolation the last two digits should be considered uncertain, the last recorded digit being retained to achieve continuity with the rest of the table.

The tables are thought to be most reliable for temperatures between 273° and $373^{\circ} \mathrm{K}$ (0° and $100^{\circ} \mathrm{C}$), because at these temperatures the experimental difficulties encountered are not as great as at higher and lower temperatures. Also, as is shown by figure 6 the results of several different investigators are in agreement at these temperatures. Above $373^{\circ} \mathrm{K}$ the experimental data are not as self-consistent as at temperatures immediately below. As the values of $P V / R T$ given in the tables for these higher temperatures are derived largely from an extrapolation based on the temperature region between 273° and $373^{\circ} \mathrm{K}$,
an estimate of reliability of the high temperature portion of the tables involves both the applicability of the correlating function, ed 4.8, and the precision of the experimental data. Considering the differences between the isothermal lines determined by different sets of experimental data of different observers and the same observer at different temperatures, it sems probable that the extrapolation is more reliable than the experimental data nt temperatures above $473^{\circ} \mathrm{K}$.

It is doubted that $P V / R T$ is known to better than 0.2 percent for densities as high as 100 Amagats near $33^{\circ} \mathrm{K}$, the critical temperature.

Below the critical temperature, the data are not very satisfactory. In addition to the difficulties of making measurements at low temperatures, there exists the circumstance that below the critical temperature the range of vapor densities that can be covered is limited by the density of saturated vapor. At low densities the deviations ($1-Z$) from the ideal gas law are small and hence difficult to measure precisely.

There is another method of obtaining values of second virial coefficients which may be advantageous for the low temperature region. It involves the determination of the velocity of sound, which has been carried out for gaseous hydrogen at liquid-hydrogen temperatures and various pressures by van Itterbeek and K eesom [77], using a resonance method. The change of the velocity of sound with pressure at very low pressures is related to the value of the second virial coeffieient and to its first and second derivatives. Because of this relationship, it is possible to determine the second virina coefficient from the velocity of sound if the second virial coefficient is already known in an adjacent range of temperature. Van Itterbeck and Keesom concluded that the agrecment between their own measurements and the PVT data was "rather good", although for both types of dats the scattering was quite appreciable.

In calculating the tables of derivatives by the method of Rutledge, the criterion for retaining significant figures in the recorded values was the same as that previously mentioned, namely, cnough places were carried so that the changes resulting from the smoothing were in general confined to the last digit. As in the casc of the tables of $P V / R T$, it is believed that the tabulated values of the derivatives are given to as many significant figures as arc justified by the data.

2. Deuterium

The intercsting features of the PVT data for deuterium are most evident when deuterium is compared with bydrogen. The difference between the second wirial coefficients of H_{2} and D_{9} has been investigated theoretically [86, 87], though a complete treatanent of the problem has not been made.

Assuming the same intermolecular forces for H_{3} and D_{2}, elassical mechanics and statistics lead to the same equation of state for H_{3} and D_{2}. The quantum theory of virial coefficients Ieads to effective volumes of molecules and to second virial coefficients that are larger than the classical values, the differences being small at ordinary temperatures but becoming large at low temperatures. ${ }^{10}$

In table 21 are given ratios between quantum mechanical and classical values of second virial coefficients, for gases whose molecules are rigid nonattracting sphercs. They may also be considered as ratios between apparent molecular volumes for the two treatments. These ratios are based on formulas derived by Uhlenbeck and Beth [84]. Columns 2 and 3 are for gases with molecular weights 2 and 4 , respectively. The value of the ratio depends, among other things, upon the diameters of the rigid spheres. Here the size of the spheres was taken to be the same for the two

Tarle 21. Ratio between quanthm mechanical and clataical second pirial coefficients for nonattracting rigid spherical molecules * of molecutar tweight M

T		
* \boldsymbol{E}		
(101.	1.21	1.15
300	1.31k	1.41
100.	1.59	1.37
25.	2.7	2.4
5	4.15	2.11

[^5]gases and to be equal to the size calculated from the van der Waals b for H_{z}.

Although it would scarcely be expected that the results of calculations for rigid nonattracting spheres would apply to real H_{z} and D_{z} molecules, it would seem likely that qualitative indications would be correct, at least at higher temperatures where the excluded volume predominates over the intermolecular attractive forces in determining the magnitude of the second virial coefficient. This is borae out by experiment, the difference in second virial coeffeients ($B_{\mathrm{H}_{2}}-B_{\mathrm{D}_{2}}$), being positive, though smaller than wonld be indicated by table 21 for rigid spheres by a factor of about 2.6 at $300^{\circ} \mathrm{K}$. Uhlenbeck and Beth derived an approximate quantum mechanical representation for the second virial coefficient applieable at high

Findre 10. Second wirial coefficient for H_{2} and the diffrence betueen aecond virial cosfficienta for H_{2} and D_{2}.
temperatures for molecules with radially symmetrical force ficlds. Their formulas were applied to hydrogen and deuterium by de Boer and Michels [87] upon the assumption that the intermolecular forces were the same for H_{2} and D_{2}. Thoy obtained differences between the virial coefficients for H_{2} and D_{2} represented by the upper temperature portion of one of the curves of figure 10. In a later paper by Michels and Goudeket [92] attention was called to the fact that the intermolectular forces of hydrogen and deuterium do differ a little because the mean internuclcar separations of H_{2} and D_{2} molecules are different as a result of the different zero point vibrations of their nuclei.

The effect of the intermolecular attractive forces overbalances the effect of the excluded volume or the repulsive forces of the moleculcs in determining the magnitude of the second virial coefficient at low temperatures, and makes the coefficient negative. Nevertheless, at low temperatures, as at high temperatures, the difference in second virial coefficients ${B_{\mathrm{H}_{2}}-B_{\mathrm{D}_{2}}}$ is positive, partly for the reason already discussed in the case of high temperatures, namely the larger apparent quantum-mechanical volurne of H_{2} molecules, and partly for another reason. There is a closer spaeing of the discrete negative energy states and smaller zero point encryy for pairs of D_{2} molceules than for pairs of H_{3} molecules because of the mass difference, so that by reason of the Boltzmann factor, exp [-energy $/ k T$], there is a greater degree of association or clustering together of D_{2} molecules than of H_{2} molecules. Without a consideration of the Boltamamn factors for these negative energy levels the effeet of the differenco of mass would be less clear, as the quantum treatment for the continuom would require that the spacing of the levels there be smuller for D_{2} than for H_{2} in essentially the same ratio as in the case of the discrete negative energy levels. With these or similar ideas in mind, Schäfer [86] derived a formula for the difference in second virial coefficients for H_{2} and D_{2} at low temperatures, which involverl a constant whose magnitude he so chose as to obtain a fit with his experimental values for the difference in the second virial cocfficients.

Figure 9 shows values of A in the equation of state (eq 4.14) calculated from the second virial coefficients of deuterium for the temperature range 23° to 45° determined experimentally by Schäfer [85].

$$
\begin{equation*}
A=-T^{3 / 2}(d Z / d \rho)_{T, \rho * 0}=-T^{3 / 2} B_{1} \tag{4.17}
\end{equation*}
$$

where B_{1} is the second virial cocfficient in the equation of state $P V=\boldsymbol{R} T\left(1+B_{1 \rho}+\boldsymbol{B}_{2} \rho^{2}+\ldots\right)$. The dashed line curve in figure 9 was obtained by adding to the A 's for H_{2} the differences between the A 's calculated from the differences between the second virial coefficients of H_{2} and D_{3} which Schafer determined partly theoretically and partly empirically. Schäfer's measurements were made on deuterium at low densities and hence do not give information on higher virial coefficients. Approximate values of $P V$ for deuterium at low
temperatures may be found by using values of A from figure 9 in eq 4.14 , and eithor neglecting the C term or preferably using the corresponding value of © for H_{2}.

Values of the function $\sigma=\left(T V / T_{0} V_{0}\right) \log _{10}$ ($P V / R T$) calculnted from the date of Michels end Goudeket [92] for D_{2} are shown as open circles in figure 7. The dashed straight lines for deuterium are obtainable from the equation

$$
\begin{equation*}
P V / R T=\exp \left[B(T)_{\rho}+C(T) \rho \rho^{2}\right] \tag{4.18}
\end{equation*}
$$

where

$$
\begin{aligned}
B(T)= & 0.0055298 T^{-1 / 4}-0.036040 T^{-3 / 4}- \\
& 0.25878 T^{-5 / 4}
\end{aligned}
$$

and

$$
C(T)=0.00580 T^{-3 / 2}-0.0565 T^{-2}
$$

The constants in the formula for B have been so chosen that the difference between D_{2} and H_{2} intercepts on the σ-axis is in close agreement with the theoretical result of de Boer and Michels [87] from 250° to $450^{\circ} \mathrm{K}$.

In figure 10 , a eurve marked $10^{3}\left(B_{H_{3}}-B_{D_{2}}\right)$ shows the trend of differences between secund viriad coefficients based on the theorctical calculations above $150^{\circ} \mathrm{K}$ and on the results of Schäfer belowr $50^{\circ} \mathrm{K}$ with an interpolation between. It may be inferred that the differences between the PVT data, for H_{2} and D_{1} decrease rather rapidly with increase of temperature. For comparison, the curve marked $10^{5} B_{s_{2}}$, in figure 10_{+}shows on a different scale the magnitude of the corresponding second wirial coefficiont for H_{2} at the same temperatures.

If it is assumed that the a or $\left(T^{\prime} V / T_{0} V_{0}\right) \log$ ($P V / R T$) isotherms for D_{2} and H_{2} are parallel, values of $P V / R T$ for D_{2} may be obtained from those tabulated for \mathbf{H}_{2} by (1) calculating the $\sigma_{\boldsymbol{H}_{2}}$ or σ for H_{2}, from the values of $P V / R T, T$ and ρ, (2) subtracting the difference $\left(\sigma_{H_{2}}-\sigma_{B_{2}}\right)_{\beta-0}$ to get $\sigma_{D_{2}}$, and then (3) calculating the corresponding value of $P V / R T$ for D_{2}. A plot of the difference $10^{5}\left(\sigma_{\mathrm{H}_{2}}-\sigma_{D_{2}}\right)_{)_{0}}$ which may be used for this purpose is shown in figure 11. An alternative method based on the assumption that only the second term of the series expansion eq 4.9 for $P V / R T^{\prime}$ is to be changed is as follows. 10^{6}
($B_{\mathrm{N}_{2}}-B_{\mathrm{B}_{2}}$), obtained from figure 11 by multiply$\operatorname{ing} 10^{0}\left(\sigma_{H_{2}}-\sigma_{D_{2}}\right)_{p-0}$ by $2.302585 T_{0} / T$ or obtained directly from figure 10 , is multiplied by 10^{-5} and the product subtracted from $P V / R T$ for H_{2} to give $P V / R T$ for D_{2}. This alternative method is simpler than the other method and may be as reliable.

Figure 11. Difference beiween indercepts of σ werstt a fistherms for \mathbf{H}_{2} and D_{2}.

V. Calculation of Thermal Properties of the Real Gas

The calculation of thermodynamic properties of a real gas from values of these properties for the ideal gas reats upon the principle that the difference between values of a thermodynamic function at different densities for the seme temperature may be determined from data of state for the gas at the given temperature.

The entropy and free energy of a gas are dependent upon the pressure, even in the ideal state, and in tables 4 to 8 they are given for the hydrogens in the ideal gas state at a pressure of 1 standard atm. On the other hand, the internal energy, enthalpy, and specifie heat in the ideal gas state are independent of density at constant temperature.

Equations 5.1 to 5.8 stow how, using the data of state expressed in the form, $Z=Z(\rho, T)$, the themodynamic properties of the real gas at a temperature T and an Amagat density ρ may be calculated from propertics for the ideal gas state
at a pressure of 1 atm, given for the bydrogens in tables 4 to 8 .

$$
\begin{align*}
& \left.\int_{0}^{\rho} 1(Z-1) / \rho\right] d \rho-\int_{0}^{\rho}\left[T(d Z / d T)_{\rho} / \rho\right] d \rho \tag{5.1}
\end{align*}
$$

This can be expressed in a slightly different form by using the identity

$$
\begin{gather*}
\int_{0}^{\rho}[(Z-1) / \rho] d \rho+\int_{0}^{\rho}\left[T(d Z / d T)_{\rho} / \rho\right] d \rho= \\
\left.\left(d\left\{T \int_{0}^{\rho} \mid(Z-1) / \rho\right] d \rho\right\} / d T\right) \tag{5.2}
\end{gather*}
$$

$$
\begin{align*}
& \int_{0}^{\infty}[(Z-1) / \rho] d \rho+(Z-1) . \tag{5.4}
\end{align*}
$$

$\ln [f$ (fugacity of real gas) $\left./ P]=\int_{0}^{*}(Z-1) / \rho\right] d \rho-$

$$
\begin{equation*}
\ln Z+(Z-1) \tag{5.5}
\end{equation*}
$$

$$
\begin{align*}
& -\int_{0}^{\rho}\left[T^{2}\left(d^{2} Z / d T^{2}\right)_{p} / \rho\right] d \rho \text {. } \tag{5.7}
\end{align*}
$$

$$
\begin{align*}
& 2 \int_{0}^{\rho}\left[T(d Z / d T)_{\rho} / \rho\right] d \rho-\int_{0}^{\rho}\left[T^{\mathrm{o}}\left(d^{2} Z / d T^{q_{\rho}} / \rho\right] d \rho+\right. \tag{5.8}\\
& \left\{\left[Z+T(d Z / d T)_{f}\right]^{p} /\left[Z+\rho(d Z / d \rho)_{T}\right]\right\}-1 .
\end{align*}
$$

In order to facilitate the calculation of the thermodynamic properties of hydrogen in the real gas state, tables 22 and 23 were computed. ${ }^{11}$ Lagrangian four point formulas [181] were used for the tabular integrations.

Table 22 is intended for use in the calculation of

[^6]entropies. The values in the second column, headed ($S_{r-1}^{\circ}-S_{r-1}^{\circ}$) $/ R$, are for the difference between entropies of hydrogen in the ideal gas state at 1-atm pressure and at unit Amagat density, divided by R.
\[

$$
\begin{align*}
& -0.000618+\ln T / T_{0} \tag{5.9}
\end{align*}
$$
\]

The row at the bottom of the table, headed $\left(S_{\rho-1}^{\circ}-S^{\circ}\right) / R$, is for tho difference between entropiess in the ideal gas states at Amagat densities one and ρ, divided by R.

$$
\begin{equation*}
\frac{S_{p-1, \tau(u n k)}^{0}-S_{p, F(h a z=1)}^{0}}{R}=\ln \rho \tag{5.10}
\end{equation*}
$$

The other rows and columns of table 22 headed $\left(S^{\circ}-S\right) / R$ give the differences between the entropies in the ideal and real gas states at the same temperature and density, divided by R.

$$
\begin{align*}
& \frac{S_{a, T(d \alpha o n) 1}^{\rho}-S_{\rho, T(\text { real })}}{R}=\int_{0}^{\rho}[(Z-1) / \rho] d \rho+ \\
& \int_{0}^{\rho}\left[T(d Z / d T)_{\rho} / \rho\right] d \rho \tag{b.11}
\end{align*}
$$

In order, then, to get S / R for the real gas hydrogen at a temperature T and Amagat density ρ, one subtracts from S° / R, obtained from S° given in table 8 , the smm of three numbers for the appropriate values of T and ρ to be obtained from table 22: one comes from the second column, leaded $\left(S_{p=1}^{\circ}-S_{p=1}^{\circ}\right) / R$; another from the bottom row of the table, headed $\left(S_{\rho-1}^{0}-S^{\square}\right) / R$; and the third from the rows and columns of the table headed ($\left.\mathrm{S}^{\circ}-S\right) / R$.
Table 23 is for the difference between the enthalpy of hydrogen in the ideal and renl gas states at temperature T and Amagat density p, divided by $R T$.
$\frac{\left.H_{T(i t a v)}^{o}-H_{p, T(x, 0)}\right)}{R T}=\int_{0}^{\rho}\left[T(d Z / d T)_{p} / p\right] d p-(Z-1)$.

Hence to obtain $H / R T$ for hydrogen in the real gas state, one subtracts the appropriate value of $\left(I I^{b}-H_{\rho}\right) / R T^{\top}$ in table 23 from the value of $H^{\circ} / R T$ oblatined from H° given in table 8 for the deal gas state.
Table 22. Entropy differences divided by R, for normal H_{2}

Table 22. Entropy differencee divided by R. for normal II_{2}-C'ontlinued

Table 23. Enthalpy of ideal gas minut enthalpy of real gas at the same T and ρ, divided by $R T$, for normal H_{2}

	点骂点点 ii i i i				
					$\begin{aligned} & \text { 总寒总总 } \\ & \text { i i i i } \end{aligned}$
	긍 需 总 ｜I｜｜｜				
类妞点空突突	$\begin{gathered} \text { 罗突突怒 } \\ \text { i i i i } \end{gathered}$	$\begin{gathered} \text { 总空空总恚 } \\ \text { i i i i } \end{gathered}$			

Table 23．Enthalpy of ideal pas minuse enthatpy of real gaf at the same T and p ，divided by $R T$ ，for normal H_{2}－Continued

	曾			気空旁喜 tix 여 여 d	 ュ～～～～～	 －－न～～～		㗊缶等		
	察	交		爵密罟 NㅓㅇN ed ed	 			突寧管意	管管管莒	
	\％	交								
	宽	（					㦴急军昌		웡 管挌	
等\|:	3	交 $\begin{gathered}\text { ¢ } \\ \vdots \\ \vdots \\ \\ \vdots\end{gathered}$		㗭客产年			志岛零易			
	8	！	\vdots \vdots \vdots \vdots \vdots 1 \vdots		 －－－～～～					
	唇	\vdots \vdots \vdots \vdots \vdots					憂包葛䒨			寅密突突
	客	！	\vdots \vdots \vdots \vdots \vdots \vdots 							蚛或寄管
	㫥	！		点製点然				男茵然骂		恶空䂞䂞。
	䂞	交 \vdots								
	爱	¢ $\vdots \vdots$								
	䀾	$1{ }^{1}$		 in－－－					曾馬包豆	学突兑婇
	事	¢ \vdots		哭罗等䂇				哭管氛总		
	室	¢		泉㤩票皆	态管照总禜		等可集敀			宮管矛宗
	\％	$\boldsymbol{1}$	1							哭器空产
			察定定					皿完豈耍	떰 ́ㅗㅁ	品高害

	管枵				
				 ific	
					88
	枵和界品				
			－		
				8igiter	$\frac{8}{2}$
	絫言会家会				

Values of $F / R T, E / R T$, and $\ln (f / P)$ may be obtained rather simply from values of S / R and $H / R T$ and the Z-table in accordance with the following equations:

$$
\begin{align*}
& F / R T=(H / R T)-(S / R) \tag{5.13}
\end{align*}
$$

$$
\begin{align*}
& E / R T=(H / R T)-Z . \tag{5.15}
\end{align*}
$$

The value of $\left[F^{\circ}{ }_{\rho, T \text { (iceal })}-F_{\rho, T \text { (reni }} / R T\right]$ may be obtained by subtracting ($\left.S^{\circ}-S\right) / R$, given in table 22, from ($H^{\circ}-H$)/RT, given in table 23 .

The calculation of the heat capacities of the real gas involves the evaluation of

$$
\begin{aligned}
& \int_{0}^{0}\left[T^{2}\left(d^{2} Z / d T^{2}\right)_{p} / \rho\right] d \rho .
\end{aligned}
$$

$$
\begin{align*}
& =-T\left(\frac{d}{d T}\left[\frac{H^{\circ}-H}{R T}\right]\right)_{\rho}-\frac{H H^{\rho}-H}{R T}+\left[Z+T\left(\frac{d Z}{d T}\right)_{\rho}\right]\left[T\left(\frac{d Z}{d T}\right)_{\rho}-\rho\left(\frac{d Z}{d_{\rho}}\right)_{T}\right] /\left[Z+\rho\left(\frac{d Z}{d_{\rho}}\right)_{r}\right] \tag{5.17a}\\
& \text { heats at constant pressure for the real and ideal } \\
& \text { gas statew may be calculated using the equation } \\
& \int_{0}^{\rho}\left[T^{2}\left(d^{2} Z / d T^{2}\right)_{p} / \rho\right] d \rho . \tag{5.17}
\end{align*}
$$

The derivatives in eq 5.17 may be calculated from tables 14 and 23, using a method of tabular differentiation. Except for the first term, the derivatives in eq 5.17 a are given in tables 15 and 17.

Tiguler 12. Effect of density on specific heat of H_{2} at $0^{\circ} \mathrm{C}$.
Figure 12 shows the dependence of the specifie heat at constant pressure for hydrogen at $50^{\circ} \mathrm{O}$ upon the Amagat density ρ. The curve represents the results of the evaluation of formula 5.8 , using

This may be carried out using the ($\left.d^{2} Z / d T^{2}\right)_{s}$ table (table 16), and a method of tabular integration. Table 23 may be used to obtain $\int_{0}^{\rho}\left[T(d Z / d T)_{N} / \rho\right] d \rho$, since from eq 5.12 it follows that

$$
\begin{align*}
& \int_{0}^{\rho}\left[T(d Z / d T)_{\rho} / \rho\right] d \rho= \tag{5.14}\\
& \underline{H}^{\circ}-H T^{-}(\text {from table } 23)+(Z-1) . \tag{5.16}
\end{align*}
$$

In the temperature and density ranges where Z may be represented by an analytic expression, ${ }^{12}$ these two integrals may be cruluated by using scrics expansions for Z and its derivatives in the integrands. The difference between the specific
the PVT correlation of this paper. The plotted points are observations by Workman [49]. No other direct experimental data on the effect of pressure upon the specific heat at constant pressure are available for hydrogen.

An indircet indication of the effect of pressure on the specific heat of bydrogen is found in the work of van Itterbeek [78], who used the results of van Itterbeek and Keesom [77] on the effect of pressure on the velocity of cound in hydrogen at liquid hydrogen temperatures. The results of van Itterbeek at a pressure of one-tenth of an atmosphere indicate that the increase of C_{p} with pressure above the zero-pressure value agrees with the PVT prediction within 3 percent at $17.5^{\circ} \mathrm{K}$ and at $19.0^{\circ} \mathrm{K}$, but is lower by more than 30 percent at $20.5^{\circ} \mathrm{K}$. At pressures above $1 / \mathrm{atm}$ at $20.5^{\circ} \mathrm{K}$, this difference in heat capacity has become approximately 0.1 cal deg-1 mole ${ }^{-1}$. but this discrepancy is reduced by roughly 50 percent if the data of van Itterbeek and Kersom are evaluated with values of $C_{p}-C_{0}$ based on the PVT tables of this paper.

[^7]The specific heat of hydrogen at constant volume has been determined by Eucken [169] for various combinations of temperature and density in the ranges 35° to $110^{\circ} \mathrm{K}$ and 60 to 150 Amagats.

Joule-Thomson coefficients of hydrogen may be of interest. These may be calculated from eq 4.6. For this calculation there are required: the value of C_{p} which may be calculated using eq 5.8 or 5.17. Values of $Z,(d Z / d T)_{p}$, and $(d Z / d \rho)_{T}$ are given explicitly in tables 13,15 , and 17. By using values of G_{p} for H_{2} at $50^{\circ} \mathrm{C}$ derived from figure 12, the following values of μ for $50^{\circ} \mathrm{C}$ were obtained by calculation: at $\rho=20, \mu=-0.0350$ $\operatorname{deg~atm}{ }^{-1} ; \rho=40, \mu=-0.0364 ; \rho=60, \mu=-0.0378$; $\rho=80, \mu=-0.0390$, and $\rho=100, \mu=-0.0402$. By extrapolation, one obtains for μ at $\rho=0$ the value -0.0335 .

There are no accurate measured Joule-Thomson data for hydrogen for $50^{\circ} \mathrm{C}$ with which these calculated values of μ may be compared.

Results of measurements on Joule-Thomson effects in hydrogen and deutcrium at liquid air and room temperatures have been published recently by Johnston and coworkers [57, 58], with curves showing calculated values for hydrogen based on the tables of this paper.* Considering that the Joule-Thomson coefficients are not obtained with great simplicity from the PVT data and depend sensitively on the trends of the representation, the agreement is considered fairly satisfactory.

The location of the inversion curve for the Joule-Thomson effect in hydrogen on a $g-T$ graph may be determined from talless 15 and 17 by finding values of ρ and T for which $T(d Z / d T)_{p}=$ $\rho(d Z / d \rho)_{\tau}$, in accordance with eq. 4.3.

An expression for μ in terms of derivatives of the enthalpy, H, is

$$
\begin{equation*}
\mu=\frac{(d H / d \rho)_{T}}{\left(\frac{d H}{d \rho}\right)_{T}\left(\frac{d P}{d T}\right)_{p}-\left(\frac{d I I}{d T}\right)_{P}\left(\frac{d P}{d \rho}\right)_{T}} \tag{5.18}
\end{equation*}
$$

In accordance with this equation the inversion curve tayy be determined by inspection of the $\left(H^{\circ}-H\right) / R T$ table (table 23), since $\mu=0$ where

$$
\begin{equation*}
\left(\frac{d\left(H^{\circ}-H\right) / R T}{d p}\right)_{t}=0 \tag{5.18}
\end{equation*}
$$

"The tables of this peper wore completed belore the purpurs by Jobnston and coworkera $\left[5 \bar{f}\right.$, as] on the Joule-Thomson poeficientsol H_{2} rud I), appewred. Our correlation of PYT dats would donbtless beve been better if these JonleThemson dita had been suadlable at the time the correlation was matie.

The heavy curve in figure 13 is the inversion curve of hylrogen as given by the correlation of this paper. In locating it, values of P were determined with the help of tuble 14. For temperatures below $75^{\circ} \mathrm{K}$ some extrapolation beyond the limit of the tables was necessary. In this extrapolated region the σ versus p diagram, figure 6 , was worked with, and the relation for the inversion curve on this diagram was used to get the extrapolated part of the inversion curve directly from the a versus ρ diagram.

In a doule-Thomson expansion of hydrogen at constant temperature from a high to a very low

Figuke 13. Curnes retated to the Joute-Thomison cuoding of H_{2}.
density, approaching zero density, there is a change in enthnipy equal to ($H^{\circ}-H$). In figure 13 the curves that cross the inversion curve horizontally are curves of constant $H^{\circ}-H, ~ A s H^{\circ}$ is a function of temperature, these constant ($\mathrm{H}^{\circ}-I I$) curves are not isenthalpics.

The horizontal erossing of the inversion curve by the ($H^{\circ}-H$) eurve is related to the fact that μ_{r} which is zero along the inversion curve, is equal to $(d H / d P)_{T} / C_{D}$, which means that along the inversion curve $(d H / d F)_{T}$ is zero. The enthalpy change ($H^{\circ}-H$) is equal, very nearly, to the amount of refrigeration, per mole of gas, available for the liquefaction of hydrogen in a Hampson or Linde low pressure type of hydrogen liquefier in which a
continuous flow of gaseous hydrogen is allowed to expand from a high to a low pressure without doing work against an external force system. The fraction x of the high pressure hydrogen flow that might, theoretically, be liquefied is

$$
\begin{equation*}
x=\frac{H^{\prime}-H}{H^{\prime}-H_{i \mathrm{q}}}=\frac{H^{\prime}-H}{\left(H^{\prime}-H_{\text {rqu }}\right)+L_{r}}, \tag{5.20}
\end{equation*}
$$

where H and H^{\prime} are the enthalpies of the compressed and cxpanded hydrogen at the temperature at which the compressed hydrogen leswes the precooler and enters the last stage interchanger before expansion; L_{s} is the heat of vaporization of liquid hydrogen at the boiling temperature determined by the pressure of the expanded hydrogen; and $\left(H_{m p}-H_{\text {sop }}\right)=L_{\text {p }}$ is the difference in enthalpies of saturated vapor and liquid in equilibrium at the pressure of the expanded hydrogen. Only a relatively small error is made in r if in place of H^{\prime} and $H_{\text {was }}$ for the real gas at atmospheric pressure one uses the enthalpies H° and H° fap of hydrogen in the ideal gas state at the same temperatures as would be used for H^{\prime} and $H_{\text {app }}$.

$$
\begin{equation*}
x=\frac{H^{\circ}-H}{I^{\circ}-H_{\text {NQ }}+L_{\mathrm{r}}} . \tag{5.21}
\end{equation*}
$$

For a temperature of precooling equal to $65^{\circ} \mathrm{K}$; the error introduced by the approximation is sbout 0.5 percent.

The lines of figure 13 that are roughly parallel to the inversion curve and converge with it at the inversion point, $204.6^{\circ} \mathrm{K}$, are lines showing the pressure at which $H^{\circ}-I$ has reached a given fraction of its maximum value for the given temperature. As the inversion curve is the line of maximum values of $\left(H^{\circ}-H\right)$ it is also the lCo-percent line in this family of constant percentage lines.

In the free expansion of a continuous flow of gas not doing work against an external force system, the maximum refrigeration is obtained by expanding from the inversion pressure for the given temperature of the compressed gas. The curves of constant percentage of maximum values of ($H^{\circ}-H$) are also curves of constant percentage of the maximum available refrigeration in an expansion to low pressure.

Figure 13 makes apparent how greatly the refrigeration and the fraction of hydrogen liquefied (eq 5.21) by a Hampson type liquefier are increased
by lowering the temperature of the compressed hydrogen before it enters the final interchanger from which expansion of the hydrogen takes place. It is also seen that the condition of highest inversion pressure ($92^{\circ} \mathrm{K}$ and 165 atm) is by no means the most favorable condition for liquefaction; a further cooling of the compressed hydrogen by 32 degrees nearly doubles the refrigeration produced and more than doubles the fraction liquefied. It is also seen from figure 13 that for the usual range of temperatures (55° to $90^{\circ} \mathrm{K}$) to which compressed hydrogen is precoold before expansion in a Hampson-type liquefier, about 95 percent of the maximum refrigeration is obtained when the pressure of the compressed gas is only 75 percent of the inversion pressure.

VI. Viscosity and Thermal Conductivity

1. Viscosity and Thermal Conductivity of the Gas Near Atmospheric Pressure

(a) Hydrogen

Values for the viscosity of gaseous normal hydrogen at atmospheric pressure for temperatures above the boiling point and at saturation pressure for two temperatures bolow the boiling point are given in table 24. These were calculated using the empirical equation
${ }_{\eta}=85.558 \times 10^{-7} T \frac{T^{3 / 2}}{T+19.55} \frac{T+650.39}{(T+1175.9)}$ poises (6.1)
for the viscosity at very low pressure, ${ }^{13}$ together with values for the small differences between viscosities at atmospheric or saturation pressure and at very low pressure (see eq 6.17 and 6.16). The four constants of eq 6.1 were chosen on the basis of experimental data near $20^{\circ}, 90^{\circ}, 300^{\circ}$, and $685^{\circ} \mathrm{K}$. The value used for the viscosity of hydrogen at $685^{\circ} \mathrm{K}$ was 0.55 percent larger than the experimental values of Trautz and Zink [79], as their value was based on Millikan's value for the viscosity of air which is now known to be low by about this amount.

In figure 14 are plotted deviations of recent experimental viscosity data from eq 6.1. No changes were made in the experimental data for

[^8]Table 24. Viseosity of gaseoua hydrogen (II_{2})

T	V	T	\%	T	\#
${ }^{\circ} \mathrm{K}$	Poives	${ }^{*} \mathrm{~K}$	Podred	${ }^{\circ} \mathrm{K}$	Poices
10..----	\$1.0) $\times 10^{-6}$	280.-.--	813.6×10^{-7}	420....-.-	1.461 $\times 10^{-1}$
30..----	109. 3	70..---	8346	8N0...----	1.485
30.-----	160.7	26...--	855.3	600..----	1,524
40......-	206. B	390....-.	875.	880..-----	1,555
50......	248. 8	$300 . . .$.	88.6	700.......	1, 585
00.. . .	287. 6	310.	916.0	720.......	1.818
10	328. 8	\$20....	925-8	740.......	1, 040
80	208.	830.....	903-4	740.....-.	1, 675
\$0......	890.3	240.	9 St 48	T46...----	1, 76
109)	421.1	360.....	004. 1	600.....--	1,734
116.....	400.8	360.	1,013	E20...----	1. 763
120.....	578	370. ..-	1,032	84D...--..-	1.722
150....	503. 0	390...--	1,051	Sf0....-.	1.880
140....		390.. --	1,0AB	890...-...-	1,848
150.....	559.8	$400 . . .$.	1,087	900 ...-..	18.878
150....	\$35. 2	420....	1,124	120......	1,804
170....	1010	440....	1,160	680.......	1,542
180....-	68.8	\$60.....	1,103	1060........	1,958
1900.....	608. 1	480.....	1,270	960........	1,986
200.....	691.4	800.....	1,284	1,000....	2,018
210....-	7043	[20.----	1,2F8	1,020.	12040
220...--	728. 8	640. ---	1,331	1,071.	2,006
230...-	74.0	680. .-.	1,364	1,060....-	7,002
240. .-..	770.8	\| $580 . .$.	1,367	1, $08 \mathrm{D} . . .$.	2, 1111
20.....	758.1	1600.-...	1, 46¢ㅢ	1,100....-	2, 144

the differences in density. Deviations of table 24 values from en 6.1 are represented in figure 14 by the peaked curve, which is appreciably above the zero line between $10^{\circ} \mathrm{K}$ and $100^{\circ} \mathrm{K}$ and in very close agreement with it at higher temperatures. This peaked curve represents the viscosity at atmospheric pressure above the boiling point and at saturation vapor pressure below the boiling point. Different reported values of viscosity at Iow temperatures are so poorly in agreernent that their comparison does pot indicate the magnitude of the peak, which has accordingly been obtained from theory, using data of state. To limit the crowding of axperimertal points in the figure, those plotted represent only data published since 1928, but a few data obtained after 1928 have been omitted. The data of Trautz and co-workers [94 to 102] would be in better agreement with the zero line if increased by about one half percent for the revision in the value for the viscosity of air.

It has been pointed out by others that the Sutherland formula

$$
\begin{equation*}
\eta=\eta^{\prime}\binom{T}{T^{\prime}}^{3 / 2} \frac{T^{\prime}+\zeta}{T^{\prime}+C} \tag{6.2}
\end{equation*}
$$

does not fit the data for hydrogen over an extended range of temperature. This may be seen in figure 14 in which the devistions of the Sutherland formula from en 6.1 are represented by the curve below the zero line. The constant θ was evaluated at $300^{\circ} \mathrm{K}$ to represent the trend of the best data.

Values of the thermal conductivity of gaseous normal hydrogen are given in table 25 .

Table 25. Thermal conduetivity of pareots hydragen at 1 atm

They were calculated from the equation

$$
\begin{align*}
k= & {[1.8341-0.0044587+(1.1308+} \\
& \left.0.0008973 T) C_{\nu}^{6}\right] \frac{T}{M} \frac{1}{\left(1+\frac{3.2}{T}\right)} \tag{6.3}
\end{align*}
$$

In principle, a correction from low pressure to one atmosphere would be applicable, lut it has been omitted because the uncertainty of the cxperimental values is much greater. In eq 6.3, M is the molecular weight, η the viseosity given by oq B.1, C_{p}° the specific heat in calorics per mole per degree at constant pressure, and T the temperature in degrees Kelvin. This equation is an empirical representation of the data and was

Figure 14. Viscoaity of hydrogen.
obtained in several steps, which will be explained in the discussion that follows.

In figure 15 , curve A represents eq 6.3 , whereas curves B and C are thooretical and are given for comparison. Curve C is for Eucken's relation

$$
\begin{equation*}
k=\left(9_{\gamma}-5\right) C_{\circ}^{\circ} /(4 M), \tag{6.4}
\end{equation*}
$$

or its equivalent

$$
\begin{equation*}
k=\left(C_{ \pm}^{*}+1.25 R\right)_{\eta} / M \tag{6.5}
\end{equation*}
$$

Chapman and Cowling [137] proposed the formula

$$
\begin{equation*}
k=\left[\frac{15}{4}(\gamma-1)+\frac{1}{2} U_{11}(5-3 \gamma)\right] \eta C_{0}^{\circ} / M \tag{6.6}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
k=\left[U_{11} O_{p}^{\theta}+\left(3.75-2.5 U_{11}\right) R\right] \pi / M \tag{6.7}
\end{equation*}
$$

The transport of internal molecular energy of a gas is supposed to be represented better theoret-
ieally as a result of including the quantity U_{11}, which is the ratio of mean free path lengths for diffusion and viscosity.
U_{11} is a pure number whose value was determined theoretically for (1) smooth elastic spheres and (2) for molecules repelling as the inverse fifth power of the distance (Mnxwellian molecules), the values being 1.204 and 1.55 , respectively.

For $U_{t 1}$ equal to 1 , curve C is obtained, as eq 6.8 and 6.7 then reduce to eq 6.4 and 6.5 . Curve B of figure 15 is a graph of eq 6.7 with $U_{11}=1.4$, a value indieated by a group of measurements of the conductivity near $300^{\circ} \mathrm{K}$. It is evident that the main body of the experimental data is not consistent with a constant value of U_{11}. On the basis of a value of 1.4 for U_{11} near $300^{\circ} \mathrm{K}$ and a higher value at $700^{\circ} \mathrm{K}$, as indicated by a curve representing the data, the relation

$$
\begin{equation*}
U_{\mathrm{II}}=1.1308+0.0008973 T \tag{6,8}
\end{equation*}
$$

Frave 15. Thermal conduclivity of hydregen.
was adopted. It was found that the curve was not critieally dependent on the functional form of U_{11} as a change to $U_{11}=a+b \sqrt{T}$ altered the final curve negligibly between 300° and $700^{\circ} \mathrm{K}$.

At temperatures somewhat below $100^{\circ} \mathrm{K}$, the ideal gas specific heat of hydrogen at constant pressure approaches the value ($5 / 2$) R characteristic of a monatomic gas. For this value of $C_{p r}^{p}$ the U_{II} terms in eq 6.7 cancel and eq 6.4 to 6.7 reduce to

$$
\begin{equation*}
k=\frac{5}{2} \eta(C / M) \tag{6.9}
\end{equation*}
$$

This cquation has been derived exactly for a force that at all distances is repulsive and proportional to $1 / r^{5}$. Enskog [132] has shown that for attracting rigid spheres (Sutherland molecules),

$$
k=\left[2.522 / 1(1+0.03 C / T) \mathrm{m}_{n} C_{n} / M,\right.
$$

where C is the Sutherland constant in eq 6.2 . Thermal conduetivities of hydrogen measured at liquid air temperatures are a few percent lower than equations 6.4 to 6.9 would indicate. No theoretical explanation of this is at hand, but the agreement of the three independent investigations in this region indicates that the lower value is to be aceepted. To take account of this, a correction
factor $1 /(1+3.2 / T)$ has been included, having a form suggested by Enskog's theoretical result for attracting rigid spheres but with the constant chosen to fit these exporimental data. The inclusion of this factor also brings the final curye closer to Fucken's experimental value at $20.96^{\circ} \mathrm{K}$, which is still almost 12 percent lower than the curve.

The curve as chosen to fit the thermal conductivity data is not regarded as completely satisfactory. In the temperature range 270° to $400^{\circ} \mathrm{K}$, the experimental data appear to fall into two groups, one quite close to the curve adopted and the other lower by about 7 percent. The lower group includes the most recent data.

Equation 6.4 to 6.9 make it evident that at lowtemperatures where the specific heats of ortho and para hydrogen differ, their thermal conductivities differ also. This difference in thermal conductivity was the basis of the method of ortho-para analysis used by Bonhooffer and Hurteck [121]. The temperature or electrical resistence of an electrieally heated wire carrying a given current determines, after calibration, the ortho-para composition of the hydrogen that surrounds the wire in a tube externally thermostated at liquid air temperature. A small difference is to be expected in the viscosities of ortho and para hydrogen by reason of small differences in their intermolecular forces manifested by small differences in vapor pressure, and density of the condensed states.

This differenee in viscosities is small and was not detected in the experiment undertaken by Harteck and Schmidt [122], in which an teceuracy of 1 percent was attained. In later developments of the so-called thermal conductivity method of ortho-para analysis, the pressure of the gas was reduced to make the mean free path large comparcd with the diameter of the heated wirc. For this condition the ordinary thermal conductivity is not the controlling fnctor.

(b) Deuterium

Several investigations have been made of the viscosity of deuterium at atmospheric pressure, the most reeent being that of Van Itterbeek and Van Paemel [106, 107], published in 1940. Table 26 , which gives values for the ratio betwoen viscosities of deuterium and hydrogen for several temperatures, was taken from the paper by Van Itterbeek and Van Parmel.

Table 26. Ralio of viscosities for gagmed D_{2} and H_{3}

T	
${ }^{9} \mathrm{~K}$	
	1. 3
(1).	1.88
51...	1.37
71.	1.38
3.	1. 24
16.	1. 24
12.5.	1.24

The ratio of the thermal conductivity of deuterium at $0^{\circ} \mathrm{C}$ to the thermal conductivity of hydrogen also at 0° was determined by C. ' Γ. Archer [127] and by W. G. Kannuluik [130], who obtained raspectively, the values 0.736_{8} and 0.732 . By uaing the mean of these values with appropriate values of C_{p}, and η, one obtains for U_{11} in eq 6.7 for the thermal conductivity of D_{2} at $0^{\circ} \mathrm{C}$ the value 1.55. Areher also measured the thermal conductivity of various equilibrium mixtures of $\mathrm{H}_{8}, \mathrm{HD}$, and D_{2}.

For two isotopic gases with identically the same intermolecular forces, the classical theory values for the ratio of their viscosities, and the ratio of their thermal conductivities at temperatures where their heat capacities are equal are

$$
\begin{equation*}
\eta_{1} / \eta_{2}=\sqrt{M_{1} / M_{2}} \text { and } k_{1} / k_{2}=\sqrt{M_{2} / M_{1}} \tag{6.10}
\end{equation*}
$$

For H_{2} and D_{2} these ratios have the values: $\eta_{0_{2}} / \eta_{\mathrm{H}_{2}}=1.414$ and $k_{\mathrm{D}_{2}} / k_{\mathrm{H}_{2}}=0.707$, und are independent of the intermolecular force field so long as it is the same for the two isotopes. The difference between the rotational heat capacities of H_{2} and D_{2} at low temperatures by itself makes the ratio $k_{D_{2}} / k_{\mathrm{F}_{3}}$ larger and thus has an effect opposite to but less than that of the smaller meun velocity of D_{2} molecules caused by the greater mass. Using Eucken's ex 6.4 for k and making allowance for the difference in heat capacities of FI_{2} and D_{2}, one obtaing 0.718 for $k_{\mathrm{D}_{2}} / k_{\mathrm{E}_{2}}$ at $0^{\circ} \mathrm{C}$. The classical theory values for these ratios of thermal conductivities and viscosities are approsched closely at room temperatures. The effect of quantum mechanical interaction in transport phenomena can be described in terms of increase in the apparent size of the molecules. In classical theory the size of the molecule plays an important role, the viscosity and thermal conductivity decreasing as the size increases. For
hydrogon and deuterium, the quantum mechanical increase in apparent size is amall at room temperature but becomes large at low temperature. The increase depends also upon the messes of the colliding molecules and is larger for H_{2} than for D_{2} at the same temperature. It was pointed out in the section on the PVT data for deuterium that the quantum theory of second virial coefficients includes an effect interpretable classically as an increase in apparent size of molecules, becoming very large at low temperatures. The quantum mechanically obtained increase in apparent size with lowering of temperature is not the same for Fiscosity as that associated with the second virial coefficient, however. This is not surprising when one considers that the increase in the mean de Broglie wave length with decreasing temperature increases the diffraction beltind a scattering molecule; an effect that does not enter in the determination of the second virial coefficient, but which taken by itself would decrease the apparent size of a scattering molecule for viscosity.

2. Viscosity and Thermal Conductivity of the Gas at High Pressures

There are no experimental data on the thermal conductivity of gaseous $\mathrm{H}_{\mathbf{2}}$ at high pressures. For viscosity, however, experimental data obtained by Boyd [134] and Gibson [135] are available. Gilson's data, which are for $25^{\circ} \mathrm{C}$, are more precise than those of Boyd and are plotted in figure 16. It will be seen that there is fairly good agreement between these better experimental data and the curve representing the theoretical formula due to Enskog. Differing approaches to the problem of relating viscosity and variables of state will be found elsewhere [133, 136].
In elementary theory, the viscosity and thermal conduclivity for a given gas are proportional to the product of V, ρ, and Λ, where V is the mean molecular velocity, ρ is the demsity, and Λ is a suitable mocan path length for the transfer of momentum or energy. Although A is often taken as identical with the ordinary free path of molecular motion, it is actually greater by a small distance of the order of magnitude of a molecular diameter, as at each collision the momenta and energies are transferred an additional distance related to the diameters of the moleculesinvolved. Thus instead of A decreasing as $1 / \rho$ when ρ is increased, which would make pd independent of
$\rho, ~ A$ decreases a little less slowly so as to make $\rho \Lambda$ increase slightly as ρ is increased. Accordingly, both the thermal conductivity and the viscosity of a gas would be expected to increase with increasing density, particularly when multiple encounters between molecules oceur frequently as in the case of high densities.

Enskog's theory was developed for a gas whose molecules were assumed to be mutually attracting rigid spheres, for which the equation of state has the form

$$
\begin{equation*}
P+a \rho^{2}=R T \rho\left(1+b_{\rho} \chi\right), \tag{0.11}
\end{equation*}
$$

used by Enskog takes account of simultaneous encounters of three and four molecules as treated by Boltzmann and Clausius.

According to Enskog's theory, the viscosity and thermal conductivity of a compressed gas are related to the viscosity η_{0} and conductivity k_{0} at low pressure by the equations

$$
\begin{equation*}
\eta / \eta_{0}=b_{\rho}\left[1 /\left(b_{\rho \chi}\right)+0.8+0.7614 b_{\rho \chi} \ldots\right] \tag{0.14}
\end{equation*}
$$

and

$$
\begin{equation*}
k / k_{0}=b \rho[1 /(b \rho \chi)+1.2+0.7574 b \rho \chi \ldots] \tag{6.15}
\end{equation*}
$$

Figdee 16. Effed of denaity on viscosity of hydragen at $25^{\circ} \mathrm{C}$.
where the constants a and b are assumed to be independent of T and ρ, and x is a function of p expressed in the form of a power series in bo. The equation of state that wras used is thus almost the sarme as the Van der Waals equation

$$
\begin{align*}
P+a \rho^{2}= & R T_{\rho}\left(1-b_{\rho}\right)^{-1}=R T_{\rho} \\
& {\left[1+b_{\rho}\left(1+b_{\rho}+b^{2} \rho^{2}+\ldots\right)\right] } \tag{6.12}
\end{align*}
$$

except for the details of the dependence of x upon ρ. The Van der Waals equation is derived on the basis that simultaneous encounters of three or more molecules are rare enough to be neglected. Only at low pressures is this valid and under this condition terms of the second degree and higher in bp are neglected in the derivation. The function

$$
\begin{equation*}
x=1+0.625 b p+0.2869 b^{2} \rho^{2}+\ldots . \tag{6.13}
\end{equation*}
$$

It follows from eq 6.11, the equation of state assumed for Enskog's theory, that

$$
\begin{equation*}
b_{\rho \chi}=\frac{T}{P}\left(\frac{d P}{d T}\right)\left(\frac{P V}{\bar{R} T}\right)-1=Z-1+T\left(\frac{d Z}{d T}\right) \tag{6.16}
\end{equation*}
$$

Thus, the value of box may becalculated from the tables of Z and ($d Z / d T)_{p}$ and the value of b_{p} ruay then be found with the help of eq 6.13 .

Over the range of Gibson's experimental viscosity data very little change is made in the values predicted if simple power series expansions in $b_{p x}$, obtained from equations 6.14 and 6.15 , are used:

$$
\begin{gather*}
\pi / \eta_{0}=1+0.175 b_{\rho \chi}+0.7557\left(b_{\rho \chi}\right)^{2}-0.405\left(b_{\rho \chi}\right)^{3} \tag{6.17}\\
(6.17 \tag{6.18}\\
k / k_{0}=1+0.575 b_{\rho \chi}+0.5017\left(b_{\rho \chi}\right)^{2}-0.204(b \rho \chi)^{3}
\end{gather*}
$$

The coefficient of the last term of each equation would be changed if higher order terms were added to eq 6.13, 6.14, and 6.15. Dropping the last term of eq 6.17 for n / m_{0} does not significantly change the agreement with Gibson's experimental data.

In order to show the general magnitude of the theoretical effect of pressure on the viscosity and thermal conductivity of hydrogen the preceding equations have been evaluated for several additional combinations of temperature and pressure, using data from the PVT tables. Table 27 gives the values thus obtained. It is scen that the calculated relative change in n and k with pressure is much more pronounced at the lower temperatures, for which large deviations from the ideal gas law occur even at moderate pressures.

TABLe 27, Effect of presstre on tiscotity apd thermal conductivity of hodrogen

3. The Viscosity of Liquid Hydrogen

The first determination of the viscosity of liquid hydrogen was made in 1917 by Verschaffelt and Nicaise [138] from measurements of the logarithmic decrement of the oscillatory rotation of \mathfrak{a} sphere in liquid hydrogen at $20.36^{\circ} \mathrm{K}$.

Later, determinations wore made of the viscosity of liquid hydrogen from 15° to $20^{\circ} \mathrm{K}$, in 1938 by Kefsom and Mac Wood [139] from measurements of the logarithmic decrement of an oscillating dise, and in 1939 by Johns [140], using the capillary flow method. The reported viscosities are

Figure 17. Viacoaity of hiquid hydrogen.
shown in figure 17. The values obtained by Johns are roughly 10 percent greater than those of Keesom and Mac Wood except near the boiling point, $20.4^{\circ} \mathrm{K}$. There secms to be no clear indication in the papers reporting the measurements that either of these two later sets is loss dependable than the other. Accordingly a curve to represent the present most probable values of the viscosity of liquid hydrogen was drawn principally between the two sets. Noar the boiling point the curve was drawn approximately parallel to that of Johns beceuse it was felt that the lower value of Verschaffelt and Nicaise supported the more regular variation of viscosity with temperature as reported by Johns.

VII. Pressure Temperature Relations for Two-Phase Equilibria for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} as Single Components

In this section are presented data on (1) vapor pressures of solid and liquid $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} with such derived constants as normal boiling temporatures and triple-point temperatures and pres-
sures; differences between the vapor pressures of different mixtures of o - and $p-\mathrm{H}_{2}$; and changes in vapor pressures of ortho-para H_{2} mixtures resulting from self conversion; (2) the pressure-temperature relations for the solid-liquid equilibrium of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}. The data are presented in the form of equations, tables, and graphs.

1. Vapor Pressures, Boiling, and Triple Points "

The present vapor-pressure data on the hydrogens can be fitted with equations of the form

$$
\begin{equation*}
\log _{10} P=A+B / T+C T \tag{7.1}
\end{equation*}
$$

to within the accuracy of the experimental dnta. The millimeter of Hg at $0^{\circ} \mathrm{C}$ and standard gravity H Eofline-point and tripkepoint data from this seetion have been used in -dvunce of pubtrestion in tha "Tablea of Selacted Values of" Chemecal Thermodymemic Propertieg' prepared by the National Bursalu of Standsrds in enffunctlon with the Ofice of Neval Fesearch of the U. A. Navg Department.
is used in this section as the unit of wapor pressure. Temperatures are on the Kelvin Scale.

In tables 28 and 29 the vapor pressures, boiling points, and triple points of the different isotopic and ortho-para modifications of bydrogen are compared.
(a) H_{2}

The differences between the hydrogen vaporpressure data reported in the literature [143 to 146, 148] are the result, principally, of differences in the temperature scales used by different observers and of unknown differences in the ortho-para composition of the hydrogen.

The vapor-pressure data recently obtained [146] at the National Bureau of Standards are on the low-temperature scale established at the National Bureau of Standards and are for known ortho-

Table 28. Vapor pressurce of the seteral isotopic varieties of hydrogen at integral temperatures and at their tripit points and boiling points.
 based on 虹 axtrapolation with respect to composition.]

Table 29. Beiling pointa and triple pointa of the hydroyens

	Bolliag pold	Triple pwint	
		T	P
	$0 \boldsymbol{\mu}$	${ }^{-K}$	${ }_{7}$ 困 Eg
20.4 ${ }^{2} \mathrm{~K}$ equaljbrium hydrageo (0.21% or H_{1})	20. 273	12.81,	32.8
	20.32	12.86	88.0
Norenal byatogen (75% o- C_{2})	20.3\%	13. 050	54.0
Orthohistraget..	30.45	1408	55.1
	20.543	18.727	123. ${ }^{\text {a }}$
	23. 58 p	18. EfH_{5}	129.6
Parrieutarlum.	23.88	TE. 78	129.5
Hydrogen deatande.	22.138	188601	92, 8

para compositions. Only the NBS resulta are given here.

Normal hydrogen (75 percent o- $\mathrm{H}_{2}, 25$ percent $p-\mathrm{H}_{8}$):

$$
\begin{align*}
& \text { Liquid: } \log _{10} P(\mathrm{~mm} H \mathrm{H})=4.66687- \\
& \frac{44,9569}{T}+0.020537 T \tag{7.2}
\end{align*}
$$

$$
\begin{align*}
& \text { Solid: } \log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.56488- \\
& \frac{47.2059}{T}+0.03939 T . \tag{7.3}
\end{align*}
$$

$20.4^{\circ} \mathrm{K}$-equilibrium hydrogen (99.79 percent p - H_{2}, 0.21 percent $o-\mathrm{H}_{2}$:

Liquid: $\log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.64392-$

$$
\begin{equation*}
\frac{44.3450}{T}+0.02093 T . \tag{7.4}
\end{equation*}
$$

Solid: $\log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.62438-$

$$
\begin{equation*}
\frac{47.0172}{T}+0.03635 T . \tag{7.5}
\end{equation*}
$$

The triple-point temperatures and pressures were determined experimentally with a low-temperature calorimeter with a platinum resistance thermometer for the temperature measurements. Equations 7.2 to 7.5 were made to fit these triple points, and are based on vapor pressure data extending from 10.6° to $20.4^{\circ} \mathrm{K}$. Although the equation for liquid normal H_{2} is based only on National Bureau of Standards data below $20.4^{\circ} \mathrm{K}$, the equation represente, within the limite of experimental accuracy, the Leiden data that extend nearly to the critical point, $33.19^{\circ} \mathrm{K}$. As mentioned in section IV, the vapor-pressure equation for normal hydrogen was used in constructing the PVT relations for hydrogen. The experimentally determined triple-point temperatures and pres-
sures for $n-\mathrm{H}_{2}$ and $e-\mathrm{H}_{z}$ are given in tables 28 and 29.

Figure 18 is a diagram of differenees between the vapor pressures of a $20.4^{\circ} \mathrm{K}$ equilibrium mixture of 0 - and $\mathfrak{p}-\mathrm{H}_{2}\left(0.21\right.$ percent $\left.0-\mathrm{H}_{2}\right)$ and five different mixtures of 0 and $p-\mathrm{H}_{2}$ in the liquid state. The vapor pressure of the $20.4^{\circ} \mathrm{K}$ equilibrium mixture is denoted by $P_{\left(0-H_{2}\right)}$, and that of any other mixture by $P_{\text {(emeror) }}$. Each curve of the graph is for a single mixture whose composition is indicated on the graph by its $o-H_{2}$ composition. The 75 percent curve is for normal hydrogen. The vapor pressure differences ΔP are plotted as a function of the vapor pressure of the $20.4^{\circ} \mathrm{K}$ equilibrium hydrogen. The circles represent the experimental data.

Figure 19 shows the vapor pressure differeaces of figure 18 extended into the solid range, for mixtures of 38 and 75 percent ortho comprosition. At the extreme right of the figure, these mixtures and the $e-\mathrm{H}_{2}$ with which they are compared are all liquid. Passing to the left, the first sharp break encountered on either curve corresponds to the triple point of the misture. The second sharp break corresponds to the triple point of $e-\mathrm{H}_{2}$. To the left of the last break, both materials are solid. Between the two breaks on cither curve, the mixture is solid but the $e-\mathrm{H}_{2}$ is liquid.

Frames 18. Vapor prosaure differences for liquid artho-para $\mathrm{H}_{\mathbf{1}}$ mituture A .

Figure 19. Vafor pressiare differences for soltd ortho-pafa H $_{2}$ mixtures.

A comparison of the ΔP^{\prime} g for different mixtures of o - and $p-\mathrm{H}_{2}$ in figures 18 and 19 shows that the ΔP 's are not proportional to their corresponding differences in composition.

For ideal solutions the ratio $\Delta P / \Delta x$, where Δx is the difference in composition, is independent of the composition at constant temperature. In figure 20 this ratio is plotted for four temperatures, the circles representing the experimental vapor pressure data as given by points on the smooth curves of figure 18. Figure 20 shows that the vapor pressures of ortho-para mixtures differ greatly from ideal solution predictions.

The vapor pressure differences ($P_{\varepsilon=\mathrm{I}_{\mathrm{a}}}-P_{\text {tit }}$) for mixtures of 0 and $p-\mathrm{H}_{2}$ of any composition at $14.00^{\circ}, 16.00^{\circ}, 18.00^{\circ}$ and $20.39^{\circ} \mathrm{K}$ may be calculated from the isotherms of figure 20. Other isotherms may be determined with the holp of figures 18 and 19. By extending the isotherms of figure 20 to 100 percent $0-\mathrm{H}_{2}$, the vapor pressure of pure liquid $o-\mathrm{H}_{2}$ was determined. The following equation represents the vapor pressures of pure liquid $0-\mathrm{H}_{2}$ obtained in this way:

Jiquid: $\log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.65000-\frac{45.0439}{T}+$

$$
\begin{equation*}
0.021168 T \tag{7.6}
\end{equation*}
$$

The triple-point temperature and pressure of ${ }_{3}-\mathrm{H}_{2}$ were determined by a quadratic extrapolation of the triple point temperatures and pressures of
$e-\mathrm{H}_{2}\left(20.4^{\circ} \mathrm{K}\right), m-\mathrm{H}_{2}\left(38\right.$ percent $\left.\sigma-\mathrm{H}_{2}\right)$ and $n-\mathrm{H}_{2}$. The valucs thus obtamed for o- $\mathrm{H}_{\mathbf{z}}$ were 14.05° K and 55.1 mm Hg . These are in agremont with eq 7.6 for the vapor pressure of liquid $a-\mathrm{H}_{2}$.

If linear extrapolation is used, omitting the values for $m-\mathrm{H}_{z}$, one obtains $14.00^{\circ} \mathrm{K}$ and 54.4 mm Hg as lower limiting values of the triple point constants for $0-\mathrm{H}_{2}$. The triple point constants of $m-\mathrm{H}_{\mathbf{z}}$ were obtained by reading the values $P\left(e-\mathrm{H}_{2}\right)$ and ΔP corresponding to the upper break in the 38 percent curve. The difference of these is the triple point pressure of $m-\mathrm{H}_{2}$. By substituting $P\left(\mathrm{e}-\mathrm{H}_{2}\right)$ into the vapor pressure equation (eq 7.4) for liquid $e-\mathrm{H}_{2}$, the triple point temperature of $m-\mathrm{IH}_{2}$ is obtained. The uncertaintics in these derived triple point constants of $m-\mathrm{H}_{2}$ and $\rho-\mathrm{H}_{2}$ are greater than for the experimentally determined values for $e-\mathrm{H}_{2}$ and $n-\mathrm{H}_{2}$.

The vapor pressure of a nonequilibrium mixture of $0-$ and $p-\mathrm{H}_{2}$ changes slowly with time because of the slow conversion of a nonequilibrium mixture, liquid or solid, to the equilibrium composition. At its normal boiling point, the vapor pressure of $n-\mathrm{H}_{2}$ changes at the rate of 0.23 mm Hg per hour [148]. Paramagnetic substances increase the rate of conversion. The rate of increase of the vapor pressure at $20.4^{\circ} \mathrm{K}$ of a sample of hydrogen containing 0.01 percent oxygen was about three times that for pure hydrogen.

The interconversion of ortho and parahydrogen in the absence of molecular dissociation is the result of an intra-molecular rearrangement of pro-

Figure 20. Deviatione of vapor pressure of artho-para H_{2} mixtures from law of ideal solutions.
tons in the presence of a strong magnetic field, inhomogeneous on a scale of molecular dimensions.
As $p-\mathrm{H}_{2}$ has no net nuclear magnetic moment, the self conversion of nonequilibrium nixtures results only from the interaction of o- H_{2} molecules, which do have a nuclear magnetic moment, with each other and with $p-\mathrm{H}_{2}$ molecales. Hence, the ortho-para conversion in liquid and solid \mathbf{H}_{2} is a bimolecular change.

$$
\begin{equation*}
-d\left[\sigma-H_{2}\right] / d t=k_{1}\left[o-\mathrm{H}_{2}\right]^{2}-k_{2}\left[o-\mathrm{H}_{2}\right]\left[p-\mathrm{H}_{2}\right] \tag{7.7}
\end{equation*}
$$

The velocity constant k_{2} is much smaller than k_{1} in accord with the small equilibrium proportion of $o-H_{2}$. At equilibrium, where $d\left[0-\mathrm{H}_{2}\right] / d t$ is zero, $k_{3} / k_{1}=\left[0-\mathrm{H}_{2}\right] /\left[\gamma-\mathrm{H}_{2}\right]$. Values of equilibrium concentrations are given in table 12. For liquid hydrogen the velocity constant k_{1} for conversion is 0.0114 per hour when concentrations are expressed in mole fractions. The value of k_{1} for solid H_{2}, $0.019 \mathrm{hr}^{-1}$ [147], is larger than for liquid H_{2} but decreases with time due to the immobility of molecules in the solid. The initial value of k_{1} is restored however by melting and freezing.

$$
\text { (b) } \mathrm{D}_{2}
$$

The vapor pressures of normal and equilibrium deuterium were measured [149] relative to the vapor preseure of liquid $n-\mathrm{H}_{2}$ from 14° to $20.4^{\circ} \mathrm{K}$. As these measurements are independent of a temperature scals their functionsl relations are given. Vapor pressures are expressed in terms of mtn of Hg at standard conditions.

Normal deuterium (66.67 percent $0-\mathrm{D}_{2}, 33.33$ percent $p-\mathrm{D}_{\mathrm{z}}$):
Liquid: $\log _{10} P\left(n-D_{2}\right)=-1.3376+1.3004 \log _{10}$

$$
\begin{equation*}
P\left(n-H_{2}\right) \tag{7.8}
\end{equation*}
$$

Solid: $\log _{10} P\left(n-\mathrm{D}_{2}\right)=-1.9044+1.5143$ $\log _{10} P\left(n-\mathrm{H}_{2}\right)$.
20.4K Equilibrium deuterium (97.8 percent $o-\mathrm{D}_{2}, 2.2$ percent $p-\mathrm{D}_{2}$):

$$
\begin{gather*}
\text { Liquid: } \log _{10} P\left(e-\mathrm{D}_{2}\right)=-1.3302+1.3000 \\
\log _{10} P\left(n-\mathrm{H}_{2}\right) . \tag{7.10}
\end{gather*}
$$

Solid: $\log _{10} P\left(e-\mathrm{D}_{2}\right)=-1.8873+1.5106$

$$
\begin{equation*}
\log _{10} P\left(n-\mathrm{H}_{2}\right) . \tag{7.11}
\end{equation*}
$$

Substituting for $\log _{10} P\left(n-\mathrm{H}_{2}\right)$ values given by eq. 7.2 for liquid $n-\mathrm{H}_{2}$ the following equations for $\log _{10} P\left(\mathrm{D}_{2}\right)$ are obtained:

Normal deuterium (66.67 percent o- $\mathrm{D}_{2}, 33.33$ percent $p-D_{2}$):

$$
\begin{gather*}
\text { Liquid: } \log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.7312-\frac{58.4619}{T} \\
+0.02671 T . \tag{7.12}\\
\text { Solid: } \log _{10} P(\mathrm{~mm} \mathrm{Hg})=5.1626-\frac{68.0782}{T} \\
+0.03110 T . \tag{7.13}
\end{gather*}
$$

20.4 ${ }^{\circ} \mathrm{K}$ equilibrium deuterium (97.8 percent $0-\mathrm{D}_{2}, 2.2$ percent $p-\mathrm{D}_{2}$)

$$
\begin{gather*}
\text { Liquid: } \log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.7367-\frac{58.4440}{T} \\
+0.02670 T . \tag{7.14}\\
\text { Solid: } \log _{10} P(\mathrm{~mm} \mathrm{Hg})=5.1625-\frac{67.9119}{T} \\
+0.03102 T . \tag{7.15}
\end{gather*}
$$

The triple-point temperalures and pressures for D_{3} given in tables 28 and 29 were obtained by simultaneous solution of the vapor pressure equer tions for solid and liquid.

Tho self conversion of nonequilibrium mixtures of σ - and p-D, proceeds at a very much slower rate than for H_{2}. Thus no increase in the vapor pressure of liquid $n-\mathrm{D}_{2}$ resulting from self conversion was observed at $20.4^{\circ} \mathrm{K}$ over a period of 100 hours [149]. The estimated probable error of two observations extending over 100 -hour periods was $\pm 0.27 \mathrm{~mm} \mathrm{Hg}$. The small rate of self conversion of D_{2}, compared with H_{2}, is a result of the smailer magnetic moment of the deuteron compared with the proton. The ratio of nuclear magnetic moments $\mathbf{~} / \mathrm{H}$ is 0.26 . The relative rate of self conversion for the same displacements of D_{2} and H_{2} from the equilibrium ortho-para composition is proportional, as to order of magnitude only, to the fourth power of their relative magnetic moments, that is to 0.005 . Allowing for the smaller displacement of $n-D_{2}$ from equilibrium composition and the smaller difference between the vapor pressuros of the ortho and para varieties of D_{2}, the expected ratio of the ratee of vapor pressure change, $n-D_{2}$ to $n-\mathrm{H}_{2}$, is of the order of 10^{-3}. For a more detailed discussion see reference [149].
(c) HD

As the two nuclei of the HD molecule are dissimilar, hydrogen deuteride does not have ortho and para varieties. Measurements of the vapor
pressure of HD extend from 10.4° to $20.4^{\circ} \mathrm{K}$ [150]. The following vapor-pressure equations were made to fit the triple-point temperature $16.604^{\circ} \mathrm{K}$ measured with a platinum resistance thermometer in a calorimeter in which the solid and liquid phases were in equilibrium.
HD:
Liquid: $\log _{10} P(\mathrm{~mm} \mathrm{Hg})=5.04964-$

$$
\begin{equation*}
\frac{55.2495}{T}+0.01478 T \tag{7.18}
\end{equation*}
$$

Solid: $\log _{10} P(\mathrm{~mm} \mathrm{Hg})=4.70260-$

$$
\begin{equation*}
\frac{56.7154}{T}+0.04101 T \tag{7.17}
\end{equation*}
$$

The triple-point pressure of HD given in tables 28 and 29 can be obtained from either of these equations.
(d) HT and DT

Tritium, \mathbf{T}, the hydrogen isotope of atomic weight 3 is radioactive and has a half-lifetime of 31 ± 8 years [151]. Its disintegration products are a negative β-particle and He^{3}. Because of its comparatively short half-life, the natural abundance of T in bydrogen is extremely small, Libby and Barter [152] determined the vapor pressures of HT and DT using T made by the irradiation of a block of metallic Li with neutrons $\left(\mathrm{Li}^{8}+\mathrm{n} \rightarrow\right.$ $\mathrm{He}^{4}+\mathrm{T}^{3}$). The tritium held by the Li ns LiT was liberated by the reaction of $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$ with the Li block. Gaseous H_{2} or D_{2} with a trace of HT or DT wes obtained. The gas was liquefied and then evaporated, and the radioactivity of the evaporated vapor was measured as a function of the volume of the remaining unevaporated liquid. From a comparison of the radioactivity of the vapor leaving the liquid during different periods of the evaporation, Libby and Barter calculated the vapor pressures of HT and DT, making use of ideal solution laws for this purpose. They obtained for the vapor pressures of HT and DT, 254 ± 16 and $123 \pm 6 \mathrm{~mm} \mathrm{Hg}$, respectively, at tho normal boiling temperature of hydrogen ($20.39^{\circ} \mathrm{K}$). By extrapolation, they estimated that the vapor pressure of T_{2} at $20.39^{\circ} \mathrm{K}$ is $\mathbf{4 5} \pm 10 \mathrm{~mm} \mathrm{Hg}$.
2. Pressure-Temperature Relations for Solid-Liquid Equilibrium

The melting, or freezing pressures, of $n-\mathrm{H}_{2}$, HD , and $n-\mathrm{D}_{2}$ given in table 30 are based on
smooth curves drawn through the experimental data (H_{2}, [153 to 157]; HD [150]; D_{2} [174]) and cover the same ranges of pressure and temperature as the data. Figure 21 is a diagram of the deviations of the data for $n-\mathrm{H}_{2}$ from the table. The dashed line shows a 1 -percent deviation from the table and the full-line curve represents the deviation from the table of the equation

$$
\begin{equation*}
\log _{10}(237.1+P)=1.85904 \log _{10} T+0.24731 \tag{7.18}
\end{equation*}
$$

where P is in $\mathrm{kg} \mathrm{cm}^{-1}$.
Table 30. Melting temperature-presture relations for $\mathrm{s}_{\mathrm{-}} \mathrm{H}_{2}, \mathrm{HD}_{1}$ and $\boldsymbol{n}-\mathrm{In}$

Figure 22 is intended to show the relation between the melting pressures of $n-\mathrm{H}_{2}, \mathrm{HD}$, and $n-D_{2}$. The curve for $n-H_{3}$ is a graph of table values. The curves through the experimental

Figmar 21. Melting pressure of $\pi-\mathrm{H}_{4}$ as a function of temperatare.
data for HD and D_{2} were obtained by a simple vertical displacement of the H_{8} curve and show that the differences in melting pressures of the three isotopic varieties are only slightly dependent upon the temperature. These differences in pressure are $89.6 \mathrm{~kg} \mathrm{~cm}{ }^{-2}$ for H_{3} and HD and $170.6 \mathrm{~kg} \mathrm{~cm}^{-2}$ for H_{2} and D_{2}. As the change of melting pressure with temperature, $d P / d T$, has nearly the same value for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}, if compared at the same temperature, it follows from the Clapeyron equations that $L_{f} / \delta V$, the ratio of the heat of fusion to the change in volume on melting, also has nearly the same value for the three isotopes when compared at the same value of T. A aimilar statoment can be made for $S_{f} / 8 V$, the ratio of the entropy of fusion to the change in volume on melting.

The table values of melting pressure for HD
and \mathbf{D}_{2} were obtained from curves drawn through the experimental data and not from the curves of figure 22.

VIII. PVT Data for the Condensed States

The available date of state for the condensed phases of $\mathrm{H}_{3}, \mathrm{HD}$, and D_{a} are meager [158 to 166] and in general not accurate enough for the calculation of reliable values of thermodynamical proparties. The data on the liquid, however, were used in the construction of the liquid regions of the σ versus ρ diagrams, figure 3 , and the T versus S diagram, figures 31, 32, and 33.

1. Liquid $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}

In table 31 are given the molar volumes of liquid $n-\mathrm{H}_{2}, p-\mathrm{H}_{2}, \mathrm{HD}$, and $n-\mathrm{D}_{2}$ in equilibrium

Fiadre 22. Melting prestares of $n-\mathrm{H}_{2}, \mathrm{HD}$, and $n-\mathrm{D}_{2}$.

Thetes 31. Molar voltmes of normal hydrogen, parahydrogen, normal detuterixut, and hydrogen dewteride, in the Liguid stans

T	Voluthe or jitula at baturalian juressure			
	$N-\mathrm{H}_{1}$	$p-\mathbf{R}$	$\boldsymbol{\pi} \cdot \mathrm{H}_{1}$	R0
$\begin{array}{r} { }^{\circ} K \\ 13.818 . . . \end{array}$			cust moket	CT2 ${ }^{\text {rachel }}$
13.96.....--.........	22.168	----.---	-.-----	------
14......---.---...--	26.119	25.2\%	------..	--....---
15.------------------	36.407	20.518	------..	
16.	36.72		---	--------
	...----.	--...-...	--....	24.485
	27.081	27. 178	--......	24.584
18...-----.---....--	27.126	27. 548	--.....	26. 88 9
18.73.	\cdots	29.102
19,..---...--	27.816	77,903	22.237	25. 211
20...--.............	28.232	29.368	22.585	25. 672
20.39...............	28401	-----	--------	------..
22.	27. 238	-	--	
24	\$3, 431	-----...	--	------...
25.	\$1.985		--------	
28...---------.---.	$94.0{ }^{\text {a }}$		--------	
\$0.	37.188	--	--	..
\$2..--------------	4. 211	--	--	------..
33.19.-------------	68. P^{5}	----....	--....-.	--->...

with vapor from the triple point to the highest temperature of mensurement. From the triple point to $20.4^{\circ} \mathrm{K}$, these equilibrium molar volumes have been represented by the following equations, in which temperatures are on the Kelvin scale:

Normal hydrogen [163]:
$V\left(\mathrm{~cm}^{3} \mathrm{~mole}^{-1}\right)=24.747-0.08005 T+0.012716 \mathrm{~T}^{7}$.
Parahydrogen [163]: $V\left(\mathrm{~cm}^{3}\right.$ mole $\left.^{-1}\right)=24.902-0.0888 T+0.013104 T^{T}$.

Hydrogen deuteride [150]:
$V\left(\mathrm{~cm}^{9} \mathrm{~mole}^{-1}\right)=24.886-0.30911 T+0.01717 T^{2}$.
Normal deuterium [174]:
$V\left(\mathrm{~cm}^{2} \mathrm{~mole}^{-1}\right)=22.965-0.2460 T+0.0137 T^{2}$.

Table values at $20.39^{\circ} \mathrm{K}$ and lower were calculated from these equations. Values of the molar volume of liquid normal bydrogen above $20.4^{\circ} \mathrm{K}$ were obtrined from the experimental data of Mathias, Crommelin, and Onnes [161] with the help of a sensitive interpolation method based upon the use
of an empirical equation and a deviation graph. A change was made in the experimental data because the value used by Mathias, Crommelin, and Onnes for the density of gaseous hydrogen at standard conditions differs from that recommended in this paper on page 396.

Bartbolome [177] measured the molar volumes of liquid $n-\mathrm{H}_{2}$ and $n-\mathrm{D}_{2}$ as a function of pressure at three temperatures between 16° and 21° K . The medsurements extended from the vapor pressure to nearly the freezing pressure. Smoothed values of molar volumes are given in tablos 32 and 33. Bartholomé showed that isothermal changes in volume to about 9 percent of the volume of "saturated" liquid can be represented to within the precision of his measuremente, $\pm 0.05 \mathrm{~cm}^{3}$ mole ${ }^{-1}$ by Eucken's equation

$$
\begin{equation*}
\frac{1}{V^{3}}=\frac{1}{2}\left[\frac{1}{x_{0}^{3}}+\sqrt{\frac{1}{x_{0}^{0}}+a P}\right] \tag{8.5}
\end{equation*}
$$

in which V, the molar volume of the liquid, is expressed as a function of the pressure P. v_{0} is the molar volume extrapolated to zero pressure, and a is an empirical constant dependent upon the temperature. Tables 32 and 33 include values of the molar volumes of liquid $n-\mathrm{H}_{2}$ and $n-D_{2}$ at freezing pressure for the three temperatures of Bartholomés measurements.

Table 32. Molar nolumes of liquid n-H2 for variouk temperaturea and preatures.

Premara	T=16.48 ${ }^{\circ} \mathrm{K}$	T=18.24 K	T=30.33* K
Lp $\mathrm{cm}^{\text {- }}$	cnaz mole 1	Cwa mapla	cwat
00.......	328.87	27.64	29. 48
10........	80. 60	27. 18	92.97
25.	26.20	26.72	97.40
B0.	25.60	98.10	28.68
75.	28.20	25.80	25.18
82 ¢...---	25.06		---
100.---		23.14	2. 49
125.-		24.71	24.91
150.		24.30	24, 47
151.05..-.		24.8	-...-
175.			21.09
200.			23.78
225.			23.48
241,63...-.			23.81
	$a=3.80 \times 10^{-11} \frac{\text { buble }}{\mathbf{c m a}^{N} \leq g}$	$a=3.89 \times 10-1 \frac{\text { mota }}{\text { min }}$	

Table 33. Molar voltmes of liquid n- D_{2} for parious temperatures and prossures

-The veluese at serro pressare wert obtalined by extrapolation oonslitent With the molar valumes at asturation vepor preasure given by eq 9.4.

2. Solid $\mathrm{H}_{2} \mathrm{HD}$, and D_{2}

The crystal structure of solid hydrogen is thought to be hexagonal close-packed, on the basis of an X-ray investigation of solid parabydrogen by the Debye-Scherrer method at the temperature of liquid helium, conducted by Keesom, de Smedt, and Mooy [102].

Tables 34 and 35 contain all the available experi-
mentel data of state on solid $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2}. Molar volumes at $0^{\circ} \mathrm{K}$ were obtained by calculation.

Molar volumes of the solid at the triple point given in table 34 were obtained by subtracting the volume changes on fusion from the triple point volumes of the liquid calculated from eq 8.1, 8.3, and 8.4. The volume changes on fusion, given in table 34, were calculated using the Clapeyron equation with the calorimetrically measured heats of fusion (section IX, 3), and $d P / d T$ for the solidliquid equilibrium at the triple point (section YII, 2).
Molar volumes of the solid in table 34 above the triple-point temperature were obtained from Bartholome's measurements of the change in volume on fusion at the temperatures given in table 34 , and the volumes of the liquid at melting pressure given in tables 32 and 33.
The molar volumes of solid H_{2} and D_{2} at 4.2° K in table 34 were measured by Mcgnw [185] with a picnometer in which the solid $\mathrm{H}_{\mathbf{2}}$ or D_{2} was surrounded with liquid helium, the volume of which had previously been measured as a function of pressure at this temperature. The compressibilities of solid H_{2} and D_{2} at $4.2^{\circ} \mathrm{K}$, given in table 35; were calculated by Miss Megaw from the results of theso messurements.

Table 34. Molar molumes of solid $n-\mathrm{H}_{2}$, HD and $n-\mathrm{D}_{2}$ and molume changea won fusion

T	\boldsymbol{P}	${ }_{4} \mathrm{H}_{4}$		HD		$\mathrm{tr}^{-\mathrm{D}_{1}}$		Etmarks
		Vohume of $80 \mathrm{l} \mid \mathrm{d}$	Vohume ahange on funion	Volume 이 solld	Voluma ctupnge ou faston	Volume of solid	Vohum efonting on fuslon	
${ }^{\circ} \boldsymbol{E}$	$k{ }^{\prime} \mathrm{cmm}^{2}$	Emp/anty	crijumote		cmematmo	Cm1/mole	ctastipmie	
20.1尔...---	P6. 7					20. 08	1. 96	T and P for aolid-liquid equllibrium.
20.31.	鄂 5					22.20	2.15	
18.72...	Q 217					20.48	2. 80	ת-D. Cr tplo potit.
18.80 , .-	.126			24.85	2. 86			E D triple point.
18.24.......	102.0	22.24	2 OH					Tr and P tor solid-loguld equilititium,
	82.6	22.78						
18.\%.....--	0.071	22. 25	2.85					д-Ha triple polnt.
4,2...		22.65	------			19.68	-------	Bolid-vapor eqalibrinm.
4.2.----.	D	22.85	--------		\cdots	19. 58	--------	
4.2.--...--	10	89. 19				19. 50	------...	
4.8.----	25	2930				19.41	-	Fmoothed vatues besod on difeol experlmantat
4.2 .	0	29.03		---...	19.28		delermination.
4.9...-....	78	21.80		-.....-	19.18	
4.2.......	100	21.60				19.06		
0.... .	0	22. ${ }^{6}$				19.49	\cdots	By cakcolation.

Table 35. Experimentally determined compresbibilities, $\vec{p}\left(\frac{d V}{d \bar{P}}\right)_{\tau}$, of solid H_{4} and D_{q} at $4 . \mathbb{D}^{\circ} K$

Compressibulity	\mathbf{H}_{2} compters. billty	De comptessibllity
At prisuant 0 kg cm ${ }^{-1}$. At prospare 100 Ig cmat A serage for range 0 to $100 \mathrm{He} \mathrm{cma}^{-2}$ -	$\begin{gathered} \mathrm{kg}^{-1} \mathrm{amp}^{1} \\ (6.8 \pm 1.5) \times 10-1 \\ 3.2 \times 10-1 \\ (8.0 \pm 0.5) \times 10-1 \end{gathered}$	

Miss Megaw calculated the expansivities of solid H_{8} and D_{2} at 4.2° and $11^{\circ} \mathrm{K}$, given in table 36, using the formula

$$
\begin{equation*}
C_{p}-C_{\epsilon}=T V\left(\frac{d V}{d T}\right)_{P}^{2} /\left(\frac{d V}{d P}\right)_{T} \tag{8.6}
\end{equation*}
$$

with the calorimetrically determined specific heats at constant pressure and volume, and the compressibility measured at 4.2 ${ }^{\circ} \mathrm{K}$ (table 35).

Table 36. Expamaivities, $\frac{1}{V}\left(\frac{d V}{d T}\right)_{P}$, of sonid H_{2} and D_{2} calculated from $C_{p}-C_{7}$

T	H_{2}	D_{2}
$0 K$	$0 K^{\prime-1}$	$0 K^{-1}$
4.2	0.84×10^{-2}	0.17×10^{-2}
11	$.61 \times 10^{-2}$	$.37 \times 10^{-4}$

The compressibilities and expansivities of solid H_{2} and D_{2} are large when compared with values of these properties for other substances. This is ascribed to the zero-point vibrational energy of the lattice which for hydrogen is an unusually large fraction of the negative potential energy of the lattice. This accounts also for an unusually large variation in the compressibilities of H_{8} and D_{2} with pressure (see table 35), and for the variation with T and V of $d \ln \theta / d \ln V$, which derivative of the Debye θ is usually regarded as a constant for other solids [165].

IX. The Thermal Properties of the Condensed Phases

In this section are included the calorimetrically measured properties: specific heats and heats of fusion and vaporization.

1. Specific Heats of the Solids and Liquids

(a) Hydrogen

The specific beate at saturation pressure of solid and liquid hydrogen were measured (1923) by

Simon and Lange [171] between 10° and $20^{\circ} \mathrm{K}$, before the discovery of parahydrogen. Clusius and Hiller [172] measured (1929) the specific heats of solid and liquid parahydrogen over the same range of temperatures and obtsined the same values, within experimental error, for the speccific heats of parahydrogen as had been obtained by Simon and Lange for supposedly normal hydrogen. Mendelsohn, Rulemann, and Simon [173] measured (1931) the specific beats of several mixtures of ortho- and parahydrogen between 2.5° and $11.5^{\circ} \mathrm{K}$. Their results on pure parahydrogen were in agreement with the earlicr measurements of Clusius and Hiller, the data from 2.5° to

Figuse 23. Specific head, C* of golid $\mathrm{H}_{\mathbf{1}}$ for verious ortho-para compositions.
$14^{\circ} \mathrm{K}$ fitting rather closely a Debye function with $\theta=91^{\circ} \mathrm{K}$.
The data of Mendelsohn, Ruhemann, and Simon are shown in figure 23. It is seen that, at temperaturcs below $11^{\circ} \mathrm{K}$, the specific heats of mixtures containing orthohydrogen are latger than for pure parabydrogen. This difference in specific heats is connected with the multiplicity of states belonging to the lowest $0-\mathrm{H}_{2}$ rotational level, $J=1$. The different states, three in number, correspond to three different orientations of the angular momentum vector of an $\theta-\mathrm{H}_{2}$ molecule relative to the electric field in the hydrogen crystal. At $0^{\circ} \mathrm{K}$, all $0-\mathrm{H}_{2}$ molccules are in the orientation state of lowest energy. At tempera-
tures of the order of $\Delta E / k$, where ΔE is the difference in the energy of the states, the distribution of $o-\mathrm{H}_{2}$ molecules over the three states changes rapidly with change of temperature. Along with this there is an absorption of energy and an increase in specific heat. As temperatures are appronched that ase high compared with $\Delta E / k$, the distribution of $a-\mathrm{H}_{2}$ molecules becomes uniform over the three orientation states, and the specific heat of orientation approaches zero. It may be seen from figure 23 that $12^{\circ} \mathrm{K}$ is effectively a high temperature for this distribution, and that at temperatures above $12^{0} \mathrm{~K}$ the distribution over the three $J=1$ states must be practically uniform.
The specific heats, C_{s}, of liquid and solid hydrogen along the saturated vapor lines are given in table 37. The C_{s} curves of figures 24, 25 , and 26 for $\pi-\mathrm{H}_{2}$ at temperatures above $11^{\circ} \mathrm{K}$ represent this table.

In figures 25 and 26 the heat capacity, O_{0}, of

Figure 24. Specife heat, C_{4}, of solid and tiquid H_{3}, HD, and D_{2}.

Figure 25. Specific heats, C_{8} and C_{t}, of sold H_{7} and D_{2}.
solid and of liquid $n-\mathrm{H}_{2}$ at constant specified values of the density are compared with the heat capacity, C_{4}, of solid and liquid $n-\mathrm{H}_{2}$ in equilibrium with saturated vapor. It is to be noted that the C, curves of these two figures are not for O, of solid and liquid H_{2} along a line of equilibrium of vapor and condensed phase. The C, measurements on the solid were made by Bartholome and Facken [176] at the density of solid H_{2} at a melting temperature of about $19^{\circ} \mathrm{K}$. The O, measurements for the liquid were made by Eucken [169] and by Bartholomé and Eucken at densities ranging from 0.034 to $0.077 \mathrm{~g} \mathrm{~cm}^{-3}$ (380 Amagats to 860 Amagats). The density of liquid $n-\mathrm{H}_{2}$ at its normal boiling point is $0.07097 \mathrm{~g} \mathrm{~cm}^{-3}$ (789.7 Amagats).

The difference between C_{0} in figure 25 for the solid at constant deasity and C_{b} at densities of the solid along the solid-vapor equilibrium line is small. The corresponding difference for the liquid is larger and, at the critical temperature $33.19^{\circ} \mathrm{K}$, is of the order of 1 or 2 cal mole ${ }^{-10} \mathrm{~K}^{-1}$

Figure 20. Spectific heats, $C_{\text {, and }} C_{t}$ of liquid H_{2} and D_{2}.

Table 37. Spectifc heats of saturation pressure of normal kydrogen, normal deuterium, and hydrogen deuteride in the solid and liguid states

T	Hydromen		Dentertum		HYdrapta diuteride	
	c	State	C.	State	C.	Etate
$10^{\circ} \mathrm{K}$		Sold	$\text { anl mone } \operatorname{div}^{-1}$			
11.-.	. 7	-..do-----	0.88	golda.		
12.-.	, 98	...40-....	1.00	…40-...	0.88	Solic
13........	1, 18.	...do....	1.18	...do....	1,08	Da,
13,90....	L. 37	...do...-				
13.9\%....	3.31	Ltatald.-				
14.-	3.81	...do-..-	1. 39	. -.de.	1.39	Do.
15.	3. 46	-..do...--	1.63	-..do....-	1.76	Do.
16.	3. E_{8}	--da	1. 90	.--do..	2.17	Do.
16.00...					242	Do.
16.00...					4.40	Llofued
	3.18	...60....	221	...dlar....	4.58	De\%
18.....	4. 14	...do.....	256	..do.....	4.89	De.
18.72...-		2.84	-..do....		
18.72...-			4.80	Liquid.		
	4. 27	---do..---	4.88	---do...--	6. 20	Do.
20.	4.50	---do.----	s.08	--.do....-	5.49	Do.
			6.30	---do.----	5.73	Do.
22.			6.58	---do.-.--	60	Do.

C_{0} along the liquid-vapor line being greater [176].
The difference between C_{4} and C_{5}, for hydrogen is large when compared with the differences for other substances having higher boiling temperatures. In general, $\left(C_{2}-C_{2}\right)$ is large for lowboiling substances because of their larger expansivities.

The Debye θ in the Debye specific beat funetion that fits the C_{r}, data on solid H_{2} is $105^{\circ} \mathrm{K}$. This may be compared with $91^{\circ} \mathrm{K}$ for C.

The specific heate at constant pressure of compressed liquid hydrogen and gaseous hydrogen were measured by Gutsche [178) for temperatures from $16^{\circ} \mathrm{K}$ to $38^{\circ} \mathrm{K}$ and for pressures of about $10,25,40,60,80$, and $100 \mathrm{~kg} \mathrm{~cm}^{-2}$, using a calorimeter so arranged that approximate constancy of pressure was maintained by manual operation of valves permitting fluid to pass from the calorimeter. As a result of this experimental procedure, the mass of hydrogen in the calorimeter was smaller at the higher temperatures, and wonsequently the accuracy of measurement is probably lower at the higher temperatures.

Ftedre 27. Specific heat, $C_{p,}$ of compressed liquid and gaseous \mathbf{H}_{2}.

In figure 27 are plotted Gutsche's experimental data with dotted curves as drawn by Gutsche in his paper to represent the experimental data. The full line curves apply only to the vapor and were obtained by calculation from the PVT comelations of preceding sections of the paper and specific heats in the ideal gas state, table 8. The heavy curve shows C, for saturaled vapor. The full-line curves beginning on this heavy curve, or saturated vapor line, sloping downard toward the right reprosent the specific heats, C_{7}, for the vapor at pressures of 5 and $10 \mathrm{~kg} \mathrm{~cm}^{-2}$. Parts of similar curves also based on the PVT data aro shown for 11 and for $13.41 \mathrm{~kg} \mathrm{~cm}^{-2}$, the critical pressure.

For temperatures above the critical, the dashed curves of Gutsche for 10,25 , and $40 \mathrm{~kg} \mathrm{~cm}{ }^{-2}$ are quite different from the full line curves based on PVT data. The dashed curve for the gas at 10 $\mathrm{kg} \mathrm{cm}^{-2}$ is certainly incorrect at the highest temperatures, as the actual deviation from the ideal gas law for hydrogen is such as to increase C_{p} above the approximately $5 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mole}^{-1}$ of the ideal gas at these temperatures,

It is seen in figure 27 that Gutsche's experimental values for the liquid scatter considerably. It is believed that Gutsche's recommended values of C_{π} for liquid hydrogen, represented by the dashed lines in figure 27 , are too high. In figure 30 are shown two sets of isobars, E and E^{\prime}, on a temperature-entropy diagram for liquid bydragen. The full-line curves, E, were calculated from Gutsche's $C_{\text {; }}$ data; the dashed curves, E^{\prime}, are the best fit for all the thermal and state data on liquid hydrogen and are the ones used in the construction of the temperature-entropy diagram. As $(d S / d T)_{P}=C_{p} / T$, the two sets of isobars, E and E^{\prime}, imply different C_{p} 's and show that Gutsche's values of C_{p} are too high to be consistent with the other data on liquid hydrogen. The differences are of the order of 15 percent in the C_{p} 's of liquid hydrogen. The ratio C_{p} / C_{v} for liquid bydrogen in equilibrium with vapor was calculated from the velocity of sound in liquid hydrogen, and C_{p} was obtained by combining this calculated value of the ratio $\left(C_{p} / C_{F}\right)$, with C_{0} from figuro 20. Pitt and Jackson [175] obtained the value $1,127 \mathrm{~m}$ $\sec ^{-1}$ for the velocity of sound in liquid hydrogen at $20.46^{\circ} \mathrm{K}$. Using this with a value of $(d V / d P)$ extrapolated from Bartholomés data (VIII), one obtains a value of $5.07 \mathrm{cal}^{\mathrm{c}} \mathrm{deg}^{-1}$ mole ${ }^{-1}$ for C_{n}
for liquid hydrogen in equilibrium with vapor ($\sim 1 \mathrm{~atm}$) at $20.48^{\circ} \mathrm{K}$.

This is slightly lower than would probably be obtained by extrepolating Gutsche's curves to 1 atm .
(b) D, and HD

In figure 24 the specific heats C_{1} at gaturation pressure of liquid and solid $n-D_{2}$ and HD are compared with C_{2} for H_{2}. The D_{2} measurements were made by Clusius and Bartholomé [174] and the HD measurements by Brickwedde and Scott [150]. The solid D_{2} data are fitted, within experimental accuracy, by a Debye function with $\theta=$ 89°. The data on solid HD, however, can not be fitted over the range of measurement with a single value of θ. Thus θ for O_{9} of HD a.t $16.3^{\circ} \mathrm{K}$ is 79°, whereas for $12.5^{\circ} \mathrm{K}, \theta$ is 98°. As the Debye function is intended to represent C_{p}, this failure to fit the C, date is not surprising.
In figures 25 and 26 the specific heat C, at constant volume of solid and liquid D_{2} is compared with C_{4} for D_{2} and $C_{\text {r }}$ for H_{2}. A Debye function with $\theta=97^{\circ}$ fits within experimental accuracy the $C_{\text {, data }}$ for solid D_{2}. This value of θ for solid D_{2} may be compared with 105° for solid H_{2}. According to the simple theory of lattice vibrations, which assumes simple harmonic restoring forees in the lattice, θ would be proportional to $1 / \sqrt{M}$ and the $\theta^{\prime} \mathrm{s}$ for H_{2} and D_{2} would be in the ratio $\sqrt{4 / 2}=1.41$. The ratio of the experimental values however, is $\mathbf{1 , 0 8}$. This is evidence that the latice restoring forces in solid H_{2} and D_{2} are strongly anharmonic.

2. Latent Heats of Vaporization

(a) Normal Hydrogen

Simon and Lange [171] measured the heat of vaporization of normal hydrogen at several temperatures between the triple point and the boiling point. They found that heat of vaporization, in calories per mole, wha given by

$$
\begin{equation*}
L_{p}=219.7-0.27(T-16.6)^{2} \tag{9.1}
\end{equation*}
$$

where T is the Kelvin temperature.
(b) Mixtures of $o-\mathrm{H}_{4}$ apd $p-\mathrm{H}_{4}$

As orthohydrogen and parahydrogen are very closely related, it might bee expected that their mixtures would have properties related very simply to those of the pute components. Never-
theless, the H_{2} vapor-pressure dates of Brickwedde and Scott [146] given by the equations and graphs of Section 7 show that the ortho-para H_{2} mixtures do not follow Raoult's law for ideal solutione. A simple application of the Clapeyson equation in the form applying to a pure substance indicates that the latent heat of vaporization and the internal energy of the liquid and solid do not follow a linear, but rather an approximately quadratic dependence upon the composition. This same qualitative result is obtained when account is taken of change of composition by fractionation during vaporization. Functions approximately linear in x, the ortho mole fraction, are obtained when $L_{m i x}-L_{\text {eq }}$, the difference in latent heats, and $E_{m}-E_{\mathrm{max}}$, the difference in the internal energy, are divided by $x_{\mathrm{m}}-z_{\mathrm{eq}}$, the corresponding difference in the ortho mole fraction. The subscript "eq" indicates the ortho-para mixture that is at equilibrium at $20.4^{\circ} \mathrm{K}$, containing 0.21 percent of ortho- and 99.79 percent of parahydrogen. The subscript "mix" refers to any other mixture for which data were obtained. When the line for $\Delta E / \Delta x$ is horizontal, it indicates that ideal solution lawe apply. The line has a clear indication of slope, as shown by the continuous lines in figuro 28, indicating that ideal solution laws do not apply. In the graph for $\Delta E / \Delta x$, the points for the liquid include a contribution of about 7 percent related to change of composition due to fractionation. The lower dashed line shows the result when this correction is omitted. For the solid it was thought proper to omit the correction for this effect because departure from equilibrium due to slowness of diffusion in the solid would make it too uncertain. The upper dashed line shows the result for the solid when such a correction for fractionation is included.

The use of straight lines for $\Delta E / \Delta x$, the divided difference of the internal energy, has a theoretical justification apart from the fact that the scattering of individual values is so great as to obscure the exact shape of the curve for the liquid. If the intermal energy of the liquid is a simple sum of independent energies of different molecular pairs, all of essentially equal probability of formation, then the enargy has the form

$$
\begin{equation*}
E=x^{2} E_{\circ q}^{\cdot}+2 x(1-x) E_{\rho p}+(1-x)^{3} E_{p p} \tag{9.2}
\end{equation*}
$$

In this case, the differences $E_{\text {mo }}-E_{\text {mix }}$ divided ly the corresponding differences in z for the mix-
tures of different compositions will be linearly dependent on x. The slope of this line is 2 $E_{o p}-E_{o o}-E_{p p}$ and the value of the ordinate at $x=-x_{* q}$ is $2\left(E_{p p}-E_{o p}\right)$. From the curves in figure 28 , it will thus be found that $E_{p y}-E_{o p}$ is 0.7 cal mole ${ }^{-1}$ and $E_{p p}-E_{00}$ is 4.2 cal mole e^{-1} for the liquid. For the solid the corresponding values are 0.6 cal mole ${ }^{-1}$ and 5.4 cal mole ${ }^{-1}$, respectively. The relative size of $E_{y p}-E_{o o}$ as compared to $E_{p p}-E_{o p}$ suggests that most of the deviation from ideal solution laws is due to special effects between $o-\mathrm{H}_{2}$ molecules.

From the scattering of the points plotted, it appears that ordinates are uncertain to 0.2 or 0.3 cal mole ${ }^{-1}$ for the liquid and possibly to 1 cal mole ${ }^{-1}$ for the solid. The use of the strajght line for $\Delta L / \Delta x$ in figure 29 is very nearly consistent with its use for $\Delta E / \Delta x$ and is allowed within the scattering of the data. Combining the results for the dependence upon composition with the results of Simon and Lange for normal hydrogen, the latent heat of vaporization of liquid hydrogen in calories per mole is approximately

$$
\begin{equation*}
217.0-0.27(T-16.6)^{9}+1.4 x+2.9 x^{2} \tag{9.3}
\end{equation*}
$$

for any mixture of $0-\mathrm{H}_{2}$ and $p-\mathrm{H}_{2}$, where x is the orthohydrogen mole fraction.

Figure 28. Dependence of internal energy of solid and liqwid H_{3} ryon the ortho-para amposition.

Figuma 29. Dependence of latent herda of vaporization and rublimation of hydroges upos the ortho-para composition.

The heats of fusion of para-and normal hydrogen are reported in table 38 as being equal within 0.03 cal mole ${ }^{-1}$. On the basis of the two distinct straight lines for liquid and solid hydrogen in figuro 29 , it would be expected that the differenco would be sbout $0.7 \mathrm{cal} \mathrm{mole}{ }^{-1}$. The reason for this discrepancy is not known, though it may suggest that the lines for the liquid and solid should be more nearly identical.

Table 38. Latent heats of fubion

Substanec	Heat of fuslor	T	P
	ctil nowth	${ }^{\circ} \mathrm{K}$	NT+N Hz
Narmal hydrodybin	29.0	13.85\%	540
Farahydrogen.	2s.0.0	13.814	528
Normal deatarium.	\$7.0	18.72	129.5
Hydrogen dentardid.....	3s. 1	1880	928

The manner in which the wapor pressures depend on composition and temperature has formed the basis for the treatment of latent heats of vaporization given in this section. Cohen and Urey [160] and Schasfer [164] have given theoretical discussions of the vapor pressures of ortho and
para H_{2} and D_{2}. Cohen and Urey did not expect devintions from the law of perfect solutions. Schafer suggested that forces connected with rotation within the crystal lattice might account for vapor-pressure differences.

(c) Normal Deuterium

Clusius and Bartholome [174] measured the heat of vaporization of normal deuterium, obtaining the value $302,3 \mathrm{cal}$ mole ${ }^{-1}$ at $19.70^{\circ} \mathrm{K}$.
(d) Mixtures of o-D and $p-D_{2}$

The difference in latent heats of vaporization and the approximate difference in internal energies have been calculated from the vapor pressures of the normal and the $20.4^{0} \mathrm{~K}$ equilibrium mixtures of ortho- and paradeuterium measured by Brickwedde, Scott, and Taylor [149]. PVT data for deuterium as determined by Schāfer were also used in the calculation. As there are data for only two compositions, giving only one difference of composition, it is not possible either to correct for fractionation or to test for deviation from Raoult's Law. It scems improbable that the law holds for deuterium, as it does not hold for hydrogen. The indicated differences in latent heats of vaporization are smaller than for hydrogen. Thus, $L_{\text {nota }}-L_{\mathrm{ma}}=0.3$ cal mole ${ }^{-1}$ for the liquid and 1.0 cal mole ${ }^{-1}$ for the solid. The same values are obtained for the differences in internal energies, $E_{\text {eo }}-E_{\text {дopra }}$. Cohen and Urey [166] on the basis of their theoretical caleulations, concluded that differences in binding energy between corresponding forms should be half as great for D_{1} as for H_{4}. Considering that the uncertainties in the data for D_{2} are comparable with the magnitudes themselves, the data can not be said to conflict with the theoretical preduction.

(e) Hydrogen Deuteride

Brickwedde and Scott [146] measured the heat of vaporization of hydrogen deuteride, obtaining the value $257 \mathrm{cal}_{\mathrm{c}}$ mole ${ }^{-1}$ at $22.54^{\circ} \mathrm{K}$.

3. Latent Heats of Fusion

The latent heats of fusion of hydrogen, parahydrogen, normal deuterium, and hydrogen deuteride were measured by Simon and Lange [171], Clusius and Hiller [172], Clusius and Bartholomé [174], and by Brickwedde and Scott [150], respec-
tively, and are listed in table 38 with corresponding vapor pressures and temperatures.

X. The Temperature-Entropy Diagram

1. Data

Data of several different types were used in determining the temperature-entropy diagram. For the vapor, and for the gas below a density of 500 Amagats, values of the various quantities were obtained by interpolation from tables 14, 22, and 23. The particular difficulties encountered in trating the liquid region will be evident from the

Figure 30. Digcrepancties in the thermad data for H_{2} in the rearion of the liguid.
following discussion. Disercpancics between the various data for the liquid are shown in figure 30.

Between the triple point and the boiling point, the entropy of liquid normal hydrogen at saturation pressure was obtained using calorimetric data for the solid and liquid and adding a theoretical value for the entropy of mixing. The result is shown as line B in figure 30. The entropy of the liquid was also calculated using the theoretical entropy of the ideal gas, correcting to the state of saturated vapor and subtracting the Iatent hcat of vaporization. The latent heat of vaporization was determined in two ways-by direct calorimetric measurement and by using vapor pressures and other data with the Clapeyrion equation. Line A is based on calorimetric latent heats and line C on latent heats from vapor pressures. At $20^{\circ} \mathrm{K}$, line B indicates values $0.03 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}$ greater than line A and $0.08 \mathrm{cal} \mathrm{deg}^{-1} \mathbf{g}^{-1}$ greater than line O.

Lines of constant density could be obtained for the compressed liquid by integrating C_{V} / T, beginning at line B. Values of O, from figure 26 were used. The results indicate that these constant density lines are approximately parallel at a given temperature for densities less than 500 Amagats. Data of table 14 indicate that there is a similar parallelism for higher densities nesar the critical temperature.

Values of entropy of the liquid for various pressurcs along the $17.34^{\circ} \mathrm{K}$ and $19.28^{\circ} \mathrm{K}$ isotherms were obtuined by integration of the equation

$$
\begin{equation*}
(d S / d P)_{r}=-(d V / d T)_{\rho} . \tag{10.1}
\end{equation*}
$$

The values used for $(d V / d T)_{p}$ were based on smoothed values of volume for the liquid as given in table 32 for the temperatures $16.43^{\circ} \mathrm{K}, 18.24^{\circ} \mathrm{K}$, and $20.33^{\circ} \mathrm{K}$. The constant of integration was chosen to fit line B. From the resulta, a set of constant pressure lines, of which the segment F is typical, was obtained for various pressures. In addition, a point that should have been on the 860 Amagat density line was obtained by interpolation and a line D was drawn through it and through the 860 Amagat density point on line B as determined by eq 8.1. The tine marked D^{\prime} represents the final correlation.
An unsatisfactory set of values of entropy for the liquid along constant pressure lines was obtained by integrating the C_{p} data of Gutsche, figure 27. Curves E are the results for 25 and 60 atm, while the final correlation gave curves E^{\prime}.

2. Final Correlation

In the final correlation, the saturation curyo B was accepted and the isochores were considered parallel. The isochores at high density were given by integration of C_{p} / T, beginning on line B. The isochores at intermediate density were obtained by intarpolation between values at high density and values below 500 Amagats. The interpolation was made along the $35^{\circ} \mathrm{K}$ isotherm from an entropy-density plot extending from $\rho=860$ Amagats to $\rho=340$ Amagats.

The extension of curve B to temperatures higher than were given by calorimetric data for the liquid was made from the lower parts of the interpolated isochores and the temperature-density relations for the liquid at saturation pressure given by eq 8.1 .

The constant pressure lines were determined mainly from the vapor-pressure equation and the equation

$$
\begin{equation*}
(d S / d V)_{r}=(d P / d T)^{v} \tag{10.2}
\end{equation*}
$$

At lower temperatures the lines were in fair agreement with Bartholome's PVT data, which served to locate them more closely.

The lines of constant enthalpy were determined from integrals of TdS under the constant pressure lines and were checked by integration along the ibochores based on the equation

$$
\begin{equation*}
(d H / d T)_{v}=T(d S / d T)_{V}+V(d S / d V)_{r} . \tag{10.3}
\end{equation*}
$$

The location of the curves within the dome is quite straightforward, as the fractionation of the
ortho-para mixture is too small to affect these curves significantly.

The resulting temperature-entropy diagram for normal hydrogen is presented in composite form in figures 31, 32, and 33. The thermal unite used are based on the calorie, the Kelvin degree, and the gram, with pressures in atmospheres and densities in Amagat units.

The diagram shows lines of constant enthalpy, pressure and density and, in the region of coexistance of liquid and vapor, lines of constant "quality." The painstaking construction of the curves pertaining to the liquid region, amounting to a correlation of the data for the liquid, has been made by Robert N. Schwartz, who has also drawn the remainder of the diagram on the basie of the thbles of this paper.

Figuen 32. Temperathre-entropy diagrain for H_{7} in the repion 130° to $300^{\circ} \mathrm{K}$.

Figone 33. Temperature-entropy diagram for H_{4} 行 the region 830° to $600^{\circ} \mathrm{K}$.

XI. References

1. Thermodynamic Properties of the Hydrogens in the Ideal Gas State

[1] D, M. Dennison, Proe Roy, Eoc. (London) 115, 483 (1927).
[2] F. Rasetti, Phys. Rev. 34, 367 (1929).
[3] W. F. Giauque, J. Am. Chem. Soc. 52, 4808 (1030).
[4] W. F. Gibuque, J. Am. Chem. Soc. 55, 4816 (1930).
[5] H. II. Tyman, Phys. Rev. 3\$, 1 䄪 (1930).
[6] H. H. Fyman and C. R. Jeppeaen, Nature 1th, 462 (1930).
[7] R. 'T, Birge and C, R. Jeppesen, Nature 125, 463 (1980).
[8; R. Rydberg, Z. Physik 75, 376 (1931).
[9] O. Klein, Z. Physik 76, 226 (1932).
[10] J. L. Dunham, Phys. Kev. 41, 721 (1932).
[1]] R. W. Harknegs and W. E. Deming, J. Am. Chem. Soc. 64, 2850 (1982).
(12] C. I. Jeppesen, Phys. Rev. 44, 105 (1932),
[13] H. C. Urey and D. Rittenberg, J, Chem, Phys. 1, 137 (1983).
[14] G. N. Lewig and M. F. Ashley, Phyz. Rev. 48, 837 (1933).
[15] C. R. Jeppesen Phys. Rev. 45, 480 (1934).
[10] K. Mie, Z. Phy日ik 91, 475 (1934).
[17] C. O. Davis and F. L. Johnston, J. Am, Chem, Soe. 66, 1045 (1934).
[18] H. L. Johmaton and E, A. Long, J. Chem. Pbys. 2, 389 (1984).
[19] R. Wudt, Z. Astrophysik E, 176 (1934).
[20] H. Beutler, Z. physik. Chem. [B] 27, 287 (1934).
[21] H. Beutler, Z. physik. Chem. [B] 28, 315 (1955).
[22] G. K. Teal and G. E. MacWood, J. Chem. Phys. 3, 760 (1935).
[28] Y. Fujioka and T. Warda, Sci. Papern Inst. Phye. Chem. Research (Komagome, Hongo, Tokyo) z7, 210 (1985).
[24] C. R. Jeppesen, Phys. Rev. 48, 797 (1936).
[25] I. Bandeman, Proc. Roy. Soc. Edinburgh 89, 130 (1938-39).
[26] R. T. Birge, Rev. Modert Phyb. 19, 293 (1941).
[27] F. W. Woolley, J. Chem, Phys. 9, 470 (1941).
1281 D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F, D. Rossini, J. Research NBS 34, 143 (1945) RP1634.
[29] G. N. Lewle and M. Randall, Thermodynamios and the free energy of ohemicel bubrtances (McGrawHill Book Co., Ine, New York, N, Y., 1923).
[30] P. S. Epstein, Textbook on thermodynamies (John Wiley and Bons, Ine., New York, N. Y., 1937).
[21] F. H, Mac Dougall, Thermodynamica and chemistry (John Wiley and Sons, Inc., New York, N. Y., 1939).
[32] S. Gleastone, Textbook of physical chemístry (D. Van Nostrand Co., Jnc., New York, N. Y., 1940).
2. Thermal Measurements on Gaseous Hydrogen
[33] O. Lummer and E. Pringsheim, Wled. Ann. 44, 555 (1808).
[34] M. Pier, Z. Elektrochem. 16, 897 (1910).
[35] N. Bjerrum, Z. Elcktrochern. 18, 101 (1912).
[36] A, Eucken, Sitzber. preuss. Akad. Wiss. 1512, 141 (1912).
[37] K. Scheel and W. Heure, Ann. Physik 40, 473 (1913).
[38] I. Langmuir and G. M. I, Maokay, J. Am. Chem. Soc. 36, 1708 (1914).
[39] L. Langmuir, J. Am. Chem. Soc. 37, 417 (1915).
[40] J. M. Crofts, J. Chem. Soe. 107, 290 (1915).
[41] M. C. Bhields, Phys. Rev. 10, 525 (1917).
[42] M. Trautz and K. Hebbel, Ann. Physil 74, 285 (1924).
[43] J. H. Brinkworth, Proc. Proy. Boc. (London) 10\%, 510 (1925).
[44] J. H. Partington and A. B, Howe, Proc. Roy, Soe. (London) 141, 286 (1925).
[45] F. A. Giaconini, Pbil. Mag. 50, 146 (1925).
[46] R. E. Cornish and E. D. Eestman, J. Am. Chem. Soc. 50, 627 (1928).
[47] F. M. Bichowsky and L. C. Copeland, J. Amp. Chem, Boc. 50, 1315 (1028).
[4B] A, Eucken and K. Hileer, Z, physik, Chem. [B] 4, 142 (1929).
[49] E. J. Workman, Phye. Rev. 37, 1345 (1931).
[50] A. Eucken and O. Mūcke, Z. physik. Chem. 18, 187 (1932).
[51] K. Woh] and M. Magat, Z. physit. Chem. 19, 117 (1982).
[52] A Fartas, L. Farkas, and P. Harteck, Proc. Roy. Soo. [A] 144, 481 (1984).
[53f W. T. Devid and A. S. Leah, Phil. Mag. 18, 307 (1934).
[54] D. Rittenberg, W. Bleakney, F. C. Urey, J. Chem. Phys. 2, 48 (1934),
[55] A. J. Gould, W. Bteakney, and H. S, Taylor, J. Chem. Phys. 2, 362 (1984).
[56] R. W. Fenning and A. C. Whifien, Phil. Trans. Roy. Sloc. (London), 238, 149 (1939).
[57| H. L. Johnston, I. I. Beaman, and C. B. Hood, J. Am. Chem. Soc. 68, 2367 (1946).
[58] H. L. Johneton, C. A. Swaneon, and H. E. Wirth, J. Am, Chem, Soc. 68, 2873 (1946).

3. PVT Felations for Gaseous Hydrogens

[39] H, Kamerlingh Onnes and C. Brast, Commun. Phys. Lab. Vniv. Leiden 97a (1906), 99a, 100a (1907).
[60] H. Kamerlingh Onnes and W. J. de Haas, Commun. Phys. Lab. Univ. Leiden 127e (1912).
[61] P. Kohnstamm and K. W. Walatra, Koninkl. Akad. Wetenachappen Amsterdan, Frdc. 17, 203 (1914).
[62] H. Kamerlingh Onnes, C. A. Crommelin, and P. G. Cath, Commun. Phys. Lab. Liviv. Leiden 1\$10 (1917).
[63] L. Holborn, Ann. Physik 6a, 674 (1020).
[f4] J. Palacior Martinez and H. Kamerlingh Onve9, Commun. Phys. Lab. Univ. Leiden 164 (1923).
[66] H. Kamerlingh Onnee and F, M. Penning, Commun. Puyg. Lab. Ǔniv. Laiden 165b (1923).
[66] C. A. Crommelin and J. C. Swallow, Commun. Phys. Lab. Univ. Leiden 172s (1924).
[67] L. Holborn and J. Otto, Z. Phytik 22, 77 (1924).
[68] F. P. G. A, J. van Agt and H. Kamerlingh Onnes Comman, Phy', Lab. Univ. Leidea 176b (1925).
[69] F. P, G. A. J. van Agt, Commun, Phys. Lab, Uriv. Leiden 176e (1925).
[70] IL Holburn and J. Otto, 2. Physik 53, 1 (1925).
(71) L. Holburn and J. Otto, Z. Physik 28, 359 (1926).
[72] G. P. Nijhoff and W. H. Keesom, Commun. Phys. Lab. Univ. Jeiden 188d (1987).
[73] E. P. Bartlett, J. Am. Chem, Soc. 49, 687 (1227).
[74] E, P. Bartlett, H. L. Cupples, and T, H, Tremearne, J. Am. Chem. Soc. 50,1275 (1928),
[75] G. P. Nijhoff and W. H. Keasom, Commun. Phys. Lab. Jniv. Lasiden 188e (1028).
[76] E. P. Bartlett, F. C. Hetherington, H. M. Kvalnes, and T. H, Tremearne, J. Am. Chem. Soo. 52, 1363 (1930).
[77] A. van Itterbeek and W. H. Keenori, Commux, Phys. Lab. Univ. Laiden, z1ee (1931).
[78] A. van Itterbeak, Commun, Phys, Lab. Unvv. Leider, Supp. 70h (1931).
[79] A. Michels, G. P. Nijhoff, and A. J. J. Gerver, Ann. Physik 12, 562 (1932).
[80] W. E. Derning and T. E. Shupe, Fhys. Tev, 40, 848 (1032).
[81] A. Michels and A. J. J. Gerver, Ann. Physik 18, 745 (1983).
[82] W. E. Denning and I. S. Deming, Phys. Rev. 45, 109 (1934).
[83] J. B. M. Coppoct, Trane. Faraday Soc. 31, 913 (198a).
[84] G, E. Uhlentjenk and E, Beth, Physice 3, 720 (1936).
[85] K. Schafer, Z. plyysik. Chem. [B] 36; 85 (1937),
[86] K. Schafer, 2. phyaik. Cham. [B] 38, 187 (1937).
[87] J. de Boer and A. Michelg, Phyalea 5, 945 (1988).
[88] R. Wiebe and V. L. Gaddy, J. Am. Chem. Soc. 60, 2300 (1938).
[89] F. G. Keyes, Gas thermometer acale corrections hased on an objective correlation of avisiable dats for hydrogen, helium, and nitrogen; from: 'Tempersture, its measurement and control in sefence and industry, Ameriean Instftute of Physics, (Relnhold Publishing Corporation, 1941).
[90] C. S. Cragoe, Slopes of the PV iqotherms of anme thermodynamic gases at pressures below two atmoapheres; frotn: Temperature, its measuremont and control in science and industry, American Institute of Physics (Reinhold Publishing Corporation, 1941); J. Research NBS 28, 405 (1941) RP1398.
[91] A. Mịchels and M, Goudeket, Phytica 8, 347 (1941),
[92] A. Michels and M. Goudeket, Physica 8, 358 (1941).
[93] A. Michels and M. Goudeket, Physica 8, 387 (1941).

4. Viscosity of Gaseous Hydrogen

[94] M. Trautz and P. B. Baumann, Ann. Physik 2, 733 (1929).
[95] M. Trautz and F. W. Stauf, Ann. Physik 2, 737 (1929).
[96] M. Trautz and W. Ludewige, Anv. Physik 3, 409 (1929).
[97] M. Trautz and H. E. Binkele, Ann. Physik E, 561 (1930).
[98] M. Trautz and A. Melater, Ann. Physik 7, 409 (1930).
[90] M. Trautz and R. Zink, Ann. Physik 7, 427 (1930).
[100] M. Trautz and F, Kurz, Ann. Fhysik 9, 081 (1281).
[101] M. Trautz and K, G, Sorg, Ann. Physik 10, 81 (1981).
[102] M. Trautz and R. Heberling, Ann. Physik 24, 118 (1934).
[103] B. P. Sutherland and O. Masas, Canadian J. Rescarch 6. 428 (1982).
[104] H. Adzumi, Bul. Chem. Soc. (Jepan) 12, 199 (1937).
[105] A. van Itterbeek and Miss A. Claes, Nature 149, 793 (1938) and Physica 5, 888 (1038).
[106] A, van Itterbeek and O, van Paemal, Plysica 7, 265 (1940).
[107] A. van ltterbeel and O. van Pamal, Physfea 7, 273 (1940).
[108] W. H. Keesom and P. H. Keesom, Physica 7, 29 (1040).
[109] H. L. Johnston and K. E, MeCloskey, J. Phyt. Chem, 44, 1038 (1940).
[110] A. Wobser and F. Mitler, Kolloid-Bethefte 62, 165 (1941).

5. Thermal Conductivity of Gaseous Hydrogen

[111] A. Schleiermacher, Wied. Ann. 36, 346 (1889).
[112] A. Winkelmann, Wied. Ann. 44, 177 and 420 (1891).
[113] P. A. Eokerlein, Ana. Physik 3, 120 (1900).
[114] P, Gunther, Dissertation, Nalle (1906).
[115] A, Eucken, Pliysik. Z, 12, 1101 (1911).
[116] A. Euckent, Plysik Z. 14, 324 (1913).
[117] 8. Wober, Ann. Physik 54, 437 (1917).
[118] E. Schneider, Ann. Physik 79, 177 (1926).
[119] E. Schneider, Ann. Physik 84, 215 (1928).
[120] H. Gregory and C. T. Archer, Proc. Roy. Soc. [A] 110, 91 (1926).
[121] K, F, Bonthoeffer and F, Harteck, Z. physik. Chem. [E$]$ 4, 113 (1929).
[122] P. Harteck and H. W. Schmidt, Z. physik. Chem. [B] 21, 447 (1983).
[123] B. G. Dickens, Proc. Roy. Soc. (London) (A] 143, 517 (1934)
[1241 W, G, Kannuluik and L. H. Martin, Proe. Roy. Sac. (Loadon) [A] 144, 496 (1984).
[125] H. S. Gregory, Proc. Roy. Soc. (London) [A] 14, 35 (1935),
[126] W. Northdurft, Ann. Physik \#8, 137 (1937).
[127] C. T. Archer, Proc. Roy, Eoc. 165, 474 (1988).
[128] H. Spencer-Gregory and E. H. Dock, Phil. Mag. 25, 129 (1988).
[129] N. B. Vargaftik and I. D. Parfenov, J. Exptl. Theoret. Phys. (U. S. S. R.) 8, 180 (1038).
[130] W. G. Kannuluik, Proc. Roy. Soc. (Joondon) [A] 175, 36 (1040).
[131] H. L. Johuston and E. R, Grilly, J, Chem, Phys, 14, 233 (1946).

6. Viscosity and Thermal Conductivity of Gaseous Hydrogen at High Pressure

[132] D, Enskog, Kungl. Bverska Vetenskaps Akaderniens Handl. ©3, No, 4 (1921).
[133] H. B. Phillips, J. Math. Phys. 1, 42 (1922),
[134] J, H. Boyd, Jr., Phys, Rev. 38, 1284 (1930),
[135] R. O. Gitern, Dissertation, Amsterdern (1933).
[136] E. W. Cominge sud R. S. Egly, Ind. Eng. Chem. 32, 714 (1940).
137) R. Chepman and T. G. Cowling, The mathematical theory of nonuniform gases, (Cambridge at the University Press, 1839).

7. Viscosity of Liquid Hydrogen

[13s] J. E. Verschaffelt and C. Nicsisa. Commun. Phys. Lab. Leiden 151g (1917).
[139] W. H. Keesom and G. E. MaeWood, Physica S, 745 (1038).
[140] H. E. Johns, Can. J. Research 17 [A] 221 (1039).

8. Vapor Pressures

[141] H. Kamerlingh Onues and W. H. Keetom, Commun. Phys. Lab, Unvy. Leiden, 137d (1913).
[142] P. G. Cath and H. Kamerlingh Onnes, Commun. Phys. Lab. Univ. Leiden, 1sta (1917).
[143] J. Palacios Martinez and H. Kbmerlingh Onnes, Commun. Phyb. Latb. Univ. Jeiden, 1546 (1922).
[144] F. Henning, Z. Phyaik 40, 775 (1926),
[145] W. H, Kpesom, A. Bijl, and Miss H, Van der Horst, Commun. Phys. Lab, Univ, Leiden, 217a (1931).
[146] F'. G. Brickwodde and R. B. Seott, The vapor pressures of mixturea of ortho and para hydrogen (Unpublished).
[147] E. Cremer and M. Polanyi, Z. physik. Chern. [B] 21, 459 (1933).
[148] R, B, Stott, F, G. Brickwedde, H, C. Urey, and M. H. Wahl, J. Chem. Phys+ 2, 454 (1934).
[149] F. G. Briekwedde, R. B. Scott, and H. S. Tayler, J. Research NBS 18, 403 (193s) RPS41; J. Chem. Phys. $\mathbf{3}, 653$ (1935).
[150] F. G. Brickwedde and R. B. Scott, Vapor pressuret, specific heats, heats of transition and molecular volumes of liquid and solid hydrogen deuteride (Unpublished).
[151] R. D. O'Neal and M. Goldhaber Phys. Rev. 88, 574 (1940).
[152] W. F. Libby and C. A. Barter, J. Chem. Phys. 10, 184 (1942).

9. Melting Curves

[153] H. Kamerlingh Onnes and W. van Gulik, Commun. Phys. Lab. Univ. Leiden 184 (1926).
[154] W, van Gulik and W. H, Keenorm, Commun. Phys. Lab, Unív, Leiden 102b (1928).
[155] F. Situon, M. Ruhemann, and W. A. M. Edwards, Z. phyaik. Chem. [B] ©, 331 (1929).
[158] W. H. Keesom and J. F. C. Lismen, Commun. Phys. Lab. Univ. Leiden 213e (1931).
[1a7] W. H. Keesom and J. H. C. Ljsman, Commun. Phyb, Lab, Univ. Leiden 981a (1932),

10. PVT Relations for Condensed Phases

[158] J. Dewar, Proc. Roy. Soc. [A] 78, 251 (1904).
[159] H. Kimerlingh Onnes and C. A, Crommelin, Commun, Pliys. Lab. Univ. Leiden 137a (1913).
[160] H. Augustin, Ann. Physik 45, 419 (1915).
[101] E. Mathiss, C. A. Crommelin, and H. Kamerlingh Onnes, Commun. Phya. Lab. Univ. Leiden 154b (1921).
[162] W, H, Keenom, J. de Smedt, and F. II. Mooy, K, Aksd. Wetenach. Amsterdam, Proc. 33, 8, 814 (1980); Commun. Phys. Lab. Uiniv, Leiden gesd (1930).
[103] R. B. Scott and F. G. Briekwedde, J. Research NBS 19, 237 (1037) RP1023.
[164] K, Schāfer, Naturwissenschaften 28, 563 (1038).
[165] Helen D. Megaw, Phil, Mag. 26, 129 (1939),
[166] K. Cohen and H. O. Urey, J. Chem. Phys. 7, 157 (1989).

11. Thermal Properties of Condensed Hydrogen

[167] W. H. Keesom, Commun. Phyr, Lab. Vniv. Leiden 137e (1911).
[1981 A. Eucken, Verb, deut. Phys. G的, 18, 18 (1916).
[169] A. Eucken, Verh. deut. Phys. Ges. 18, 4 (1916).
[170] W. H. Keasom and H. Ksmoringh Onnes, Commun. Phys. Lab. Univ. Leiden 1k*áa (1917).
[171] F. Simon and F. Lange, Z. Physit 16, 312 (1923).
[172] K. Clusius and K. Hiller, Z. physik. Chem, [B] 4, 158 (1929).
[173] K. Mendelsabhn, M. Ruhemann, and F. Simon, 2. plysidk. Chem. [B] 15, 121 (1931).
[174] K. Clusius and E. Bartholome, Z. physik. Chem. [B$] \mathbf{3 0}, 237$ (1935).
[175] A. Pitt and W. J. Jackson, Can. J. Rebearch 18, 686 (1985).
[170] E. Bartholomé and A. Eucken, Z. Eleltrochem. 42, 547 (1086).
[177] E. Bartholome, Z. physik. Chem. [8] 38, 387 (1936).
[178] H. Gutsehc, Z. physik. Chem. (A] 184, 4s (1039).

12. Unclassified

[179] G. Rutledge, Phys. Rev. 40, 262 (1982).
[180] H, J. Hoge and F, G. Brickwedde, J, Rabearah NBS 22, 351 (1939) RP1188.
[181] Mathemsticea Tables Project, Tebles of Lagrangian Interpolation Coefficients, COlumbia University Press, 1944).

Waehington, Auguet 7, 1947.

[^0]: ' Divipion of Chemisticy and Chamical Techoology, National Fleseacch Council.

 I F. Rasbell Bichowshy, Cha[rman, 193g to imf

[^1]: ' Figures in brackete indicate the Jiterature rederences at the end of this psper.

 - J'bo term sfate is ubed in the sensa that two states differ if any of ofl the quancum numbers asyoclatod ufth the states are differcat. The term lefel Ls used to expresis tha idea that the enerey hes a deflulte palue. The statisticeal Wedeht, or of $n \mathrm{legel}$ is the number of states buving the enengy wbich defite the bevel, A level with mors than one state da sald to be degencrate.

[^2]: - Equitibrfum Hy nnd $\mathrm{D}_{\text {\% }}$

[^3]: ${ }^{1}$ Ualess otherwise stated, troperatarea are expressed on the Eelurit Segir with $\mathrm{T}_{0}=279.16^{\circ}$.

[^4]: 'hasuming that diffoccrices ot higher order than the tourth see nextiopible.

 - For still creater densities larger devlatons obear as shown by ficure \bar{r}.

[^5]: has as one effoct tor rigid soherical molecules the removal of the plassicul discontinulty in the calculated distribution of molectiles for pait sejungelons corresponding to contact between the spheress. As smatley sepmentions ate prevented by the lerpenetrability of the spberes, the contipully is extoblished by in reduction of the molecular dealty tor separations sreater than that comesponding to coutant. The effeot ja targe for separstions of sphere surtaces up to a consificrubte traction of the de Broglite wivelength (for wish
 the temperature. This pencetion of molecular density beyond the ulint mum sepsestion could be repwesebted roughly in a classical description as an Increase of the volume from whieh I moveenle causes the centers of otber molecules to be excluded. In cissticol thenry the second riflal coeffelent for nomettractiog rigid spheres is properctontal to the excluded woinure.

[^6]: II Por the aplellabinn or these tables the muthors are Enclebted to Mresgs
 stundmat assistants at the Natiobul Euceat of Ftamdords during the aummer of 1941.

[^7]: it V_{D} to $\mathrm{p}=000$ at temperntures sbapa $0^{\circ} \mathrm{C}_{4}$ the equation $Z-\exp \left(B_{p}+C_{p}{ }^{n}\right)$ han been used. This is cq 4,8 and og 4,9 is fis series expransion. The symbels atand tor functions on \mathbf{T}, which are glisen by eq 4.11 snd 4.12 .
 From $\rho-0$ to $p-200$ and $T \rightarrow 11^{\circ}$ to $50^{\circ} \mathrm{K} Z$ can be expressed by $Z=1-$
 C atand tor functiong of T, whage values are tabulated it tablo 18.

[^8]: ${ }^{13}$ Thig viacoalty at very low prebsure fa a trae or bulk piacosity. The prossure effect mentlaned lwere ds not the familear bow pressure effeot on the apparent experiarental piseoefty Envolving the arcommodation esefficient and the lifulter slat of expermention apporatus.

