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Fig. 1. Cameron project.

1. INTRODUCTION

Even though FPGAs present a computational density advantage over general-
purpose processors [DeHon 2000] for certain applications, the biggest obstacle
to the widespread use of FPGA-based reconfigurable computing lies in the dif-
ficulty of programming them. A typical design cycle for programming FPGAs
starts with a behavioral or structural description of the design, using hardware
description languages (HDLs) such as VHDL1 or Verilog. These HDLs require
the programmer to explicitly handle the issues of timing and synchronization
of the complete design. Most application program developers are more familiar
with an algorithmic programming paradigm and are not experts in HDL pro-
gramming. The goal of the Cameron Project [Najjar et al. 2003; Rinker et al.
2001; Böhm et al. 2002b] is to bridge the semantic gap between applications and
FPGAs by providing an algorithmic language called SA-C (Single Assignment
C, pronounced sassy) that is suitable for mapping image processing applica-
tions [Böhm et al. 2002a; Hammes et al. 2001b] onto reconfigurable systems.
The ease of programming in SA-C makes FPGAs and other adaptive computer
systems more readily available to application programmers.

An overview of the SA-C compilation process is shown in Figure 1. The com-
piler translates source code into dataflow graphs (DFGs), which can be viewed
as abstract hardware circuits without timing information. The SA-C DFG-to-
VHDL translator converts the DFG into VHDL, which is processed using com-
mercial synthesis tools to produce an FPGA configuration. The SA-C compiler
also generates the necessary run-time host code to direct the execution of the
program on the reconfigurable processor.

The SA-C compiler applies extensive optimizations [Hammes et al. 2001a;
Draper et al. 2001; Böhm et al. 2001] to the code before producing the DFG.
Like any optimizing compiler, these optimizations often produce a design that
is structurally different than what is implied in the source program; this may
have a significant impact on FPGA resource usage. Some optimizations produce
better (faster and/or smaller) designs in all cases, while others trade off space
vs. time, and can be selectively activated by the programmer. Unfortunately,
since the SA-C compiler produces dataflow graphs that must be processed by

1VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description Language.
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Fig. 2. Typical design flow targeted for FPGAs.

synthesis tools, time and space information about a particular design is not
available until minutes or hours after compilation. In this article, we describe
a compile-time estimation approach applied during the compilation process.
Our technique makes resource estimations available before the DFG-to-VHDL
translation, and takes several orders of magnitude less time to compute than
the commercial synthesis tools. This speed-up allows the estimation to serve as
feedback to aid in further optimizations. Experimental results show that our
technique achieves estimates within 2.5% of the actual design for small image-
processing operators and 5.0% for larger benchmarks. An earlier version of this
work was published in Kulkarni et al. [2002].

The rest of the article is organized as follows: the next section discusses
the motivation for the estimation, while Section 3 presents the details of the
SA-C compiler and the dataflow graphs. Compile-time estimation approach
is presented in Section 4. Experimental results are presented in Section 5.
References to related work are given in Section 6, and Section 7 concludes and
describes some future work.

2. MOTIVATION

Figure 2 shows a traditional design flow used for FPGAs. First, a behavioral
description of the design is coded in a hardware definition language (HDL) such
as VHDL or Verilog. Next, the code is processed by high-level synthesis tools,
followed by placement and routing. If the resulting design does not meet nec-
essary space and timing constraints, it is reworked and the entire process is
repeated. The SA-C language allows the problem to be expressed in an algorith-
mic language, which is a method more familiar to most application program-
mers. This considerably shortens the “top end” of the design cycle. However, the
time-consuming synthesis, placement and routing phases remain in the design
loop—the designer must patiently wait for these steps to finish before knowing
the results of the chosen algorithm and optimizations. This motivates us to look
at a compile-time area estimation approach in the SA-C compilation process.

3. SA-C COMPILER AND DATAFLOW GRAPHS

3.1 Unique Features of SA-C

SA-C is an expression-oriented, single-assignment (functional) language whose
design facilitates translation into hardware descriptions. The compiler can
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Fig. 3. Example of a SA-C program.

readily analyze the source code and extract both fine-grained and coarse-
grained parallelism. SA-C’s syntax is roughly based on C; however, there are
significant differences as well, mostly due to its use as a hardware generation
language. Unique features of the SA-C language include:

—A flexible type system, including signed and unsigned integers of arbitrary
bit-width, and fixed-point numbers.

—Multi-dimensional arrays whose type includes the array size and shape. The
compiler can use this type information about the array to optimize operations
on the array.

—No pointers and no recursion, designed to prevent programmers from apply-
ing Von Neumann models2 that do not map well onto FPGAs.

—Loop generators, which are used in place of the more traditional “loop index
used as an array subscript” to perform operations on arrays.

—Reduction operators that can be applied to data produced in loop bodies, such
as array sum or histogram. Efficient VHDL implementations can be used for
these operators.

A simple SA-C program is shown in Figure 3. This somewhat simplistic
program accepts a 2-D array (named Arr) of 8-bit unsigned integers (i.e., type
uint8) as input. A window generator (for window· · ·) extracts all 3 × 3 subarrays
from the array and sums the elements in each subarray. A new array (r) is
created, with each element being either the sum of the corresponding window
or, if the sum is greater than 100, the sum minus 100.

3.2 SA-C Compiler Optimizations

Figure 4 shows the SA-C compilation process, including the estimation tool. The
user can direct the compiler to perform numerous optimizations before gener-
ating the DFG. Several traditional optimizations—including code motion, con-
stant folding, array and constant value propagation and common subexpression
elimination—minimize the calculations required by the hardware, and always
result in better (faster and/or smaller) code. Function inlining and loop un-
rolling increase parallelism—they usually cause an improvement in the code.
Another set of optimizations (e.g., strip-mining and loop fusion) trade-off speed

2Von Neumann model is the traditional computer architecture model, which consists of the input

unit, output unit, ALU, control unit and the memory unit.
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Fig. 4. Compile-time estimation.

Fig. 5. Generic dataflow graph node.

at the cost of area. The optimizations interact with each other—some optimiza-
tions don’t improve the code themselves, but they enable other optimizations.
Sometimes a seemingly minor optimization can cause significant changes in
the final design. The resource estimation tool allows the user to quickly see the
effects of the selected optimizations.

3.3 Dataflow Graphs and Execution Model

Dataflow graphs can be viewed as abstract hardware circuit diagrams without
timing considerations. The functional elements of a DFG are nodes, shown in
Figure 5. Each node is characterized by a node type, one or more inputs, and
one or more outputs. A DFG suggests a well-defined execution semantic—the
node executes (“fires”) when all of its input values (called “tokens”) arrive;
the firing consumes one value from each input. The output depends only on
these inputs. This execution model works well to describe hardware behavior.

Most DFG nodes represent combinational logic, including arithmetic and
bitwise logical operations, selection (to choose a result from several possibil-
ities), and I/O. However, another group, the generator and reduction nodes,
which implement loop operations, are implemented as sequential processes.
These operations require multiple clock cycles, one or more state machines and
coordination between nodes.

Traditional processors provide a fairly small instruction set that is used to
write applications, and can be executed on the hardware. In contrast, FPGAs
consist of an amorphous mass of configurable cells that can be interconnected
in a large number of ways. In order to limit this number, an abstract machine
is defined. The example shown in Figure 6 serves as a reasonable target for the
compiler during the translation process. The compiler generates some of the
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Fig. 6. Abstract state machine mapped onto FPGA.

modules at compile-time, while others are pre-built modules and are included
from a library in the final design.

The DFG completely specifies the inner loop body (ILB), which is purely
combinational and is built from scratch for each program. A DFG-to-VHDL
translator converts the DFG into VHDL, and also selects the necessary addi-
tional VHDL modules from a run-time library to complete the system; these
modules are parameterized by values determined from the DFG. The memory
arbitrator does the initialization and scheduling of memory accesses, and han-
dles resource contention. The data generator, write-data and memory arbitrator
modules are sequential processes that establish the synchronization and tim-
ing within the system. The translator also creates a “glue” module that wires
the other modules together into a complete system.

The resulting abstract machine executes roughly as follows: data genera-
tor(s) sequentially supply values to the ILB. After waiting for signals to prop-
agate through the ILB, the result values are written to memory. The data gen-
erator and write-data modules are synchronized so that neither section gets
ahead of the other. Usually the data generators are retrieving data from one
area of memory while the write-data modules are writing to another; the mem-
ory arbitrator imposes the most efficient ordering of these overlapping memory
operations.

4. ESTIMATION APPROACH

4.1 Compile-Time Estimation

The abstract machine described above serves as the basis for our resource es-
timation, since it is created in the final step of the compilation process, just
before synthesis and routing occurs. It is relatively easy to precompute the re-
source usage of the prebuilt modules as a function of the parameters and to
save the results in a table. On the other hand, the ILB is unique to each SA-C
program. For these nodes, we apply an estimation technique based on general
formulas. Since the compiler optimizations mainly affect the structure of the
ILB, we estimate the effect of such optimizations on the size of the ILB.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.
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As shown in Figure 4, we apply the estimation model to the DFG and feed
the estimation results back to the compiler to aid in further optimizations. Our
focus is to provide quick and reasonably accurate resource usage estimation of a
SA-C program, so the compiler user can use the estimation feedback to develop
a SA-C program that produces an efficient design that fits on the FPGA.

4.2 Estimation Methodology

Since the DFG does not contain any low-level structural or timing informa-
tion, our estimation tool does not incorporate scheduling, resource allocation or
binding algorithms—the estimation considers only the impact of logic synthesis
tools that are applied to the DFG description. Our estimation method uses a set
of general formulae for each type of DFG node at compile-time to estimate the
resource usage of the SA-C program. The general formula and its coefficients
are stored in a data file called nodeparams. Input to the estimator is the DFG
and this file; the output is the estimated resource usage of the dataflow graph.
The complexity of the estimation algorithm is O(n), where n is the number of
nodes in the DFG.

The following procedure was used in determining the parameter values used
by the estimation model:

(1) Vary the parameters of each type of DFG node and create the corresponding
VHDL instances.

(2) Synthesize these VHDL instances and record the estimations reported by
Synplify.3

(3) Do a regression analysis on the estimation values reported in step 2 to
obtain the coefficients for the node. We do simple linear and nonlinear
regression using the NLREG package.

(4) Record the coefficients in the nodeparams file.

Synthesis tools can be directed to optimize a design in a particular way—
a trade-off of speed vs. space, for example. The estimator currently only uses
the “default” implementation. Multiple implementations could be supported by
storing separate parameters for each implementation.

During compile-time, the estimation program uses the coefficients recorded
for each node to calculate an estimate of the area used by the DFG. Clearly, this
method does not capture the exact timing as produced by the place-and-route.
One question to answer is whether this approach will produce estimates that
are “close enough”—that is, estimates that allow different optimizations to be
considered quickly, yet are accurate enough to provide meaningful feedback.

4.3 Approximation Formulas

The general formulas are parameterized as follows: The value y is the estimated
LUT usage and is typically a function of bit-width (x) and number of input
values (z). Parameters C, p0, p1, p2, c0, c1 are coefficients that result from the
regression analysis; they are recorded in the nodeparams file.

3Synplify is a widely used logic synthesis tool developed by Synplicity Inc.
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Table I. Nodes using Linear Approximation

Name No. of Inputs Description

UADD/IADD 2 Unsigned/signed addition of I0 and I1

USUB/ISUB 2 Unsigned/signed subtraction of I0 and I1

ULT/ILT 2 Unsigned/signed < comparison of I0 and I1

ULE/ILE 2 Unsigned/signed <= comparison of I0 and I1

UGT/IGT 2 Unsigned/signed > comparison of I0 and I1

UGE/IGE 2 Unsigned/signed >= comparison of I0 and I1

UEQ/IEQ 2 Unsigned/signed equality comparison of I0 and I1

UNE/INE 2 Unsigned/signed inequality comparison of I0 and I1

BIT-AND 2 Bit-wise AND of I0 and I1

BIT-OR 2 Bit-wise OR of I0 and I1

BIT-EOR 2 Bit-wise exclusive OR of I0 and I1

Fig. 7. Linear approximation y = p0 + p1∗x, where p0 = 0 and p1 = 1.

The space required for the DFG nodes that make up the inner loop body can
be approximated by one of the following formulas:

Constant: y = C
These nodes synthesize as VHDL signals and provide an interface with the

outside world or memory. They consume a fixed amount of resource on the
FPGA. Example nodes include:

INPUT, (1 input, 1 output): Gets a value from the input channel specified by
input and delivers it to output.
OUTPUT, (2 input, 0 output): Takes a value specified by the first input and
connects it to an output channel specified by the second input.

Linear: y = p0 + p1 ∗ x
Most arithmetic nodes belong to this category. The resource usage is a

linear function of the bit-width (x). DFG nodes shown in Table I perform
arithmetic and bit-manipulation operations. The arithmetic nodes implicitly
treat their inputs as either signed or unsigned integers. Figure 7 shows
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Fig. 8. Quadratic approximation y = p0 + p1∗ (x – p2)2, where p0 = −2.509, p1 = .041, p2 = −0.125.

Table II. Nodes using Bi-Product Approximation

No. of Inputs

Name (nvals) Description

ISUM-MANY 2 Sum the unsigned input values; each input pair represents

a value and a Boolean mask; the arithmetic is performed

at the output port’s bit width

USUM-MANY 2 Sum the signed input values; each input pair represents a

value and a Boolean mask; arithmetic is done at the

output port’s bit width

the LUT usage of UADD node; the other nodes in this group have similar
characteristics.

Quadratic: y = p0 + p1 ∗ (x – p2)2

The resource usage of the nodes in this category is a quadratic function of
the form y = p0 + p1∗(x – p2)2, where x is the bit-width of the node. Examples
include the multiplication nodes UMUL (unsigned) and IMUL. Figure 8 shows
the LUT usage for a 32 bit IMUL node.

Bi-Product: y = (z-p0) ∗ (x−p1)+ p2
The resource usage of these nodes depend on the bit-width (x) and the num-

ber of input values (z). An example is ISUM-MANY, used to compute the sum
of a set of values. Such a node might be employed to implement a loop that
computes the sum of a group of array elements after it has been unrolled.
Table II lists the multi-input arithmetic nodes that use bi-product approxima-
tion. Figure 9 shows the family of curves plotted for bi-product approximation
for ISUM-MANY. We speculate that the number of LUTs increases with the bit
width because of the increased routing congestion that occurs as a result of the
convergence of more signal lines into the LUTs.

MultiLinear2: y = c0 + (c1 ∗ x/2) (z/2 – 1)
The resource usage of these nodes depends on bit-width (x) and the num-

ber of inputs (z). Table III lists the multi-input logic operator nodes that use
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Fig. 9. Curves for Bi-product approximation (ISUM-MANY). Note: nvals refers to the number of

inputs.

Table III. Nodes using Multilinear2 Approximation

Name Inputs Description

AND-MANY Var ‘and’ the input values; each input pair represents a value and a

Boolean mask

OR-MANY Var ‘or’ the input values; each input pair represents a value and a

Boolean mask

multilinear2 approximation. These nodes allow an arbitrary number of input
values, each with an associated Boolean mask value.

Figure 10 shows the family of function values for an instance of AND-MANY
nodes.

4.4 Estimation Heuristics

Most synthesis tools do timing and resource optimization, wherein they try to
make the design as small and as fast as possible. These tasks are very complex
because they entail the solution of intractable problems. Our approach does not
attempt an exact solution to such problems. Rather, our emphasis is to provide
quick but reasonably accurate estimation of the resource area, and leave the
complexity of the mapping to the synthesis phase. However, an estimator that
does not account for some of the optimizations will produce results that are not
accurate enough to be useful.

To account for such situations, we introduce heuristics in our compile-time
estimation algorithm. These heuristics are based on structural patterns that
are frequently produced during synthesis optimization. When such a pattern is
found, we replace the estimates for the individual nodes with a single estimate
for the pattern. This process requires one additional pass over the DFG and
does not increase the complexity of the algorithm. We describe two of these
patterns in the following paragraphs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.
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Fig. 10. Curves for multilinear2 approximation (AND-MANY). Note: nvals refers to the number

of inputs.

Fig. 11. Comparison nodes optimized during synthesis.

Multiplication by Constants
When a multiplication operation appears in a SA-C program, the compiler

generates a UMUL node in the corresponding DFG. Since multiplication is an
expensive operation, many but not all are removed via the strength reduction
optimization. If the multiplication is by a constant that is a combination of
powers of 2, then the synthesis tool optimizes it as a shift operation, thereby
eliminating the very expensive gate level description for the UMUL node. To
account for this optimization, we identify the pattern at the DFG itself and
incorporate the optimization by avoiding the estimation of UMUL node.

Comparison Nodes
In many cases, a node such as ULT (unsigned less than) or UGT (unsigned

greater than) is created to perform a general comparison between two values.
Depending on the values being compared, the comparison logic can be optimized
by the synthesizer. Figure 11 shows the translation of the SA-C statements
val1 = a + b; if (val1 > 255) val2 = 255 else val2 = val1—this is a common
operation in image processing called saturation arithmetic. The output of an
unsigned adder (UADD) is compared to check if it is less than or equal to 255
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(11111111b) and this result is used to select the right-hand value in the SE-
LECTOR node. In the optimized circuit, the most significant bit of the adder
output is directly fed to the multiplexer.

5. EXPERIMENTAL RESULTS

Three sets of experiments demonstrate the effectiveness of our estimation
method. The first set consists of several simple but common image process-
ing (IP) operations. The second set shows application to larger image processing
benchmarks. In the third, we explore the impact of discretionary and aggressive
compiler optimizations on our estimation of resource usage. All benchmarks
used in this paper are compiled for Annapolis Micro System Inc.’s WildStar
board [Annapolis 2000]. This board uses the Xilinx Virtex (XCV1000) FPGAs
[Xilinx 2000], each with an equivalent of 1 million system gates per chip. There
are 27648 4-input LUTs in each FPGA. The results show that our compile-
time estimation technique is fast and produces estimates that are reasonably
accurate.

5.1 Image-Processing Operators

A set of IP operations were defined during SA-C’s development [Draper et al.
2001; Böhm et al. 2001] to evaluate language expressiveness and performance;
they were chosen to be representative of simple IP operations that can be used
to form more complex applications. For this experiment, we wrote the primitives
in SA-C and compiled them as individual programs. Each operator was then
synthesized using Synplify. Table IV compares the results with our estimator.

The average execution time for the estimator is only 1 millisecond. Runtime
for Synplify ranged from 1 to 5 minutes, with the average being around 2 min-
utes, for the listed operators. The estimator produces results that are within
2.5% of actual, on average; worst case resulted in an error of just over 6%. We
believe these results are accurate enough to serve as a good estimate for the IP
operators. Weighted error is calculated as the absolute error between the sum
of all the Synplify estimations and the sum of all our compile-time estimations.

5.2 Image-Processing Benchmarks

More complex IP applications are written using the simple image processing
operators. Two or more primitives in a sequence provides a greater opportu-
nity for the SA-C compiler to perform optimizations. Optimizations cause the
inner loop bodies of the individual routines to be transformed and restructured;
thus the resource estimation is a more challenging problem. The following IP
applications were used in the experiment:

—Open is defined as two steps: dilation followed by erosion. Close is the re-
verse process. Since dilation and erosion each involve a loop, the two used in
sequence provide an opportunity for loop fusion.

—Wavelet is a common image compression algorithm. The version implemented
in SA-C is based on the Cohen-Daubechies-Feauveau wavelet algorithm
[Cohen et al. 1992].
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Table IV. Results for IP Operators

Synplify Estimation Cameron Estimation

Benchmark (# of LUTs) (# of LUTs) % Error

AddD 1124 1150 2.31

AddM 879 917 4.32

Convolution 1783 1860 4.32

Convolution5 3235 3269 1.05

Convolutionsm 2609 2616 0.27

Dilation 1365 1451 6.30

Erosion 1373 1451 5.68

Gaussianfilter 1117 1125 0.71

Laplacefilter3 × 3 1198 1247 4.09

Max 821 832 1.34

Maxfilter 1407 1436 2.06

Min 867 832 4.04

Minfilter 1230 1200 2.44

Mp4 1150 1154 0.35

MultiplyM 920 958 4.13

MultiplyD 1171 1182 0.94

Prewitt 1083 1020 5.82

Prewittmag 1815 1792 1.27

Reduce 1013 1016 0.30

Robertsmag 1441 1414 1.87

Sobelmag 1943 1921 1.13

Sqrt 984 944 4.07

SubtractD 1121 1123 0.18

SubtractM 865 901 4.16

Threshold 911 903 0.88

Average Error: 2.56% Weighted Average Error: 0.86%

Table V. Benchmark Results

Benchmark Synplify Estimation (# of LUTs) Cameron Estimation (# of LUTs) % Error

Open 4500 4780 6.22

Close 4500 4780 6.22

Wavelet 2172 2065 4.93

Tridiagonal 7476 7188 3.85

Average Error: 5.30% Weighted Average Error: 0.88%

—The tridiagonal code solves the matrix equation [A] • [X] = [B]. The basic
idea is to use the tridiagonal matrix A[8,8] as input, calculate [B] and then
solve [A] • [X] = [B] iteratively to obtain [X].

Open is composed of erosion operation followed by dilation, but when the two
loops are fused, it runs twice as fast as the individual routines, at the expense
of more area. In wavelet and tridiagonal, the loops are fully unrolled to exploit
more parallelism. Table V shows the results of the estimation tool versus syn-
thesis. This is a challenging problem; nonetheless our estimator comes within
about 6% of the actual space used by the design.

Table VI shows timing results; the synthesis tool takes 6.2 minutes on an av-
erage to do the synthesis and mapping. Our estimator takes only 1 millisecond
to do the estimation.
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Table VI. Comparison of Estimation Time

Benchmark Synthesis Time Cameron Estimation Time

Open 3.4 mins 1 millisec

Close 3.4 mins 1 millisec

Wavelet 8.3 mins 1 millisec

Tridiagonal 10.0 mins 1 millisec

Average 6.2 mins 1 millisec

Fig. 12. Convolution.

5.3 Effect of SA-C Compiler Optimizations

This final set of experiments demonstrates the performance of the estimation
tool in more complicated algorithms. These are representative of ‘real-world’
applications that the SA-C compiler may be called upon to implement. Estima-
tion is tricky in this scenario, since the final structure of the DFG produced
by the compiler is significantly different from the original program, due to the
extensive optimizations performed by SA-C.

Example 1. The first example examines the effect of strip-mining on the
resource usage of the design. We use the convolution routine shown in Figure 12,
which does a 3 × 3 convolution of an image with kernel. We do estimation of this
SA-C code for the default case (no strip-mining) and then strip-mine the loop
for windows of sizes [4,3], [5,3], [6,3], [7,3], [8,3] and [20,3] (indicated via a
PRAGMA4).

Table VII shows the resource usage using the various strip-mining choices.
Loop strip-mining followed by full loop unrolling produces the effect of multidi-
mensional partial loop unrolling. In this example, strip-mining reduces the total
number of consecutive iterations by exploiting loop level parallelism, at the cost
of larger area. An application programmer can quickly use this estimation to
determine the size of the window, and hence the degree of parallelism, that can
be used in strip-mining the inner loop body. Without fast estimation, it would
take hours, if not days, to test each design.

Another important property of the estimation techniques is fidelity. The es-
timator’s fidelity is highest if, for a single design that has had been optimized
in several ways, or for several different designs, it predicts a ranking of the
resource usage of the designs that is in the same order as that which occurs

4PRAGMAs in SA-C source code allow control of individual optimizations.
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Table VII. Strip-Mining Results

Synplify Estimate Cameron Estimate % LUT used on

Convolution (# of LUTs) (# of LUTs) % Error Virtex XCV1000

No strip-mining 1783 1949 9.3 7.04

Strip-mine(4,3) 2609 2794 7.09 9.43

Strip-mine(5,3) 3458 3516 1.67 12.71

Strip-mine(6,3) 4269 4134 3.16 14.95

Strip-mine(7,3) 5122 4980 2.77 18.01

Strip-mine(8,3) 6709 5686 4.5 20.56

Strip-mine(20,3) 15883 14727 7.2 53.26

Average Error: 5.09% Weighted Average Error: 5.26%

Fig. 13. Prewitt and threshold (two independent loops).

with the actual synthesis. In other words, even when the estimator’s absolute
estimates are inaccurate, the estimator still produces meaningful results if the
relative accuracies are consistent with one another. Fidelity is important in
iterative design optimizations since it provides the correct guidance to the op-
timization tasks. The results reported in Table VII show that the estimator
correctly predicts the relative impact of design optimization steps.

Example 2. In this example, we present the effect of both loop fusion and
strip-mining on a combination of prewitt and threshold. We examine the es-
timation reported for three cases: (a) independent loops, (b) loop fusion, and
(c) a combination of strip-mine and loop fusion, for the SA-C code shown in
Figure 13. When no loop fusion is applied, two loops run on the reconfigurable
board, one of them being activated multiple times.

The performance of many systems is often limited by the time required to
move data to the coprocessor. Loop fusion is helpful in this case, since it elim-
inates intermediate data storage and therefore reduces data traffic. Figure 14
shows the two loops after they are manually unrolled and fused; the equivalent
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Fig. 14. Prewitt + Threshold (loops fused).

Fig. 15. Prewitt and threshold (loops strip-mined).

of this optimization can be activated in SA-C by a pragma. The result is only
one loop running on the reconfigurable board that is activated only once. Loop
fusion sometimes does redundant computation. If FPGA space is plentiful, this
is not a problem since the computation is done in parallel. If space is scarce,
then other optimizations can be applied to remove the redundancies.

Loop strip-mining followed by full loop unrolling produces the effect of mul-
tidimensional partial loop unrolling. Figure 15 shows the result of manually
strip-mining the loops. This optimization wraps the original loop inside a new
loop with a 4 × 3 window generator. Strip-mining results in a single loop run-
ning on the reconfigurable board that requires only half the number of iterations
than in the earlier case. Thus, new loops are created during optimization, and
the resource usage is affected depending on the window size.

Table VIII shows the estimation results (per loop iteration). When the two
loops are independent, 1644 LUTs are used. Fusing the two loops reduces this
to 1063 LUTs and improves execution performance, since fewer iterations are
now required.

This example is a small piece of code that appears in the larger tridiagonal
algorithm; compile-time estimation becomes more crucial in larger algorithms.
They might contain hundreds of loops and a large number of optimization com-
binations can be performed on them. Quick estimations are necessary in order
for the programmer to search for the best solution.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.



120 • D. Kulkarni et al.

Table VIII. Prewitt +Threshold Area Estimation

Type of Optimization on Prewitt + Threshold Estimated LUT Usage % Area on XCV1000

Independent Loops 1644 1.28

Loops fusion (default) 1063 0.83

Loop fusion + Strip-mine(4, 3) 1280 1.00

In the case of large programs, we have had reasonable success in using the
speed vs. space optimizations, up to around 75% FPGA utilization. This success
is due partly to our original “tweaking” of the VHDL code that implements
the DFG nodes—some implementations appear to compile more reliably than
others with Synplify.

The estimator can also be used in a “hybrid” approach, combining both esti-
mator and actual synthesis results. Using the techniques described in Xu and
Kurdahi [1996] and Ohm et al. [1994, 1995], more accurate estimation of timing
can be applied at the “outer loop” of the compilation procedure after a design
has been synthesized. This requires performing a synthesis step, but only on
the relatively simpler outer loop.

6. PREVIOUS WORK

Xu and Kurdahi [1996] have developed a strategy for accurate prediction of
quality metrics for FPGA based designs. Given a netlist description, the tool
estimates the area of the design in terms of configurable logic blocks. The FPGA
timing estimator uses placement information and area approximation to esti-
mate the timing. The average estimation error in delay in this scheme is about
5.3%, while the worst-case error is 13.2%. Moreover, the experiment takes 1 to
2 orders of magnitude less time to compute than the synthesis tools.

The idea of lower bound area estimation from behavioral descriptions for
multiplexer-based and bus-based architectures is explored in Ohm et al. [1994,
1995]. The behavioral description is expressed as a dataflow graph, and the total
performance and clock period expressed in real time are given as constraints.
Given all this information the tool estimates the lower bounds on the number
of functional units of each type, the number of registers and the number of
buses.

A power estimation approach for SRAM-based FPGAs is discussed in Weis
et al. [2000]. The authors infer that if finite state machines dominate the struc-
ture, then the power estimation approach can be successfully applied. If the
structure has more combinational logic, then the algorithm fails.

In Kannan et al. [2002], the authors propose a uniform reporting metric
for routability estimation. Although interconnect management is an important
issue, we consider it to be orthogonal to our work.

Estimating area and performance for FPGAs at DFG level is explored in
Enzler et al. [2000]. The presented approach is however for static designs only.

Although the results presented in Shayee et al. [2003] are preliminary, the
authors seem to explore an approach that is very similar to our overall frame-
work. The authors examine the effect of various program transformations on
the I/O resources available on the FPGA.
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7. CONCLUSION

In this article, we have presented a compile-time area estimation approach for
LUT-based FPGAs. The estimation model was developed to aid the SA-C pro-
grammer in selecting optimizations that affect the resource usage of a SA-C pro-
gram. Our estimation approach operates at a much higher level—DFG rather
than the netlist representation. The algorithms we use are not as complex as
the ones used in the commercial synthesis tools, but the estimates can be found
must faster. We have successfully demonstrated our estimation technique on
a variety of both simple and more complex benchmarks, with experimental re-
sults indicating that our technique achieves an accuracy within around 2.5% for
small image-processing operators and 5.0% for larger benchmarks. The worst-
case error we have observed is slightly over 10%. Importantly, our estimator
achieves good fidelity, or relative prediction accuracy. The time required for our
estimates is no more than milliseconds, as compared to minutes for a synthesis
tool, thereby providing the SA-C programmer with the information needed to
try numerous optimizations on a design. Even though the estimates that our
tool computes are specific to the Xilinx Virtex (XCV1000) FPGA, it can be easily
modified to work for a variety of other FPGAs.
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HAMMES, J., BÖHM, W., ROSS, C., CHAWATHE, M., DRAPER, B., AND NAJJAR, W. 2001a. High perfor-

mance image processing on FPGAs. In Proceedings of the Los Alamos Computer Science Institute
Symposium. Santa Fe, NM.
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