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ABSTRACT
Many important applications, such as those with indi-
rect memory references or sparse data structures, have
memory reference patterns which are unknown at compile-
time. To exploit locality in such applications, prior
work has developed run-time reorderings to transform
the computation and data.

This paper presents a compile-time framework that al-
lows the explicit composition of run-time data and iter-
ation reordering techniques for locality. Our framework
builds on the iteration reordering framework of Kelly
and Pugh to represent the effects of a given composi-
tion. Using this representation, data need be remapped
only once at runtime for a given composition. Since
sparse tiling techniques (developed by us and others)
are included in our framework, they become more gen-
erally applicable, both to a larger class of applications,
and in their composition with other reordering trans-
formations. We show that new compositions suggested
by our framework can result in better overall perfor-
mance than previous work on three application bench-
marks. For instance, composing intra-loop transforma-
tions with sparse tiling techniques can improve inter-
loop locality. Our experiments show that significant
performance improvements can result, with little in-
crease in overhead.

1. INTRODUCTION
Data locality and parallelism are essential for improv-
ing the performance of applications on current architec-
tures. Data and loop transformations can fu rther both
goals. Until recently the focus has been primarily on
compile-time transformation frameworks [15, 24, 14, 4,
12, 13, 29, 11, 28] restricted to affine loop bounds and
affine array references.

One such framework is that of Kelly and Pugh [12],
which represents loop nests as iteration spaces. A com-
piler can use their framework to transform iteration
spaces and implement corresponding data reorderings.
The legality of such transformations is determined by
the data dependences of the program. Previous compile-
time frameworks (such as theirs) do not handle non-
affine memory references. Nevertheless, such memory
references occur in many important applications, such
as sparse matrix computations and unstructured mesh
applications [18]. Fortunately, the Kelly and Pugh frame-
work allows the description of indirect memory refer-
ences (such as A[B[i]]) through the use of Presburger
arithmetic with uninterpreted function symbols [20]. We
exploit this ability to specify data mappings and depen-
dences between interations involving indirect memory
references.

Describing the effect of run-time iteration and data re-
orderings in a compile-time framework provides sev-
eral advantages. First, both run-time and compile-time
transformations can be described in the same frame-
work. Secondly, it may be possible to reduce the number
of times the data is moved to new locations at runtime,
even when using several reordering transformations.

We build on the Kelly and Pugh framework to describe
the effects of run-time data and iteration reordering
transformations for locality, which include consecutive
packing [6], graph partitioning [9], bucket-tiling [18],
lexicographical grouping [6], full sparse tiling [26], and
cache blocking [7]. We show how the symbolic effect of
a run-time transformation can be propagated to rele-
vant data mappings and dependences. Given a selected
composition of run-time reorderings, the resulting data
mappings and dependences can be used by any sub-
sequent choice of run-time transformation. While this
paper focuses on data locality, our framework can also
be used to describe run-time transformations for paral-
lelism as well.

Formalizing run-time iteration and data reorderings is
only one step towards our goal of automating the cre-
ation of composite runtime transformations for sparse
computations. Still needed are methods of automati-
cally generating runtime inspectors for a variety of source



code idioms. Another key component is guidance mech-
anisms that decide when to apply which sequence of
transformations. Nevertheless, we believe that the frame-
work presented here helps make such a system possible,
and our experiments (on the IRREG, NBF, and MOL-
DYN benchmarks [9]) illustrate that, in some cases,
large performance improvements can be made.

Summarizing, this paper makes the following contribu-
tions:

• We show how to use an existing compile-time frame-
work to describe a number of run-time iteration
and data reordering transformations that focus on
intra-loop locality. We also show how this ap-
proach leads to new combinations of optimizations.

• We show that sparse tiling techniques, which im-
prove inter-loop locality, can be described in this
framework. As a result, sparse tiling can be ap-
plied to a larger class of programs (until now, it
has only been applied to Gauss-Seidel).

• We give experimental results (using hand-coded
versions which we believe can ultimately be au-
tomatically generated) that show that significant
performance improvements can result from the com-
bined transformations.

Section 2 reviews the terminology for the Kelly and
Pugh iteration reordering framework using an example
irregular kernel (used throughout the paper). Section 3
illustrates iteration and data reordering transformations
on a single loop. We present new combinations of these
run-time transformations that can result in less over-
head and improved performance. In section 4 we show
how sparse tiling in combination with other run-time
transformations can be applied to multiple outer loop
iterations, and can result in even better performance
with little increase in overhead. Section 6 describes re-
lated work. Finally, in section 7 we discuss future work
and conclude.

2. FRAMEWORK TERMINOLOGY
In this section, we review the Kelly-Pugh iteration re-
ordering framework terminology using an example irreg-
ular computation. Figure 1 shows a simplified version
of the Moldyn kernel, which is a molecular dynamics
code. The loop containing statement S1 makes a copy
of the data array y into the data array y. Then the j

loop visits the left and right arrays, which give pairs
of molecules that are close enough to interact. Typically
the number of interactions is a small percentage of the
total possible number of interactions. Previous work [6,
9] refers to left and right as the access or index arrays,
and x and y as base or data arrays.

2.1 Loops, Statements, and Data
The traditional literature on loop transformations rep-
resents each iteration within a loop nest as an integer
tuple, [i1, ..., in], where ip is the value of the iteration

do t = 1 to num steps

do i=1 to num nodes

S1 x[i] = y[i]

enddo

do j=1 to num inter

S2 y[left[j]] += f(x[left[j]], x[right[j]])

S3 y[right[j]] += f(x[left[j]], x[right[j]])

enddo

enddo

Figure 1: Simplified Moldyn Example

variable for the pth loop. Thus, it is a set of integer
tuples with constraints indicating the loop bounds.

{[i1, ..., in]|lb1 ≤ i1 ≤ ub1 ∧ · · · ∧ lbn ≤ in ≤ ubn}

This representation is not particularly convenient for
representing transformations that operate on a collec-
tion of loops that are not perfectly nested. For instance,
there are two traditional iteration spaces in the code
shown in figure 1. Ahmed et. al. [1] and Kelly-Pugh [12]
suggest two different methods for constructing a uni-
fied iteration space. In this paper we illustrate the our
methods using the Kelly-Pugh method. For the sim-
ple Moldyn example, they would use a four-dimensional
space. Each loop corresponds to a pair of dimensions,
where the first dimension of the pair is a value of the
index variable, and the second is a number representing
the statement within the loop. A program executes its
iterations in lexicographic order of the unified iteration
space.

For instance, using this representation, the [t, j]-th iter-
ation of S2 is denoted [t, 2, j, 1] since S2 is in the second
statement of the outer loop, and it’s the first statement
of the inner loop. The unified iteration space I0 for the
(untransformed) program is the following set:

I0 = {[t, 1, i, 1] | 1 ≤ t ≤ num steps

∧ 1 ≤ i ≤ num nodes} ∪
{[t, 2, j, q] | 1 ≤ t ≤ num steps

∧ 1 ≤ j ≤ num inter ∧ 1 ≤ q ≤ 2}

Next we will define data mappings and dependences for
the unified iteration space.

2.2 Data Mappings
Each array has an associated data space represented
with a integer tuple set with the same dimensionality
as the array. The simplified Moldyn example contains
4 data spaces:

x0 = {[i] | 1 ≤ i ≤ num nodes}
y0 = {[i] | 1 ≤ i ≤ num nodes}

left0 = {[i] | 1 ≤ i ≤ num inter}
right0 = {[i] | 1 ≤ i ≤ num inter}



The subscripts “0” are used here since these are the
arrays used in the original, untransformed program.

Define a data mapping MI0→a from iterations to sets
of storage locations in an array a, so that for each it-
eration p ∈ I0, MI0→a(p) is the set of locations that
are referenced by iteration p. Notice that the subscript
“I0 → a” gives the domain and range of the mapping.

The Moldyn example has the following data mappings:

MI0→x0 = {[t, 1, i, 1] → [i]}
∪ {[t, 2, j, q] → [left(j)]}
∪ {[t, 2, j, q] → [right(j)]}

MI0→y0 = {[t, 1, i, 1] → [i]}
∪ {[t, 2, j, 1] → [left(j)]}
∪ {[t, 2, j, 2] → [right(j)]}

MI0→left0 = {[t, 2, j, q] → [j]}
MI0→right0 = MI0→left0

Figure 2 uses circles to represent the iterations of state-
ments S1 and S2. The dotted lines indicate some of the
data mapping relationships.

2.3 Dependences
Define the dependences DI to be the set of directed
edges between iterations that represent dependent com-
putations. For example, the dependences between state-
ments S1 ([t, 1, i, 2]) and S2 ([t, 2, j, 1]) due to the x and
y arrays are specified with the following dependence re-
lation.

DI0→I0 = {[t, 1, i, 1] → [t′, 2, j, 2] | t ≤ t′

∧ (i = left(j) ∨ i = right(j))}

The arrows in figure 2 represent these dependences.

3. MANIPULATING AND COMBINING
RUN-TIME TRANSFORMATIONS

Many run-time transformations make use of inspectors.
An inspector is code that examines run-time informa-
tion (often some of the program’s index arrays) to pro-
duce a reordering, which will later be applied to data
mappings (in the case of a data reordering transforma-
tion) or to the order that iterations will be executed (for
an iteration reordering.) Figure 3, described later, is an
example of an inspector.

With compile-time transformations, it is only neces-
sary to manipulate the mapping from program state-
ments to a unified iteration space to show the compo-
sition of various compile-time transformations. With
run-time transformations, an inspector may take as in-
put a reordering that was produced by an earlier inspec-
tor. Thus, we want our framework to describe the data
mappings and dependences in effect at all stages of the
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Figure 2: Iteration space for i and j loops of
Moldyn example. Here, circles represent itera-
tions of statements S1 and S2 inside one itera-
tion of the outer loop. Arrows represent depen-
dences between the iterations, and dotted lines
represent the data mapping.

transformation process. However, it may not be neces-
sary to implement every data reordering at runtime. For
instance, rather than reordering an array several times,
it may be possible to compose the reorderings, then ap-
ply a remapper at the end. This can be a substantial
savings, particularly when each element of a data array
is a large structure.

It is up to the compiler to judiciously choose when to
apply a remapper to a data array, and when it can be
postponed or avoided. Our framework lets the compiler
explore these possibilities by expressing the effects of
each run-time reordering transformation as a mapping
from an iteration space (either given by the original ex-
ecution order or after some transformations have been
applied) to another unified iteration space.

Formally, an iteration reordering transformation is a
mapping TI→I′ that assigns each iteration p of iteration
space I to iteration TI→I′(p) in a new iteration space I ′.
The new execution order is given by the lexicographic
order of the iterations in I ′.

When we consider a iteration-reordering transforma-
tion, we must verify that the new execution order re-
spects all the dependences of the original. Thus for each
{p1 → p2} ∈ DI→I , TI→I′(p1) must be lexicographically
earlier than TI→I′(p2).

The dependences DI′→I′ of the new iteration space are
given by

DI′→I′ = {TI→I′(p1) → TI→I′(p2) | p1 → p2 ∈ DI→I}

and the new data mapping MI′→a for each array a is



given by

MI′→a = {TI→I′(p) → MI→a(p) | p ∈ I}

Having constructed the new dependences and data map-
pings, we are ready to plan further run-time transfor-
mations.

A data reordering transformation corresponds to an-
other mapping Ra→a′ , where the data that was origi-
nally stored in location m is relocated to Ra→a′(m). We
do not need to consider the legality of a data mapping
- any one-to-one data remapping is legal. A corollary is
that the data dependences do not change after a data
reordering.

After remapping an array a, new data mapping MI→a′

is given by

MI→a′ = {q → R(m)|m ∈ MI→a(q)}

The next sections illustrate how to specify the effects of
applying several intra-loop run-time data and iteration
reordering transformations for the simplified Moldyn ex-
ample. Figure 5 give pseudo-code for the resulting com-
posed inspector, which will be referred to throughout
the section.

3.1 Run-Time Data Reordering
Given a loop with indirect memory references, run-time
data reordering techniques attempt to improve the spa-
tial and temporal data locality in the loop by reordering
the data based on the order in which it is referenced in
the loop. Consecutive packing (CPACK [6]) and graph
partitioning (Gpart [9]) are two example data reorder-
ing transformations discussed in this paper. Other run-
time data reordering transformations include Reverse
Cuthill-McKee [5, 2] and space-filling curves [25, 17].

A CPACK inspector traverses the data mappings for the
loop with indirect memory references in lexicographical
order of the loop iteration space. The first time the
loop touches a piece of data, that data is packed into the
next location for the new data mapping. Figure 3 shows
the CPACK inspector code specialized for the original
data mapping MI0→x0 (specified in section 2.2) for the
simplified Moldyn example. This specialized CPACK
inspector is called by the composed inspector in figure 5.

Iteration run-time reordering inspectors for intra-loop
locality can also be implemented by traversing these
data mappings. This key insight allows us to describe
many run-time data and iteration transformations within
the same framework, and is the first step towards auto-
matic generation of specialized inspectors.

The effect of CPACK can be specified at compile-time
by changing all the data mappings which involve the
array being reordered. In the simplified moldyn exam-
ple, it makes sense to construct the same reordering for
the x and y arrays. Let Rx0→x1 = {i → σcp(i)} spec-
ify the run-time data reordering on the arrays x and y,

CPACK M I0 to x0(left,right)

// initialize alreadyOrdered bit

// vector to all zeros

do j=1 to num inter

mem loc1 = left[j]

mem loc2 = right[j]

if !alreadyOrdered(mem loc1)

sigma cp inv[count] = mem loc1

alreadyOrdered(mem loc1) = true

count = count + 1

endif

if !alreadyOrdered(mem loc2)

sigma cp inv[count] = mem loc2

alreadyOrdered(mem loc2) = true

count = count + 1

endif

enddo

return sigma cp inv

Figure 3: First CPACK inspector for moldyn

where x0 is the x array in its original order, and x1 is
the reordered x array. The new data mapping, MI→x1 ,
is specified as follows.

MI0→x0 = {[t, 1, i, 1] → [σcp(i)]}
∪ {[t, 2, j, q] → [σcp(left(j))]}
∪ {[t, 2, j, q] → [σcp(right(j))]}

Partitioning algorithms like Gpart [9] logically operate
on a graph where each data location is a node. There
is an edge between two nodes whenever their associated
data is touched within the loop with indirect memory
references. Gpart is a heuristic partitioning algorithms
which attempts to make partitions of the graph. The
goal is to make the data associated with one partition
fit into (some level of) cache.

A data reordering based on Gpart σgp orders data within
the same partition consecutively. In the simple moldyn
example, a Gpart data reordering will change the iter-
ation to data space mappings and data dependences in
the same way CPACK did, just replace σcp with σgp.

3.2 Run-Time Iteration Reordering
Typically a iteration reordering of a loop with indirect
memory accesses follows a data reordering like CPACK.
Both techniques improve the locality within the loop –
intra-loop locality.

The goal of iteration reordering is to reorder the loop
which contains the indirect memory references based on
the order in which the loop will touch the data.

One such iteration reordering is lexicographical group-
ing (lexGroup) [6]. In lexGroup all of the computations



which index into one data location are executed before
moving on to the computations touching the next data
locations. The lexGroup inspector takes into account
any previously created data reordering. Therefore, lex-
Group will iterate over the data mappings which include
the σcp function if lexGroup is performed after CPACK.

The iteration reordering of the i loop and the j loop
based on their mappings to the data arrays x and y is
specified as follows.

TI0→I1 = {[t, 1, i, 1] → [t, 1, σcp(i), 1]}
∪ [t, 2, j, k] → [t, 2, σlg(j), k]}

Notice that reordering the i loop does not require any
extra code in the composed inspector (figure 5). Since
each iteration of the i loop directly maps to the x and y

arrays, the reordering function generated for them, σcp,
can also be used to reorder the i loop.

This reordering is legal because there are no depen-
dences in either loop which disallow reordering of the
loop. Only reduction dependences occur between itera-
tions of the j loop.

The data mappings for our example code change again,
due to the iteration reordering.

MI1→x′ = {[t, 1, i, 1] → [σcp(i)]}
∪ {[t, 2, σlg(j), q] → [σcp(left(j))]}
∪ {[t, 2, σlg(j), q] → [σcp(right(j))]}

The data dependences change as well. Below we show
the effect of reordering the j loop on the data depen-
dences between S1 and S2.

DI1→I1 = {[t, 1, i, 1] → [t′, 2, σlg(j), 2] | t ≤ t′

∧ (i = left(j) ∨ i = right(j))}

3.3 Benefits of compile-time descriptions
With a compile-time description of the effects of a run-
time data or iteration reordering, it is possible to plan
compositions of run-time transformations and generate
code for the composed data remappings at the end of
all inspection.

When combining run-time transformations, specific in-
stances of the relevant inspectors can be created to take
into account changes to the data space mappings and
dependences incurred by the previously planned inspec-
tor. The explicit description of how various run-time
mappings affect each other suggests different combina-
tions which have not been tried before. For example, it
is possible to execute another CPACK data reordering
after executing CPACK and lexGroup.

Figure 4 shows how the second CPACK inspector is spe-
cialized to traverse the current data mappings MI1→x1 .
The second CPACK inspector will specify a data re-
ordering Rx0→x2 = {i → σcp2(i)}, where x0 is the x

array in its original order.

CPACK M I1 to x1(left,right,sigma cp,

sigma lg inv)

// initialize alreadyOrdered bit

// vector to all zeros

do k=1 to num inter

mem loc1 = sigma cp[left[sigma lg inv[k]]]

mem loc2 = sigma cp[right[sigma lg inv[k]]]

if !alreadyOrdered(mem loc1)

sigma cp2 inv[count] = mem loc1

alreadyOrdered(mem loc1) = true

count = count + 1

endif

if !alreadyOrdered(mem loc2)

sigma cp2 inv[count] = mem loc2

alreadyOrdered(mem loc2) = true

count = count + 1

endif

enddo

return sigma cp2 inv

Figure 4: Second CPACK inspector for moldyn

Manipulating mapping arrays (sigma cp, sigma lg, etc.)
at run-time allows us to explicitly wait until all inspec-
tion is complete to reorder the data. The composed
inspector in figure 5 reorders the data and index arrays
accordingly after all data and iteration reorderings have
been computed. Not shown in this example, but imple-
mented in the experiments, it is possible to do another
data reordering after the sparse tiling inspector.

4. GENERALIZED SPARSE TILING
Sparse tiling techniques, full sparse tiling [26] and cache
blocking [7], were developed for an important kernel
used in Finite Element Methods, Gauss-Seidel. Sparse
tiling results in run-time generated tiles or iteration
slices [21] which cut across loops that only touch a sub-
set of the total data. By performing a iteration reorder-
ing based on the sparse tiling, inter-loop locality can
improve. Intuitively, sparse tiling is applicable anytime
a pair of loops share an outer loop (in order to amortize
the overhead of run-time iteration reordering) and there
are dependences between the the inner loops.

Sparse tiling differs from the previously discussed iter-
ation reordering transformations in four ways.

• Sparse tiling improves the inter-loop data locality
whereas the other techniques discussed in this pa-
per only affect the data locality within individual
loops, intra-loop data locality.

• Until now, sparse tiling techniques have only been
applied to Gauss-Seidel. By specifying the effect
of sparse tiling within our composition framework,
the legality of applying sparse tiling in any code
is possible.



// Specialized Inspector Sequence

// First application of CPACK

sigma cp inv = CPACK M I0 to x0(left0,

right0)

sigma cp = calcInverse(sigma cp inv)

// Application of lexGroup

sigma lg = lexGroup M I0 to x1(left0,

right0,sigma cp)

sigma lg inv = calcInverse(sigma lg)

// Second application of CPACK

sigma cp2 inv= CPACK M I1 to x1(left0,right0,

sigma cp,sigma lg inv)

sigma cp2 = calcInverse(sigma cp inv)

// Reorder index arrays to implement

// mapping generated by lexGroup

left1 = remapArray T I0 to I1(left0,

sigma lg)

right1 = remapArray T I0 to I1(right0,

sigma lg)

// Adjust values in index arrays to

// reflect final data mapping

left2 = adjustIndexArray R x0 to x2(

left1,sigma cp2)

right2 = adjustIndexArray R x0 to x2(

right1,sigma cp2)

// Reorder data arrays to reflect

// final data mapping

x2 = remapArray R x0 to x2(x0,

sigma cp2)

y2 = remapArray R x0 to x2(y0,

sigma cp2)

// transformed simplified Moldyn code

do t = 1 to num steps

do i = 1 to num nodes

x2[i] = y2[i]

enddo

do j = 1 to num inter

y2[left2[j]] += x2[left2[j]]

- x2[right2[j]]

y2[right2[j]] += x2[left2[j]]

- x2[right2[j]]

enddo

enddo

Figure 5: Composed inspector for CPACK fol-
lowed by Lexgroup

• Whereas run-time data and iteration reorderings
are realized with inspectors which traverse the data
mappings, sparse tiling inspectors traverse the data
dependences between two loops (or one loop with

self-dependences carried by an outer loop).

• Sparse tiling can also be used to provide paral-
lelism which results in better performance than
typical owner-computes methods [27].

In the simplified Moldyn example, applying sparse tiling
after the CPACK, lexGroup, CPACK, series of run-time
transformations described in section 3 can be specified
with the following iteration-reordering transformation,
where θ is the tiling function.

TI1→I2 = {[t, 1, i, 1] → [t, θ(1, i), 1, i, 1]}
∪[t, 2, j, k] → [t, θ(2, j), 2, j, k]}

The composition of lexGroup with sparse tiling is de-
termined by applying TI1→I2 to TI0→I1 .

Sparse tiling starts with a seed partitioning of iterations
in one of the loops. If other data and iteration reorder-
ing transformations have been applied, a simple block
partitioning of the iterations is sufficient. From this seed
partitioning tiles are grown to the other loop in the pair
by a traversal of the data dependences between the two
loops.

Since the transformed code must traverse the final itera-
tion space in lexicographical order, a schedule is created
to indicate the iterations within each tile.

sched(b, q) = {[i] | θ(q, i) = b}

The pseudo-code for the transformed version of simple
Moldyn is shown in figure 6.

5. EXPERIMENTAL RESULTS
In our experiments we compare various compositions
of run-time transformations on the MOLDYN, NBF,
and IRREG benchmarks. The MOLDYN benchmark is
taken from the molecular dynamics application CHARMM,
the NBF kernel is taken from the GROMOS molecu-
lar dynamics code, and the IRREG kernel exhibits the
types of computations found in partial differential equa-
tion solvers [9]. The sizes of the datasets in terms of
nodes and edges in a representative graph are as fol-
lows.

Dataset num nodes num edges

mol1 131072 1179648
mol2 442368 3981312
foil 144649 1074393
auto 448695 3314611

The compositions consist of a data reordering transfor-
mation (CPACK or Gpart) followed by a iteration re-
ordering transformation (bucket tiling [18], lexicograph-
ical grouping, or lexicographical sorting). With CPACK
we try performing another round of CPACK data re-
ordering followed by iteration reordering. Finally, we



// First application of CPACK

sigma cp inv = CPACK M I0 to x0(left0,

right0)

sigma cp = calcInverse(sigma cp inv)

// Application of lexGroup

sigma lg = lexGroup M I0 to x1(left0,

right0,sigma cp)

sigma lg inv = calcInverse(sigma lg)

// Second application of CPACK

sigma cp2 inv= CPACK M I1 to x1(left0,right0,

sigma cp,sigma lg inv)

sigma cp2 = calcInverse(sigma cp inv)

// Sparse Tiling

sched = sparseTile D I1 to I1(left0,

right0,sigma lg)

// Reorder index arrays to implement

// mapping generated by lexGroup

left1 = remapArray T I0 to I1(left0,

sigma lg)

right1 = remapArray T I0 to I1(right0,

sigma lg)

// Adjust values in index arrays to

// reflect final data mapping

left2 = adjustIndexArray R x0 to x2(

left1,sigma cp2)

right2 = adjustIndexArray R x0 to x2(

right1,sigma cp2)

// Reorder data arrays to reflect

// final data mapping

x2 = remapArray R x0 to x2(x0,

sigma cp2)

y2 = remapArray R x0 to x2(y0,

sigma cp2)

// transformed simplified Moldyn code

do t = 1 to num steps

do b=1 to num tiles

do i in sched(b,1)

x2[i] = y2[i]

enddo

do j in sched(b,2)

y2[left2[j]] += x2[left2[j]]

- x2[right2[j]]

y2[right2[j]] += x2[left2[j]]

- x2[right2[j]]

enddo

enddo

enddo

Figure 6: Composed inspector, including sparse
tiling
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perform full sparse tiling after the various compositions
to see if it is possible to improve inter-loop locality.

The composed run-time inspectors were tested on two
architectures: a 375MHz Power 3 (64KB L1 cache)1 and
a 2GHz Pentium 4 (8KB L1 cache). Of all the intra-
loop iteration reordering transformations, lexicographi-
cal grouping consistently exibited the best performance
to overhead tradeoff, therefore, due to space constraints
the results in this paper use different data reordering
transformations with lexicographical grouping and with
or without sparse tiling.

Figures 7 and 8 show the normalized execution times for
the various compositions without overhead. The num-
ber of iterations (time steps) in the outermost loop re-
quired to amortize the run-time overhead for both ma-
chines are shown in figures 9

When we apply our full sparse tiling technique in com-
position with existing run-time data and iteration re-
ordering reordering techniques, we observe reduced ex-
ecution time in the MOLDYN and IRREG benchmarks.
Applying sparse tiling to the NBF benchmark after re-
sults in slow-downs. MOLDYN does more computation
in all three loops within the time loop than the other
2 kernels. This results in more data reuse which takes
better advantage of the temporal locality provided by
sparse tiling. It is possible that NBF needs a different
sparse tiling strategy. In these results only one itera-
tion of the time loop was sparse tiled. Better results
might occur when sparse tiling across 2 or 3 iteration
of the time loop. IRREG experiences small improve-
ments in execution time due to sparse tiling; however,
sparse tiling affects the overhead in IRREG more than
in MOLDYN.

1A single node of the IBM Blue Horizon at the San
Diego Supercomputer Center.
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Figure 8: Normalized execution time without
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Figure 9: Overhead in time-steps, Pentium 4
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Figure 10: Overhead in time steps, Blue Horizon

6. RELATED WORK
Researchers have looked at extending data dependence
analysis to run-time to handle non-affine memory ref-
erences [20, 23]. These techniques typically attempt
to disprove a dependence at runtime in order to exploit
parallelism. Instead, our work requires the run-time
traversal of dependences between loops.

Previous work has already explored how to generate
code when the algorithm and the sparse data struc-
ture are specified separately [3] [22] [16] [10]. This work
typically has the user specify the algorithm on a dense
matrix. Since dense matrices are usually represented
as two-dimensional arrays, this leads to algorithms that
look very similar to algorithms presented in numerical
analysis textbooks. We are describing the sparse data
structures at a lower-level of abstraction, uninterpreted
function symbols.

An obvious extension of our work is the automatic gen-
eration of specialized run-time inspectors and remap-
pers. Specializing an inspector for a reordering trans-
formation in the context of its position in a composi-
tion of reorderings should result in less overhead than
an inspector implemented in a run-time library, since
the latter must be generally applicable. The need for
specialized inspectors has been described in run-time
reordering transformations work for data locality [17]
and parallelism [8].

Finally, to guide the selection of the both run-time and
compile-time transformations in the same framework, it
will be necessary to understand their interaction. This
problem will be even more difficult than the static guid-
ance problem. A heuristic for guiding a given data
or iteration reordering might involve its own parame-
ters (such as the seed partition size required by sparse
tiling). The selection and order of run-time transforma-
tions will depend on information available at runtime as
well as compile time. In the domain of data and itera-
tion reordering, [19, 30] propose methods for guidance
when some information such as the data acess pattern
is not available until run-time.

7. CONCLUSIONS
Representing the effect of run-time data and iteration
reordering transformations at compile-time is an impor-
tant step towards the automatic generation of special-
ized inspectors and remappers. This paper shows how to
use an existing compile-time framework to formally rep-
resent the changes in dependences and data mappings
which occur when a number of data and iteration re-
orderings are performed. By showing that sparse tiling
can be represented in our framework, we demonstrate
its general applicability to other irregular codes; until
now, it has been used only on Gauss-Seidel. Our frame-
work suggests new compositions of these run-time trans-
formations, and experimental results presented for the
MOLDYN, NBF, and IRREG benchmarks show that
significant improvements can be obtained, particularly
for the molecular dynamics kernel. The greatest perfor-



mance improvements come from the ability to exploit
both intra- and inter-loop locality.
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