
Compi le - t ime detect ion of information flow in
sequential programs

Jean-Pierre Bangtre
Ciargn Bryce

Daniel Le M&ayer
IRISA

Campus de Beaulieu
35042 Rennes Cedex, France

e-mail: jpbanatre/bryce/lemetayer@irisa.fr

Abstract . We give a formal definition of the notion of information flow
for a simple guarded command language. We propose an axiomatisation
of security properties based on this notion of information flow and we
prove its soundness with respect to the operational semantics of the
language. We then identify the sources of non determinism in proofs and
we derive in successive steps an inference algorithm which is both sound
and complete with respect to the inference system.

Keywords: formal verification, program analysis, verification tools, com-
puter security, information flow.

1 I n t r o d u c t i o n

The context of the work described in this paper is the application of formal meth-
ods to the verification of information flow properties in programs. In contrast
with most previous contributions in this area we put emphasis on the design
of mechanical tools. Rather than considering a general (and undecidable) logic
in which the development of proofs requires some interaction with the user, we
start with a restricted language of properties which allows us to derive an auto-
matic proof checker. The proof checking method is akin to the program analysis
techniques used in modern optimising compilers [2]. Such a tool must satisfy two
crucial properties in order to be useful for checking security properties:

- Its correctness must be established.
- It must be reasonably efficient.

These goals are achieved in several stages. We first provide a formal definition
of the notion of information flow embodying the intuitive idea that information
does not flow from a variable x to a variable p if variations in the original value of
x cannot produce any variation in the final value of 9. We define an information
flow logic and we prove its correctness with respect to the operational semantics
of the language. We identify the sources of non determinism in proofs which use

56

this logic and we successively refine the proof system into a correct and complete
algorithm for information flow analysis. The techniques used to transform the
original proof system into an algorithmic version are akin to methods used to
get a syntax-directed version of type inference systems including weakening rules
[10].

The rest of the paper is organised in the following way. Section 2 introduces
our guarded command language with its operational semantics and our definition
of information flow. We propose an information flow logic SS1 and we state its
correctness with respect to the semantics of the language. In section 3 we present
more deterministic versions of the original system (SS2 and SS3). The basic
idea is that SS2 avoids the use of a specific weakening rule and SS3 derives
at each step the most precise property provable in SS2 (or the conjunction
of all the properties derivable in SS2). We state the soundness and a form of
completeness of the new system (with respect to the information flow logic SS1).
SS3 still contains a source of non determinism in the rule for the repetitive
command. We consequently propose a fourth system SS4 in section 4 which
can be seen as a property transformer. In section 5, we show that properties
can be represented as graphs for an efficient implementation. The iteration itself
can be replaced by a simple graph transformation. A property can be extracted
from a graph using a path finding algorithm. Section 6 provides insights on the
extension to more realistic language features including parallelism and pointer
manipulat ion and section 7 reviews related work. Space considerations prevent
us from providing details about the proofs here. The interested reader can find
a complete t rea tment in [5].

2 An inference system for security properties

We consider a simple guarded command language whose syntax is defined as
follows:

Program ::= Decl -~; Decl ~-; Stmt
Decl
Strut
Comm
Alt
Rep
guard

program
::= vat v declarations
::= (p, Comm) statements
::= v := E I skip] Stmt; Stmt I Alt I Rep commands
::= [guard ---+ Strut-< ; [] guard ---+ Stmt~-] alternative
::---- *[guard ---+ Stmt--< ; [] guard --+ Stmt~] repetitive
::---- B guard

where --4~- stands for zero or more repetitions of the enclosed syntactical units,
'v ' stands for a variable or a list of variables, 'E ' for an integer expression and 'B '
for a boolean expression. Commands are associated with program points p. All
program points are assumed to be different and P0 and px stand for respectively
the entry point and the exit point of the program. We omit program points
in the text of the programs but they are used to state certain properties. The
alternative and repetitive commands consist of one or more guard branch pairs.
A guard is a boolean expression. A guard is passable if it evaluates to true.

57

W h e n an al ternat ive c o m m a n d is executed, a branch whose guard is passable is
chosen. If more than one guard is passable, then any one of the corresponding
branches can be executed. If no guard is passable then the c o m m a n d fails and
the p rogram terminates. On each i terat ion of the repetit ive command , a b ranch
whose guard is passable is executed. If more than one guard is passable, then like
for the alternative, any one of the branches is chosen. W h e n no guard is passable,
the c o m m a n d terminates and the p rogram continues. The s t ructura l opera t ional
semantics of this language is defined in Figure 1. The rules are expressed in terms
of rewritings of configurations. A configurat ion is either a pair < S, ~ > , where S
is a s t a t ement and c~ a state, or a state o. The lat ter is a terminal configuration.

< y := e x p , ~ > -+ c r [va l (exp , cr)/y]

< t[i] := e x p , cr > --~ c~[t[i ~-- v a l (e x p , c~)]/t]

< s k i p , ~ r > - - , ~r

< $1,0" > ---+ < S~,O'I >

< S 1 ; S 2 , ~ r > --+ < S ~ ; S 2 , c r ' >

< H I , ~ > --~ a b o r t

< $ 1 ; S 2 , ~ > --* a b o r t

< C i , ~ > --~ t r u e

< [C 1 ~ S l r n C 2 - - * S2[] [~C~ ~ S , ,] , a > - - < S i , a >

< Ci , v > ~ a b o r t

< [C1 - - ~ S 1 Q C 2 - ~ . q 2 ~ oCn- -~ S~,],cr > --~ a b o r t

V i . < Ci ,~r > ~ f a l s e

< [C1 ~ S 1 D C 2 --+ S ~ 0 D C n ~ S ,~] ,o > ~ a b o r t

< C i , c r > --~ t r u e

< *[C1 ~ S1DC_~ --~ $2[] nC~ ~ S n] , a >
< N ; *[C~ -~ S~EnC2 ~ S 2 D D C ~ ~ S~] , ~ >

< C i , ~ r > --~ a b o r t

< *[C1 --+ S 1 U C 2 --~ S 2 D O C ~ -+ S'~], a > ~ a b o r t

V i . < C i , c r > --+ f a l s e

< *[C 1 --+ S1DC2 ---+,q2D [B C n - - ~ S n] , ~ r > ---+ ~r

Fig . 1. Opera t ional semantics

58

Let us now turn to the problem of defining the information flow for this
language. There are two classes of information flows in programs. An assignment
command causes a d i r e c t flow of information from the variables appearing on
the right hand side of the (:--) operator to the variable on the left hand side.
This is because the information in each of the right hand side operands can
influence value of the left hand side variable [6]. The information that was in the
destination variable is lost.

Conditional commands introduce a new class of flows [8]. The fact that a
command is conditionally executed signals information to an observer concerning
the value of the command guard. Consider the following program segment, e is
some expression:

X :---- e ;

a := O;
b := 0;
[x = 0 ---~ a := 1

D x T ~ 0 - + b : = 1]

In this program segment, the values of b o t h a and b after execution indicate
whether x was zero or not. This is an example of an implicit flow [8] or what we
more generally refer to as an i n d i r e c t flow.

We note IFp the set of indirect information flow variables at a particular
program point p. IFp can be defined syntactically as the set of variables occurring
in embedding guards.

We need some way of representing the set of variables which may have flown
to, or influenced, a variable v. We call this set the s e c u r i t y v a r i a b l e of v,
denoted ~. We define IFp as:

IFp = {x I e v and v E IFp}

Our inference system for the proof of information flow properties is described in
Figure 2.
An array assignment t[i] := e is treated as t := exp(t, i, e). The last rule in Figure
2 is called the consequence rule or the weakening rule. We use the notat ion
I-1 {P} S {Q} to denote the fact that {P} S {Q} is provable in SS1.

We define a correspondence relation between properties and the semantics of
s ta tements and we use it to state the correctness of the information flow logic of
Figure 2.
Def in i t i on

C(P, S) =

V(r, v. such that < S, (r >~ and < S, ~[v/x] >~
{v ' I< s , > = v '} =
{v" I< s, > z+ = r

P r o p o s i t i o n I (c o r r e c t n e s s o f S S 1).

VS, P. i f 1-'1 {Ini t}S{P} t h e n C(P, S)

59

{PlY +-- U ~/ U IFp]} y := exp(xl,a:=,. ,xn) {P}
i

{P}sk ip{P}

{P)SI{Q) , {Q)S2{R}
{ P } S l ; s 2 { R }

Vi = 1..n{P}Si{Q}
{P) [C, --. s1 []c2 -+ &[] u c . --. &] { q }

Vi = 1 . . n { P } S i { P }
{ p } , --+ & o c 2 --+ &] { P }

P ~ P', {P'} S {Q'}, Q' ~ Q
{p } s {Q}

Fig. 2. System SS1

[nit is defined as Vx, y x :fi y. x ~ Y. It represents the standard (minimal) initial
property. S[v/x] is the same as S except that variable x is assigned value v.

< S,c~ >~ stands for 3~r' r abort. < S , a > Z+ ~r' which means that the pro-
gram may terminate successfully. The above definition characterises our notion
of information flow. If P ~ x ~ ~ holds, then the value of x before executing S
cannot have any effect on the possible values possessed by y after the execution
of S. In other words, no information can flow Dora x to y in S. The condi-
tion < S, ~ >1 and < S, ~r[v/x] >1 is required because the execution of S may
terminate or not depending on the original value of x.

The correctness of 5:8'1 can be proven by induction on the structure of terms
as a consequence of a more general property [5].

Let us now consider, as an example, a library decryption program. The pro-
gram has three inputs and two outputs. The input consists of a string of en-
crypted text, or cipher, a key for decryption and a unit rate which the user is
charged for each character decrypted. The variable cipher is an array of char-
acters. A character is decrypted by applying it to an expression D with the key
parameter. To save computing resources, some characters may not have been
encrypted. The user pays twice the price for every encrypted character that goes
through the decryption program. The boolean expression encrypted() determines
if the character passed is encrypted or not. The outputs are the decrypted text,
or clear, and the charge for the decryption. We assume that clear is output to
the user and that charge is output to the library owner. To be usable, the user
must trust the program not to secretly leak the clear text or the key to the
library owner via the charges output. Such a leakage is termed a covert channel
in [14]. The proof system described in Figure 2 allows us to prove the following

60

proper ty:

F-1 {Ini t} Library {(clear r charge) and (key r charge)}

tha t is, the charge ou tpu t m a y not receive a flow of informat ion f rom the clear
variable or f rom the key input . We show in section 5 tha t this p roper ty can in
fact be proven mechanically.

vat : i, charge, key, unit;
ar ray : clear, cipher;
cipher := ~ message to be decrypted ~-;
unit := -~ unit rate constant ~-;
charge := unit;
i := 0;
[ciphe~i] ~ null_constant ---

[encrypted(cipher[i]) --~ clear[i] := D(cipher[i], key);
charge := charge + 2*unit;

[] n o t encrypted(cipher[i]) --+ clear[i] := cipher[i];
charge := charge + unit;

];
i : = i + 1

]

Fig . 3. Library decrypt ion p rogram

3 A m o r e d e t e r m i n i s t i c s y s t e m

We consider now the problem of mechanising the proof of security properties.
As suggested above, the sort of properties we are interested in are of the form
x ~ ~. The language of properties is:

P ::= x ~ - ~ I P1 A P 2

where A represents the logical "and" connective.
The sys tem SS1 presented in section 2 is not suggestive of an a lgor i thm for

several reasons:

- The relationship between the input and the ou tpu t proper ty of the rule for
assignment is not one to one.

- The weakening rule can be applied at any t ime in a proof.

61

The combination of the weakening rule with the rule for the repetitive com-
mand in particular requires some insight. In general this amounts to guessing
the appropriate invariant for the loop. There are two possible ways of proving a
property of the form {P} Prog {Q}: one can either start with P and try to find
a postcondition implying Q or start with Q and derive a precondition implied
by P. These techniques are called respectively forwards analysis and backwards
analysis. The method we present here for deriving security properties belongs to
the forwards analysis category. Let us note however that the inference system
SS1 is not biased towards one technique or the other and we can apply the same
idea to derive a backwards analysis. In order to reduce the amount of non deter-
minism we first distribute the weakening rule over the remaining rules, getting
system SS2 presented in Figure 4.

P => P'[-Y~ Ui -~i u IFp] , P' ~ Q
{P} y := exp(xl,*2,. ,;r,,) {Q}

p:: :>p '
{P}sk ip{P '}

P ~ p', {P')sl{Q'}, Q' ~ Q", {Q")s2{R'}, R' ~ R
{p}sl; s2lR}

P ~ P ' , V i= 1..n{P'}&{Q'}, Q' =~ Q
{ P } [C 1 --~ $117C2 ~ ~q'217 O C n ~ ,5 ' n] {Q }

P ~ P', V i= l . .n{P ' }S i {P ' } , P' ~ Q
{ p } �9 [ca - & [] c ~ ~ & D [] c ~ -~ &] { e }

Fig. 4. System SS2

The soundness of SS2 is obvious and its completeness follows from the tran-
sitivity of implication:

P r o p o s i t i o n 2 (s o u n d n e s s a n d c o m p l e t e n e s s o f SS2).

VS, P ,Q. Fa { P } S { Q } if a n d o n l y i f ~-~ { P } S { Q }

This first transformation still yields a highly non deterministic proof proce-
dure but it paves the way for the next refinement. Let us first note that the new
system SS2 is syntax directed. In order to derive an algorithm from SS2 we want

62

to factor out all the possible proofs of a program into a single most precise proof.
This proof should associate with any property P the greatest property Q (in the
sense of set inclusion) such that }-2 {P} S {Q}. This requirement allows us to
get rid of most of the uses of :=> in the rules (but not all of them) and imposes
a new rule for the assignment command. The new system SEa is described in
Figure 5.

{R} y := ~ x p (~ , ~ , , x~) {T~(R)}

{P}skip{P}

{P}Sl{Q}, {Q}S2{R}
{P}Sl; S2{R}

Vi = 1 . .n{P}S i {Qi}
{P}[C1 --+ $1oC2 ---* S2D DCn ~ S,~]{~i Qi}

P ~ P', Vi= 1..n{P'}Si{Qi}, [J~Qi ~ P'
{P} , [c1 --+ s1FIC2 ---+ $2 [-'1 I"]Cn --'+ ~n]{Ui Qi}

with:

R~ = A~ey {(x r ~)1 R ~ (~ r ~)}
Ty(R) = RY Ai {(y~ ~ y) I v j �9 [1,. . . ,n]. R ~ (yi ~ ~) a n d

Vv �9 IF~.R ~ (y~ r ~)}
[~i Qi = h{(x r f) I vi �9 [1,. . . , ~], Qi ~ (x r y)}

Fig. 5. System SS3

The intuition behind the new rule for the assignment command is that Ty (R)
represents the conjunction of all the properties x i~ ~ derivable from the input
property R. Ry is the restriction of R to properties of the form (x ~ ~) with
z r y. U is the approximation in our language of properties of the logical "or "
connective (v). It is expressed in terms of sets as an intersection. For instance:

((x r ~) A (z r 7)) [_] ((x r 7) A (z r 7)) = (z r 7)

It is easy to see that

(Q1 v r ~ (Q1 U Q2)

63

This approximation is required because the "or" connective does not belong to
our language of properties. The language could be extended with V but it makes
the t reatment more complex and it does not seem to allow the derivation of more
useful information.

We cannot get rid of the implication in a straightforward way in the rule for
the repetitive command because:

does n o t imply

P ~ P' and {P'}Si{P'}

{P}Si{P}

In order to prove a property of the repetitive command an appropriate invariant
P~ has to be discovered. We show in the next section how the maximM invariant
can be computed iteratively.

The following properties state respectively the soundness and the complete-
ness of SS3 with respect to SS2.

Proposition 3 (s o u n d n e s s o f SS3).

VS, P ,Q. i f F-3 { P } S { Q } t h e n F-2 { P } S { Q }

P r o p o s i t i o n 4 (c o m p l e t e n e s s of SS3).

Vs, P,Q. i f F-2 { P } S { Q } t h e n 3Q 1. ~-3 { P } S { Q ' } Q' =~ Q

Both properties are proved by induction on the structure of commands [5],

4 M e c h a n i c a l a n a l y s i s o f t h e r e p e t i t i v e c o m m a n d

In order to be able to treat the repetitive statement mechanically we must be
able to compute a property P~ such that

p ~ p/

and

Vi= 1..n{P'}Si{Qi} and U Q i=~ P'
i

Furthermore it must be the greatest of these properties in order to retain
completeness. We compute this property using an iterative technique akin to
the method used for finding least fixed points in abstract interpretation [1].
Figure 6 presents SS4 which is a refinement of SS3 with an effective rule for the
repetitive statement.

The following properties show that SS4 is the expression, in the form of an
inference system, of a terminating, correct and complete algorithm,

64

{R} y := exp(x, , ~2, ,xn) {r~(R)}

{P}sk ip{P}

{P}SI{Q}, {Q}S2{R}
{P}S1; S2{R}

Vi = 1..n{P}Si{Qi}
{P}[C1 --* S~aC2 --* S2D E]C~ ..-+ S=]{Ui qi}

Vi = 1 . . n {P~ {q~
Vi = 1. .n{P~}Si{Q~},

Vi = 1. .n{P'~-~}&{Q'~-~},

QO = UiQ~ QO ~4, po, p1 = po LJ QO
q~ = U,Q~, Q~ -7~ P~, p2 = p~ U Q~

Qn-1 = UiQ~-I, Q~-I :=~ p,~-l, p,~ = Q,~-I
{p0}, [C~ --* S1E]C2 ~ • E I OCn --* S,]{P'}

Fig. 6. System SS4

P r o p o s i t i o n 5 (t e rmina t ion of SS4).

VS, P, 9Q. ~-4 {P} S {Q} and Q is unique

P r o p o s i t i o n 6 (soundness of SS4).

VS, P,Q. i f F4 { P } S { Q } t hen }-3 { P } S { Q }

P r o p o s i t i o n 7 (comple teness of S S 4) .

VS, P,Q. if F3 { P } S { Q } then 2Q'. F4 { P } S { Q ' } Q' ~ Q

The three properties are proven by induction on the structure of commands
[5].

5 I n f e r e n c e a s t r a n s f o r m a t i o n s o n g r a p h s

A conjunctive property P can alternatively be represented as a set of pairs of
variables:

{(y, ~) I P :=> x ~ #}

For instance z ~ [A t ~ ~ is represented as {(t, z), (u, t)}. We present in Figure
7 a new version of SS4 expressed in the form of an algorithm T5 taking as
arguments a property P represented as a set and a program Prog and returning
the property Q such that }-4 {P} Prog {Q}.

65

Ts(P,(y := exp(xl ,x2 , ,xn))) = Ty(P)

Ts(P, s k i p) = P

Ts(P, S1) = Q, Ts(Q, S2) = R
T~{P, Sl; s2) = R

V i = l. .n Ts(P, Si) = Qi
T ~ (P , [C ~ -- , s ~ n c ~ ~ s ~ n n o , , ~ s~]) = N~Q~

QO V i = l . . n Ts (P~ = QO, QO = NiQO, QO 75 po, p1 = po N Q1
V i = l . . n Ts(P1,S,) = Q~, Q1 = NiQ~, QI 75 P~, p.2 p1

Vi = 1..n Ts(p,~-I,S,) = Q~,~-I, Qn-1 = ~ . Qi,~-l, Qn-1 D p~- l , p~ '= Qn-1
T~(P~ ~ SIDC~ - . S2o DCn --, S~]) = P'~

with:

R ~ = ((z , x) e R I z # y }
Ty(R) = R y [_J {(y,y,) I V j e [1 ,n]. (x~,y,) e R

Fig. 7. System ,S'S~

The proof of the equivalence of,qS4 and SS5 is obvious. In terms of sets, U is
implemented as set intersection(N) and =~ corresponds to the superset relation
(D).

P r o p o s i t i o n 8 (c o r r e c t n e s s a n d c o m p l e t e n e s s o f Ts).

VS, P ,Q. F4 { P } S { Q } i f a n d o n l y i f T s (P , S) = Q

The representation of properties as sets of pairs leads to a very expensive
implementation of the rule for assignment involving a quadratic number of tests
in sets R and IFp. We propose instead to represent properties as accessibility
graphs. We consider directed graphs defined as pairs of a set of nodes and a set
of arcs:

G ::= (N , A)
~V ::= {n}
/t ::---- V p

A ::= {a}
: := (~1 , ~)

66

V p is the set of the variables of the program subscripted by program points. The
property represented by a graph G at program point p is given by the function
H defined as follows:

H(p, G) = {(y, x) I Nopath(G, x ~ yP)}

Nopath(G, x ~ yP) returns True is there is no path from node x ~ to node yP in
the graph G. We have now to show how the operations on properties required by
T5 are implemented in terms of graphs. Since the set of nodes of the graphs ma-
nipulated by our algorithm is constant it is convenient to introduce the following
notation:

if G = (N , A) then G + A ' = (N , A U A ')

Furthermore the symbol + is overloaded to operate on two graphs (no ambiguity
can arise from this overloading):

if G = (N , A) and G ' = (N , A ') then G + G ' = (N , A U A ')

The final version of our algorithm is described in Figure 8 (variables v are im-
plicitly quantified over the whole set of variables of the program).

T~(a ,p , (q, {y := ~ p (~ l , ~2,. . , ~)))) = a + {(~f , yq) I i = 1 . . n } + { (z p, zq) I z # y}

4- {(z~,y q)] z~ e lFq}

T6(G,p(q, skip)) = G

T0(C,p , (q l ,Z l)) = e l , T~(Gl ,q , , (qs ,S2)) = a s
T0(a,p , (q , (q~,Sl); (qs,S2))) = a s + {(vq~,vq)}

vi = 1 . ~ T ~ (C , p , (q , S ~)) = C~

T s (C , p , (q, [C1 --+ (ql , S 1) D C s -~ (qs, S 2) D . . . D C , .--~ (q~, S ,)])) = --t-i G, 4- { (v q' , vq) }

Vi = 1. .n T 6 (G ~ = G o , G 1 = 4-i G o 4- { (v q ' , v q) } 4- { (vq , vP) }
T6 (C ~ p, (q, *[(71 --~ (ql , $1)[3(72 ~ (qs, Ss)O OCn --~ (q~, S,,)])) = C ~

Fig. 8. System SS6

T6 takes three arguments: a graph G, a program point p and a statement S E
Strut. The program point characterises a statement "preceding" the current
statement in the (execution of) the program. The program is analysed with the
input program point p0 as argument. Program points are made.explicit in the
statements because they play a crucial r61e at this stage. The rule for assignment

67

can be explained as follows. An arc is added to the graph from each occurrence of
variables zi at the preceding program point p to y at the current program point
q, and from each variable in the set of indirect flow to y. Other variables are not
modified and an arc is added from their occurrence at point p to their occurrence
at point q. In the rules for the alternative command and the repetitive command
the operation + is used to implement ~ . This comes from the fact that graphs
record accessibility when sets contain negative information of the form x ~ ~.

The correctness of this last algorithm is stated as follows:

Proposit ion 9 (correctness of T6).

VS, P , Q , G , p , q . H (p , G) = P and T s (P , S) = Q =:>

H(q, T6(G, p, (q, S))) = Q

This property can be proved by induction on the structure of expressions [5].
It should be clear that some straightforward optimisations can be applied to

this algorithm. First it is not necessary to keep one occurrence of variable per
program point in the graph. As can be noticed from the rule for assignment,
most of these variables would just receive one arc from the previous occurrence
of the variable. All these useless arcs can be short-circuited and the only nodes
kept into the graph are occurrences of xP where p is an assignment to x or an
alternative (or repetitive) s tatement with several assigments to x. Also a naive
implementat ion of the rules for the alternative and the repetitive s tatements
would lead to duplications of the graph. The monotonieity of 776 allows us to
get rid of this duplication. Instead the graph can be constructed iteratively as
follows:

Go=G, V i = l . . n T6(G,-1,p,(q,,&)) = G,
T6(G,p, (q, [6'1 --+ (ql, S1)DC2 -+ (q2, $2) D QC~ ---+ (qn, Sn)])) = G n 2f- {(V qn ' ,/jq)}

Let us now return to the library decryption program to illustrate the algo-
r i thm. Figure 9 is a new presentation of the program making some program
points explicit (we do not include all of them for the sake of readability).
Figure 10 presents the main steps of the application of T6 to this program. We
note Pi the command associated with Pi and we consider only the arc component
of the graph. We avoid the introduction of useless nodes and arcs as described
above. As a consequence, only 14 nodes are necessary for this program. Figure
11 shows the graph returned by the algorithm. Applying the Nopath function
to this graph, we can derive the property mentioned in section 2 (P4 is the exit
program point for charge):

(clear ~ charge) and (key ~_ charge)

68

var: i, charge, key, unit;
a r r a y : clear, cipher;
cipher := -~ message to be decrypted N;
unit := -4 unit rate constant ~;
(pl,charge := unit;
i := 0);
(p2,*[cipher[i] r null_constant

(p3,(p4,[encrypted(cipher[i]) --~ (ps,(ps,clear[i] := D(cwhe~i], key));
(pr ,charge :---- charge -4- 2*unit));

t2 n o t encrypted(cipher[i]) --~ (ps,(pv,clear[i] := cipher[i]);
(plo,charge := charge + unit));

]);
(P11,i := i + 1))

F i g . 9. Library decrypt ion program

T s (~ , p o , t"1) = G~
Ts(G~ ,pl , t'6) = G2

T6(G2, pr PT) = Ga

T6(Ga,~I,P~) = G4
T6(G4,pg, Plo) = G~

Ts(Gs, pl , 1)4) = G~

T6(G6, Pl, P2) = Gr

G1 -= {(unit ~ charge1)}
G2 = G1 + {(cipher ~ clear6), (key ~ clearS), (i 1, clear6),

(clear ~ , clear 6) }
G3 = c2 + {(charge 1, chargeT), (unit ~ chargeT),

(i 1 , ehargeT), (cipher ~ charge~)}
C4 = G~ + {(cipher ~ clearg), (i 1, elearg), (~lear ~ elear~)}}
G5 = G4 + {(charge ~, charge~~ (unit ~ charge1~

(i 1, charge1~ (cipher ~ charge1~
as = G5 + {(charge ~, charge4), (charge 1~ charge4),

(clear s, clear 4), (clear 9 , clear 4)}
Gr = Gs + {(charge 4,charge 1),(clear 4,clear~

Fig. 10. Analysis of the library decryption program

6 E x t e n s i o n s

There are three m a i n directions in which we plan to extend this work in order
to be able to cope with more realistic languages:

- The in t roduc t ion of pointer m a n i p u l a t i o n operators.

- The t r e a tmen t of less s t ruc tured control flow.

- The extension to a parallel language.

We consider each in tu rn .

69

charge 0 u0i0 i 0 key0 ciphe~

.1
/

/

/

l
a p

Fig. 11. Result of the analysis of the library decryption program

The addition of general pointers in a language complicates most program
analyses because it introduces the well-known problem of aliasing. Aliasing oc-
curs during program execution when two or more names exist for the same
location [15]. Let us take a small example in the context of information now to
illustrate the problem.

int i, j, k, *p
p := &i;
i : = j ;
k := *p;

The variable p is assigned the location of i. As a consequence, an information
flow from i to p must be accounted for. Furthermore the assignment of j to
i introduces a new (and hidden) flow of information between j and p and the
assignment of . p to k creates a flow from i to k. The semantics of the language
and the definition of information flow (section 2) must be adapted to take into
account the fact that a variable can have access to the value (or part of) of
another variable through dereferences. As far as the proof checking algori thm
is concerned, the first solution is to complement the method presented in this
paper with a pointer Miasing analysis. Various techniques have been proposed
in the li terature to tackle this problem [15, 16]. These techniques are more or
less accurate (and expensive) depending on the level of indirection which is
considered. The rule for assignment can be enhanced to take this new form of
flow into account:

T6(G,p, (q, (y :~- exp(x l ,X2 Xn)))) ~- G -~ {(~P, yq)] i ---- 1..71.)-]-{(zP, z q)] z • y}

+ {(z~, Yq) I z,. E IFq} + {(yq, z t) I d l i a s (y q, c .zt)}

70

where c is an access chain (sequence of dereferences).
A more ambitious research direction would be to integrate both analysers

into a single, more efficient, algorithm. A possible solution is to consider object
names rather than simple variables in the information flow analysis. Following
[16], object names can be defined as follows:

object_name = variable [*.object_name I object_name.field_of_structure

The introduction of less structured sequential control flow does not introduce
deep technical problems into our analysis. I t may however make the analyser
more expensive (the same situtation occurs in traditional data flow analysis). For
instance we can deal with explicit goto commands by adding new assignments at
the join nodes of the control flow graph (very much like the C-functions in SSA
forms [7]). Such assignments are already implicit in the rules for the alternative
and repetitive commands (see Figure 8 for instance).

The need for ensuring security properties becomes especially crucial in the
context of distributed systems. We are currently studying the generalisation of
our work for a full version of CSP [11]. In CSP, communication commands may
occur in guards and in statements. The notion of indirect flow has to be extended
to take such communications into account. The semantics of CSP introduces two
main technical difficulties for a correct t rea tment of control flow:

- Indirect control flow can occur even in the absence of rendez-vous (when
such a rendez-vous would have been made possible by a different execution
of a guarded command).

- The non termination of a process can influence the values of the variables of
the processes it might have communicated with.

As an example of how indirect flows can occur in the absence of a rendez-
vous, consider the following program segment. Suppose that y of process P1 is
either 1 or 0. Whatever, the value of y, at the end of process P1, x will equal
y. The reason for this is that , if y = 0 in process P1, then P1 passes the value
1 to b of process P2 which then passes 0 back to x. Conversely, if y is 1 in P1,
then P1 signals 0 to process P3 which signals 1 to P2's b which in turn passes
this value back to ~.

[
PI:: P2:: P3::
[var x,y; [var a,b; [var s ;
y := e0; [Pl ? b ~ b:=b-1 • P1 ? s;
[y = O ~ P2! 1 [] P3 ? b - - ~ s k i p] P2! 1
y#0 ~ skip] a := b;]

P3 [O; P1 ! a
P2 ? x Ill
]ll

]

Our solution consists of associating each program point Pi with a control
flow variable ci containing all the variables which may influence the fact that

71

the execution of the program reaches that point. When a communicat ion occurs
between Pt : P2 I v and p2 : P1 ? x, the control flow cl at point Pl is added to the
security variable g. Furthermore both control flows Cl and c2 become cl U c2.
As far as algorithmic aspects are concerned, communications introduce a new
source of non determinism in the proof. The traditional technique consists in
carrying out the proof of each process independently before checking a cooper-
ation condition on the individual rules. The first phase places little constraints
on communicat ion commands and appropriate properties have to be guessed in
order to derive proofs that satisfy the cooperation conditions. Our graph algo-
r i thm can be extended in a natural way to simulate this reasoning. The set of
nodes includes control flow variables and the required arcs are added between
matching communicat ion commands. The impor tant property allowing us to re-
tain the simplicity of the algorithm described here is the fact that we derive for
each point of the program the strongest property provable at this point. As a
consequence the graph can still be built incrementally avoiding the need for an
iterative process.

7 R e l a t e d w o r k

Language based information flow control mechanisms have tradit ionally used
security levels [8, 3]. Each variable is assigned a level denoting the sensitivity of
the information it contains. After an operation, the level of the variable which
received the information flow must be no less than the level of the flow source
variables. However, the security level approach severely restricts the range of
policies that one might like to support. A flow mechanism should log the variables
tha t have flown to each variable rather than the level of the data. Jones and
Lipton's surveillance set mechanism [12] is in this spirit and has some similarities
with the mechanism proposed here.

In [18], McLean describes a unified framework for showing that a software
module specification is non-interfering and that the module code satisfies this
specification. Non-interference is a security property which states that a user's
output cannot be affected by the input of any user with a higher security level.
McLean's approach is based on the trace method for software module specifica-
tion [171. This method defines a module 's semantics as the set of legal module
traces (sequences of module procedure calls), the values returned by the traces
terminat ing in a function call and a trace equivalence. Non-interference can be
proved from the module 's trace semantics. The author then defines a simple
sequential procedural based programming language and gives the semantics of
the language in trace form. This method is at tractive because it allows the
non-interference proof to be conducted at the abstract level of functional specifi-
cations. Program security is then established as a consequence of the functional
correctness. In contrast with our approach however, no a t t empt is made to con-
duct proofs in a mechanical (or even systematic) way.

The main contribution of this paper is to provide a formally based and effec-
tive tool for checking security properties of sequential programs. To our knowl-

72

edge there have been surprisingly few at tempts to achieve these goals so far.
Most of the approaches described in the literature either lead to manual ver-
ification techniques [3] or rely on informal correctness proofs [9]. The closest
work in the spirit of the contribution presented here is [19]. They derive a flow
control algorithm as an abstract interpretation of the denotational semantics
of the programming language. The programmer associates each variable with a
security class (such as unclassified, classified, secret, . . .) . Security classes corre-
spond to particular abstract semantics domains forming a lattice of properties
and .the analysis computes abstract values to check the security constraints. In
contrast with this approach, we do not require security classes to be associated
with variables but we check that the value of one particular variable cannot flow
into another variable. We have shown in [4] that this approach provides more
flexibility in the choice of a particular security policy. Our algorithm could in
fact be applied to synthesise the weakest constraints on the security classes of
the variables of an unannotated program. These two options can be compared
with the choice between explicit typing and type synthesis in strongly typed
programming languages.

R e f e r e n c e s

1. Abramsky (S.) and Hankin (C. L.), "Abstract interpretation of declarative lan-
guages", Ellis Horwood, 1987.

2. Aho (A. V.), Sethi (R.) and Ullman (J. D.), "Compilers: Principles, Techniques
and Tools", Addison Wesley, Reading, Mass, 1986.

3. Andrews (G.R.), Reitman (R.P.), "An Axiomatic Approach to Information Flow
in Programs", in A CM Transactions on Programming Languages and Systems,
volume 2 (1), January 1980, pages 504-513.

4. Bans (J.-P.) and C. Bryce, (C.), "A security proof system .for networks of
communicating processes", Irisa research report, no 744, June 1993.

5. Ban&tre (J.-P.) and C. Bryce, (C.), and Le M6tayer (D.), "Mechanical proof of
security properties", Irisa research report, no 825, May 1994.

6. Cohen (E.), "Information Transmission in Computational Systems", in Proceed-
ings ACM Symposium on Operating System Principles, 1977, pages 133-139.

7. Cytron (R.), Ferrante (J.), Rosen (B. K.) and Wegman (M. N.), "Efficiently com-
puting Static Single Assignment form and the control dependence graph", in A CM
Transactions on Programming Languages and Systems, Vol. 13, No 4, October
1991, pages 451-490.

8. Denning (D.E.), Secure Information Flow in Computer Systems, Phd Thesis, Pur-
due University, May 1975.

9. Denning (D.E.), Denning (P.J.), "Certification of Programs for Secure Informa-
tion Flow", in Communications of the ACM, volume 20 (7), July 1977, pages
504-513.

10. Hankin (C. L.) and Le M@tayer (D.), "Deriving Algorithms from Type Inference
Systems: Application to Strictness Analysis", in Proceedings A CM POPL, 1994,
pages 202-212.

11. Hoare (C.A.R.), Communicating Sequential Processes, Prentice-Hall London,
1985.

73

12. Jones (A.), Lipton (R.), "The Enforcement of Security Policies for Computations",
in Proceedings of the 5 th Symposium on Operating System Principles, November
1975, pages 197-206.

13. Kennedy K. W., "A Survey of Data Flow Analysis Techniques", in Program Flow
Analysis, S. S. Muchnik and N. D. Jones, Eds, Prentice-Hall, Englewood Cliffs,
N J, 1981.

14. Lampson (B.), "A note on the Confinement Problem", in Communications of the
ACM, volume 16 (10), October 1973, pages 613-615.

15. Landi (W.) and Ryder (B. G.), "Pointer-induced aliasing: a problem classifica-
tion", in Proceedings ACM POPL, 1991, pages 93-103.

16. Landi (W.) and Ryder (B. G.), "A safe approximate algorithm for interproce-
dural pointer aliasing", in Proceedings ACM Programming Language Design and
Implementation, 1992, pages 235-248.

17. McLean (J.), "A Formal Method for the Abstract Specification of Software", in
Journal o] the ACM, 31, July 1984, pages 600-627.

18. McLean (J.), "Proving Non-interference and Functional Correctness Using
Traces", in Journal of Computer Security, 1(1), Spring 1992, pages 37-57.

19. Mizuno (M.), Schmidt (D.), "A Security Control Flow Control Algorithm and
Its Denotational Semantics Correctness Proof', Journal on the Formal Aspects of
Computing, 4 (6A), november 1992, pages 722-754.

