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Abstract .  We give a formal definition of the notion of information flow 
for a simple guarded command language. We propose an axiomatisation 
of security properties based on this notion of information flow and we 
prove its soundness with respect to the operational semantics of the 
language. We then identify the sources of non determinism in proofs and 
we derive in successive steps an inference algorithm which is both sound 
and complete with respect to the inference system. 
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1 I n t r o d u c t i o n  

The context of the work described in this paper is the application of formal meth- 
ods to the verification of information flow properties in programs. In contrast 
with most previous contributions in this area we put emphasis on the design 
of mechanical tools. Rather than considering a general (and undecidable) logic 
in which the development of proofs requires some interaction with the user, we 
start with a restricted language of properties which allows us to derive an auto- 
matic proof checker. The proof checking method is akin to the program analysis 
techniques used in modern optimising compilers [2]. Such a tool must satisfy two 
crucial properties in order to be useful for checking security properties: 

- Its correctness must be established. 
- It must be reasonably efficient. 

These goals are achieved in several stages. We first provide a formal definition 
of the notion of information flow embodying the intuitive idea that information 
does not flow from a variable x to a variable p if variations in the original value of 
x cannot produce any variation in the final value of 9. We define an information 
flow logic and we prove its correctness with respect to the operational semantics 
of the language. We identify the sources of non determinism in proofs which use 
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this logic and we successively refine the proof system into a correct and complete 
algorithm for information flow analysis. The techniques used to transform the 
original proof system into an algorithmic version are akin to methods used to 
get a syntax-directed version of type inference systems including weakening rules 
[10]. 

The rest of the paper is organised in the following way. Section 2 introduces 
our guarded command  language with its operational semantics and our definition 
of information flow. We propose an information flow logic SS1 and we state its 
correctness with respect to the semantics of the language. In section 3 we present 
more deterministic versions of the original system (SS2 and SS3). The basic 
idea is that  SS2 avoids the use of a specific weakening rule and SS3 derives 
at each step the most precise property provable in SS2 (or the conjunction 
of all the properties derivable in SS2). We state the soundness and a form of 
completeness of the new system (with respect to the information flow logic SS1). 
SS3 still contains a source of non determinism in the rule for the repetitive 
command.  We consequently propose a fourth system SS4 in section 4 which 
can be seen as a property transformer. In section 5, we show that  properties 
can be represented as graphs for an efficient implementation.  The iteration itself 
can be replaced by a simple graph transformation.  A property can be extracted 
from a graph using a path  finding algorithm. Section 6 provides insights on the 
extension to more realistic language features including parallelism and pointer 
manipulat ion and section 7 reviews related work. Space considerations prevent 
us from providing details about the proofs here. The interested reader can find 
a complete t rea tment  in [5]. 

2 An inference system for security properties 

We consider a simple guarded command language whose syntax is defined as 
follows: 

Program ::= Decl -~; Decl ~-; Stmt 
Decl 
Strut 
Comm 
Alt 
Rep 
guard 

program 
::= vat  v declarations 
::= (p, Comm) statements 
::= v := E I skip ] Stmt; Stmt I Alt I Rep commands 
::= [ guard ---+ Strut-< ; [] guard ---+ Stmt~- ] alternative 
::---- *[ guard ---+ Stmt--< ; [] guard --+ Stmt~ ] repetitive 
::---- B guard 

where --4~- stands for zero or more repetitions of the enclosed syntactical units, 
'v '  stands for a variable or a list of variables, 'E '  for an integer expression and 'B '  
for a boolean expression. Commands  are associated with program points p. All 
program points are assumed to be different and P0 and px stand for respectively 
the entry point and the exit point of the program. We omit  program points 
in the text of the programs but they are used to state certain properties. The 
alternative and repetitive commands consist of one or more guard branch pairs. 
A guard is a boolean expression. A guard is passable if it evaluates to true. 
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W h e n  an al ternat ive c o m m a n d  is executed, a branch whose guard  is passable is 
chosen. If  more  than  one guard  is passable, then any one of  the corresponding 
branches can be executed. If  no guard  is passable then the c o m m a n d  fails and 
the p rogram terminates.  On each i terat ion of  the repetit ive command ,  a b ranch  
whose guard  is passable is executed. If  more  than  one guard  is passable, then like 
for the alternative,  any one of the branches is chosen. W h e n  no guard  is passable, 
the c o m m a n d  terminates  and the p rogram continues. The  s t ructura l  opera t ional  
semantics  of  this language is defined in Figure 1. The  rules are expressed in terms 
of  rewritings of  configurations. A configurat ion is either a pair  < S,  ~ > ,  where S 
is a s t a t ement  and c~ a state, or a state o. The  lat ter  is a terminal  configuration.  

< y :=  e x p ,  ~ > -+ c r [va l ( exp ,  cr)/y] 

< t[i] :=  e x p ,  cr > --~ c~[t[i ~-- v a l ( e x p ,  c~)]/t] 

< s k i p , ~ r >  - - ,  ~r 

< $1,0" > ---+ < S~,O'I > 

< S 1 ; S 2 , ~ r >  --+ < S ~ ; S 2 , c r ' >  

< H I , ~  > --~ a b o r t  

< $ 1 ; S 2 , ~ >  --* a b o r t  

< C i , ~  > --~ t r u e  

< [ C 1  ~ S l r n C 2 - - *  S2[] . . . . . .  [~C~ ~ S , , ] , a  > - -  < S i , a  > 

< Ci  , v > ~ a b o r t  

< [C1 - - ~ S 1 Q C 2  - ~ . q 2 ~  . . . . . .  oCn- -~  S~,],cr > --~ a b o r t  

V i .  < Ci ,~r  > ~ f a l s e  

< [C1 ~ S 1 D C 2  --+ S ~ 0  . . . . . .  D C n  ~ S ,~] ,o  > ~ a b o r t  

< C i , c r  > --~ t r u e  

< *[C1 ~ S1DC_~ --~ $2[] ...... nC~ ~ S n ] , a  > 
< N ;  *[C~ -~ S~EnC2 ~ S 2 D  . . . . . .  D C ~  ~ S~] ,  ~ > 

< C i , ~ r >  --~ a b o r t  

< *[C1 --+ S 1 U C 2  --~ S 2 D  . . . . . .  O C ~  -+ S'~], a > ~ a b o r t  

V i .  < C i , c r  > --+ f a l s e  

< *[C  1 --+ S1DC2  ---+,q2D ...... [ B C n - - ~ S n ] , ~ r >  ---+ ~r 

Fig .  1. Opera t ional  semantics 
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Let us now turn to the problem of defining the information flow for this 
language. There are two classes of information flows in programs. An assignment 
command  causes a d i r e c t  flow of information from the variables appearing on 
the right hand side of the (:--) operator to the variable on the left hand side. 
This is because the information in each of the right hand side operands can 
influence value of the left hand side variable [6]. The information that  was in the 
destination variable is lost. 

Conditional commands  introduce a new class of flows [8]. The fact that  a 
command is conditionally executed signals information to an observer concerning 
the value of the command guard. Consider the following program segment, e is 
some expression: 

X :---- e ;  

a := O; 
b := 0; 
[x  = 0 ---~ a := 1 

D x T ~ 0 - + b : =  1] 

In this program segment, the values of b o t h  a and b after execution indicate 
whether x was zero or not. This is an example of an implicit flow [8] or what  we 
more generally refer to as an i n d i r e c t  flow. 

We note IFp the set of indirect information flow variables at a particular 
program point p. IFp can be defined syntactically as the set of variables occurring 
in embedding guards. 

We need some way of representing the set of variables which may have flown 
to, or influenced, a variable v. We call this set the s e c u r i t y  v a r i a b l e  of v, 
denoted ~. We define IFp as: 

IFp = {x I e v and v E IFp} 

Our inference system for the proof of information flow properties is described in 
Figure 2. 
An array assignment t[i] := e is treated as t := exp(t, i, e). The last rule in Figure 
2 is called the consequence rule or the weakening rule. We use the notat ion 
I-1 {P} S {Q} to denote the fact that  {P} S {Q} is provable in SS1. 

We define a correspondence relation between properties and the semantics of 
s ta tements  and we use it to state the correctness of the information flow logic of 
Figure 2. 
Def in i t i on  

C(P, S) = 

V(r, v. such that  < S, (r >~ and < S, ~[v/x] >~ 
{v '  I< s ,  > = v '}  = 
{v" I< s, > z+ = r  

P r o p o s i t i o n  I ( c o r r e c t n e s s  o f  S S  1 ).  

VS, P. i f  1-'1 {Ini t}S{P} t h e n  C(P, S) 
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{PlY +-- U ~/ U IFp]} y := exp(xl,a:=,. .... ,xn) {P} 
i 

{P}sk ip{P}  

{P)SI{Q) ,  {Q)S2{R} 
{ P } S l ;  s 2 { R }  

Vi = 1..n{P}Si{Q} 
{P) [C,  --. s1 [ ]c2  -+ &[]  ...... u c .  --. & ] { q }  

Vi = 1 . . n { P } S i { P }  
{ p } ,  --+ & o c 2  ...... --+ & ] { P }  

P ~ P', {P'} S {Q'}, Q' ~ Q 
{p }  s {Q} 

Fig. 2. System SS1 

[nit is defined as Vx, y x :fi y. x ~ Y. It represents the standard (minimal) initial 
property. S[v/x] is the same as S except that variable x is assigned value v. 

< S,c~ >~ stands for 3~r' r abort. < S , a  > Z+ ~r' which means that the pro- 
gram may terminate successfully. The above definition characterises our notion 
of information flow. If P ~ x ~ ~ holds, then the value of x before executing S 
cannot have any effect on the possible values possessed by y after the execution 
of S. In other words, no information can flow Dora x to y in S. The condi- 
tion < S, ~ >1 and < S, ~r[v/x] >1 is required because the execution of S may 
terminate or not depending on the original value of x. 

The correctness of 5:8'1 can be proven by induction on the structure of terms 
as a consequence of a more general property [5]. 

Let us now consider, as an example, a library decryption program. The pro- 
gram has three inputs and two outputs. The input consists of a string of en- 
crypted text, or cipher, a key for decryption and a unit rate which the user is 
charged for each character decrypted. The variable cipher is an array of char- 
acters. A character is decrypted by applying it to an expression D with the key 
parameter. To save computing resources, some characters may not have been 
encrypted. The user pays twice the price for every encrypted character that  goes 
through the decryption program. The boolean expression encrypted() determines 
if the character passed is encrypted or not. The outputs are the decrypted text, 
or clear, and the charge for the decryption. We assume that clear is output to 
the user and that charge is output to the library owner. To be usable, the user 
must trust the program not to secretly leak the clear text or the key to the 
library owner via the charges output. Such a leakage is termed a covert channel 
in [14]. The proof system described in Figure 2 allows us to prove the following 
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proper ty:  

F-1 {Ini t}  Library {(clear r charge) and (key r charge)} 

tha t  is, the charge ou tpu t  m a y  not  receive a flow of  informat ion  f rom the clear 
variable or f rom the key input .  We show in section 5 tha t  this p roper ty  can in 
fact  be proven mechanically. 

vat :  i, charge, key, unit; 
ar ray :  clear, cipher; 
cipher := ~ message to be decrypted ~-; 
unit := -~ unit rate constant ~-; 
charge := unit; 
i := 0; 
*[ ciphe~i] ~ null_constant ---* 

[ encrypted(cipher[i]) --~ clear[i] := D(cipher[i], key); 
charge := charge + 2*unit; 

[] n o t  encrypted(cipher[i]) --+ clear[i] := cipher[i]; 
charge := charge + unit; 

]; 
i : = i + 1  

] 

Fig .  3. Library decrypt ion p rogram 

3 A m o r e  d e t e r m i n i s t i c  s y s t e m  

We consider now the problem of mechanising the proof  of  security properties.  
As suggested above, the sort of  properties we are interested in are of  the form 
x ~ ~. The  language of properties is: 

P ::= x ~ - ~  I P1 A P 2 

where A represents the logical "and" connective. 
The  sys tem SS1 presented in section 2 is not  suggestive of  an a lgor i thm for 

several reasons: 

- The  relationship between the input  and the ou tpu t  proper ty  of  the rule for 
assignment  is not  one to one. 

- The  weakening rule can be applied at any t ime in a proof. 
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The combination of the weakening rule with the rule for the repetitive com- 
mand in particular requires some insight. In general this amounts to guessing 
the appropriate invariant for the loop. There are two possible ways of proving a 
property of the form {P} Prog {Q}: one can either start with P and try to find 
a postcondition implying Q or start with Q and derive a precondition implied 
by P.  These techniques are called respectively forwards analysis and backwards 
analysis. The method we present here for deriving security properties belongs to 
the forwards analysis category. Let us note however that  the inference system 
SS1 is not biased towards one technique or the other and we can apply the same 
idea to derive a backwards analysis. In order to reduce the amount  of non deter- 
minism we first distribute the weakening rule over the remaining rules, getting 
system SS2 presented in Figure 4. 

P => P'[-Y~ Ui  -~i u IFp ] ,  P' ~ Q 
{P} y := exp(xl,*2,. .... ,;r,,) {Q} 

p:: :>p '  
{P}sk ip{P '}  

P ~ p', {P')sl{Q'}, Q' ~ Q", {Q")s2{R'}, R' ~ R 
{p}sl;  s2lR} 

P ~ P ' ,  V i=  1..n{P'}&{Q'}, Q' =~ Q 
{ P } [ C  1 --~ $117C2 ~ ~q'217 . . . . . .  O C  n ~ ,5 ' n ] {Q  } 

P ~ P', V i= l . .n{P ' }S i {P ' } ,  P' ~ Q 
{ p }  �9 [ca - & [ ] c ~  ~ & D  ...... [ ] c ~  -~  & ] { e }  

Fig.  4. System SS2 

The soundness of SS2 is obvious and its completeness follows from the tran- 
sitivity of implication: 

P r o p o s i t i o n  2 ( s o u n d n e s s  a n d  c o m p l e t e n e s s  o f  SS2). 

VS, P ,Q.  Fa { P } S { Q }  if  a n d  o n l y  i f  ~-~ { P } S { Q }  

This first transformation still yields a highly non deterministic proof proce- 
dure but it paves the way for the next refinement. Let us first note that  the new 
system SS2 is syntax directed. In order to derive an algorithm from SS2 we want 
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to factor out all the possible proofs of a program into a single most precise proof. 
This proof should associate with any property P the greatest property Q (in the 
sense of set inclusion) such that  }-2 {P} S {Q}. This requirement allows us to 
get rid of most of the uses of :=> in the rules (but not all of them) and imposes 
a new rule for the assignment command. The new system SEa is described in 
Figure 5. 

{R} y := ~ x p ( ~ ,  ~ , .  .. . .  , x~)  {T~(R)} 

{P}skip{P} 

{P}Sl{Q}, {Q}S2{R} 
{P}Sl; S2{R} 

Vi = 1 . .n{P}S i {Qi}  
{P}[C1 --+ $1oC2 ---* S2D ...... DCn ~ S,~]{~i Qi} 

P ~ P', Vi= 1..n{P'}Si{Qi}, [J~Qi ~ P' 
{P} , [c1 --+ s1FIC2 ---+ $2 [-'1 ...... I"]Cn --'+ ~n]{Ui Qi} 

with: 

R~ = A~ey {(x r ~)1 R ~ (~ r ~)} 
Ty(R) = RY Ai {(y~ ~ y) I v j  �9 [1,. . . ,n].  R ~ (yi ~ ~ ) a n d  

Vv �9 IF~.R ~ (y~ r ~)} 
[~i Qi = h{(x  r f) I vi �9 [1,. . . ,  ~], Qi ~ (x r y)} 

Fig.  5. System SS3 

The intuition behind the new rule for the assignment command is that Ty (R) 
represents the conjunction of all the properties x i~ ~ derivable from the input 
property R. Ry is the restriction of R to properties of the form (x ~ ~) with 
z r y. U is the approximation in our language of properties of the logical "or " 
connective (v). It is expressed in terms of sets as an intersection. For instance: 

((x r ~) A (z r 7)) [_] ((x r 7) A (z r 7)) = (z r 7) 

It is easy to see that  

(Q1 v r ~ (Q1 U Q2) 
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This approximation is required because the "or" connective does not belong to 
our language of properties. The language could be extended with V but it makes 
the t reatment  more complex and it does not seem to allow the derivation of more 
useful information. 

We cannot get rid of the implication in a straightforward way in the rule for 
the repetitive command because: 

does n o t  imply 

P ~ P' and {P'}Si{P'} 

{P}Si{P} 

In order to prove a property of the repetitive command an appropriate invariant 
P~ has to be discovered. We show in the next section how the maximM invariant 
can be computed iteratively. 

The following properties state respectively the soundness and the complete- 
ness of SS3 with respect to SS2. 

Proposition 3 ( s o u n d n e s s  o f  SS3). 

VS, P ,Q.  i f  F-3 { P } S { Q }  t h e n  F-2 { P } S { Q }  

P r o p o s i t i o n  4 ( c o m p l e t e n e s s  of  SS3). 

Vs, P,Q. i f  F-2 { P } S { Q }  t h e n  3Q 1. ~-3 { P } S { Q ' }  Q' =~ Q 

Both properties are proved by induction on the structure of commands [5], 

4 M e c h a n i c a l  a n a l y s i s  o f  t h e  r e p e t i t i v e  c o m m a n d  

In order to be able to treat the repetitive statement mechanically we must be 
able to compute a property P~ such that 

p ~ p/  

and 

Vi= 1..n{P'}Si{Qi} and U Q  i=~ P' 
i 

Furthermore it must be the greatest of these properties in order to retain 
completeness. We compute this property using an iterative technique akin to 
the method used for finding least fixed points in abstract interpretation [1]. 
Figure 6 presents SS4 which is a refinement of SS3 with an effective rule for the 
repetitive statement.  

The following properties show that SS4 is the expression, in the form of an 
inference system, of a terminating, correct and complete algorithm, 
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{R} y := exp(x, ,  ~2, . . . . . ,xn) {r~(R)} 

{P}sk ip{P}  

{P}SI{Q},  {Q}S2{R} 
{P}S1; S2{R} 

Vi = 1..n{P}Si{Qi} 
{P}[C1 --* S~aC2 --* S2D ...... E]C~ ..-+ S=]{Ui qi} 

Vi = 1 . . n {P~  {q~  
Vi = 1. .n{P~}Si{Q~},  

Vi = 1. .n{P'~-~}&{Q'~-~},  

QO = UiQ~ QO ~4, po, p1 = po LJ QO 
q~ = U,Q~, Q~ -7~ P~, p2 = p~ U Q~ 

Qn-1 = UiQ~-I, Q~-I :=~ p,~-l, p,~ = Q,~-I 
{p0}, [C~ --* S1E]C2 ~ • E I  ...... OCn --* S,]{P'} 

Fig. 6. System SS4 

P r o p o s i t i o n  5 ( t e rmina t ion  of  SS4). 

VS, P, 9Q. ~-4 {P} S {Q} and Q is unique 

P r o p o s i t i o n 6  (soundness  of  SS4). 

VS, P,Q. i f  F4 { P } S { Q }  t hen  }-3 { P } S { Q }  

P r o p o s i t i o n  7 (comple teness  of  S S  4 ) .  

VS, P,Q. if  F3 { P } S { Q }  then  2Q'. F4 { P } S { Q ' }  Q' ~ Q 

The three properties are proven by induction on the structure of commands 
[5]. 

5 I n f e r e n c e  a s  t r a n s f o r m a t i o n s  o n  g r a p h s  

A conjunctive property P can alternatively be represented as a set of pairs of 
variables: 

{(y, ~) I P :=> x ~ #} 

For instance z ~ [ A t ~ ~ is represented as {(t, z), (u, t)}. We present in Figure 
7 a new version of SS4 expressed in the form of an algorithm T5 taking as 
arguments a property P represented as a set and a program Prog and returning 
the property Q such that }-4 {P} Prog {Q}. 
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Ts(P,(y  := exp(xl ,x2 , . . . . . ,xn)) )  = Ty(P) 

Ts(P, s k i p ) =  P 

Ts(P, S1) = Q, Ts(Q, S2) = R 
T~{P, Sl;  s2) = R 

V i =  l. .n Ts(P, Si) = Qi 
T ~ ( P , [ C ~  -- ,  s ~ n c ~  ~ s ~ n  . . . . . .  n o , ,  ~ s~]) = N~Q~ 

QO V i = l . . n  Ts (P~ = QO, QO = NiQO, QO 75 po, p1 = po N Q1 
V i = l . . n  Ts(P1,S, )  = Q~, Q1 = NiQ~,  QI 75 P~, p.2 p1 

Vi = 1..n Ts(p,~-I,S,) = Q~,~-I, Qn-1 = ~ .  Qi,~-l, Qn-1 D p~- l ,  p~ '=  Qn-1 
T~(P~ ~ SIDC~ - .  S2o ...... DCn --, S~]) = P'~ 

with: 

R ~ = ( ( z , x )  e R  I z # y }  
Ty(R) = R y [_J {(y,y,)  I V j e [1 . . . .  ,n]. (x~,y,) e R 

Fig. 7. System ,S'S~ 

The proof of the equivalence of,qS4 and SS5 is obvious. In terms of sets, U is 
implemented as set intersection(N ) and =~ corresponds to the superset relation 
(D). 

P r o p o s i t i o n 8  ( c o r r e c t n e s s  a n d  c o m p l e t e n e s s  o f  Ts). 

VS, P ,Q.  F4 { P } S { Q }  i f  a n d  o n l y  i f  T s ( P , S )  = Q 

The representation of properties as sets of pairs leads to a very expensive 
implementation of the rule for assignment involving a quadratic number of tests 
in sets R and IFp. We propose instead to represent properties as accessibility 
graphs. We consider directed graphs defined as pairs of a set of nodes and a set 
of arcs: 

G ::= ( N , A )  
~V ::= {n} 
/t ::---- V p 

A ::= {a} 
: :=  (~1 ,  ~ )  
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V p is the set of the variables of the program subscripted by program points. The 
property represented by a graph G at program point p is given by the function 
H defined as follows: 

H(p, G) = {(y, x) I Nopath(G, x ~ yP)} 

Nopath(G, x ~ yP) returns True is there is no path from node x ~ to node yP in 
the graph G. We have now to show how the operations on properties required by 
T5 are implemented in terms of graphs. Since the set of nodes of the graphs ma- 
nipulated by our algorithm is constant it is convenient to introduce the following 
notation: 

if G = ( N , A )  then G + A ' = ( N ,  A U A ' )  

Furthermore the symbol + is overloaded to operate on two graphs (no ambiguity 
can arise from this overloading): 

if G = ( N , A )  and G ' = ( N , A ' )  then G + G ' = ( N ,  A U A ' )  

The final version of our algorithm is described in Figure 8 (variables v are im- 
plicitly quantified over the whole set of variables of the program). 

T~(a ,p ,  (q, {y := ~ p ( ~ l ,  ~2,. . ,  ~ ) ) ) )  = a + {(~f ,  yq) I i = 1 . . n } + { ( z  p, zq) I z # y} 

4- {(z~,y q) ] z~ e lFq} 

T6(G,p(q, skip)) = G 

T0(C,p , (q l ,Z l ) )  = e l ,  T~(Gl ,q , , (qs ,S2))  = a s  
T0(a,p , (q ,  (q~,Sl); (qs,S2))) = a s  + {(vq~,vq)} 

vi = 1 . ~  T ~ ( C , p , ( q , S ~ ) )  = C~ 

T s ( C , p ,  (q, [C1 --+ (ql ,  S 1 ) D C s  -~  (qs, S 2 ) D . . . D C ,  .--~ (q~, S , ) ] ) )  = --t-i G, 4- { ( v  q' , vq) }  

Vi  = 1. .n T 6 ( G ~  = G o , G 1 = 4-i G o 4- { ( v q ' , v q ) }  4- { ( vq , vP ) }  
T6 (C ~ p, (q, *[(71 --~ (ql ,  $1 )[3(72 ~ (qs, Ss)O ...... OCn --~ (q~, S,,) ]))  = C ~ 

Fig. 8. System SS6 

T6 takes three arguments: a graph G, a program point p and a statement S E 
Strut. The program point characterises a statement "preceding" the current 
statement in the (execution of) the program. The program is analysed with the 
input program point p0 as argument. Program points are made.explicit in the 
statements because they play a crucial r61e at this stage. The rule for assignment 
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can be explained as follows. An arc is added to the graph from each occurrence of 
variables zi at the preceding program point p to y at the current program point 
q, and from each variable in the set of indirect flow to y. Other variables are not 
modified and an arc is added from their occurrence at point p to their occurrence 
at point q. In the rules for the alternative command and the repetitive command  
the operation + is used to implement ~ .  This comes from the fact that  graphs 
record accessibility when sets contain negative information of the form x ~ ~. 

The correctness of this last algorithm is stated as follows: 

Proposit ion 9 (correctness of T6). 

VS, P , Q , G , p , q .  H ( p , G ) = P  and T s ( P , S ) = Q  =:> 

H(q, T6(G, p, (q, S)))  = Q 

This property can be proved by induction on the structure of expressions [5]. 
It should be clear that  some straightforward optimisations can be applied to 

this algorithm. First it is not necessary to keep one occurrence of variable per 
program point in the graph. As can be noticed from the rule for assignment, 
most  of these variables would just receive one arc from the previous occurrence 
of the variable. All these useless arcs can be short-circuited and the only nodes 
kept into the graph are occurrences of xP where p is an assignment to x or an 
alternative (or repetitive) s tatement  with several assigments to x. Also a naive 
implementat ion of the rules for the alternative and the repetitive s tatements  
would lead to duplications of the graph. The monotonieity of 776 allows us to 
get rid of this duplication. Instead the graph can be constructed iteratively as 
follows: 

Go=G,  V i = l . . n  T6(G,-1,p,(q,,&)) = G, 
T6(G,p, (q, [6'1 --+ (ql, S1)DC2 -+ (q2, $2) D ...... QC~ ---+ (qn, Sn)])) = G n  2f- {(V qn ' ,/jq)} 

Let us now return to the library decryption program to illustrate the algo- 
r i thm. Figure 9 is a new presentation of the program making some program 
points explicit (we do not include all of them for the sake of readability). 
Figure 10 presents the main steps of the application of T6 to this program. We 
note Pi the command  associated with Pi and we consider only the arc component  
of the graph. We avoid the introduction of useless nodes and arcs as described 
above. As a consequence, only 14 nodes are necessary for this program. Figure 
11 shows the graph returned by the algorithm. Applying the Nopath function 
to this graph, we can derive the property mentioned in section 2 (P4 is the exit 
program point for charge): 

(clear ~ charge) and (key ~_ charge) 
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var:  i, charge, key, unit; 
a r r a y :  clear, cipher; 
cipher := -~ message to be decrypted N; 
unit := -4 unit rate constant ~;  
(pl,charge := unit; 
i := 0); 
(p2,*[ cipher[i] r null_constant 

(p3,(p4,[ encrypted(cipher[i]) --~ (ps,(ps,clear[i] := D( cwhe~i], key)); 
(pr ,charge :---- charge -4- 2*unit)); 

t2 n o t  encrypted(cipher[i]) --~ (ps,(pv,clear[i] := cipher[i]); 
(plo,charge := charge + unit)); 

]); 
(P11,i := i + 1)) 

F i g .  9. Library  decrypt ion program 

T s ( ~ , p o ,  t"1) = G~ 
Ts(G~ ,pl ,  t'6) = G2 

T6( G2, pr PT ) = Ga 

T6(Ga,~I,P~) = G4 
T6(G4,pg, Plo) = G~ 

Ts( Gs, pl , 1)4) = G~ 

T6( G6, Pl, P2 ) = Gr 

G1 -= {(unit ~ charge1)} 
G2 = G1 + {(cipher ~ clear6), (key ~ clearS), (i 1, clear6), 

(clear ~ , clear 6 ) } 
G3 = c2 + {(charge 1, chargeT), (unit ~ chargeT), 

(i 1 , ehargeT), (cipher ~ charge~)} 
C4 = G~ + {(cipher ~ clearg), (i 1, elearg), (~lear ~ elear~)}} 
G5 = G4 + {(charge ~, charge~~ (unit ~ charge1~ 

( i 1, charge1~ (cipher ~ charge1~ 
as = G5 + {(charge ~, charge4), (charge 1~ charge4), 

(clear s, clear 4 ), (clear 9 , clear 4)} 
Gr = Gs + {(charge 4,charge 1),(clear 4,clear~ 

Fig.  10. Analysis of the library decryption program 

6 E x t e n s i o n s  

There  are three m a i n  directions in which we plan  to extend this work in order 
to be able to cope with more realistic languages:  

- The  in t roduc t ion  of pointer  m a n i p u l a t i o n  operators.  

- The  t r e a tmen t  of less s t ruc tured  control flow. 

- The  extension to a parallel  language.  

We consider each in tu rn .  
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Fig. 11. Result of the analysis of the library decryption program 

The addition of general pointers in a language complicates most program 
analyses because it introduces the well-known problem of aliasing. Aliasing oc- 
curs during program execution when two or more names exist for the same 
location [15]. Let us take a small example in the context of information now to 
illustrate the problem. 

int  i, j, k, *p 
p := &i; 
i : = j ;  
k := *p; 

The variable p is assigned the location of i. As a consequence, an information 
flow from i to p must be accounted for. Furthermore the assignment of j to 
i introduces a new (and hidden) flow of information between j and p and the 
assignment of . p  to k creates a flow from i to k. The semantics of the language 
and the definition of information flow (section 2) must  be adapted to take into 
account the fact that  a variable can have access to the value (or part  of) of 
another variable through dereferences. As far as the proof checking algori thm 
is concerned, the first solution is to complement the method presented in this 
paper  with a pointer Miasing analysis. Various techniques have been proposed 
in the li terature to tackle this problem [15, 16]. These techniques are more or 
less accurate (and expensive) depending on the level of indirection which is 
considered. The rule for assignment can be enhanced to take this new form of 
flow into account: 

T6(G,p, (q, (y :~- exp(x l ,X2 ..... Xn))) ) ~- G -~ {(~P, yq) ] i ---- 1..71.)-]-{(zP, z q) ] z • y} 

+ {( z~, Yq) I z,. E IFq} + {(yq, z t) I d l i a s ( y  q, c .zt)}  
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where c is an access chain (sequence of dereferences). 
A more ambitious research direction would be to integrate both analysers 

into a single, more efficient, algorithm. A possible solution is to consider object 
names rather than simple variables in the information flow analysis. Following 
[16], object names can be defined as follows: 

object_name = variable [ *.object_name I object_name.field_of_structure 

The introduction of less structured sequential control flow does not introduce 
deep technical problems into our analysis. I t  may  however make the analyser 
more expensive (the same situtation occurs in traditional data  flow analysis). For 
instance we can deal with explicit goto commands  by adding new assignments at 
the join nodes of the control flow graph (very much like the C-functions in SSA 
forms [7]). Such assignments are already implicit in the rules for the alternative 
and repetitive commands (see Figure 8 for instance). 

The need for ensuring security properties becomes especially crucial in the 
context of distributed systems. We are currently studying the generalisation of 
our work for a full version of CSP [11]. In CSP, communication commands may  
occur in guards and in statements.  The notion of indirect flow has to be extended 
to take such communications into account. The semantics of CSP introduces two 
main technical difficulties for a correct t rea tment  of control flow: 

- Indirect control flow can occur even in the absence of rendez-vous (when 
such a rendez-vous would have been made possible by a different execution 
of a guarded command).  

- The non termination of a process can influence the values of the variables of 
the processes it might have communicated with. 

As an example of how indirect flows can occur in the absence of a rendez- 
vous, consider the following program segment. Suppose that  y of process P1 is 
either 1 or 0. Whatever,  the value of y, at the end of process P1, x will equal 
y. The reason for this is that ,  if y = 0 in process P1, then P1 passes the value 
1 to b of process P2 which then passes 0 back to x. Conversely, if y is 1 in P1, 
then P1 signals 0 to process P3 which signals 1 to P2's  b which in turn passes 
this value back to ~. 

[ 
PI:: P2:: P3:: 
[var x,y; [var a,b; [var s ; 
y := e0; [ Pl ? b ~ b:=b-1 • P1 ? s; 
[ y = O ~  P2!  1 [] P3 ? b - - ~ s k i p ]  P2!  1 
y#0 ~ skip ] a := b; ] 

P3 [ O; P1 ! a 
P2 ? x Ill  
]ll 

] 

Our solution consists of associating each program point Pi with a control 
flow variable ci containing all the variables which may influence the fact that  
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the execution of the program reaches that  point. When a communicat ion occurs 
between Pt : P2 I v and p2 : P1 ? x, the control flow cl at point Pl is added to the 
security variable g. Furthermore both control flows Cl and c2 become cl U c2. 
As far as algorithmic aspects are concerned, communications introduce a new 
source of non determinism in the proof. The traditional technique consists in 
carrying out the proof of each process independently before checking a cooper- 
ation condition on the individual rules. The first phase places little constraints 
on communicat ion commands  and appropriate properties have to be guessed in 
order to derive proofs that  satisfy the cooperation conditions. Our graph algo- 
r i thm can be extended in a natural  way to simulate this reasoning. The set of 
nodes includes control flow variables and the required arcs are added between 
matching communicat ion commands.  The impor tant  property allowing us to re- 
tain the simplicity of the algorithm described here is the fact that  we derive for 
each point of the program the strongest property provable at this point. As a 
consequence the graph can still be built incrementally avoiding the need for an 
iterative process. 

7 R e l a t e d  w o r k  

Language based information flow control mechanisms have tradit ionally used 
security levels [8, 3]. Each variable is assigned a level denoting the sensitivity of 
the information it contains. After an operation, the level of the variable which 
received the information flow must be no less than the level of the flow source 
variables. However, the security level approach severely restricts the range of 
policies that  one might like to support.  A flow mechanism should log the variables 
tha t  have flown to each variable rather than the level of the data. Jones and 
Lipton's  surveillance set mechanism [12] is in this spirit and has some similarities 
with the mechanism proposed here. 

In [18], McLean describes a unified framework for showing that  a software 
module specification is non-interfering and that  the module code satisfies this 
specification. Non-interference is a security property which states that  a user's 
output  cannot be affected by the input of any user with a higher security level. 
McLean's approach is based on the trace method for software module specifica- 
tion [171. This method defines a module 's  semantics as the set of legal module 
traces (sequences of module procedure calls), the values returned by the traces 
terminat ing in a function call and a trace equivalence. Non-interference can be 
proved from the module 's  trace semantics. The author then defines a simple 
sequential procedural based programming language and gives the semantics of 
the language in trace form. This method is at tractive because it allows the 
non-interference proof to be conducted at the abstract  level of functional specifi- 
cations. Program security is then established as a consequence of the functional 
correctness. In contrast with our approach however, no a t t empt  is made to con- 
duct proofs in a mechanical (or even systematic) way. 

The main contribution of this paper is to provide a formally based and effec- 
tive tool for checking security properties of sequential programs. To our knowl- 
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edge there have been surprisingly few at tempts to achieve these goals so far. 
Most of the approaches described in the literature either lead to manual ver- 
ification techniques [3] or rely on informal correctness proofs [9]. The closest 
work in the spirit of the contribution presented here is [19]. They derive a flow 
control algorithm as an abstract interpretation of the denotational semantics 
of the programming language. The programmer associates each variable with a 
security class (such as unclassified, classified, secret, . . . ) .  Security classes corre- 
spond to particular abstract semantics domains forming a lattice of properties 
and .the analysis computes abstract values to check the security constraints. In 
contrast with this approach, we do not require security classes to be associated 
with variables but we check that the value of one particular variable cannot flow 
into another variable. We have shown in [4] that this approach provides more 
flexibility in the choice of a particular security policy. Our algorithm could in 
fact be applied to synthesise the weakest constraints on the security classes of 
the variables of an unannotated program. These two options can be compared 
with the choice between explicit typing and type synthesis in strongly typed 
programming languages. 
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