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Abstract. 

Most tasks in DSP-applications require multiple 
resources for their execution. If only CPU-usage is 
considered while constructing a static schedule, the 
actual run-time performance of the application can differ 
a lot from the predicted one. In this paper we present a 
scheduling method that takes non-CPU resource- 
requirements into account as well while constructing the 
static schedule. 

Situation of the problem. 

Most Digital Signal Processing (DSP) applications 
have to operate at very high sample-rates (order of MHz), 
such that static schedules are required to obtain real-time 
performance. Such static schedules are mostly 
automatically produced by CAD-tools [3], [5], [6], [7]. 
Most of these tools consider CPU-usage to determine a 
“time-optimal” task-execution order at compile-time. 
Once the order is fixed, code is generated and 
downloaded on the processor hardware for execution. 

During the execution of such a schedule however, it is 
quite possible that the actual performance differs a lot 
from what was predicted by the static schedule. First it is 
possible that the run-time makespan far exceeds the 
estimated one. This might be caused by wrong timing- 
estimates for the tasks in the application. When the 
estimate supposes e.g. the use of internal memory to store 
program-code and data, while the actual task uses 
external memory, the real execution-time greatly exceeds 
the estimated one. But even if all estimates of execution- 
times are accurate, the actual makespan can still differ a 

lot from the predicted one. This happens when multiple 
tasks try to access a shared device like e.g. a 
communication-link or a shared bus at the same time. In 
this case only one task gets access to the device while the 

others have to wait until it is released again. Such 
contention-delays are not counted for in a classically 
constructed static schedule. 

Besides those timing-aspects, also other surprises can 
arise while trying to execute the schedule. When too 
many tasks are assigned to the same device, the total 
amount of memory required can exceed the available 
amount. In this case we do not even succeed in 
downloading the code on the multi-processor board and 
the actual execution can never start. Another problem 
arises when the same hardware FIFO-buffer is used for 
communication between multiple tasks. When the first 
write-operation corresponds e.g. with the communication 
between two tasks A and B, while the first scheduled read- 
operation delivers data to a task C, the application will 
behave incorrectly. 

Resource-constraint scheduling in GRAPE-II. 

To avoid these problems and to guarantee that the 
static schedule we produced behaves as we expected, we 
have to take resource-requirements into account. In 
GRAPE-II (Graphical RApid Prototyping Environment) 
[l], [2], [4] this is done by representing all resource- 
requirements as separate tasks that need to be assigned to 
the different resources. Every user-task then corresponds 
to a cluster of subtasks, one for each associated resource- 
requirement. During assignment an entire task-cluster is 
assigned to a cluster of devices. The router adds 
communication-tasks, wherever data need to be 
transported. And finally in the scheduler all subtasks are 
ordered on their devices. To preserve the timing-relations 
between related subtasks, all subtasks belonging to the 
same task-cluster are placed together, taking into account 
their internal timing-relations as well as the load on the 

devices they have to be executed on. 
Depending on the nature of the resource-requirement, 

three types of resource-subtasks are distinguished. 
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First there are resources that are required for a fixed 

time that depends on the execution of a CPU-subtask. 
Examples of such resources are A/D- and D/A-converters, 
communication-ports etc. Those resource-requirements 
are represented as fixed size subtasks and are assigned 
and scheduled in the same way as a normal CPU-task. 

Other resources are required for a time that depends on 
the final schedule. This occurs when one (CPU-) task 
starts the resource-use while the execution of another one 
releases the resource again. A typical example can be 
found in the use of FIFO-buffers for communication 
purposes. Such a buffer is required from the moment the 
sender-task puts data in it, until the moment the receiver 
has read the data out of it. When sending and receiving 
actually occur depends on the schedule and is not fixed 
beforehand. To represent such resource-requirement of a 
priori unknown duration, we make use of an elastic 
subtask. The start of such an elastic has a strict timing- 
relationship with one cluster of fixed size subtasks, while 
the end of it is coupled with another (independent) task- 
cluster. For assignment purposes both start- and end- 
related clusters are supposed to form one hierarchical 
cluster together with the elastic subtask. This makes it 
easier to satisfy the required inter-device connections. 
During scheduling however the hierarchical cluster is 
split again in its set of subclusters. Together with the 
corresponding start-cluster the start of an elastic subtask 
is scheduled and keeps the resource busy until also the 
corresponding end-cluster has been scheduled. From that 
moment on the resource is released again for use by other 
tasks. 

Finally there also exist resources that are required 
permanently as long as the application runs, like 
program-memory. Since no run-time congestion can 
occur on such a device, they do not need to be considered 
during scheduling. During assigmnent however, they are 
of major importance to check if a cluster of temporary 
subtasks, can actually be assigned to the preferred device- 
cluster or not. The amount of free program-memory left, 
could for instance be less than what is required by the 
task. If this is the case another device-cluster for 
temporarily use needs to be searched for. 

Using this subtask representation most of the problems 
mentioned before are solved. By basing the execution- 
time estimates on the assignment of all cluster-subtasks, 
these are much more accurate and will clearly lead to 
more realistic performance-estimates. The scheduling of 
subtasks on all resources avoids the problem of 
unexpected resource-contention. The problem of device- 
overloading on its turn is avoided by only assigning tasks 
to devices when there is enough free place left to add the 
task under consideration as well. 

The problem of incorrect FIFO-buffer management 
however still needs some special attention. To guarantee 
that data are read in the same order as they were written, 
we make use of dynamic sequence-edges. Such sequence- 
edge connects the reading parts of two tasks that use the 
same FIFO-buffer, in the order their writing parts were 
scheduled. This guarantees that data will automatically be 
consumed by the task they are meant for. 
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Abstract. The growing importance of networked 
workstations as a computing milieu has created a new 
modality of parallel computing, namely, the possibil- 
ity of having one workstation “steal cycles” from an- 
other. In a typical episode of cycle-stealing, the owner 
of workstation B allows the owner of workstation A 

to take control of B’s processor whenever it is idle, 
with the promise of relinquishing control immediately 
upon the demand of the owner of B. Typically, the 
costs for an episode reside in the overhead in transmit- 
ting work, coupled with the fact that work in progress 
when the owner of B reclaims the workstation is lost 
to the owner of A. The first cost militates toward 
supplying B with a large amount of work at once; the 
second cost militates toward repeatedly supplying B 

with small amounts of work. This paper formulates 
a model of cycle-stealing and studies strategies that 
optimize the expected work from a single episode. 

1 Motivation 

Research on parallel computing has historically fo- 
cussed on single machines that are endowed with many 
processors. The growing importance of networked 
workstations as a computing milieu has created an al- 
ternative modality of parallel computing, namely, the 
process of stealing cycles; see [l-6]. The following sce- 
nario defines this paradigm. The owner of workstation 
A has a massive number of mutually independent tasks 
that must be computed. In order to expedite the com- 
pletion of the tasks, the owner of A enters a contract 
with the owners of (some of) the other workstations in 
the cluster, that, allows A to take control of the proces- 
sors of these workstations whenever they are idle, with 
the promise of relinquishing control immediately upon 
the demand of a workstation’s owner (say, when the 
mouse or keyboard is touched). The question studied 
here is: When workstation B becomes available, how 
should the owner of A allocate work to B in order to 
maximize the total amount of work one can expect 

to garner from a single episode of cycle-stealing? The 
challenge of this problem resides in the tension created 
by the main costs of an episode of cycle-stealing. The 
first cost resides in the fixed portion of the overheads 
of supplying work to workstation B and reclaiming 
the results of that work: in a data-parallel situation, 
these fixed overheads would reside in “filling the pipe” 
twice, first to supply input data to B and second to 
receive output data from B; in the most general situ- 
ation, these overheads would also include the cost of 
supplying B with the appropriate programs. We ig- 
nore for the moment the second, variable, component 
of the cost of supplying B with work, i.e., the per- 
datum portion of the cost, for in our model, we ab- 
sorb this variable cost into the cost of B’s executing 
the assigned tasks. The third component of the cost 
resides in the risk that the owner of A will lose the re- 
sults of whatever work is in progress when B’s owner 
reclaims that workstation - due to the promise to 
abandon B immediately upon demand. The first cost 
would lead the owner of A to give B a single large 
package of tasks; the third cost would lead the owner 
of A to give B a sequence of small packages of tasks. 
Clearly, the owner of A must seek a strategy that bal- 
ances the first and third costs in a way that maximizes 
the expected return from an episode. We formulate a 
mathematical model of the process of cycle-stealing 
and study strategies that optimize, under a variety of 
assumptions, this expected return. 

2 A Mathematical Model of Cycle- 

Stealing 

2.1 The Relevant Notions 

Lifespans. Clearly, no single strategy can suffice 
for all possible episodes of cycle-stealing: as an ex- 
treme example, an episode arising from a multi-week 
vacation must be treated differently from an episode 
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arising from a telephone call. Accordingly, we con- 
sider two scenarios, or classes of episodes, that require 
somewhat different groundrules. Within these scenar- 
ios, we allow different probability distributions on the 
“risk” of the return of the owner of workstation B. In 
the unbounded lifespan scenario, the owner of A has 
no a priori upper bound on how long workstation B 
will remain idle; in the bounded lifespan scenario, the 
owner of A knows that workstation B will be idle for 
at most L time units.’ In both scenarios, the owner 
of A is given information about the a priori proba- 
bility distribution on the “risk” of the return of the 
owner of B. In Sections 3-5, we assume total informa- 
tion about the distribution; in Section 6, we assume 
no information is available. 

Work Schedules. The owner of A partitions the 
lifespan of B into a schedule, i.e., a sequence S = 

to,t1,t2,... of finite-length periods (the ith period hav- 
ing length ti 2 0), with the following intension. At 
time rk, the Icth period begins, and the owner of A 

supplies B with an amount of work chosen2 so that tk 
time units are sufficient for 
a the owner of A to send the work to B, 

l B to perform the work, 
l B to return the results of the work. 
If Ic = 0, then rh = 0; if Ic > 0, then rk = Tk-1 =&f 
to + t1 + . . + t/+1. 

Communication Costs. The communication that 
starts and ends each period in an episode incurs a fixed 
overhead of c time units. This overhead results from 
some combination of: 
l A sending B a message “telling it” where to get data 
and/or programs; 
l B accessing a storage device to get data and /or pro- 
grams, or to return results; 
l A “filling the pipe” while sending B data and/or 
programs (from its local memory); 
l B “filling the pipe” while returning results. 
Of course, programs could be prestored in all worksta- 
tions, especially in data-parallel computations.3 The 
fact that c is typically large compared to the per-task 
computing time would lead the owner of A to try to 
minimize the number of periods in a schedule. 

‘For instance, L might be a night, a 24-hour day, or a week. 
*We assmne here that task lengths are known exactly. In 

later work, we shall weaken this assumed knowledge. 
3The fact that c is independent of how much work is allocated 

to B means that our model includes in computing time the 
marginal pipelined costs of transmitting data to and receiving 
data from B. 

Work Schedules Revisited. At time rk, the be- 
ginning of period k of schedule S = to, tl, t2,. . ., A 

supplies B with4 wk =&f tk 8 c units of work. If the 
owner of B has not returned by time Tk = rk +tk, then 
the amount of work done so far during this episode is 
augmented by wk; if the owner has returned by time 
Tk, then the episode terminates, with the total amount 
of work wg + wi + . . . + wk-1 (so work that is inter- 
rupted by the return of the owner of B is lost). Two 
facts emerging from this scenario should be kept in 
mind: 
1. Because of the overhead c, a period of length t pro- 
duces at most t 8 c work. 
2. In the bounded lifespan scenario with lifespan L, 

the risk of being interrupted, hence losing work, may 
make it desirable to have the productive ti (those ex- 
ceeding c) sum to less than L. 

Risks. The risk in an episode is characterized by the 
nonincreasing life function p: p(t) is the probability 
that the owner of B has not returned by time t. p 

is defined formally via the risk function q which gives 
the probability that the owner of B returns at precisely 
time t: 

s 

t 
p(t) = 1 - q(i)di. 

i=O 

We perform our study in a continuous rather than 
discrete domain to simplify certain manipulations. 
The reader should easily be able to extract discrete 
approximations to our results. 

Expected Work. Our goal throughout is to maxi- 
mize the expected work in an episode. Under schedule 
s = to,t1,... and life function p, this quantity is de- 
noted E(S;p) and is given by 

E(S; P) = C(ti 8 c)p(Ti) = C wip(Ti). (1) 

The summation in (1) must account for every period 
in schedule S. Accordingly, its upper limit is co in the 
unbounded lifespan scenario and m - 1 in an m-period 
bounded lifespan scenario. 

The framework we have developed makes the cycle 
stealing problem formally similar to the problem of 
allocating work to a system that can fail catastroph- 
ically. However, the models differ in details and the 
techniques used in the analysis differ significantly from 
those that are usually brought to bear on the work al- 
location problem [3]. 

4The operator 
max(O, 2 - y). 

“0” positive subtraction: XeY =def 
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2.2 A Simplifying Observation 

A schedule S = to, ti , . . . is optimal for life function 
p if E(S;p) 2 E(S’;p) for any other schedule S’. The 
following technical lemma simplifies our quest for opti- 
mal schedules by showing that nonproductive periods, 
i.e., those whose lengths do not exceed the communi- 
cation overhead c, hence contribute no work, cannot 
occur frequently. Specifically, a nonproductive period 
cannot occur at all in an optimal schedule for the un- 
bounded lifespan scenario, and one can occur only as 
period m - 1 in an m-period bounded lifespan scenario. 

Lemma 1 For every episode of cycle-stealing with 

communication overhead c, there is an optimal sched- 

ule S that is productive, in the following sense. If S 

has infinitely many periods (in the unbounded lifespan 

scenario), then every period of S has length > c. If S 

has m periods (in the bounded lifespan scenario), then 

every period of S, save possibly the last, has length 

> c. 

Proof. Note first that we can lose no generality by 
assuming that all periods in a schedule have positive 
length. Let us focus, therefore, on a schedule S = 

to,t1,. ..,tkrtk+l,..v where 0 < tk 5 c. Construct 

the schedule S<‘> = se, si , . . . from S as follows. If S 
has infinitely many periods, then so also does Sck’; 
if S has m periods, then S’“’ has m - 1 periods; in 
either case, the periods of S<“’ are defined by: 

ti for i < k 

Si = 

1 

tk + tk+l for i = k 

ti+l for i > k 

We claim that E(S<“; p) 2 E(S;p) for all life func- 

tions p. To wit, by direct calculation: 

E(SCk’; P) - E(S;p) 

(h + t/c+1 8 C)P(Tk + tk+l) - (tk 8 C)P(Tk) 

- (tk+leC)p(Tk +tk+l) 

[(tk + ?k+1 0 c) - (tk+l 8 C)]P(Tk + tk+l) 

0. 

In other words, if a positive-length nonproductive pe- 
riod appears as any but the last period of S, one can 
never decrease the expected work of S by combining 
the nonproductive period with its successor. 0 

3 The Geometrically Decreasing Lifes- 
pan Model 

We begin our study with the geometrically decreasing 

lifespan (GDL) model, wherein each episode of cycle- 

stealing has a “half-life;” i.e., the probability that an 
episode lasts at least e + 1 time units is roughly half 
the probability that it lasts at least C time units. This 
model fits most naturally within the unbounded lifes- 

pan scenario. For the sake of generality and reality, 
we replace the parameter l/2 in “half-life” by l/a for 
some risk parameter a > 1. This adds a bit of realism, 
in the sense that the “half-life” of an episode need not 
be measured in the same time units as is work. Note 
that, with any given risk factor, the conditional dis- 
tribution of risk in this model looks the same at every 
moment of time. This fact will enter implicitly into 
our analysis of the model. 

Formally, the life function for the GDL model with 
risk parameter a is given by: 

p,(t) = up,(t + 1) = u-t 

for all t 2 0. 
It is not clear a priori that there exist schedules 

that are optimal for the GDL model.5 We now prove 
that optimal schedules do exist and that they can be 
chosen to be uniform, in the sense of having equal- 
length periods. 

Theorem 1 The following uniform schedule, SC”), is 

optimal for the GDL model with risk parameter a. S(“) 
has periods of common length tea) defined implicitly by 

the equation6 

ha) In a + uVtta’) = 1 + c In a. 

S(“) has expected work 

(2) 

(0) 

E(@);p,) = a-t 
In a (3) 

Proof Sketch. Our first task is to verify that there 
exists an optimal schedule for the GDL model with 
risk parameter a. This follows from the Least Up- 
per Bound Principle via the following reasoning. Let 
s = to,t1,... be a schedule all of whose periods have 
length > c. (By Lemma 1, if there exists an optimal 
schedule, then there exists such a productive one.) By 
definition, then, 

E(S;p,) = g(ti - c)u-~ 

i=O 

5 -& _ C)u-(t.+z-l) 

i=O 

5 f)ti - ,),-(tl+(i-l)c). 

i=o 

5This is a real concern: For instance, the life function p(t) = 
l/(t + 1) does not admit an optimal schedule. 

61na denotes the natural logarithm of a. 
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Since the form xu-” is bounded above by a constant, 
it follows that E(S;p,) is also bounded above by a 
constant, whence the claim. 

Next, consider the tail of S, i.e., the schedule 
s’= t1,t2.... If E(S’;p,) > E(S;p,), then we aban- 
don S and concentrate instead on S’. Otherwise, we 
have E(S;pa) 2 E(S’;p,), so that 

E(S;p,) = (to - ~)a+’ + u-~~E(S~;~,) 

5 (to - ~)a&’ + u+‘E(S;p,). 

By solving this recurrence, we obtain the bound. 

Now, it turns out that the uniform 
s” = t, t, . . . has expected work 

E(S;p,) I -$$ 

E(S”;p,) = s> 

schedule 

(5) 

which matches the bound of inequality (4). It follows 

that there is a uniform schedule, call it SC”), that is 
optimal for the GDL model with risk parameter a; 
and, we can find S(“) by determining the value tea) 
of t that maximizes expression (5). This determina- 
tion is a straightforward calculus exercise that leads 
to equations (2) and (3). The Theorem follows. 0 

In the full paper [l]: (a) we prove that SC”) is the 
unique optimal schedule; (b) we prove a weak converse 
to Theorem 1, showing that any cycle-stealing episode 
for which a uniform schedule is optimal honors a weak 
analog of the GDL model. 

4 The Uniform Risk Model 

We turn next to a bounded lifespan scenario. In the 
uniform risk ( UR) model, the probability of “dying” is 
the same at every moment. The intention is to model 
a situation wherein one can predict with some confi- 
dence that the owner of workstation B is likely to be 
absent for at most L time units, but wherein there is a 
slowly growing probability that (s)he will return early, 
so that the probability of being alive at any particular 
time decreases by a fixed constant with each passing 
time unit. A similar model, with similar results, is 
studied in [3] but using different techniques. 

The life function for the UR model with lifespan L 

is given by pi = 1 - t/L for 0 5 t 5 L (so the risk 
function is given by qL (t) = l/L). 

The unique optimal schedule for the UR model par- 
titions the lifespan into periods that decrease in length 

arithmetically , with common difference c (the com- 
munications overhead), and that are maximal in num- 
ber, given this rate of decrease. 

Theorem 1 The unique optimal schedule for the UR 

model with lifespan L consists of m periods: ScoPt) = 
$Pt) pPt) pPt) 

7 1 ,“‘, m-1, where 

for 0 5 i < m, 

&opt) _ L -- 
z 

mfl 
+ y -ci. 

The resulting expected work is 

L L 
E(S(‘Pt);pL) = 2 - mc - ~ 

2(m + 1) 

(6) 

(7) 

+ m(m + l)(m + 2)c2 

24L 
. (8) 

Proof Sketch. Let S = to, tl,. . , t,-1 be an m- 

period candidate for an optimal schedule for the UR 
model with lifespan L. Note that the number of peri- 
ods m is unknown here, as well as the period lengths. 
When equation (1) is instantiated with schedule S and 
risk function pi., in the light of Lemma 1, it can be 
written in the form 

y(ti - C) ( 

2=0 
'-iTi) +(L-18c) (1-iTmel) 

= F(ti - C) (1 - ;Ti) . 

z=o 

We uncover the parameters of the optimal schedule 
for the UR model with lifespan L by deriving an as- 
signment of values to the variables m, to, tl, . . ., m-l, t 

that maximizes expression (9) subject to the positiv- 
ity of c and L, the positive integrality of m, and the 
constraints: 
l ti > c for 0 < i < m - 1 (because of Lemma 1); 

l Cy=i’ ti = L. 

In fact, we lose no generality if we replace expression 
(9) by the expression 

y(ti - C) (1 - ;Ti) , 

i=O 

(10) 

with the constraint on the ti weakened to 
l ti>OforO<i<m-1. 
Although this change broadens the search space for 

(9) 
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a maximizing assignment, the maximizing assignment 
for expression (10) actually satisfies our demands. 

We begin our search for a maximizing assignment 
by rewriting expression (10) to better expose its fun- 
damental structure. By direct manipulation, plus the 
fact that L2 = (te + tl + . . . + t,,-~)~, we find that 

m-1 

L . c (ti - c)(l - TJL) 

i=O 

m-1 

= C (ti - C)(ti+l + ti+2 + . . . + t,-1) 

2=0 

= ;Lz - f m$ [(ti + @ - &2] . 

a=0 

Letting ui = ti + ci for 0 < i < m, we convert the 
last expression to the perspicuous expression for E(S) 
that we shall actually maximize. 

L 
E(S) = y+ 

c2m(m - 1)(2m - 1) 

12L 
-&Fu:. (11) 

2=0 

Our task now is to maximize expression (11) subject 
to the following constraints. 

1. Since each ti 2 0, we must have each ui 2 ci. 

2. Since Cz;’ ti = L, we must have 

77-l 77X-l 

C Ui = C ti + Ci = L + cm(m2- ‘). 

i=O i=O 

Easily, we shall have achieved our goal once we have 
minimized the sum U: + uf +. . . + ~“,-i subject to the 
same constraints. Now, were it not for constraint (l), 
we could minimize this sum simply by setting each Ui 
to its average value 

u2=4+Ck!$ 
m 

Constraint (1) forces us to be a bit more careful. 
Specifically, we can use this simple averaging only for 
the first r + 1 terms of the sum, where r is the largest 
integer such that 
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The desired maximizing value of r is obtained by 
rewriting expression (12) in the form r2 +r - 2L/c 5 0. 

It is now clear that the maximizing value of r is given 

by 

The minimizing assignment (13) to the variables 
{ui} yields the sought maximizing assignment to the 
variables { ti}: 

ti = 
{ 

L/(r + 1) + cr/2 - ci for i 5 r 

0 for i > r (15) 

Since all periods beyond the first r have zero length, 
hence contribute no work, the maximizing value of r in 
equation (11) is in fact the sought number of periods 
m in the optimal schedule, thus verifying equation (6). 
Assignment (15) directly yields the sought values for 
the period lengths { tz} , thus verifying equation (7). 

We complete the proof by verifying that our maxi- 
mizing assignments for m and {ti} yield equation (8). 
Direct evaluation of expression (ll), with the maxi- 
mizing values of all parameters accomplishes this. De- 
tails are left to the reader. • I 

For the sake of perspective, we note that 
,?@'Pt); pi) is very close to 

when L is very much larger than c (which is likely to 
be the case). 

5 The Geometrically Increasing Risk 

Model 

(12) 
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As our final example, we consider the geometrically in- 

creasing risk (GIR) model, a bounded lifespan model 
which may be appropriate when the owner of worksta- 
tion B is likely to be absent for only a short period of 
time, say because of a telephone call. In this model, 
the probability of B’s owner’s return doubles at each 
time unit. We choose to interpret “double” literally 
here (in contrast to Section 3) to keep the arithmetic 
simplicity of a singly parameterized model. 

For the remainder of the sum, we use the value forced 
on us by constraint (l), namely Ui = ci. We thus end 
up with the following minimizing assignment for the 
Ui: 

Ui = 1 
L/(r + 1) + cr/2 for i 5 r 
ci for i > r (13) 

The life function for the GIR model with lifespan L 

is given by p:(t) = (2L - 2t)/(2L - 1) for t 2 0 (which 
corresponds to a discrete risk function qi(t + 1) = 
2qi(t) = (ZL - 1)2-(t-1) for t > 1). 

The optimal schedule for theGIR model partitions 
the lifespan into periods of exponentially decreasing 

lengths. 

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95) 
1060-3425/95 $10.00 © 1995 IEEE 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

Theorem 1 The optimal schedule for the GIR model 

has m periods: Scopt) = ttpt), tppt), . . . , te?i, where, 
to within rounding,? 

m = log* L - log* c, (16) 

and where the t!Opt) z are given implicitly by 

tcopt) - 2tp1:’ + c - 2 
k - 

for 0 < k < m - 2. - - 07) 

Proof Sketch. Let S = to, tl, . . . , t,-1 be a can- 
didate optimal m-period schedule for the GIR model 
with lifespan L. Instantiating equation (1) for the life 
function pi and invoking Lemma 1, we find, after some 
manipulation, that 

E(S;p:) = --$& 

77-l 

zL(L - 1) - 7TldL - c Wi2T’-1 

i=O 

We use a perturbation argument to analyze sched- 
ule S. The kth-period positive (resp., negative) pertvr- 

bation of S, denoted S+” (resp., S-“) is the schedule 

s*” =def t,,, tl , . . .) t&l, tkfl, tk+lFl, th+2,. . .) t,-1. 

Note that these both have the same lifespan L as does 
S. 

If schedule S were optimal, then its expected work 
would be no less than that of any of its perturbations. 
By applying this observation to both E(S) - E(S+‘) 

and E(S) - E(S-“), we verify equation (17). 

To verify equation (16)) we recall (from Lemma 1) 
that each period of an optimal finite schedule, save, 
perhaps the last, must have length > c; hence, we can 
continue to take the logarithm of (wc = to - c), then 

of 

Wl = t1 - c = log(w0 + 2), 

then of 

w2 = t2--C 

= log(w1 + 2) - c 

= log(t1 -c+2) -c 

= log(log(we + 2) - c + 2) - c, 

and so on, only so long as we attain periods of length 
t > 2= + c - 2, at which point additional periods would 
not be productive. 0 

7Throughout this section, all logarithms are to the base 2. If 
we inductively let log(i+‘) z = log(log(‘) z), then log’ z denotes 

the smallest integer r for which log(?) x 5 1. 

6 Operating with an Unknown Life 

Function 

We consider finally a scenario wherein very little is 
known about the life function. Of course, if nothing 
at all is known about the life function, then we can 
do little with confidence, since our first task can be 
killed just before it is finished (no matter how long the 
task is). The model we study now assumes only that 
we know that in a window of L units of time (possi- 
bly containing many interrupts), an optimal prescient 
scheduling strategy can accomplish CYL units of work. 
Our goal is to design a strategy that accomplishes ,f3L 

units of work where p is as close to cr as possible. In 
a typical application, it is reasonable to assume that 
CY is close to one; let us conservatively assume that 

Q: > l/3. 
This scenario differs from those considered earlier 

in several respects. First, we now allow epsiodes to 
include many interrupts, not only one. Second, we as- 
sume nothing about the life function during an interval 
between interrupts, except that over the entire L time 
units, one could accomplish crL work if one could an- 
ticipate the interrupts. Third, we judge performance 
by comparison with an optimal prescient schedule. 

We first study the problem of devising a determin- 
istic oblivious strategy. “Oblivious” here means that 
the length of the ith task is independent of where prior 
interrupts (if any) occurred. The ith task is started as 
soon as the (i - 1)th task has finished and/or once the 
workstation becomes available following an interrupt 
during the (i - 1)th task. (Similar results hold for the 
model in which the (i - 1)th task is restarted if it is 
interrupted before the ith task is run.) 

Let Li be length of the ith interval of available 
workstation time for 0 5 i < m, where m is the num- 
ber of available intervals in the entire window of L 

steps. Without loss of generality, L, > c for each i. 
Since the optimal prescient schedule achieves aL work, 
we know that 

m-1 

C (Li - C) 2 ClL. 

i=O 

We know also that aL + cm 5 L and thus that m 5 

(1 - Ly)L/c. 

Now, consider a schedule for which every task has 
the same length t > c. (We show that such a strategy 
is, in some sense, optimal.) The work achieved by this 
schedule is easily 

m-1 m-1 

1 [Lilt] (t - C) 2 (t - c, C CLilt - l) 

2=0 2=0 
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2 (t - c)[(YL - (t - c)m]/t 

> (t - c)(c - t + cxt)L/tc. 

The preceding expression is optimized by setting 

t = c/G, whereupon the work achieved is 
(1 - G)2L, which provides a competitive ratio 
of (1 - dG)/( 1 + fi) over the optimal pre- 
scient schedule. For (Y close to 1, the work achieved 
is close to L, and the competitive ratio is close to 1. 
For instance, when cr > 314, the competitive ratio is 
greater than l/3. 

Using the observation that an adversary’s best 
strategy is to kill the I( 1 -c~)/cJ longest running tasks, 
one can show that the preceding schedule is optimal 
among deterministic oblivious schemes when it comes 
to maximizing the amount of work that we are guar- 

anteed to be able to achieve. 
Devising an optimal adaptive strategy - one where 

the task lengths are chosen based on history - is a 
more difficult matter. For example, we now consider a 
scenario in which we are assured that there will be at 
most one interrupt (of known length). Without loss 
of generality, we assume that the interrupt has length 
zero. This situation corresponds to the scenario where 
CVL > L - 3c. The optimal schedule for this scenario 
is as follows. 

Define i to be the (not necessarily unique) integer 
such that 

(i - 1)i < 4. _ 1 < i(i + 1) 

2 -c - 2. 

Define 
t, = L + (i2 + i - 2)c/2 
3 i 

- jc 

for 1 5 j < i, and set ti = t,-1. Then the optimal 
schedule is to run a task of length tl, followed by a 
task of length t2, followed by a task of length t3, and 
so on, until there is an interrupt, after which we run a 
single task that consumes the remaining time. (Easily, 
tl + t2 + . . . + t, = L.) One can show that the work 
accomplished by this schedule is at least 

(i - l)L - (i” + i - 2)c/2 

i 
> 

no matter where the interrupt occurs. One can also 
prove by induction that this strategy is optimal if only 
one interrupt can occur. (Details will appear in the 
final version of the paper.) 

It is worth noting that the strategy just described is 
very similar to the optimal strategy for the UR model 
(Section 4). Indeed, when L >> c, we begin with 
a task of length about a, and then select tasks 
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with lengths that successively decrease by c in length 
until the interrupt occurs. Hence, the optimal strategy 
against an unknown interrupt is very similar to the 
strategy where we assume that the interrupt will be 
uniformly distributed, although the two scenarios are 
somewhat different. 

We close with three open problems concerning the 
framework of this section. The first problem is to find 
a closed-form solution for an optimal strategy when 
two or more interrupts are allowed. The second is to 
devise optimal randomized strategies. The third is to 
verify or refute our conjecture that the competitive 
performance of randomized strategies is better than 
that of deterministic strategies. 
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