
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Compile-Time Scheduling with Resource-Constraints.

Greet Bilsen, Rudy Lauwereins, J.A. Peperstraete

ESAT-ACCA-Laboratory, Katholieke Universiteit Leuven, Belgium

Abstract.

Most tasks in DSP-applications require multiple
resources for their execution. If only CPU-usage is
considered while constructing a static schedule, the
actual run-time performance of the application can differ
a lot from the predicted one. In this paper we present a
scheduling method that takes non-CPU resource-
requirements into account as well while constructing the
static schedule.

Situation of the problem.

Most Digital Signal Processing (DSP) applications
have to operate at very high sample-rates (order of MHz),
such that static schedules are required to obtain real-time
performance. Such static schedules are mostly
automatically produced by CAD-tools [3], [5], [6], [7].
Most of these tools consider CPU-usage to determine a
“time-optimal” task-execution order at compile-time.
Once the order is fixed, code is generated and
downloaded on the processor hardware for execution.

During the execution of such a schedule however, it is
quite possible that the actual performance differs a lot
from what was predicted by the static schedule. First it is
possible that the run-time makespan far exceeds the
estimated one. This might be caused by wrong timing-
estimates for the tasks in the application. When the
estimate supposes e.g. the use of internal memory to store
program-code and data, while the actual task uses
external memory, the real execution-time greatly exceeds
the estimated one. But even if all estimates of execution-
times are accurate, the actual makespan can still differ a

lot from the predicted one. This happens when multiple
tasks try to access a shared device like e.g. a
communication-link or a shared bus at the same time. In
this case only one task gets access to the device while the

others have to wait until it is released again. Such
contention-delays are not counted for in a classically
constructed static schedule.

Besides those timing-aspects, also other surprises can
arise while trying to execute the schedule. When too
many tasks are assigned to the same device, the total
amount of memory required can exceed the available
amount. In this case we do not even succeed in
downloading the code on the multi-processor board and
the actual execution can never start. Another problem
arises when the same hardware FIFO-buffer is used for
communication between multiple tasks. When the first
write-operation corresponds e.g. with the communication
between two tasks A and B, while the first scheduled read-
operation delivers data to a task C, the application will
behave incorrectly.

Resource-constraint scheduling in GRAPE-II.

To avoid these problems and to guarantee that the
static schedule we produced behaves as we expected, we
have to take resource-requirements into account. In
GRAPE-II (Graphical RApid Prototyping Environment)
[l], [2], [4] this is done by representing all resource-
requirements as separate tasks that need to be assigned to
the different resources. Every user-task then corresponds
to a cluster of subtasks, one for each associated resource-
requirement. During assignment an entire task-cluster is
assigned to a cluster of devices. The router adds
communication-tasks, wherever data need to be
transported. And finally in the scheduler all subtasks are
ordered on their devices. To preserve the timing-relations
between related subtasks, all subtasks belonging to the
same task-cluster are placed together, taking into account
their internal timing-relations as well as the load on the

devices they have to be executed on.
Depending on the nature of the resource-requirement,

three types of resource-subtasks are distinguished.

153
1060-3425/95$4.00 0 1995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

First there are resources that are required for a fixed

time that depends on the execution of a CPU-subtask.
Examples of such resources are A/D- and D/A-converters,
communication-ports etc. Those resource-requirements
are represented as fixed size subtasks and are assigned
and scheduled in the same way as a normal CPU-task.

Other resources are required for a time that depends on
the final schedule. This occurs when one (CPU-) task
starts the resource-use while the execution of another one
releases the resource again. A typical example can be
found in the use of FIFO-buffers for communication
purposes. Such a buffer is required from the moment the
sender-task puts data in it, until the moment the receiver
has read the data out of it. When sending and receiving
actually occur depends on the schedule and is not fixed
beforehand. To represent such resource-requirement of a
priori unknown duration, we make use of an elastic
subtask. The start of such an elastic has a strict timing-
relationship with one cluster of fixed size subtasks, while
the end of it is coupled with another (independent) task-
cluster. For assignment purposes both start- and end-
related clusters are supposed to form one hierarchical
cluster together with the elastic subtask. This makes it
easier to satisfy the required inter-device connections.
During scheduling however the hierarchical cluster is
split again in its set of subclusters. Together with the
corresponding start-cluster the start of an elastic subtask
is scheduled and keeps the resource busy until also the
corresponding end-cluster has been scheduled. From that
moment on the resource is released again for use by other
tasks.

Finally there also exist resources that are required
permanently as long as the application runs, like
program-memory. Since no run-time congestion can
occur on such a device, they do not need to be considered
during scheduling. During assigmnent however, they are
of major importance to check if a cluster of temporary
subtasks, can actually be assigned to the preferred device-
cluster or not. The amount of free program-memory left,
could for instance be less than what is required by the
task. If this is the case another device-cluster for
temporarily use needs to be searched for.

Using this subtask representation most of the problems
mentioned before are solved. By basing the execution-
time estimates on the assignment of all cluster-subtasks,
these are much more accurate and will clearly lead to
more realistic performance-estimates. The scheduling of
subtasks on all resources avoids the problem of
unexpected resource-contention. The problem of device-
overloading on its turn is avoided by only assigning tasks
to devices when there is enough free place left to add the
task under consideration as well.

The problem of incorrect FIFO-buffer management
however still needs some special attention. To guarantee
that data are read in the same order as they were written,
we make use of dynamic sequence-edges. Such sequence-
edge connects the reading parts of two tasks that use the
same FIFO-buffer, in the order their writing parts were
scheduled. This guarantees that data will automatically be
consumed by the task they are meant for.

Acknowledgements.

Greet Bilsen is a Research Assistant and Rudy

Lauwereins a Senior Research Associate of the Belgian
National Fund for Scientific Research. K.U.Leuven-ESAT
is a member of the DSP-Valley network. This project is
partially sponsored by the Belgian Interuniversity Pole of
Attraction IUAP-50 and the ESPRIT project 6800
Retides.

References.

111

PI

PI

PI

151

PI

171

G. Bilsen, P. Wauters, M. Engels, R. Lauwereins and J.A.

Peperstraete, “Development of a static load balancing
tool”, Proceedings of the Fourth Workshop on Parallel

and Distributed Processing ‘93, pp. 179-194, Sofia,

Bulgaria, May 4-7, 1993.

G. Bilsen, M. Engels, R. Lauwereins and J.A.

Peperstraete, “Development of a tool for compile-time

assignment on a multi-processor,” Internal Report,

Katholieke Universiteit L.euven, ESAT-Laboratory, May

1993.

P. Hoang, J. Rabaey, “Partitioning of DSP Programs onto

Multiprocessors for Maximum Throughput”, Internal

Report, Electronics Research Laboratory, University of

California, Berkeley, 26 April 1991.

Rudy Lauwereins, Marc Engels, Marleen AdB, J.A.

Peperstraete, “GRAPE-II: Graphical RApid Prototyping

Environment for Digital Signal Processing Systems”,

proceedings of ICSPAT ‘94, Oct. 18-21, 1994, Dallas,

Texas.

S. Note, P. Vandebroeck, P. Odent, D. Genin, M. Van

Canneyt, “Top Down design of two industrial ICs with

DSP Station, DSP Application, 1993.

J. Pino, S. Ha, E. Lee, J. Buck, “Software Synthesis for

DSP Using Ptolemy”, Journal on VLSI Signal Processing,

special issue on Synthesis for DSP, 1993.

Signal Processing Worksystem (SPW TM) Manuals,

Corndisco Systems, Inc.

154

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

On Optimal Strategies for Stealing Cycles

Sandeep Bhatt’ Fan Chungl Tom Leighton2 Arnold Rosenberg3

’ Bellcore, Morristown NJ 07960.

’ MIT, Cambridge MA 02139.

3 U. Massachusetts, Amherst MA 01003.

Abstract. The growing importance of networked
workstations as a computing milieu has created a new
modality of parallel computing, namely, the possibil-
ity of having one workstation “steal cycles” from an-
other. In a typical episode of cycle-stealing, the owner
of workstation B allows the owner of workstation A

to take control of B’s processor whenever it is idle,
with the promise of relinquishing control immediately
upon the demand of the owner of B. Typically, the
costs for an episode reside in the overhead in transmit-
ting work, coupled with the fact that work in progress
when the owner of B reclaims the workstation is lost
to the owner of A. The first cost militates toward
supplying B with a large amount of work at once; the
second cost militates toward repeatedly supplying B

with small amounts of work. This paper formulates
a model of cycle-stealing and studies strategies that
optimize the expected work from a single episode.

1 Motivation

Research on parallel computing has historically fo-
cussed on single machines that are endowed with many
processors. The growing importance of networked
workstations as a computing milieu has created an al-
ternative modality of parallel computing, namely, the
process of stealing cycles; see [l-6]. The following sce-
nario defines this paradigm. The owner of workstation
A has a massive number of mutually independent tasks
that must be computed. In order to expedite the com-
pletion of the tasks, the owner of A enters a contract
with the owners of (some of) the other workstations in
the cluster, that, allows A to take control of the proces-
sors of these workstations whenever they are idle, with
the promise of relinquishing control immediately upon
the demand of a workstation’s owner (say, when the
mouse or keyboard is touched). The question studied
here is: When workstation B becomes available, how
should the owner of A allocate work to B in order to
maximize the total amount of work one can expect

to garner from a single episode of cycle-stealing? The
challenge of this problem resides in the tension created
by the main costs of an episode of cycle-stealing. The
first cost resides in the fixed portion of the overheads
of supplying work to workstation B and reclaiming
the results of that work: in a data-parallel situation,
these fixed overheads would reside in “filling the pipe”
twice, first to supply input data to B and second to
receive output data from B; in the most general situ-
ation, these overheads would also include the cost of
supplying B with the appropriate programs. We ig-
nore for the moment the second, variable, component
of the cost of supplying B with work, i.e., the per-
datum portion of the cost, for in our model, we ab-
sorb this variable cost into the cost of B’s executing
the assigned tasks. The third component of the cost
resides in the risk that the owner of A will lose the re-
sults of whatever work is in progress when B’s owner
reclaims that workstation - due to the promise to
abandon B immediately upon demand. The first cost
would lead the owner of A to give B a single large
package of tasks; the third cost would lead the owner
of A to give B a sequence of small packages of tasks.
Clearly, the owner of A must seek a strategy that bal-
ances the first and third costs in a way that maximizes
the expected return from an episode. We formulate a
mathematical model of the process of cycle-stealing
and study strategies that optimize, under a variety of
assumptions, this expected return.

2 A Mathematical Model of Cycle-

Stealing

2.1 The Relevant Notions

Lifespans. Clearly, no single strategy can suffice
for all possible episodes of cycle-stealing: as an ex-
treme example, an episode arising from a multi-week
vacation must be treated differently from an episode

155
1060-3425/95 $4.00 0 1995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

arising from a telephone call. Accordingly, we con-
sider two scenarios, or classes of episodes, that require
somewhat different groundrules. Within these scenar-
ios, we allow different probability distributions on the
“risk” of the return of the owner of workstation B. In
the unbounded lifespan scenario, the owner of A has
no a priori upper bound on how long workstation B
will remain idle; in the bounded lifespan scenario, the
owner of A knows that workstation B will be idle for
at most L time units.’ In both scenarios, the owner
of A is given information about the a priori proba-
bility distribution on the “risk” of the return of the
owner of B. In Sections 3-5, we assume total informa-
tion about the distribution; in Section 6, we assume
no information is available.

Work Schedules. The owner of A partitions the
lifespan of B into a schedule, i.e., a sequence S =

to,t1,t2,... of finite-length periods (the ith period hav-
ing length ti 2 0), with the following intension. At
time rk, the Icth period begins, and the owner of A

supplies B with an amount of work chosen2 so that tk
time units are sufficient for
a the owner of A to send the work to B,

l B to perform the work,
l B to return the results of the work.
If Ic = 0, then rh = 0; if Ic > 0, then rk = Tk-1 =&f
to + t1 + . . + t/+1.

Communication Costs. The communication that
starts and ends each period in an episode incurs a fixed
overhead of c time units. This overhead results from
some combination of:
l A sending B a message “telling it” where to get data
and/or programs;
l B accessing a storage device to get data and /or pro-
grams, or to return results;
l A “filling the pipe” while sending B data and/or
programs (from its local memory);
l B “filling the pipe” while returning results.
Of course, programs could be prestored in all worksta-
tions, especially in data-parallel computations.3 The
fact that c is typically large compared to the per-task
computing time would lead the owner of A to try to
minimize the number of periods in a schedule.

‘For instance, L might be a night, a 24-hour day, or a week.
*We assmne here that task lengths are known exactly. In

later work, we shall weaken this assumed knowledge.
3The fact that c is independent of how much work is allocated

to B means that our model includes in computing time the
marginal pipelined costs of transmitting data to and receiving
data from B.

Work Schedules Revisited. At time rk, the be-
ginning of period k of schedule S = to, tl, t2,. . ., A

supplies B with4 wk =&f tk 8 c units of work. If the
owner of B has not returned by time Tk = rk +tk, then
the amount of work done so far during this episode is
augmented by wk; if the owner has returned by time
Tk, then the episode terminates, with the total amount
of work wg + wi + . . . + wk-1 (so work that is inter-
rupted by the return of the owner of B is lost). Two
facts emerging from this scenario should be kept in
mind:
1. Because of the overhead c, a period of length t pro-
duces at most t 8 c work.
2. In the bounded lifespan scenario with lifespan L,

the risk of being interrupted, hence losing work, may
make it desirable to have the productive ti (those ex-
ceeding c) sum to less than L.

Risks. The risk in an episode is characterized by the
nonincreasing life function p: p(t) is the probability
that the owner of B has not returned by time t. p

is defined formally via the risk function q which gives
the probability that the owner of B returns at precisely
time t:

s

t
p(t) = 1 - q(i)di.

i=O

We perform our study in a continuous rather than
discrete domain to simplify certain manipulations.
The reader should easily be able to extract discrete
approximations to our results.

Expected Work. Our goal throughout is to maxi-
mize the expected work in an episode. Under schedule
s = to,t1,... and life function p, this quantity is de-
noted E(S;p) and is given by

E(S; P) = C(ti 8 c)p(Ti) = C wip(Ti). (1)

The summation in (1) must account for every period
in schedule S. Accordingly, its upper limit is co in the
unbounded lifespan scenario and m - 1 in an m-period
bounded lifespan scenario.

The framework we have developed makes the cycle
stealing problem formally similar to the problem of
allocating work to a system that can fail catastroph-
ically. However, the models differ in details and the
techniques used in the analysis differ significantly from
those that are usually brought to bear on the work al-
location problem [3].

4The operator
max(O, 2 - y).

“0” positive subtraction: XeY =def

156

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

2.2 A Simplifying Observation

A schedule S = to, ti , . . . is optimal for life function
p if E(S;p) 2 E(S’;p) for any other schedule S’. The
following technical lemma simplifies our quest for opti-
mal schedules by showing that nonproductive periods,
i.e., those whose lengths do not exceed the communi-
cation overhead c, hence contribute no work, cannot
occur frequently. Specifically, a nonproductive period
cannot occur at all in an optimal schedule for the un-
bounded lifespan scenario, and one can occur only as
period m - 1 in an m-period bounded lifespan scenario.

Lemma 1 For every episode of cycle-stealing with

communication overhead c, there is an optimal sched-

ule S that is productive, in the following sense. If S

has infinitely many periods (in the unbounded lifespan

scenario), then every period of S has length > c. If S

has m periods (in the bounded lifespan scenario), then

every period of S, save possibly the last, has length

> c.

Proof. Note first that we can lose no generality by
assuming that all periods in a schedule have positive
length. Let us focus, therefore, on a schedule S =

to,t1,. ..,tkrtk+l,..v where 0 < tk 5 c. Construct

the schedule S<‘> = se, si , . . . from S as follows. If S
has infinitely many periods, then so also does Sck’;
if S has m periods, then S’“’ has m - 1 periods; in
either case, the periods of S<“’ are defined by:

ti for i < k

Si =

1

tk + tk+l for i = k

ti+l for i > k

We claim that E(S<“; p) 2 E(S;p) for all life func-

tions p. To wit, by direct calculation:

E(SCk’; P) - E(S;p)

(h + t/c+1 8 C)P(Tk + tk+l) - (tk 8 C)P(Tk)

- (tk+leC)p(Tk +tk+l)

[(tk + ?k+1 0 c) - (tk+l 8 C)]P(Tk + tk+l)

0.

In other words, if a positive-length nonproductive pe-
riod appears as any but the last period of S, one can
never decrease the expected work of S by combining
the nonproductive period with its successor. 0

3 The Geometrically Decreasing Lifes-
pan Model

We begin our study with the geometrically decreasing

lifespan (GDL) model, wherein each episode of cycle-

stealing has a “half-life;” i.e., the probability that an
episode lasts at least e + 1 time units is roughly half
the probability that it lasts at least C time units. This
model fits most naturally within the unbounded lifes-

pan scenario. For the sake of generality and reality,
we replace the parameter l/2 in “half-life” by l/a for
some risk parameter a > 1. This adds a bit of realism,
in the sense that the “half-life” of an episode need not
be measured in the same time units as is work. Note
that, with any given risk factor, the conditional dis-
tribution of risk in this model looks the same at every
moment of time. This fact will enter implicitly into
our analysis of the model.

Formally, the life function for the GDL model with
risk parameter a is given by:

p,(t) = up,(t + 1) = u-t

for all t 2 0.
It is not clear a priori that there exist schedules

that are optimal for the GDL model.5 We now prove
that optimal schedules do exist and that they can be
chosen to be uniform, in the sense of having equal-
length periods.

Theorem 1 The following uniform schedule, SC”), is

optimal for the GDL model with risk parameter a. S(“)
has periods of common length tea) defined implicitly by

the equation6

ha) In a + uVtta’) = 1 + c In a.

S(“) has expected work

(2)

(0)

E(@);p,) = a-t
In a (3)

Proof Sketch. Our first task is to verify that there
exists an optimal schedule for the GDL model with
risk parameter a. This follows from the Least Up-
per Bound Principle via the following reasoning. Let
s = to,t1,... be a schedule all of whose periods have
length > c. (By Lemma 1, if there exists an optimal
schedule, then there exists such a productive one.) By
definition, then,

E(S;p,) = g(ti - c)u-~

i=O

5 -& _ C)u-(t.+z-l)

i=O

5 f)ti - ,),-(tl+(i-l)c).

i=o

5This is a real concern: For instance, the life function p(t) =
l/(t + 1) does not admit an optimal schedule.

61na denotes the natural logarithm of a.

157

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Since the form xu-” is bounded above by a constant,
it follows that E(S;p,) is also bounded above by a
constant, whence the claim.

Next, consider the tail of S, i.e., the schedule
s’= t1,t2.... If E(S’;p,) > E(S;p,), then we aban-
don S and concentrate instead on S’. Otherwise, we
have E(S;pa) 2 E(S’;p,), so that

E(S;p,) = (to - ~)a+’ + u-~~E(S~;~,)

5 (to - ~)a&’ + u+‘E(S;p,).

By solving this recurrence, we obtain the bound.

Now, it turns out that the uniform
s” = t, t, . . . has expected work

E(S;p,) I -$$

E(S”;p,) = s>

schedule

(5)

which matches the bound of inequality (4). It follows

that there is a uniform schedule, call it SC”), that is
optimal for the GDL model with risk parameter a;
and, we can find S(“) by determining the value tea)
of t that maximizes expression (5). This determina-
tion is a straightforward calculus exercise that leads
to equations (2) and (3). The Theorem follows. 0

In the full paper [l]: (a) we prove that SC”) is the
unique optimal schedule; (b) we prove a weak converse
to Theorem 1, showing that any cycle-stealing episode
for which a uniform schedule is optimal honors a weak
analog of the GDL model.

4 The Uniform Risk Model

We turn next to a bounded lifespan scenario. In the
uniform risk (UR) model, the probability of “dying” is
the same at every moment. The intention is to model
a situation wherein one can predict with some confi-
dence that the owner of workstation B is likely to be
absent for at most L time units, but wherein there is a
slowly growing probability that (s)he will return early,
so that the probability of being alive at any particular
time decreases by a fixed constant with each passing
time unit. A similar model, with similar results, is
studied in [3] but using different techniques.

The life function for the UR model with lifespan L

is given by pi = 1 - t/L for 0 5 t 5 L (so the risk
function is given by qL (t) = l/L).

The unique optimal schedule for the UR model par-
titions the lifespan into periods that decrease in length

arithmetically , with common difference c (the com-
munications overhead), and that are maximal in num-
ber, given this rate of decrease.

Theorem 1 The unique optimal schedule for the UR

model with lifespan L consists of m periods: ScoPt) =
$Pt) pPt) pPt)

7 1 ,“‘, m-1, where

for 0 5 i < m,

&opt) _ L --
z

mfl
+ y -ci.

The resulting expected work is

L L
E(S(‘Pt);pL) = 2 - mc - ~

2(m + 1)

(6)

(7)

+ m(m + l)(m + 2)c2

24L
. (8)

Proof Sketch. Let S = to, tl,. . , t,-1 be an m-

period candidate for an optimal schedule for the UR
model with lifespan L. Note that the number of peri-
ods m is unknown here, as well as the period lengths.
When equation (1) is instantiated with schedule S and
risk function pi., in the light of Lemma 1, it can be
written in the form

y(ti - C) (

2=0
'-iTi) +(L-18c) (1-iTmel)

= F(ti - C) (1 - ;Ti) .

z=o

We uncover the parameters of the optimal schedule
for the UR model with lifespan L by deriving an as-
signment of values to the variables m, to, tl, . . ., m-l, t

that maximizes expression (9) subject to the positiv-
ity of c and L, the positive integrality of m, and the
constraints:
l ti > c for 0 < i < m - 1 (because of Lemma 1);

l Cy=i’ ti = L.

In fact, we lose no generality if we replace expression
(9) by the expression

y(ti - C) (1 - ;Ti) ,

i=O

(10)

with the constraint on the ti weakened to
l ti>OforO<i<m-1.
Although this change broadens the search space for

(9)

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

a maximizing assignment, the maximizing assignment
for expression (10) actually satisfies our demands.

We begin our search for a maximizing assignment
by rewriting expression (10) to better expose its fun-
damental structure. By direct manipulation, plus the
fact that L2 = (te + tl + . . . + t,,-~)~, we find that

m-1

L . c (ti - c)(l - TJL)

i=O

m-1

= C (ti - C)(ti+l + ti+2 + . . . + t,-1)

2=0

= ;Lz - f m$ [(ti + @ - &2] .

a=0

Letting ui = ti + ci for 0 < i < m, we convert the
last expression to the perspicuous expression for E(S)
that we shall actually maximize.

L
E(S) = y+

c2m(m - 1)(2m - 1)

12L
-&Fu:. (11)

2=0

Our task now is to maximize expression (11) subject
to the following constraints.

1. Since each ti 2 0, we must have each ui 2 ci.

2. Since Cz;’ ti = L, we must have

77-l 77X-l

C Ui = C ti + Ci = L + cm(m2- ‘).

i=O i=O

Easily, we shall have achieved our goal once we have
minimized the sum U: + uf +. . . + ~“,-i subject to the
same constraints. Now, were it not for constraint (l),
we could minimize this sum simply by setting each Ui
to its average value

u2=4+Ck!$
m

Constraint (1) forces us to be a bit more careful.
Specifically, we can use this simple averaging only for
the first r + 1 terms of the sum, where r is the largest
integer such that

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

The desired maximizing value of r is obtained by
rewriting expression (12) in the form r2 +r - 2L/c 5 0.

It is now clear that the maximizing value of r is given

by

The minimizing assignment (13) to the variables
{ui} yields the sought maximizing assignment to the
variables { ti}:

ti =
{

L/(r + 1) + cr/2 - ci for i 5 r

0 for i > r (15)

Since all periods beyond the first r have zero length,
hence contribute no work, the maximizing value of r in
equation (11) is in fact the sought number of periods
m in the optimal schedule, thus verifying equation (6).
Assignment (15) directly yields the sought values for
the period lengths { tz} , thus verifying equation (7).

We complete the proof by verifying that our maxi-
mizing assignments for m and {ti} yield equation (8).
Direct evaluation of expression (ll), with the maxi-
mizing values of all parameters accomplishes this. De-
tails are left to the reader. • I

For the sake of perspective, we note that
,?@'Pt); pi) is very close to

when L is very much larger than c (which is likely to
be the case).

5 The Geometrically Increasing Risk

Model

(12)

159

As our final example, we consider the geometrically in-

creasing risk (GIR) model, a bounded lifespan model
which may be appropriate when the owner of worksta-
tion B is likely to be absent for only a short period of
time, say because of a telephone call. In this model,
the probability of B’s owner’s return doubles at each
time unit. We choose to interpret “double” literally
here (in contrast to Section 3) to keep the arithmetic
simplicity of a singly parameterized model.

For the remainder of the sum, we use the value forced
on us by constraint (l), namely Ui = ci. We thus end
up with the following minimizing assignment for the
Ui:

Ui = 1
L/(r + 1) + cr/2 for i 5 r
ci for i > r (13)

The life function for the GIR model with lifespan L

is given by p:(t) = (2L - 2t)/(2L - 1) for t 2 0 (which
corresponds to a discrete risk function qi(t + 1) =
2qi(t) = (ZL - 1)2-(t-1) for t > 1).

The optimal schedule for theGIR model partitions
the lifespan into periods of exponentially decreasing

lengths.

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Theorem 1 The optimal schedule for the GIR model

has m periods: Scopt) = ttpt), tppt), . . . , te?i, where,
to within rounding,?

m = log* L - log* c, (16)

and where the t!Opt) z are given implicitly by

tcopt) - 2tp1:’ + c - 2
k -

for 0 < k < m - 2. - - 07)

Proof Sketch. Let S = to, tl, . . . , t,-1 be a can-
didate optimal m-period schedule for the GIR model
with lifespan L. Instantiating equation (1) for the life
function pi and invoking Lemma 1, we find, after some
manipulation, that

E(S;p:) = --$&

77-l

zL(L - 1) - 7TldL - c Wi2T’-1

i=O

We use a perturbation argument to analyze sched-
ule S. The kth-period positive (resp., negative) pertvr-

bation of S, denoted S+” (resp., S-“) is the schedule

s*” =def t,,, tl , . . .) t&l, tkfl, tk+lFl, th+2,. . .) t,-1.

Note that these both have the same lifespan L as does
S.

If schedule S were optimal, then its expected work
would be no less than that of any of its perturbations.
By applying this observation to both E(S) - E(S+‘)

and E(S) - E(S-“), we verify equation (17).

To verify equation (16)) we recall (from Lemma 1)
that each period of an optimal finite schedule, save,
perhaps the last, must have length > c; hence, we can
continue to take the logarithm of (wc = to - c), then

of

Wl = t1 - c = log(w0 + 2),

then of

w2 = t2--C

= log(w1 + 2) - c

= log(t1 -c+2) -c

= log(log(we + 2) - c + 2) - c,

and so on, only so long as we attain periods of length
t > 2= + c - 2, at which point additional periods would
not be productive. 0

7Throughout this section, all logarithms are to the base 2. If
we inductively let log(i+‘) z = log(log(‘) z), then log’ z denotes

the smallest integer r for which log(?) x 5 1.

6 Operating with an Unknown Life

Function

We consider finally a scenario wherein very little is
known about the life function. Of course, if nothing
at all is known about the life function, then we can
do little with confidence, since our first task can be
killed just before it is finished (no matter how long the
task is). The model we study now assumes only that
we know that in a window of L units of time (possi-
bly containing many interrupts), an optimal prescient
scheduling strategy can accomplish CYL units of work.
Our goal is to design a strategy that accomplishes ,f3L

units of work where p is as close to cr as possible. In
a typical application, it is reasonable to assume that
CY is close to one; let us conservatively assume that

Q: > l/3.
This scenario differs from those considered earlier

in several respects. First, we now allow epsiodes to
include many interrupts, not only one. Second, we as-
sume nothing about the life function during an interval
between interrupts, except that over the entire L time
units, one could accomplish crL work if one could an-
ticipate the interrupts. Third, we judge performance
by comparison with an optimal prescient schedule.

We first study the problem of devising a determin-
istic oblivious strategy. “Oblivious” here means that
the length of the ith task is independent of where prior
interrupts (if any) occurred. The ith task is started as
soon as the (i - 1)th task has finished and/or once the
workstation becomes available following an interrupt
during the (i - 1)th task. (Similar results hold for the
model in which the (i - 1)th task is restarted if it is
interrupted before the ith task is run.)

Let Li be length of the ith interval of available
workstation time for 0 5 i < m, where m is the num-
ber of available intervals in the entire window of L

steps. Without loss of generality, L, > c for each i.
Since the optimal prescient schedule achieves aL work,
we know that

m-1

C (Li - C) 2 ClL.

i=O

We know also that aL + cm 5 L and thus that m 5

(1 - Ly)L/c.

Now, consider a schedule for which every task has
the same length t > c. (We show that such a strategy
is, in some sense, optimal.) The work achieved by this
schedule is easily

m-1 m-1

1 [Lilt] (t - C) 2 (t - c, C CLilt - l)

2=0 2=0

160

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

2 (t - c)[(YL - (t - c)m]/t

> (t - c)(c - t + cxt)L/tc.

The preceding expression is optimized by setting

t = c/G, whereupon the work achieved is
(1 - G)2L, which provides a competitive ratio
of (1 - dG)/(1 + fi) over the optimal pre-
scient schedule. For (Y close to 1, the work achieved
is close to L, and the competitive ratio is close to 1.
For instance, when cr > 314, the competitive ratio is
greater than l/3.

Using the observation that an adversary’s best
strategy is to kill the I(1 -c~)/cJ longest running tasks,
one can show that the preceding schedule is optimal
among deterministic oblivious schemes when it comes
to maximizing the amount of work that we are guar-

anteed to be able to achieve.
Devising an optimal adaptive strategy - one where

the task lengths are chosen based on history - is a
more difficult matter. For example, we now consider a
scenario in which we are assured that there will be at
most one interrupt (of known length). Without loss
of generality, we assume that the interrupt has length
zero. This situation corresponds to the scenario where
CVL > L - 3c. The optimal schedule for this scenario
is as follows.

Define i to be the (not necessarily unique) integer
such that

(i - 1)i < 4. _ 1 < i(i + 1)

2 -c - 2.

Define
t, = L + (i2 + i - 2)c/2
3 i

- jc

for 1 5 j < i, and set ti = t,-1. Then the optimal
schedule is to run a task of length tl, followed by a
task of length t2, followed by a task of length t3, and
so on, until there is an interrupt, after which we run a
single task that consumes the remaining time. (Easily,
tl + t2 + . . . + t, = L.) One can show that the work
accomplished by this schedule is at least

(i - l)L - (i” + i - 2)c/2

i
>

no matter where the interrupt occurs. One can also
prove by induction that this strategy is optimal if only
one interrupt can occur. (Details will appear in the
final version of the paper.)

It is worth noting that the strategy just described is
very similar to the optimal strategy for the UR model
(Section 4). Indeed, when L >> c, we begin with
a task of length about a, and then select tasks

Proceedings of the 28th Annual Hawaii Intemarional Conference on System Sciences - 1995

with lengths that successively decrease by c in length
until the interrupt occurs. Hence, the optimal strategy
against an unknown interrupt is very similar to the
strategy where we assume that the interrupt will be
uniformly distributed, although the two scenarios are
somewhat different.

We close with three open problems concerning the
framework of this section. The first problem is to find
a closed-form solution for an optimal strategy when
two or more interrupts are allowed. The second is to
devise optimal randomized strategies. The third is to
verify or refute our conjecture that the competitive
performance of randomized strategies is better than
that of deterministic strategies.

Acknowledgments

The authors would like to thank David Kamin-
sky and David Gelernter for discussions that got us
started on this work. The research of F. T. Leighton
was supported in part by Air Force Contract OSR-
86-0076, DARPA Contract N00014-80-C-0622; the re-
search of A. L. Rosenberg was supported in part by
NSF Grants CCR-90-13184 and CCR-92-21785. A
portion of this research was done while F. T. Leighton
and A. L. Rosenberg were visiting Bell Communica-
tions Research.

References

[l] S. Bhatt, F. Chung, T. Leighton and A. Rosenberg,
Optimal strategies for stealing cycles, in prepara-
tion, 1994.

[2] D. Cheriton (1988): The V distributed system. C.
ACM, 314-333.

[3] E.G. Coffman, L. Flatto and A. Y. Kreinin,
Scheduling saves in fault-tolerant computations,
Acta Informatica, 30(1993)) 409-423.

[4] D. Gelernter and D. Kaminsky (1991): Supercom-
puting out of recycled garbage: preliminary expe-
rience with Piranha. Tech. Rpt. RR883, Yale Univ.

[5] M. Litzkow, M. Livny, M. Matka (1988): Condor -
A hunter of idle workstations. 8th Ann. Intl. Conf.

on Distributed Computing Systems.

[6] D. Nichols (1990): Multiprocessing in a Network

of Workstations. Ph.D. thesis, CMU.

161

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

[7] J. Ousterhout, A. Cherenson, F. Douglis, M. Nel-
som, B. Welch (1988): The Sprite Network Oper-
ating System. IEEE Computer 21, 6, 23-36.

[8] A. Tannenbaum (1990): Amoeba: a distributed
operating system for the 1990s. IEEE Computer,

44-53.

162

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

