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Abstract Atomic sections have been recently introduced as a 
language construct to improve the programmability of concurrent
software. They simplify programming by not requiring the explicit 
specification of locks for shared data. Typically atomic sections 
are supported by software either through the use of optimistic 
concurrency by using transactional memory or through the use of 
pessimistic concurrency using compiler-assigned locks. As a 
transactional memory system does not take advantage of the 
specific memory access patterns of an application it often suffers 
from false conflicts and high validation overheads. On the other 
hand, the compiler usually ends up assigning coarse grain locks
as it relies on whole program points-to analysis which is 
conservative by nature. This adversely affects performance by 
limiting concurrency. In order to mitigate the disadvantages 
associated with STM’s lock assignment scheme, we propose a 
hybrid approach which combines STM’s lock assignment with a 
compiler aided selective lock assignment scheme (referred to as 
SCLA-STM). SCLA-STM overcomes the inefficiencies associated 
with a purely compile-time lock assignment approach by (i) using 
the underlying STM for shared variables where only a 
conservative analysis is possible by the by the compiler (e.g., in 
the presence of may-alias points to information) and (ii) being 
selective about the  shared data chosen for the compiler-aided 
lock assignment. We describe our prototype SCLA-STM scheme 
implemented in the hp-ux IA-64 C/C++ compiler, using TL2 as 
our STM implementation. We show that SCLA-STM improves 
application performance for certain STAMP benchmarks from 
1.68% to 37.13%

1. Introduction
Expressing synchronization using traditional lock based primitives 
has been found to be both error-prone and restrictive. Locks 
guarantee isolation only when a program consistently follows a 
locking discipline. Any violation of the locking discipline leads to 
concurrency bugs such as race conditions, atomicity violations 
and deadlocks. Furthermore, lock-based synchronization 
mechanisms lack composability, which often precludes modular 
design of concurrent components.

Atomic sections have been proposed recently as a 
programming idiom for expressing synchronization at a higher 
level of abstraction than locks. Programmers can specify what 
code has to execute atomically by simply enclosing the desired 
block of code with the keyword ‘atomic’. Atomic sections are an 
interesting alternative to locks as they allow local reasoning and 
are composable.

Atomic sections can be supported in two different ways. One 
way to do so is to take help from the compiler to transform the 
atomics to lock based code [1, 2, 3, 4, 5, 6]. This is done through 
an analysis that determines what locks to associate with what 
shared data and when to acquire/release locks within the atomic 
section.  Compiler assisted lock allocation (CLA) requires whole 
program analysis since it needs to know what data is accessed 
within functions called from inside an atomic section to generate 
the correct locking discipline.

While a transformation based on CLA can guarantee deadlock 
freedom and atomicity (under certain assumptions like race 
freedom), it often ends up allocating the same coarse grained lock 
to multiple data items (false sharing). This happens because, for 
indirect data accesses using pointers, CLA schemes need to make 

a conservative approximation of the data items pointed to by the 
pointer. This can result in coarse locks if the alias sets contain a 
large number of may-aliases. Also, CLA needs to make 
conservative approximations when shared data is passed to 
opaque external library functions accessed inside atomic sections. 
Last, and most importantly, all lock based implementations are 
pessimistic in nature, and require the locks to be acquired before 
an atomic section is executed, and the cost is incurred irrespective 
of whether or not there is a conflicting atomic section.

The alternate way of supporting atomic sections is to rely on 
an underlying software transactional memory implementation [8, 
9, 10, 11, 12, 13, 23]. STMs allow for optimistic execution by 
allowing multiple atomic sections to run concurrently assuming 
they will not conflict. However, in case a conflict does occur they 
have a mechanism to detect and recover from such conflicts [10]. 
Below we briefly describe how STMs operate.

To enable conflict detection STMs track metadata for each 
data item accessed within an atomic sections at runtime. To avoid 
having to collect huge amounts of metadata they combine data 
items together either by mapping the data words being accessed to 
a hash table or by treating data belonging to the same object as a 
single entity.

To prevent races among metadata updates, STM 
implementations typically employ fine grained locking to lock at a 
per metadata level (locks could be acquired explicitly or by using 
low level atomic operations like CAS or LL-SC). The mapping 
from data items to metadata can therefore be thought of as a 
mapping from data items to locks. Typically STMs use a hash 
function to map the address of the shared data item to a lock [11, 
12].

The actual process of detecting conflicts (often referred to as 
read/write validation) typically involves going through all the 
accumulated metadata to see if there has been a read-write or 
write-write conflict. The cost of conflict detection therefore 
depends on the efficiency of the mapping from data items to 
locks. Once a conflict is detected the STM then chooses to abort 
one of the atomic sections and rolls back the effects of it.

Lock assignment (LA) purely by the software transactional 
memory implementations typically done at run-time do not have 
any knowledge of the application’s data access patterns. Since the 
number of locks available for assignment is often limited, multiple 
uncorrelated data items can get mapped to the same lock. This can 
result in ‘false conflicts’. Such false conflicts will result in 
increased number of aborts/rollbacks and can impact execution 
time [14, 15].

The use of fine grained locking can also lead to high read 
validation costs and lock acquire costs [17, 26].  This can impact 
execution time adversely, for transactions which touch a large 
volume of shared data.  On the positive side, STM’s runtime lock 
assignment (RLA) scheme does not require whole program 
analysis nor is it dependent on compiler’s alias analysis 
capabilities unlike any CLA scheme.

The pitfalls of application unaware RLA employed by STMs 
leading to false conflicts has been studied in [14, 15]. Yoo et al
[16] propose an improved hash function to address false conflicts. 
Their scheme reduces the space required for storing the ownership 
records without increasing the false sharing by packing more 
transaction records into each hash table entry.  However their 
modified hash function does not take into account the data access 
patterns of the shared data in the application’s atomic sections and 



1. struct node { struct node* next; int* dataptr;}; 
typedef struct elem elem;

2. elem* x,y, m;
3. int* w;
4. elem* p;

5. p = m->dataptr;
6. if (....) x = y;

7. atomic {
8. x->dataptr = w;
9. int* z = y->dataptr;
10. *z = null;
11. *p = 10;
12. }

Figure 2. Example 2

enforces mutual exclusion at cache line granularity level 
uniformly.

The disadvantages associated with CLA and STM’s RLA 
schemes originate from the fact that all the shared data items of 
the given application are assigned locks using either a purely 
compile time analysis or a purely runtime STM driven hash-
function approach.  Such a “One Approach fits all” principle does 
not match with the natural layout of shared data structures in all 
applications. Some of the shared data items are typically more 
amenable to CLA, which can take advantage of the compiler’s 
knowledge of the application’s data access patterns, while some 
others are more amenable to STM’s fine grained RLA scheme.

In this paper we propose a hybrid lock assignment scheme to 
address this issue. In our approach, the compiler uses inter-
procedural whole program static analysis to assign locks to 
selected shared data items (those for which it can reason 
accurately and compile time assignment would be beneficial) 
while other shared data items are covered by the default STM lock 
assignment scheme.  Our approach will be referred to as the 
Selective Compiler assisted Lock Assignment based STM 
(SCLA-STM). In our hybrid scheme, we do not add any 
instrumentation to acquire/release the required locks. Only the 
lock mapping is generated at compile time and is communicated
to the underlying STM which performs the lock acquires as per its 
optimistic concurrency algorithm.

To ensure that the hybrid scheme is safe, a clean handshake 
between the compiler and the STM interface is essential. We 
describe the extensions needed in the STM to facilitate this and 
show that our approach preserves the original semantics of the 
underlying STM implementation. We have implemented a 
prototype of our scheme in HP-UX IA-64 C/C++ compiler using 
TL2 [11] as our underlying STM implementation for our 
experimental evaluation. Results indicate that our approach 
performs better than the default STM’s RLA scheme, which is 
application unaware. We show that acting in compliment to the 
STM’s default RLA scheme, our SCLA-STM scheme can 
improve application performance in 4 of the STAMP [20]
benchmarks from 1.68% to 37.13% over the base STM 
implementation, while reducing the percentage of aborts from 
1.43% to 29.9%.

This paper is organized as follows: In Section 2, we provide 
the necessary motivation for our SCLA-STM scheme. Section 3 
describes our scheme and discusses the issues in a practical 
implementation. We report the results of our experimental 
evaluation in Section 4. We discuss related work in Section 5 and 
conclude with a short summary in Section 6.

2. Motivation
This section motivates the need for a hybrid scheme by illustrating 
the drawbacks of using a pure CLA or RLA approach.

2.1 Issues with Complier Assisted Lock Allocation (CLA)
CLA schemes are dependent on the underlying alias analysis [18, 
19] of the compiler. For instance, consider the following code 
sample in Fig 1. The example in Fig 1 simply increments one of 2 
counters depending on the value of b. A CLA scheme employing 
an alias analysis which does not disambiguate between individual 
array elements will result in allocating same lock L to g[0] and 
g[1]. This can result in false conflicts between callers invoking 
increment(true) vs. increment(false). The reason is that L covers 
both the variables g[0] and g[1] whereas it is correct to cover g[0] 
and g[1] with separate locks. The false conflict is induced by the 
imprecision of the underlying alias analysis of the CLA scheme. 
The compiler reports that the pointer may alias with both g[0] and 

g[1] and therefore conservatively assigns both of them the same 
lock. On the other hand, a lock assignment by an STM 
implementation which operates at word granularity will assign 
separate locks for g[0] and g[1] as these are 2 different data 
addresses and hence they get mapped to 2 different locks. This 
will avoid the false conflicts between the caller of increment(true) 
and the caller of increment(false).

Even if the CLA scheme has support for fine grained locking, 
the very nature of static analysis based lock assignment can result
in excessive locking. Consider the above code snippet in Fig 2.

In the example code, compiler can do a backward analysis to 
determine that z is equivalent to y->dataptr. The expression y-
>dataptr can be affected by the update of x->dataptr in line 8 if x 
and y are aliased. Infact x and y will be aliased if the branch in 
line 6 is taken.   ‘z’  at line 10 can point to y->dataptr or w based 
on the branch outcome. Since the compiler cannot determine 
whether this branch will be taken or not at compile time, it needs 
to be conservative. Hence a CLA scheme will assign the same 
lock to both w and y->dataptr.  On the other hand, STM’s runtime 
locking scheme will need to acquire only one lock out of the two 
locks which are mapped to y->dataptr and w. Thus CLA suffers 
due to the may-alias of x with y.   On the other hand, consider the 
access *p in line 11.  p is must-aliased to m->dataptr. Hence a 
CLA scheme can correctly infer that the lock covering the data 
item m->dataptr needs to be acquired at line 11 before 
dereferencing p. Thus must-aliases pose no issues for CLA 
schemes unlike may-aliases. 

2.2 Issues with Runtime Lock Assignment (RLA) by STM
Lock assignment by STM takes no note of the access pattern of 
the data inside the atomic sections when doing lock assignment.  
Also, since the locking granularity in STM is extremely fine 

int g[] = {0,0};

void increment (Boolean b) atomic
{

if (b) g[0] ++;

else g[1]++;
}

Figure 1. Example 1



grained, the conflict detection costs can be high for a transaction 
with a large memory footprint.

Let us consider the following code snippet in Figure 3
Example 3, which is simplified from the STAMP benchmark 
program ‘kmeans’. In the code snippet, each dynamic instance of 
the atomic section accesses an independent array section. 
Consider an STM implementation which uses word based 
granularity locking with a lock array of size 100. Each atomic 
section is independent and operates on one independent chunk of 
the array. Since the shared data array size is 1000, the STM needs 
to map 1000 different data elements to the limited 100 locks. 
Depending on the hash function used, different and unrelated data 
map to same lock resulting in false conflicts.  Also each dynamic 
instance of atomic section will end up performing 100 lock 
acquires. On the other hand a  CLA scheme, which can determine 
that each dynamic instance of the atomic section accesses an 
independent array section and the start and end of the array 
section operated in each atomic section, will assign a lock per 
each independent array section.

This results in zero false conflicts since each array section gets a 
unique lock. Each atomic section requires only one lock acquire, 
resulting in lowered lock acquire overheads and read validation 
costs.  Thus, a CLA scheme driven by compiler analysis of 
application’s data access pattern can assign a better lock mapping 
in this case compared to the default STM’s RLA.

Note that false conflicts can also happen in object granularity 
STMs. For example consider the following 2 atomic sections in 
Figure 4.

Atomic

{

int temp=node->left;

node->left=global2;

 global1=temp;

}

Atomic

{

int temp=node->right;

node->right=global1;

 global1=temp;

}

Figure 4. Example 4

If the STM were to use object granularity locking it would 
prohibit these 2 atomics from executing in parallel. However if a 

compiler maps the data item to separate locks one can gain 
concurrency.

2.3 A Hybrid Approach
It is easy to see that the various example code snippets illustrated 
above can be part of a single atomic section in real life 
applications. Hence some of the shared data in an atomic section 
exhibit access patterns which are better exploited by CLA 
whereas certain other shared data are more amenable to STM’s 
fine grained locking assignment.  Hence we propose a hybrid lock 
assignment scheme over an underlying STM implementation, 
wherein compiler assigns locks selectively to certain shared data 
items whereas other shared data items are covered by the default 
STM lock assignment.

Considering the example in Fig. 3 from Section 2.2, we can 
see that STM needs to perform 100 read validations and 100 
number of lock acquires for each dynamic instance of atomic 
section. Given the size of shared data array to be 1000 and the size 
of the STM lock array to be 100, we can see that multiple array 
elements will map to the same lock by the hashing function due to 
the limited size of the lock table array.  Since STM’s lock 
assignment scheme has no knowledge of the access pattern of the 
shared data in the atomic section, it has no way of figuring out 
that  all array elements in a given array section are accessed 
together in the atomic section and that each atomic section 
accesses independent elements.  Hence in this case it would be 
sufficient if the STM assigns only one lock for each section of the 
array, but this information is not available/inferable by the STM.

However the compiler has full knowledge of the application 
and can detect the access pattern of the shared data in the atomic 
section. Compiler analysis can recognize that it is sufficient to 
assign a single lock for each distinct array section accessed in this 
critical section thereby reducing the read validation and lock 
acquire costs and reducing false conflicts.  Our approach 
essentially captures this information and gives it to the STM, so 
that for each of the array chunks accessed by the different threads 
a single lock is mapped to it. This reduces the overheads of having 
to acquire 1000 locks to 10 locks.

Now consider the example in Fig 2 from Section 2.1. Since our 
hybrid approach assigns compile time locks selectively, it can 
decide not to assign compile time locks for this and allow the 
access to *z in line 10 of Fig 2 to be handled by the STM, thereby 
avoiding the issue encountered in pure CLA schemes due to may-
aliases.

Our hybrid approach selectively perform compile-time 
assignment of locks for some the shared variables where such an 
approach would be beneficial, and relies on runtime lock 
assignment and the underlying the STM model to handle the other 
shared variables appropriately.

3. Selective Compile time Lock Assignment 
Scheme
In this section, we describe our selective compile time lock 
assignment scheme for STM in detail.

3.1 Overview of our Approach
Our SCLA-STM scheme consists of the following steps:
a) Selection of shared data items for lock assignment by the 

compiler. Note that a purely compile time lock assignment 
scheme needs to assign lock mapping for all shared data. 
Whereas our approach, can selectively do the lock 
assignment so as to avoid false conflicts that traditional CLA 

#define PERTHREAD_CHUNK 100

int array[1000];
int num_threads;

foo()  {
for (int thread_id = 0; thread_id < 10; thread_id++) {

 int chunk_start  = thread_id * PERTHREAD_CHUNK;
 

 pthread_create(bar, &array[chunk_start], 100);
 }

}

bar (int* array_section, int my_chunk) atomic {
for (int i = 0; i < my_chunk; i++) {

*(array_section + i) = ….
 }

}

Figure 3. Example 3



is susceptible to. We describe our criteria for selecting data 
in Section 3.2. 

b) Assignment of locks by the compiler to the selected data. 
c) Creation of the required locks by the compiler. Locks are 

created either statically (for statically allocated data) or by 
inserting code to allocate the locks dynamically for 
dynamically allocated data.

d) Communicating the compile time lock assignment to the 
STM. This is achieved by the handshake mechanism set up 
between the compiler and the STM for communicating the 
lock assignment done by the compiler, details of which are 
described in Section 3.5.

Note that a pure CLA scheme [1, 2, 3, 4] needs to adds 
instrumentation at compile time to acquire the required lock 
before accessing the shared variable (typically this is done at the 
entry to the atomic section), whereas in our hybrid scheme, only 
the lock mapping is generated at compile time and code is added 
to communicate this mapping to STM. We do not add any 
instrumentation to acquire/release the required locks.  Only the 
mapping is communicated to the STM which performs the lock 
acquires as per its optimistic concurrency algorithm.

3.2 Candidate Selection for SCLA-STM scheme
Compiler performs an inter-procedural analysis of the application 
and creates a list of shared data accesses made in each atomic 
section. During inter-procedural analysis, compiler performs 
points-to analysis [18, 19] on the program and maps each pointer 
in the program to a points-to set. The points-to set consists of the 
set of locations that a pointer access points to. Two types of alias 
relationships are possible, namely must-alias and may alias. Must 
alias relationship is an alias relationship that holds true for all 
executions of the program, whereas a may-alias relationship is one 
that holds true for some execution of the program P.  Looking 
back at our example of Fig 2, p is must aliased to m->dataptr
whereas x is may-aliased to y.  We select only those accesses 
whose points to set consists of only must-aliases for compiler lock 
assignment.  The intuition behind this choice is that these are the 
set of locations for which compiler has definitive alias 
information which holds good for all execution paths and hence 
the compile time lock assignment will be effective.  In order to 
ensure that every shared location is protected by a lock 
consistently throughout the entire execution of the application, our 
SCLA scheme does the following:

i. First, for each of the shared accesses ‘p’ which has only 
must alias entries in its points to set, shared data 
corresponding to each of these must-alias entries will be 
selected for CLA and will be assigned a compile time 
lock. We refer to such shared data items selected for 
SCLA as SCLA data items. For SCLA data items, STM 
uses the compiler assigned lock mapping.

ii. If a shared access ‘q’ has a may-alias to a SCLA data 
item in its points-to set, then compiler instruments such 
memory references, so that at runtime, when the lock is 
required for the shared access ‘q’, first STM checks if a 
CLA lock mapping is available for this data address. A 
compiler assigned lock mapping will be available if ‘q’ 
in fact points to a SCLA data item at runtime.  In that 
case, STM uses the CLA assigned lock mapping. Else 
the default STM lock assignment as computed in an 
unmodified STM will be used. 

iii. For a shared access ‘r’ whose points-to set does not 
include any SCLA data item, the default STM lock 
assignment as computed in an unmodified  STM  will be 
used . 

We illustrate this with the following example:  Consider 3 shared 
accesses ‘p’, ‘q’ and ‘r’ such that

a) ‘p’ whose points to set has {must alias (global1)};
b) ‘q’ whose points to set consists of {may alias (global1),

may_alias(global3)};
c) ‘r’ whose points to set has {may_alias(global4)}.

As per step i above, global1 is selected for SCLA. By step ii 
above, q is instrumented by the compiler so that at runtime STM 
first checks to see if a compiler assigned lock is available for that 
address. If q in fact points to global1 at runtime, then a compiler 
assigned lock mapping will be found and hence it will be used. If 
q points to global 3, then it will not have a compiler lock 
mapping. So STM will use its default STM lock assignment. For 
the shared access ‘r’, STM will use its default STM lock mapping 
as per step iii above.

3.3 Lock Assignment for Selected Candidates
The inputs to the problem are 

1. A  set D of selected candidates (d1, d2… dn) 

2. A set AS of atomic sections (AS1, AS2…ASm) 

3. A mapping SD from an atomic section to candidate data 
accessed within it. The candidates accessed within the 
ith atomic section is represented as an array SDi.

The problem now is to create a set of locks L= (l1, l2…ln) and a 
locking discipline LD that maps each selected data di to a lock 
LD(di). As a corollary, each atomic section ASi gets assigned a 
set of locks ASLock (ASi) which is a union of the individual locks 
of the data accessed in ASi. While a lock assignment which 
assigns a separate lock to each candidate will be sound, this naïve 
solution can result in excessive validation overhead. Hence we 
would like to use the fewest set of locks without sacrificing 
parallelism. Therefore the problem we want to solve is “Given the 
sets D, AS and SD,  construct a minimum set of locks L and a 
mapping LD that maps each shared data item to a lock, so that no 
two atomic sections need a common lock unless they access 
common data.” 

Mathematically minimize |L| such that 

i. for all di, LD(di) = lj where lj ∈ L

ii. for all i and j, ASLock(ASi) ∩ ASLock(ASj) = NULL  
if and only if SD(i) ∩  SD(j) = NULL

We approach the problem in a manner similar to the register 
allocation problem [21] by constructing an interference graph that 
captures the relationship between shared data. Each shared datum 
is assigned a separate node.  All must aliases of an access are 
assigned to the same node. We then add edges between two nodes 
if assigning them the same lock may inhibit concurrency. 
Specifically, an edge is added between nodes A and B if and only 
if both the following constraints are met

I. there exists an atomic section that accesses A but not B, 
and

II. there exists an atomic section that accesses B but not A.



Any valid coloring of the graph is a solution for the problem of 
finding a locking discipline that does not of hamper concurrency. 
Smaller the number of colors used the lesser will be the validation 
cost. To color the graph we use the heuristic procedure used by 
Chaitin et al [21] for register allocation.

3.3.1 Constructing the Interference Graph
The simplest way of constructing the graph will involve going 
through each pair of nodes and figuring out if they conflict or not. 
To determine conflicts we have to go through each atomic section 
until two atomic sections that respectively satisfy constraints I and 
II are found.

For each pair of  (di, dj)  of shared data items,  
i. initialize  constraint1 = false;  constraint2 = false; 

ii. Walk through each atomic section A € AS,  If   di is  
accessed in A, but not dj, then set constraint1 = true; If   
dj is accessed in A but not di, then set constraint2 = 
true;

iii. If both constraint1 && constraint2 are set to true,  add 
an edge between di and dj

This simple algorithm has a complexity O(|AS| . n2) where  n is 
the number of shared data items, as each pair of shared data needs 
to be checked, in the worst case, in every atomic section

3.3.2 Example
The algorithm is best explained with an example. Consider a 

sample program which contains 5 atomic sections with accesses in 
each atomic section being {d2, d3, d4}, {d2, d5}, {d2, d3, d4, d5, 
d6}, {d3, d4} and {d1, d6} respectively. We have the interference 
graph constructed as shown in Fig 5 which can be colored using 3 
colors (the colors are shown in brackets in each node) as shown in 
Fig 5 below.

3.4 Lock Allocation
At the end of lock assignment phase, the compiler has a lock 
mapping which determines which candidate data are covered by 
the same lock. Now the compiler needs to allocate the locks to 
satisfy this assignment and communicate the mapping between the 
shared data address and the address of the compiler created lock 
to the STM.  For statically allocated candidate data, the compiler 
can create the locks statically and create the mapping between the 
datum address and lock address. While the locks are created 
statically, the mapping is established at the start of the program. 
For dynamically allocated data, compiler inserts code to 

dynamically allocate the locks and create the mapping between 
the dynamically allocated data and the lock, immediately after the 
allocation of the dynamic data. 

There could be another class of scenarios where the shared 
locations are not determined in advance. In that case, the compiler 
inserts instrumentation at the point the shared locations are 
available. Though this class is not very common, the overhead of 
instantiating the mapping at runtime could be noticeable. If that’s 
the case, the compiler could take into account the instrumentation 
overheads while heuristically choosing the locations to apply 
static lock allocation to.

Compiler also generates code to free the dynamically allocated 
locks at program exit. While it is possible to free the dynamically 
allocated locks at the point where the corresponding data items are 
freed, the issue of lock recycling needs to be considered and 
handled in a manner similar to the handling of dynamically 
allocated shared data whose memory can be recycled.  For our 
current implementation, we work around this issue, by freeing the 
dynamically allocated locks only at program exit, so that compiler 
assigned dynamically allocated locks are not recycled.  Though 
the increase in overall memory consumption due to this 
workaround was not significant for the benchmarks we studied, 
this factor might need to be taken in to account while building a 
production quality SCLA.

3.5 Communication of Lock Assignment to the STM
We use TL2 [11] as our underlying STM implementation and 
hence our discussion below is more closely coupled to TL2 
implementation. TL2 is a library based STM implementation as 
opposed to a compiler based STM implementation. The ideas in 
this section are applicable to both library based and compiler 
based STM implementations though the actual implementation 
specifics may differ. We first describe briefly the default lock 
assignment scheme in TL2.

TL2 is a word based STM with invisible reads with global 
version number based validation. It uses versioned write locks to 
protect shared memory locations. It has a global version clock 
variable which will be read and incremented by each writing 
transaction and will be read by each read-only transaction. In its 
simplest form, the versioned write-lock is a single word spin-lock 
that uses a CAS operation to acquire the lock and a store to 
release it. Since only one bit of the lock word is needed to indicate 
that the lock is taken, the rest of the lock word is used to hold a 
version number.   An array of lock words is allocated by TL2. The
size of the lock table array is 2^20 entries. To obtain the lock 
word associated with a given shared memory location, the STM 
uses a hash function of the memory address.  The mapping of a 
memory address of the shared datum ‘Addr’ is given by

(Base of the lock table array + ((((Addr)+128) >> 2) & 
(LOCK TABLESIZE -1)))

Note that the assignment of locks to the shared datum is purely 
dependent on the hash function.

Since the compiler created lock assignment needs to be 
communicated to the STM, the STM implementation needs to be 
augmented with a new data structure known as Compiler Lock 
Assignment Table (CLAT).  STM’s Application Programming 
Interfaces are extended with two new functions, namely 
GetCompilerLockMapping and SetCompilerLockMapping. 
SetCompilerLockMapping can be invoked for inserting a mapping 
into the CLAT and GetCompilerLockMapping can be used to 
return the lock mapping for a given datum from CLAT. Compiler 
inserts calls to SetCompilerLockMapping for recording the lock 
mapping for the data items selected by SCLA-STM scheme.

Figure 5. Interference Graph



Typically STM implementation supports an internal GetLock 
Function which given a datum address, returns the lock address 
corresponding to it.  For TL2, GetLock function is implemented 
by means of a macro known as PSLOCK. Given a datum address, 
PSLOCK returns the address of lock entry using the STM’s hash 
function.  The transactional load and transactional store interfaces 
(TxLoad and TxStore in case of TL2) invoke the PSLOCK 
function to obtain the lock address.

In our SCLA-STM scheme, STM is augmented with two new 
interfaces ‘TxLoadWithCompilerLock’ and 
‘TxStorewithCompilerLock’. These interfaces query CLAT first 
and if there is no mapping available in CLAT for that address,  
they will return the STM”s default lock mapping using the 
PSLOCK function. Except for this one change, the functionality of 
the interfaces ‘Tx*WithCompilerLock’ is exactly identical to that 
of Tx*. 

For those shared accesses whose points to sets include a datum 
selected for CLA by our hybrid approach, compiler replaces the 
calls to TxLoad/TxStore in atomic sections with calls to 
‘Tx*WithCompilerLock’, so that CLAT is consulted first to obtain 
the lock for these data by the STM.  If no mapping is available in 
CLAT for that address, STM defaults to its runtime lock 
assignment for that access.  Next we explain why this approach is 
sound.

3.6 Preserving the Semantics of Atomic Sections
Below we argue that our approach preserves the “all or nothing” 
semantics of atomic sections. Our hybrid lock assignment scheme 
is built on top of an existing word based STM (TL2). As TL2 
preserves the atomic semantics all we need to show is that we do 
not introduce any transformations that violate the guarantees 
provided by the underlying STM. The only change our scheme 
incorporates is in the way addresses are mapped to locks. On this 
front, the underlying STM requires the guarantees that:

(i) There is a locking discipline that maps each shared 
address accessed within atomic sections to a lock.

(ii) The locking discipline is consistent. Assuming that any 
of the atomic sections can be executing concurrently 
this implies that each access to a shared address should 
be consistently mapped to the same lock.  

Both these conditions are guaranteed by our construction. 

The accesses to shared locations accessed within atomic sections 
can be partitioned into those accessed via must aliases and those 
accessed via may aliases. Consider the must alias case: since the 
compiler has precise information, the lock will be found in the 
CLAT at runtime. Since the mapping from address to lock is 
always the same, the above two criterion are satisfied for the 
references that have must-alias. For the may-alias case, at runtime 
the address will either resolve to a location corresponding to the 
CLAT or PSLOCK. In either case the address will definitely map 
to a lock, so condition (i) is satisfied.  Further, note that the CLAT 
is first queried in this case. So every time the address resolves to a 
location for which the compiler determines the mapping, the 
correct lock will be found. Otherwise, the lock will be obtained 
from PSLOCK which always assigns the same lock for a given 
address throughout the entire execution of the program. Hence the 
locking discipline is consistent and (ii) is satisfied.

3.7 Overheads of Our Approach 
SCLA has following sources of overheads on the application’s 
execution time compared to an unmodified STM implementation.  

a) Extra code that needs to be executed for allocating compiler 
assigned locks, recording the mapping with the STM and for 
looking up the mapping from CLAT.  Recording the 
mapping into CLAT is a one time overhead.

b) Additional dynamic memory requirements for dynamically 
allocated compiler locks.

c) Cache overheads due to CLAT accesses
SCLA can be augmented with a heuristic, which estimates
statically the overheads associated and adds a threshold to limit 
the number of candidates selected. We plan to investigate this as 
part of our future work. We report the overheads observed in 
Section 4.3.

3.8 Compiler Support for In-Place Locks 
If the lock assignment scheme protects all fields of a structure 
with the same lock (similar to object level locking applied to 
structures), then it is possible to assign the lock along with the 
object as an in-place lock. In-place locks have the advantage of 
spatial locality and hence reduced d-cache misses compared to 
external locks.  We used the whole program structure layout 
(WPSL) optimization phase of the optimizer [25] to perform this 
optimization. If there are instances where the structure is passed to 
opaque functions or address arithmetic is performed on the 
members of the structure, it would not be possible for the 
compiler to perform this optimization. These legality checks are 
the same as those used in the whole program structure layout 
framework [25]. In case the legality checks are not satisfied for 
the addition of the lock field to the structure, compiler’s WPSL 
framework does not perform this optimization. Instead the 
compiler allocates locks external to the structure.  In section 4.2, 
we report performance improvements obtained by using in-place 
locks. 

3.9 Our Compiler Framework
We have implemented the prototype of our SCLA-STM scheme 
in the HP-UX IA-64 C/C++ compilers. SYZYGY IA-64 C/C++ 
compiler [27] has a whole program inter-procedural analysis 
(IPA) phase with support for whole program points to analysis. 
We implemented the SCLA prototype in the IPA phase of the 
compiler.  Note that we used TL2 a library based STM, as our 
underlying STM implementation.  Hence all the applications 
which can run on TL2, will have the transactional loads/stores 
marked explicitly (this is the case with the STAMP benchmarks 
which we used for our experiments). Therefore the compiler need 
not perform any explicit step to infer which of the accesses inside 
an atomic section are to shared data. In a compiler based STM 
implementation, this is not the case. In case of compiler based 
STMs, before performing SCLA, shared data inside each atomic 
section needs to be identified explicitly by compiler analysis [13]. 

4. Experimental Evaluation

4.1 Experimental Methodology
To evaluate the effectiveness of our hybrid scheme, we used the 
STAMP benchmark suite [20] version 0.9.10. STAMP comprises 
of 8 applications: kmeans (an implementation of K-means 
clustering), genome (a gene sequencing program), bayes (a 
Bayesian network learning program), labyrinth (a maze routing 
program), vacation (a client/server travel reservation system), 
intruder (signature based network intrusion detection), ssca2 (four 
kernels that operate large weighted directed multi-graph) and yada 
(yet another delaunay application).  We implemented the SCLA-
STM prototype in the HP-UX IA-64 C/C++ compiler. For the 



performance runs,   the benchmarks, compiled with the SCLA-
STM scheme enabled, were run on the modified TL2 (as 
described in section 3) implementation. The baseline for our 
experiments is to compile the benchmarks at the same 
optimization level (level 4) with inter-procedural analysis enabled, 
but with SCLA-STM phase turned off in the compiler and 
runthem on the unmodified TL2 implementation. We used the 
native (non-simulator) input sets of the STAMP benchmark suite 
in our experiments.  We used a 16 core IA-64   RX7640, with 2 
cores per socket, with each core of 1.6 GHz clock frequency and 9
MB non-shared L3 cache per core.

Table 1 describes the characteristics of the STAMP 
benchmarks when run on an unmodified TL2 implementation with 
16 threads. It reports the number of atomic sections in each of 
these benchmarks, the % of aborts to total transactions started, the 
major data structures used by the application and the dominant 
atomic sections where most aborts occur. We instrumented TL2 to 
obtain the number of aborts for each static instance of atomic 
section in the application.  We find that most of the aborts are 
accounted for by few of the atomic sections in each of the 
benchmarks. We report the major data structures accessed in the 
atomic sections in column 4 and the atomic sections where most 
of the aborts occur in terms of filename and line number in 
column 5 of Table 1. Note that STAMP benchmarks use a set of 
common data structures like list, queue, rb-tree, map and hash 
table whose implementation is provided along with the benchmark 
suite itself.

4.2 Performance of SCLA-STM
Table-2 gives the number of candidate data items selected for 
compile time lock assignment by SCLA-STM scheme for each 
benchmark. 

Benchmark SCLA-STM candidates found
Kmeans 4
Vacation 4
Genome 0
Intruder 2
Labyrinth 1
Ssca2 6
yada 3
bayes 3

Table – 2 SCLA-STM candidates

We also measured the compile time overhead due to SCLA-STM 
by comparing the compile time of each benchmark with SCLA-
STM enabled and without SCLA enabled. We found that compile 
time overheads due to SCLA-STM phase were within the range of 
0.9% to 2.3%.

We find that our SCLA-STM scheme had runtime 
performance impact on only 4 of the 8 benchmarks namely 
kmeans, intruder, yada and vacation. We report performance 
results only for these 4 benchmarks, in which SCLA-STM has a 
performance impact. We measured negligible performance 
differences (< ±1%) on applying SCLA-STM to the other 4 
benchmarks (we discuss the reasons for this later in the section). 
We report both the %  improvement in execution time and the % 
reduction in aborts, for 2,4,8 and 16 threads  in Table-3 for the 4 
STAMP benchmarks on which SCLA-STM had a performance 
impact (of > 1%).

In the benchmark ‘Kmeans’, SCLA-STM improves 
performance by 11% to 37%. Kmeans has 3 atomic sections. All 
the shared data referenced in these atomic sections are selected by 
SCLA-STM and are assigned compile time locks. The majority of 
the performance benefits come from the atomic section in file 
normal.c:168, where 2 arrays ‘centre’ and ‘centre_len’ are 
accessed. SCLA-STM associates a separate lock with each section 
of the array accessed in the atomic section.  This helps to reduce 
the aborts and lock acquire overheads compared to the fine 
grained lock assignment by STM.

Benchmark
%

Improvement 
in

2 
threads

4 
threads

8 
threads

16 
threads

Exec. Time 11.15% 18.18% 32.21% 37.13% 
kmeans

Aborts 21.28% 25.01% 25.12% 29.9%

Exec. Time 2.84% 7.83% 8.33% 10.21% 
intruder

Aborts 2.31% 2.89% 2.91% 3.12%

Exec. Time 9.23% 12.51% 14.41% 24.46% 
vacation

Aborts 37.3% 44.21% 45.2% 49.7%

Exec. Time 1.68% 2.23% 2.67% 3.12% 
yada Aborts 1.43% 1.87% 1.62% 2.19%

Table – 3 Performance Improvements due to SCLA-STM

Benchmark

Number of 
static instances 
of atomic 
sections

No. of dynamic
instances of 
atomic sections

% of aborts for total 
transactions in 
unmodified STM 
(with 8 threads)

Data structures 
accessed in atomic 
sections

Atomic sections contributing 
most  % of the total aborts

kmeans 3 11747913 43.8% 2 integer arrays, 2 
globals Normal.c:168 – 96% 

vacation 3 4256610 38.65% 4 RB trees Aborts distributed over all 
atomic sections

genome 5 2503393 1.06% Linked list Sequencer.c:394- 99%
intruder 3 62484204 55.75% Queue, linked list Intruder.c:226 –61% 
labyrinth 3 1219 16.1% 3d array Router.c:396 – 99%
Ssca2 10 22362791 0.3% Array computeGraph.c:435
yada 6 53745 46.1% Structure element Region.c:333 – 54%

bayes 15 2247 4.1% Linked list, 
structure learner Learner.c:1202

Table – 1 Characteristics of STAMP Benchmark Programs



SCLA-STM selects the streamQueuePtr (stream.c) and 
decodedQueuePtr (decoder.c) for compile time lock assignment 
and assigns each of them a separate lock. SCLA-STM improves 
performance by 2.8% to 10.21%.  In vacation, there is no single 
atomic section that contributes to most of the aborts. Instead all 
the three atomic sections contribute to the aborts. The main data 
structures are the 4 reservation tables in the manager structure, 
which are implemented through RB-tree, which are selected by 
SCLA-STM for compile time lock assignment. SCLA-STM 
shows performance improvement of 9.2% to 24.46%.  In Yada, 
SCLA-STM selects the shared data items ‘globalworkHeapPtr’, 
‘global_totalNumAdded’ and ‘global_numProcess’ for compile 
time lock assignment. Since the atomic sections involving them 
are not hot, the performance improvement is minor (1.68% to 
3.12%).

Though SCLA-STM scheme finds candidates in labyrinth, 
ssca2 and bayes for compile time lock assignment as shown in 
Table-2, these benchmarks have negligible performance 
improvements over unmodified STM.  We found that the 
candidates selected by SCLA-STM scheme occur in atomic 
sections which are cold in these benchmarks. For instance, in the 
benchmark ‘labyrinth’, SCLA-STM assigns compile time lock to 
‘workQueuePtr’.  However the atomic section where this datum is 
accessed (router.c:379) is cold and hence SCLA-STM has no 
impact on the application performance for this benchmark.  
Similar cases occur in SSCA2 and bayes as well.

Note that the results in Table-3 are with compiler assigned 
locks placed externally to the structures protected by them.  As 
mentioned in Section 3.8, we can use the compiler’s structure 
layout optimization phase [25] to modify the structure layout to 
insert the lock in-place inside the data structure itself for compiler 
assigned locks. Placing the compiler assigned locks in-place in the 
structure reduces the data cache misses encountered in accessing 
the locks, compared to the case where the locks are external to the 
structure. Our compiler is able to perform this optimization for 3 
of the candidate benchmarks intruder, vacation and yada. It could 
not perform this optimization for kmeans since the data structure 
in kmeans is not a structure but an array. We report the reduction 
in data cache misses when locks are co-located with the data 
structure, as compared with that of the external lock placement in 
Table-4 when these benchmarks are run with 16 threads.  Data 
cache miss information was obtained using the performance 
profile tool HP-Caliper [24] by sampling the IA-64 hardware 
performance counters.  We note that CLA can help co-locate the 
locks with data and hence help improve memory performance.

Benchmark % reduction in dcache miss lat.cycles with 
internal locks as compared to external locks

Intruder 4.37%
Vacation 5.26%
Yada 0.72%

Table – 4 Reduction in Cache miss latency cycles with In-Place 
Locks

4.3 Runtime Overheads 
We measured the overheads due to setting up and querying of the 
Compiler Lock Assignment Table.  In this experiment for 
measuring the overhead, SCLA-STM scheme inserts the lock 
mapping and STM queries CLAT for the SCLA-STM candidates, 
but the STM does not use the compiler assigned lock, instead it 
uses the TM’s assigned lock mapping using the hash function for 
shared data accesses. The overheads measured as the performance 

degradations over our base line (run with 16 threads), are shown 
in Table-5.  We find that overhead ranges from 0.34% to 8.33%.  
While more efficient designs for CLAT are possible, our 
prototype maintains CLAT as a separate table for different 
address ranges of the application address space.  Overhead due to 
CLAT look up can reduce the performance benefits of SCLA-
STM. It is possible to reduce the CLAT lookup overhead by 
having a K-entry lookup cache. We are investigating this as part 
of our future work.

Benchmark Overhead
kmeans 8.33 %
vacation 6.12 %
genome 0.00 %
intruder 3.91 %
labyrinth 0.34 %
Ssca2 0.56 %
Yada 1.47 %
bayes 0.91 %

Table – 5 Runtime Overhead Due to SCLA-STM

5. Related Work
Implementation of atomic sections using compile time lock 
assignment schemes has been studied in [1, 2, 3, 4, 5, 6]. Some of 
these approaches require user annotations [7]. Autolocker [7] 
takes the programs annotated with pessimistic atomic sections and 
a programmer controlled lock assignment, and infers a compiler 
controlled lock assignment that is free of deadlocks and data 
races. Our SCLA scheme requires no programmer annotations 
other than the atomic section specifications.

Emmi et al. [2] formulate the lock allocation problem as an 
ILP problem which minimizes the conflict cost between atomic 
sections and minimizes the number of locks.  Hicks  et al. [4] have
proposed a lock inference technique for atomic sections, which 
first determines a set of shared memory locations in the program, 
then find the dependence relation among shared memory 
locations, and partition the shared memory locations into sets 
according to this dependence relation. Locks are then assigned to 
each memory location set. Sreedhar et al [1, 6] propose a compiler 
inferred lock assignment scheme which assigns minimum number 
of locks to critical sections by solving the Minimum Lock 
Assignment (MLA) problem which is formulated as an ILP 
Problem. They also propose a heuristic solution. Cherem et al. [3] 
propose a compile time lock assignment scheme which can 
support multi-granularity locks.

For indirect data accesses using pointers, the above schemes 
need to make a conservative approximation of the data items 
pointed to by the pointer, which is highly dependent on the alias 
analysis employed by the compiler. Since these schemes need to 
infer a lock assignment to all shared data items of the application 
and can not apply compile time lock assignment selectively to 
shared data items like our selective lock assignment approach. 
Further their lock assignment can degrade performance in shared 
data accesses with large may-alias sets.  Also these compile time 
lock assignment schemes explicitly add the instrumentation 
required to acquire the locks on entry to the atomic section unlike 
our hybrid approach which only generates the lock mapping and 
lets the lock acquire  be handled by the underlying STM 
implementation as per its optimistic concurrency algorithm.

By being a selective approach, our SCLA-STM scheme 
enables us to reap benefits associated with the CLA schemes 
while defaulting back to STM’s fine grained locking for shared 



data accesses which are not amenable to compiler analysis.  While 
it is not the intent of our current work to evaluate our hybrid 
scheme by comparison with a full-fledged compile time lock 
assignment scheme, we show that a selective compile time lock 
assignment scheme acting in aid to STM’s fine grained locking 
can help improve performance.

The impact of False conflicts in STM have been studied in [14, 
15] and hash function improvements to reduce false conflicts have 
been suggested in [16]. However these schemes are unaware of 
the application’s data access patterns and hence cannot take 
advantage of it unlike our approach which is based on compiler’s 
inter-procedural analysis of the application. Riegel et al [22] 
propose using compiler analysis to identify and hence construct 
the data partitions which exhibit different characteristics so that 
various STM policies can be tuned independently for each 
partition.  A partition can be tuned at runtime from being read-
only to various states like transaction-local or thread-local. Based 
on runtime profile information on number of aborts and access 
frequency, they can associate different concurrency control with 
each partition such as shared lock, exclusive lock or multiple 
locks. However their scheme needs runtime profile information 
for setting the concurrency control at runtime.

6. Conclusion
So far, we have discussed our SCLA-STM scheme where the sole 
intention is aid the STM’s runtime fine grained lock assignment 
scheme by assigning locks  at compile time for certain shared data 
selectively using compiler’s knowledge of the data access patterns 
inside atomic sections. We have implemented a prototype of our 
SCLA-STM scheme in IA-64 hp-ux C/C++ compiler using TL2 
as our underlying STM implementation.  We showed that our 
SCLA-STM scheme can reduce aborts and improve application 
performance from 1.67% to 37.1%   for certain benchmarks.
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