
Compiler Aided Selective Lock Assignment for Improving the
Performance of Software Transactional Memory

Abstract Atomic sections have been recently introduced as a
language construct to improve the programmability of concurrent
software. They simplify programming by not requiring the explicit
specification of locks for shared data. Typically atomic sections
are supported by software either through the use of optimistic
concurrency by using transactional memory or through the use of
pessimistic concurrency using compiler-assigned locks. As a
transactional memory system does not take advantage of the
specific memory access patterns of an application it often suffers
from false conflicts and high validation overheads. On the other
hand, the compiler usually ends up assigning coarse grain locks
as it relies on whole program points-to analysis which is
conservative by nature. This adversely affects performance by
limiting concurrency. In order to mitigate the disadvantages
associated with STM’s lock assignment scheme, we propose a
hybrid approach which combines STM’s lock assignment with a
compiler aided selective lock assignment scheme (referred to as
SCLA-STM). SCLA-STM overcomes the inefficiencies associated
with a purely compile-time lock assignment approach by (i) using
the underlying STM for shared variables where only a
conservative analysis is possible by the by the compiler (e.g., in
the presence of may-alias points to information) and (ii) being
selective about the shared data chosen for the compiler-aided
lock assignment. We describe our prototype SCLA-STM scheme
implemented in the hp-ux IA-64 C/C++ compiler, using TL2 as
our STM implementation. We show that SCLA-STM improves
application performance for certain STAMP benchmarks from
1.68% to 37.13%

1. Introduction
Expressing synchronization using traditional lock based primitives
has been found to be both error-prone and restrictive. Locks
guarantee isolation only when a program consistently follows a
locking discipline. Any violation of the locking discipline leads to
concurrency bugs such as race conditions, atomicity violations
and deadlocks. Furthermore, lock-based synchronization
mechanisms lack composability, which often precludes modular
design of concurrent components.

Atomic sections have been proposed recently as a
programming idiom for expressing synchronization at a higher
level of abstraction than locks. Programmers can specify what
code has to execute atomically by simply enclosing the desired
block of code with the keyword ‘atomic’. Atomic sections are an
interesting alternative to locks as they allow local reasoning and
are composable.

Atomic sections can be supported in two different ways. One
way to do so is to take help from the compiler to transform the
atomics to lock based code [1, 2, 3, 4, 5, 6]. This is done through
an analysis that determines what locks to associate with what
shared data and when to acquire/release locks within the atomic
section. Compiler assisted lock allocation (CLA) requires whole
program analysis since it needs to know what data is accessed
within functions called from inside an atomic section to generate
the correct locking discipline.

While a transformation based on CLA can guarantee deadlock
freedom and atomicity (under certain assumptions like race
freedom), it often ends up allocating the same coarse grained lock
to multiple data items (false sharing). This happens because, for
indirect data accesses using pointers, CLA schemes need to make

a conservative approximation of the data items pointed to by the
pointer. This can result in coarse locks if the alias sets contain a
large number of may-aliases. Also, CLA needs to make
conservative approximations when shared data is passed to
opaque external library functions accessed inside atomic sections.
Last, and most importantly, all lock based implementations are
pessimistic in nature, and require the locks to be acquired before
an atomic section is executed, and the cost is incurred irrespective
of whether or not there is a conflicting atomic section.

The alternate way of supporting atomic sections is to rely on
an underlying software transactional memory implementation [8,
9, 10, 11, 12, 13, 23]. STMs allow for optimistic execution by
allowing multiple atomic sections to run concurrently assuming
they will not conflict. However, in case a conflict does occur they
have a mechanism to detect and recover from such conflicts [10].
Below we briefly describe how STMs operate.

To enable conflict detection STMs track metadata for each
data item accessed within an atomic sections at runtime. To avoid
having to collect huge amounts of metadata they combine data
items together either by mapping the data words being accessed to
a hash table or by treating data belonging to the same object as a
single entity.

To prevent races among metadata updates, STM
implementations typically employ fine grained locking to lock at a
per metadata level (locks could be acquired explicitly or by using
low level atomic operations like CAS or LL-SC). The mapping
from data items to metadata can therefore be thought of as a
mapping from data items to locks. Typically STMs use a hash
function to map the address of the shared data item to a lock [11,
12].

The actual process of detecting conflicts (often referred to as
read/write validation) typically involves going through all the
accumulated metadata to see if there has been a read-write or
write-write conflict. The cost of conflict detection therefore
depends on the efficiency of the mapping from data items to
locks. Once a conflict is detected the STM then chooses to abort
one of the atomic sections and rolls back the effects of it.

Lock assignment (LA) purely by the software transactional
memory implementations typically done at run-time do not have
any knowledge of the application’s data access patterns. Since the
number of locks available for assignment is often limited, multiple
uncorrelated data items can get mapped to the same lock. This can
result in ‘false conflicts’. Such false conflicts will result in
increased number of aborts/rollbacks and can impact execution
time [14, 15].

The use of fine grained locking can also lead to high read
validation costs and lock acquire costs [17, 26]. This can impact
execution time adversely, for transactions which touch a large
volume of shared data. On the positive side, STM’s runtime lock
assignment (RLA) scheme does not require whole program
analysis nor is it dependent on compiler’s alias analysis
capabilities unlike any CLA scheme.

The pitfalls of application unaware RLA employed by STMs
leading to false conflicts has been studied in [14, 15]. Yoo et al
[16] propose an improved hash function to address false conflicts.
Their scheme reduces the space required for storing the ownership
records without increasing the false sharing by packing more
transaction records into each hash table entry. However their
modified hash function does not take into account the data access
patterns of the shared data in the application’s atomic sections and

1. struct node { struct node* next; int* dataptr;};
typedef struct elem elem;

2. elem* x,y, m;
3. int* w;
4. elem* p;

5. p = m->dataptr;
6. if (....) x = y;

7. atomic {
8. x->dataptr = w;
9. int* z = y->dataptr;
10. *z = null;
11. *p = 10;
12. }

Figure 2. Example 2

enforces mutual exclusion at cache line granularity level
uniformly.

The disadvantages associated with CLA and STM’s RLA
schemes originate from the fact that all the shared data items of
the given application are assigned locks using either a purely
compile time analysis or a purely runtime STM driven hash-
function approach. Such a “One Approach fits all” principle does
not match with the natural layout of shared data structures in all
applications. Some of the shared data items are typically more
amenable to CLA, which can take advantage of the compiler’s
knowledge of the application’s data access patterns, while some
others are more amenable to STM’s fine grained RLA scheme.

In this paper we propose a hybrid lock assignment scheme to
address this issue. In our approach, the compiler uses inter-
procedural whole program static analysis to assign locks to
selected shared data items (those for which it can reason
accurately and compile time assignment would be beneficial)
while other shared data items are covered by the default STM lock
assignment scheme. Our approach will be referred to as the
Selective Compiler assisted Lock Assignment based STM
(SCLA-STM). In our hybrid scheme, we do not add any
instrumentation to acquire/release the required locks. Only the
lock mapping is generated at compile time and is communicated
to the underlying STM which performs the lock acquires as per its
optimistic concurrency algorithm.

To ensure that the hybrid scheme is safe, a clean handshake
between the compiler and the STM interface is essential. We
describe the extensions needed in the STM to facilitate this and
show that our approach preserves the original semantics of the
underlying STM implementation. We have implemented a
prototype of our scheme in HP-UX IA-64 C/C++ compiler using
TL2 [11] as our underlying STM implementation for our
experimental evaluation. Results indicate that our approach
performs better than the default STM’s RLA scheme, which is
application unaware. We show that acting in compliment to the
STM’s default RLA scheme, our SCLA-STM scheme can
improve application performance in 4 of the STAMP [20]
benchmarks from 1.68% to 37.13% over the base STM
implementation, while reducing the percentage of aborts from
1.43% to 29.9%.

This paper is organized as follows: In Section 2, we provide
the necessary motivation for our SCLA-STM scheme. Section 3
describes our scheme and discusses the issues in a practical
implementation. We report the results of our experimental
evaluation in Section 4. We discuss related work in Section 5 and
conclude with a short summary in Section 6.

2. Motivation
This section motivates the need for a hybrid scheme by illustrating
the drawbacks of using a pure CLA or RLA approach.

2.1 Issues with Complier Assisted Lock Allocation (CLA)
CLA schemes are dependent on the underlying alias analysis [18,
19] of the compiler. For instance, consider the following code
sample in Fig 1. The example in Fig 1 simply increments one of 2
counters depending on the value of b. A CLA scheme employing
an alias analysis which does not disambiguate between individual
array elements will result in allocating same lock L to g[0] and
g[1]. This can result in false conflicts between callers invoking
increment(true) vs. increment(false). The reason is that L covers
both the variables g[0] and g[1] whereas it is correct to cover g[0]
and g[1] with separate locks. The false conflict is induced by the
imprecision of the underlying alias analysis of the CLA scheme.
The compiler reports that the pointer may alias with both g[0] and

g[1] and therefore conservatively assigns both of them the same
lock. On the other hand, a lock assignment by an STM
implementation which operates at word granularity will assign
separate locks for g[0] and g[1] as these are 2 different data
addresses and hence they get mapped to 2 different locks. This
will avoid the false conflicts between the caller of increment(true)
and the caller of increment(false).

Even if the CLA scheme has support for fine grained locking,
the very nature of static analysis based lock assignment can result
in excessive locking. Consider the above code snippet in Fig 2.

In the example code, compiler can do a backward analysis to
determine that z is equivalent to y->dataptr. The expression y-
>dataptr can be affected by the update of x->dataptr in line 8 if x
and y are aliased. Infact x and y will be aliased if the branch in
line 6 is taken. ‘z’ at line 10 can point to y->dataptr or w based
on the branch outcome. Since the compiler cannot determine
whether this branch will be taken or not at compile time, it needs
to be conservative. Hence a CLA scheme will assign the same
lock to both w and y->dataptr. On the other hand, STM’s runtime
locking scheme will need to acquire only one lock out of the two
locks which are mapped to y->dataptr and w. Thus CLA suffers
due to the may-alias of x with y. On the other hand, consider the
access *p in line 11. p is must-aliased to m->dataptr. Hence a
CLA scheme can correctly infer that the lock covering the data
item m->dataptr needs to be acquired at line 11 before
dereferencing p. Thus must-aliases pose no issues for CLA
schemes unlike may-aliases.

2.2 Issues with Runtime Lock Assignment (RLA) by STM
Lock assignment by STM takes no note of the access pattern of
the data inside the atomic sections when doing lock assignment.
Also, since the locking granularity in STM is extremely fine

int g[] = {0,0};

void increment (Boolean b) atomic
{

if (b) g[0] ++;

else g[1]++;
}

Figure 1. Example 1

grained, the conflict detection costs can be high for a transaction
with a large memory footprint.

Let us consider the following code snippet in Figure 3
Example 3, which is simplified from the STAMP benchmark
program ‘kmeans’. In the code snippet, each dynamic instance of
the atomic section accesses an independent array section.
Consider an STM implementation which uses word based
granularity locking with a lock array of size 100. Each atomic
section is independent and operates on one independent chunk of
the array. Since the shared data array size is 1000, the STM needs
to map 1000 different data elements to the limited 100 locks.
Depending on the hash function used, different and unrelated data
map to same lock resulting in false conflicts. Also each dynamic
instance of atomic section will end up performing 100 lock
acquires. On the other hand a CLA scheme, which can determine
that each dynamic instance of the atomic section accesses an
independent array section and the start and end of the array
section operated in each atomic section, will assign a lock per
each independent array section.

This results in zero false conflicts since each array section gets a
unique lock. Each atomic section requires only one lock acquire,
resulting in lowered lock acquire overheads and read validation
costs. Thus, a CLA scheme driven by compiler analysis of
application’s data access pattern can assign a better lock mapping
in this case compared to the default STM’s RLA.

Note that false conflicts can also happen in object granularity
STMs. For example consider the following 2 atomic sections in
Figure 4.

Atomic

{

int temp=node->left;

node->left=global2;

 global1=temp;

}

Atomic

{

int temp=node->right;

node->right=global1;

 global1=temp;

}

Figure 4. Example 4

If the STM were to use object granularity locking it would
prohibit these 2 atomics from executing in parallel. However if a

compiler maps the data item to separate locks one can gain
concurrency.

2.3 A Hybrid Approach
It is easy to see that the various example code snippets illustrated
above can be part of a single atomic section in real life
applications. Hence some of the shared data in an atomic section
exhibit access patterns which are better exploited by CLA
whereas certain other shared data are more amenable to STM’s
fine grained locking assignment. Hence we propose a hybrid lock
assignment scheme over an underlying STM implementation,
wherein compiler assigns locks selectively to certain shared data
items whereas other shared data items are covered by the default
STM lock assignment.

Considering the example in Fig. 3 from Section 2.2, we can
see that STM needs to perform 100 read validations and 100
number of lock acquires for each dynamic instance of atomic
section. Given the size of shared data array to be 1000 and the size
of the STM lock array to be 100, we can see that multiple array
elements will map to the same lock by the hashing function due to
the limited size of the lock table array. Since STM’s lock
assignment scheme has no knowledge of the access pattern of the
shared data in the atomic section, it has no way of figuring out
that all array elements in a given array section are accessed
together in the atomic section and that each atomic section
accesses independent elements. Hence in this case it would be
sufficient if the STM assigns only one lock for each section of the
array, but this information is not available/inferable by the STM.

However the compiler has full knowledge of the application
and can detect the access pattern of the shared data in the atomic
section. Compiler analysis can recognize that it is sufficient to
assign a single lock for each distinct array section accessed in this
critical section thereby reducing the read validation and lock
acquire costs and reducing false conflicts. Our approach
essentially captures this information and gives it to the STM, so
that for each of the array chunks accessed by the different threads
a single lock is mapped to it. This reduces the overheads of having
to acquire 1000 locks to 10 locks.

Now consider the example in Fig 2 from Section 2.1. Since our
hybrid approach assigns compile time locks selectively, it can
decide not to assign compile time locks for this and allow the
access to *z in line 10 of Fig 2 to be handled by the STM, thereby
avoiding the issue encountered in pure CLA schemes due to may-
aliases.

Our hybrid approach selectively perform compile-time
assignment of locks for some the shared variables where such an
approach would be beneficial, and relies on runtime lock
assignment and the underlying the STM model to handle the other
shared variables appropriately.

3. Selective Compile time Lock Assignment
Scheme
In this section, we describe our selective compile time lock
assignment scheme for STM in detail.

3.1 Overview of our Approach
Our SCLA-STM scheme consists of the following steps:
a) Selection of shared data items for lock assignment by the

compiler. Note that a purely compile time lock assignment
scheme needs to assign lock mapping for all shared data.
Whereas our approach, can selectively do the lock
assignment so as to avoid false conflicts that traditional CLA

#define PERTHREAD_CHUNK 100

int array[1000];
int num_threads;

foo() {
for (int thread_id = 0; thread_id < 10; thread_id++) {

 int chunk_start = thread_id * PERTHREAD_CHUNK;

 pthread_create(bar, &array[chunk_start], 100);
 }

}

bar (int* array_section, int my_chunk) atomic {
for (int i = 0; i < my_chunk; i++) {

*(array_section + i) = ….
 }

}

Figure 3. Example 3

is susceptible to. We describe our criteria for selecting data
in Section 3.2.

b) Assignment of locks by the compiler to the selected data.
c) Creation of the required locks by the compiler. Locks are

created either statically (for statically allocated data) or by
inserting code to allocate the locks dynamically for
dynamically allocated data.

d) Communicating the compile time lock assignment to the
STM. This is achieved by the handshake mechanism set up
between the compiler and the STM for communicating the
lock assignment done by the compiler, details of which are
described in Section 3.5.

Note that a pure CLA scheme [1, 2, 3, 4] needs to adds
instrumentation at compile time to acquire the required lock
before accessing the shared variable (typically this is done at the
entry to the atomic section), whereas in our hybrid scheme, only
the lock mapping is generated at compile time and code is added
to communicate this mapping to STM. We do not add any
instrumentation to acquire/release the required locks. Only the
mapping is communicated to the STM which performs the lock
acquires as per its optimistic concurrency algorithm.

3.2 Candidate Selection for SCLA-STM scheme
Compiler performs an inter-procedural analysis of the application
and creates a list of shared data accesses made in each atomic
section. During inter-procedural analysis, compiler performs
points-to analysis [18, 19] on the program and maps each pointer
in the program to a points-to set. The points-to set consists of the
set of locations that a pointer access points to. Two types of alias
relationships are possible, namely must-alias and may alias. Must
alias relationship is an alias relationship that holds true for all
executions of the program, whereas a may-alias relationship is one
that holds true for some execution of the program P. Looking
back at our example of Fig 2, p is must aliased to m->dataptr
whereas x is may-aliased to y. We select only those accesses
whose points to set consists of only must-aliases for compiler lock
assignment. The intuition behind this choice is that these are the
set of locations for which compiler has definitive alias
information which holds good for all execution paths and hence
the compile time lock assignment will be effective. In order to
ensure that every shared location is protected by a lock
consistently throughout the entire execution of the application, our
SCLA scheme does the following:

i. First, for each of the shared accesses ‘p’ which has only
must alias entries in its points to set, shared data
corresponding to each of these must-alias entries will be
selected for CLA and will be assigned a compile time
lock. We refer to such shared data items selected for
SCLA as SCLA data items. For SCLA data items, STM
uses the compiler assigned lock mapping.

ii. If a shared access ‘q’ has a may-alias to a SCLA data
item in its points-to set, then compiler instruments such
memory references, so that at runtime, when the lock is
required for the shared access ‘q’, first STM checks if a
CLA lock mapping is available for this data address. A
compiler assigned lock mapping will be available if ‘q’
in fact points to a SCLA data item at runtime. In that
case, STM uses the CLA assigned lock mapping. Else
the default STM lock assignment as computed in an
unmodified STM will be used.

iii. For a shared access ‘r’ whose points-to set does not
include any SCLA data item, the default STM lock
assignment as computed in an unmodified STM will be
used .

We illustrate this with the following example: Consider 3 shared
accesses ‘p’, ‘q’ and ‘r’ such that

a) ‘p’ whose points to set has {must alias (global1)};
b) ‘q’ whose points to set consists of {may alias (global1),

may_alias(global3)};
c) ‘r’ whose points to set has {may_alias(global4)}.

As per step i above, global1 is selected for SCLA. By step ii
above, q is instrumented by the compiler so that at runtime STM
first checks to see if a compiler assigned lock is available for that
address. If q in fact points to global1 at runtime, then a compiler
assigned lock mapping will be found and hence it will be used. If
q points to global 3, then it will not have a compiler lock
mapping. So STM will use its default STM lock assignment. For
the shared access ‘r’, STM will use its default STM lock mapping
as per step iii above.

3.3 Lock Assignment for Selected Candidates
The inputs to the problem are

1. A set D of selected candidates (d1, d2… dn)

2. A set AS of atomic sections (AS1, AS2…ASm)

3. A mapping SD from an atomic section to candidate data
accessed within it. The candidates accessed within the
ith atomic section is represented as an array SDi.

The problem now is to create a set of locks L= (l1, l2…ln) and a
locking discipline LD that maps each selected data di to a lock
LD(di). As a corollary, each atomic section ASi gets assigned a
set of locks ASLock (ASi) which is a union of the individual locks
of the data accessed in ASi. While a lock assignment which
assigns a separate lock to each candidate will be sound, this naïve
solution can result in excessive validation overhead. Hence we
would like to use the fewest set of locks without sacrificing
parallelism. Therefore the problem we want to solve is “Given the
sets D, AS and SD, construct a minimum set of locks L and a
mapping LD that maps each shared data item to a lock, so that no
two atomic sections need a common lock unless they access
common data.”

Mathematically minimize |L| such that

i. for all di, LD(di) = lj where lj ∈ L

ii. for all i and j, ASLock(ASi) ∩ ASLock(ASj) = NULL
if and only if SD(i) ∩ SD(j) = NULL

We approach the problem in a manner similar to the register
allocation problem [21] by constructing an interference graph that
captures the relationship between shared data. Each shared datum
is assigned a separate node. All must aliases of an access are
assigned to the same node. We then add edges between two nodes
if assigning them the same lock may inhibit concurrency.
Specifically, an edge is added between nodes A and B if and only
if both the following constraints are met

I. there exists an atomic section that accesses A but not B,
and

II. there exists an atomic section that accesses B but not A.

Any valid coloring of the graph is a solution for the problem of
finding a locking discipline that does not of hamper concurrency.
Smaller the number of colors used the lesser will be the validation
cost. To color the graph we use the heuristic procedure used by
Chaitin et al [21] for register allocation.

3.3.1 Constructing the Interference Graph
The simplest way of constructing the graph will involve going
through each pair of nodes and figuring out if they conflict or not.
To determine conflicts we have to go through each atomic section
until two atomic sections that respectively satisfy constraints I and
II are found.

For each pair of (di, dj) of shared data items,
i. initialize constraint1 = false; constraint2 = false;

ii. Walk through each atomic section A € AS, If di is
accessed in A, but not dj, then set constraint1 = true; If
dj is accessed in A but not di, then set constraint2 =
true;

iii. If both constraint1 && constraint2 are set to true, add
an edge between di and dj

This simple algorithm has a complexity O(|AS| . n2) where n is
the number of shared data items, as each pair of shared data needs
to be checked, in the worst case, in every atomic section

3.3.2 Example
The algorithm is best explained with an example. Consider a

sample program which contains 5 atomic sections with accesses in
each atomic section being {d2, d3, d4}, {d2, d5}, {d2, d3, d4, d5,
d6}, {d3, d4} and {d1, d6} respectively. We have the interference
graph constructed as shown in Fig 5 which can be colored using 3
colors (the colors are shown in brackets in each node) as shown in
Fig 5 below.

3.4 Lock Allocation
At the end of lock assignment phase, the compiler has a lock
mapping which determines which candidate data are covered by
the same lock. Now the compiler needs to allocate the locks to
satisfy this assignment and communicate the mapping between the
shared data address and the address of the compiler created lock
to the STM. For statically allocated candidate data, the compiler
can create the locks statically and create the mapping between the
datum address and lock address. While the locks are created
statically, the mapping is established at the start of the program.
For dynamically allocated data, compiler inserts code to

dynamically allocate the locks and create the mapping between
the dynamically allocated data and the lock, immediately after the
allocation of the dynamic data.

There could be another class of scenarios where the shared
locations are not determined in advance. In that case, the compiler
inserts instrumentation at the point the shared locations are
available. Though this class is not very common, the overhead of
instantiating the mapping at runtime could be noticeable. If that’s
the case, the compiler could take into account the instrumentation
overheads while heuristically choosing the locations to apply
static lock allocation to.

Compiler also generates code to free the dynamically allocated
locks at program exit. While it is possible to free the dynamically
allocated locks at the point where the corresponding data items are
freed, the issue of lock recycling needs to be considered and
handled in a manner similar to the handling of dynamically
allocated shared data whose memory can be recycled. For our
current implementation, we work around this issue, by freeing the
dynamically allocated locks only at program exit, so that compiler
assigned dynamically allocated locks are not recycled. Though
the increase in overall memory consumption due to this
workaround was not significant for the benchmarks we studied,
this factor might need to be taken in to account while building a
production quality SCLA.

3.5 Communication of Lock Assignment to the STM
We use TL2 [11] as our underlying STM implementation and
hence our discussion below is more closely coupled to TL2
implementation. TL2 is a library based STM implementation as
opposed to a compiler based STM implementation. The ideas in
this section are applicable to both library based and compiler
based STM implementations though the actual implementation
specifics may differ. We first describe briefly the default lock
assignment scheme in TL2.

TL2 is a word based STM with invisible reads with global
version number based validation. It uses versioned write locks to
protect shared memory locations. It has a global version clock
variable which will be read and incremented by each writing
transaction and will be read by each read-only transaction. In its
simplest form, the versioned write-lock is a single word spin-lock
that uses a CAS operation to acquire the lock and a store to
release it. Since only one bit of the lock word is needed to indicate
that the lock is taken, the rest of the lock word is used to hold a
version number. An array of lock words is allocated by TL2. The
size of the lock table array is 2^20 entries. To obtain the lock
word associated with a given shared memory location, the STM
uses a hash function of the memory address. The mapping of a
memory address of the shared datum ‘Addr’ is given by

(Base of the lock table array + ((((Addr)+128) >> 2) &
(LOCK TABLESIZE -1)))

Note that the assignment of locks to the shared datum is purely
dependent on the hash function.

Since the compiler created lock assignment needs to be
communicated to the STM, the STM implementation needs to be
augmented with a new data structure known as Compiler Lock
Assignment Table (CLAT). STM’s Application Programming
Interfaces are extended with two new functions, namely
GetCompilerLockMapping and SetCompilerLockMapping.
SetCompilerLockMapping can be invoked for inserting a mapping
into the CLAT and GetCompilerLockMapping can be used to
return the lock mapping for a given datum from CLAT. Compiler
inserts calls to SetCompilerLockMapping for recording the lock
mapping for the data items selected by SCLA-STM scheme.

Figure 5. Interference Graph

Typically STM implementation supports an internal GetLock
Function which given a datum address, returns the lock address
corresponding to it. For TL2, GetLock function is implemented
by means of a macro known as PSLOCK. Given a datum address,
PSLOCK returns the address of lock entry using the STM’s hash
function. The transactional load and transactional store interfaces
(TxLoad and TxStore in case of TL2) invoke the PSLOCK
function to obtain the lock address.

In our SCLA-STM scheme, STM is augmented with two new
interfaces ‘TxLoadWithCompilerLock’ and
‘TxStorewithCompilerLock’. These interfaces query CLAT first
and if there is no mapping available in CLAT for that address,
they will return the STM”s default lock mapping using the
PSLOCK function. Except for this one change, the functionality of
the interfaces ‘Tx*WithCompilerLock’ is exactly identical to that
of Tx*.

For those shared accesses whose points to sets include a datum
selected for CLA by our hybrid approach, compiler replaces the
calls to TxLoad/TxStore in atomic sections with calls to
‘Tx*WithCompilerLock’, so that CLAT is consulted first to obtain
the lock for these data by the STM. If no mapping is available in
CLAT for that address, STM defaults to its runtime lock
assignment for that access. Next we explain why this approach is
sound.

3.6 Preserving the Semantics of Atomic Sections
Below we argue that our approach preserves the “all or nothing”
semantics of atomic sections. Our hybrid lock assignment scheme
is built on top of an existing word based STM (TL2). As TL2
preserves the atomic semantics all we need to show is that we do
not introduce any transformations that violate the guarantees
provided by the underlying STM. The only change our scheme
incorporates is in the way addresses are mapped to locks. On this
front, the underlying STM requires the guarantees that:

(i) There is a locking discipline that maps each shared
address accessed within atomic sections to a lock.

(ii) The locking discipline is consistent. Assuming that any
of the atomic sections can be executing concurrently
this implies that each access to a shared address should
be consistently mapped to the same lock.

Both these conditions are guaranteed by our construction.

The accesses to shared locations accessed within atomic sections
can be partitioned into those accessed via must aliases and those
accessed via may aliases. Consider the must alias case: since the
compiler has precise information, the lock will be found in the
CLAT at runtime. Since the mapping from address to lock is
always the same, the above two criterion are satisfied for the
references that have must-alias. For the may-alias case, at runtime
the address will either resolve to a location corresponding to the
CLAT or PSLOCK. In either case the address will definitely map
to a lock, so condition (i) is satisfied. Further, note that the CLAT
is first queried in this case. So every time the address resolves to a
location for which the compiler determines the mapping, the
correct lock will be found. Otherwise, the lock will be obtained
from PSLOCK which always assigns the same lock for a given
address throughout the entire execution of the program. Hence the
locking discipline is consistent and (ii) is satisfied.

3.7 Overheads of Our Approach
SCLA has following sources of overheads on the application’s
execution time compared to an unmodified STM implementation.

a) Extra code that needs to be executed for allocating compiler
assigned locks, recording the mapping with the STM and for
looking up the mapping from CLAT. Recording the
mapping into CLAT is a one time overhead.

b) Additional dynamic memory requirements for dynamically
allocated compiler locks.

c) Cache overheads due to CLAT accesses
SCLA can be augmented with a heuristic, which estimates
statically the overheads associated and adds a threshold to limit
the number of candidates selected. We plan to investigate this as
part of our future work. We report the overheads observed in
Section 4.3.

3.8 Compiler Support for In-Place Locks
If the lock assignment scheme protects all fields of a structure
with the same lock (similar to object level locking applied to
structures), then it is possible to assign the lock along with the
object as an in-place lock. In-place locks have the advantage of
spatial locality and hence reduced d-cache misses compared to
external locks. We used the whole program structure layout
(WPSL) optimization phase of the optimizer [25] to perform this
optimization. If there are instances where the structure is passed to
opaque functions or address arithmetic is performed on the
members of the structure, it would not be possible for the
compiler to perform this optimization. These legality checks are
the same as those used in the whole program structure layout
framework [25]. In case the legality checks are not satisfied for
the addition of the lock field to the structure, compiler’s WPSL
framework does not perform this optimization. Instead the
compiler allocates locks external to the structure. In section 4.2,
we report performance improvements obtained by using in-place
locks.

3.9 Our Compiler Framework
We have implemented the prototype of our SCLA-STM scheme
in the HP-UX IA-64 C/C++ compilers. SYZYGY IA-64 C/C++
compiler [27] has a whole program inter-procedural analysis
(IPA) phase with support for whole program points to analysis.
We implemented the SCLA prototype in the IPA phase of the
compiler. Note that we used TL2 a library based STM, as our
underlying STM implementation. Hence all the applications
which can run on TL2, will have the transactional loads/stores
marked explicitly (this is the case with the STAMP benchmarks
which we used for our experiments). Therefore the compiler need
not perform any explicit step to infer which of the accesses inside
an atomic section are to shared data. In a compiler based STM
implementation, this is not the case. In case of compiler based
STMs, before performing SCLA, shared data inside each atomic
section needs to be identified explicitly by compiler analysis [13].

4. Experimental Evaluation

4.1 Experimental Methodology
To evaluate the effectiveness of our hybrid scheme, we used the
STAMP benchmark suite [20] version 0.9.10. STAMP comprises
of 8 applications: kmeans (an implementation of K-means
clustering), genome (a gene sequencing program), bayes (a
Bayesian network learning program), labyrinth (a maze routing
program), vacation (a client/server travel reservation system),
intruder (signature based network intrusion detection), ssca2 (four
kernels that operate large weighted directed multi-graph) and yada
(yet another delaunay application). We implemented the SCLA-
STM prototype in the HP-UX IA-64 C/C++ compiler. For the

performance runs, the benchmarks, compiled with the SCLA-
STM scheme enabled, were run on the modified TL2 (as
described in section 3) implementation. The baseline for our
experiments is to compile the benchmarks at the same
optimization level (level 4) with inter-procedural analysis enabled,
but with SCLA-STM phase turned off in the compiler and
runthem on the unmodified TL2 implementation. We used the
native (non-simulator) input sets of the STAMP benchmark suite
in our experiments. We used a 16 core IA-64 RX7640, with 2
cores per socket, with each core of 1.6 GHz clock frequency and 9
MB non-shared L3 cache per core.

Table 1 describes the characteristics of the STAMP
benchmarks when run on an unmodified TL2 implementation with
16 threads. It reports the number of atomic sections in each of
these benchmarks, the % of aborts to total transactions started, the
major data structures used by the application and the dominant
atomic sections where most aborts occur. We instrumented TL2 to
obtain the number of aborts for each static instance of atomic
section in the application. We find that most of the aborts are
accounted for by few of the atomic sections in each of the
benchmarks. We report the major data structures accessed in the
atomic sections in column 4 and the atomic sections where most
of the aborts occur in terms of filename and line number in
column 5 of Table 1. Note that STAMP benchmarks use a set of
common data structures like list, queue, rb-tree, map and hash
table whose implementation is provided along with the benchmark
suite itself.

4.2 Performance of SCLA-STM
Table-2 gives the number of candidate data items selected for
compile time lock assignment by SCLA-STM scheme for each
benchmark.

Benchmark SCLA-STM candidates found
Kmeans 4
Vacation 4
Genome 0
Intruder 2
Labyrinth 1
Ssca2 6
yada 3
bayes 3

Table – 2 SCLA-STM candidates

We also measured the compile time overhead due to SCLA-STM
by comparing the compile time of each benchmark with SCLA-
STM enabled and without SCLA enabled. We found that compile
time overheads due to SCLA-STM phase were within the range of
0.9% to 2.3%.

We find that our SCLA-STM scheme had runtime
performance impact on only 4 of the 8 benchmarks namely
kmeans, intruder, yada and vacation. We report performance
results only for these 4 benchmarks, in which SCLA-STM has a
performance impact. We measured negligible performance
differences (< ±1%) on applying SCLA-STM to the other 4
benchmarks (we discuss the reasons for this later in the section).
We report both the % improvement in execution time and the %
reduction in aborts, for 2,4,8 and 16 threads in Table-3 for the 4
STAMP benchmarks on which SCLA-STM had a performance
impact (of > 1%).

In the benchmark ‘Kmeans’, SCLA-STM improves
performance by 11% to 37%. Kmeans has 3 atomic sections. All
the shared data referenced in these atomic sections are selected by
SCLA-STM and are assigned compile time locks. The majority of
the performance benefits come from the atomic section in file
normal.c:168, where 2 arrays ‘centre’ and ‘centre_len’ are
accessed. SCLA-STM associates a separate lock with each section
of the array accessed in the atomic section. This helps to reduce
the aborts and lock acquire overheads compared to the fine
grained lock assignment by STM.

Benchmark
%

Improvement
in

2
threads

4
threads

8
threads

16
threads

Exec. Time 11.15% 18.18% 32.21% 37.13%
kmeans

Aborts 21.28% 25.01% 25.12% 29.9%

Exec. Time 2.84% 7.83% 8.33% 10.21%
intruder

Aborts 2.31% 2.89% 2.91% 3.12%

Exec. Time 9.23% 12.51% 14.41% 24.46%
vacation

Aborts 37.3% 44.21% 45.2% 49.7%

Exec. Time 1.68% 2.23% 2.67% 3.12%
yada Aborts 1.43% 1.87% 1.62% 2.19%

Table – 3 Performance Improvements due to SCLA-STM

Benchmark

Number of
static instances
of atomic
sections

No. of dynamic
instances of
atomic sections

% of aborts for total
transactions in
unmodified STM
(with 8 threads)

Data structures
accessed in atomic
sections

Atomic sections contributing
most % of the total aborts

kmeans 3 11747913 43.8% 2 integer arrays, 2
globals Normal.c:168 – 96%

vacation 3 4256610 38.65% 4 RB trees Aborts distributed over all
atomic sections

genome 5 2503393 1.06% Linked list Sequencer.c:394- 99%
intruder 3 62484204 55.75% Queue, linked list Intruder.c:226 –61%
labyrinth 3 1219 16.1% 3d array Router.c:396 – 99%
Ssca2 10 22362791 0.3% Array computeGraph.c:435
yada 6 53745 46.1% Structure element Region.c:333 – 54%

bayes 15 2247 4.1% Linked list,
structure learner Learner.c:1202

Table – 1 Characteristics of STAMP Benchmark Programs

SCLA-STM selects the streamQueuePtr (stream.c) and
decodedQueuePtr (decoder.c) for compile time lock assignment
and assigns each of them a separate lock. SCLA-STM improves
performance by 2.8% to 10.21%. In vacation, there is no single
atomic section that contributes to most of the aborts. Instead all
the three atomic sections contribute to the aborts. The main data
structures are the 4 reservation tables in the manager structure,
which are implemented through RB-tree, which are selected by
SCLA-STM for compile time lock assignment. SCLA-STM
shows performance improvement of 9.2% to 24.46%. In Yada,
SCLA-STM selects the shared data items ‘globalworkHeapPtr’,
‘global_totalNumAdded’ and ‘global_numProcess’ for compile
time lock assignment. Since the atomic sections involving them
are not hot, the performance improvement is minor (1.68% to
3.12%).

Though SCLA-STM scheme finds candidates in labyrinth,
ssca2 and bayes for compile time lock assignment as shown in
Table-2, these benchmarks have negligible performance
improvements over unmodified STM. We found that the
candidates selected by SCLA-STM scheme occur in atomic
sections which are cold in these benchmarks. For instance, in the
benchmark ‘labyrinth’, SCLA-STM assigns compile time lock to
‘workQueuePtr’. However the atomic section where this datum is
accessed (router.c:379) is cold and hence SCLA-STM has no
impact on the application performance for this benchmark.
Similar cases occur in SSCA2 and bayes as well.

Note that the results in Table-3 are with compiler assigned
locks placed externally to the structures protected by them. As
mentioned in Section 3.8, we can use the compiler’s structure
layout optimization phase [25] to modify the structure layout to
insert the lock in-place inside the data structure itself for compiler
assigned locks. Placing the compiler assigned locks in-place in the
structure reduces the data cache misses encountered in accessing
the locks, compared to the case where the locks are external to the
structure. Our compiler is able to perform this optimization for 3
of the candidate benchmarks intruder, vacation and yada. It could
not perform this optimization for kmeans since the data structure
in kmeans is not a structure but an array. We report the reduction
in data cache misses when locks are co-located with the data
structure, as compared with that of the external lock placement in
Table-4 when these benchmarks are run with 16 threads. Data
cache miss information was obtained using the performance
profile tool HP-Caliper [24] by sampling the IA-64 hardware
performance counters. We note that CLA can help co-locate the
locks with data and hence help improve memory performance.

Benchmark % reduction in dcache miss lat.cycles with
internal locks as compared to external locks

Intruder 4.37%
Vacation 5.26%
Yada 0.72%

Table – 4 Reduction in Cache miss latency cycles with In-Place
Locks

4.3 Runtime Overheads
We measured the overheads due to setting up and querying of the
Compiler Lock Assignment Table. In this experiment for
measuring the overhead, SCLA-STM scheme inserts the lock
mapping and STM queries CLAT for the SCLA-STM candidates,
but the STM does not use the compiler assigned lock, instead it
uses the TM’s assigned lock mapping using the hash function for
shared data accesses. The overheads measured as the performance

degradations over our base line (run with 16 threads), are shown
in Table-5. We find that overhead ranges from 0.34% to 8.33%.
While more efficient designs for CLAT are possible, our
prototype maintains CLAT as a separate table for different
address ranges of the application address space. Overhead due to
CLAT look up can reduce the performance benefits of SCLA-
STM. It is possible to reduce the CLAT lookup overhead by
having a K-entry lookup cache. We are investigating this as part
of our future work.

Benchmark Overhead
kmeans 8.33 %
vacation 6.12 %
genome 0.00 %
intruder 3.91 %
labyrinth 0.34 %
Ssca2 0.56 %
Yada 1.47 %
bayes 0.91 %

Table – 5 Runtime Overhead Due to SCLA-STM

5. Related Work
Implementation of atomic sections using compile time lock
assignment schemes has been studied in [1, 2, 3, 4, 5, 6]. Some of
these approaches require user annotations [7]. Autolocker [7]
takes the programs annotated with pessimistic atomic sections and
a programmer controlled lock assignment, and infers a compiler
controlled lock assignment that is free of deadlocks and data
races. Our SCLA scheme requires no programmer annotations
other than the atomic section specifications.

Emmi et al. [2] formulate the lock allocation problem as an
ILP problem which minimizes the conflict cost between atomic
sections and minimizes the number of locks. Hicks et al. [4] have
proposed a lock inference technique for atomic sections, which
first determines a set of shared memory locations in the program,
then find the dependence relation among shared memory
locations, and partition the shared memory locations into sets
according to this dependence relation. Locks are then assigned to
each memory location set. Sreedhar et al [1, 6] propose a compiler
inferred lock assignment scheme which assigns minimum number
of locks to critical sections by solving the Minimum Lock
Assignment (MLA) problem which is formulated as an ILP
Problem. They also propose a heuristic solution. Cherem et al. [3]
propose a compile time lock assignment scheme which can
support multi-granularity locks.

For indirect data accesses using pointers, the above schemes
need to make a conservative approximation of the data items
pointed to by the pointer, which is highly dependent on the alias
analysis employed by the compiler. Since these schemes need to
infer a lock assignment to all shared data items of the application
and can not apply compile time lock assignment selectively to
shared data items like our selective lock assignment approach.
Further their lock assignment can degrade performance in shared
data accesses with large may-alias sets. Also these compile time
lock assignment schemes explicitly add the instrumentation
required to acquire the locks on entry to the atomic section unlike
our hybrid approach which only generates the lock mapping and
lets the lock acquire be handled by the underlying STM
implementation as per its optimistic concurrency algorithm.

By being a selective approach, our SCLA-STM scheme
enables us to reap benefits associated with the CLA schemes
while defaulting back to STM’s fine grained locking for shared

data accesses which are not amenable to compiler analysis. While
it is not the intent of our current work to evaluate our hybrid
scheme by comparison with a full-fledged compile time lock
assignment scheme, we show that a selective compile time lock
assignment scheme acting in aid to STM’s fine grained locking
can help improve performance.

The impact of False conflicts in STM have been studied in [14,
15] and hash function improvements to reduce false conflicts have
been suggested in [16]. However these schemes are unaware of
the application’s data access patterns and hence cannot take
advantage of it unlike our approach which is based on compiler’s
inter-procedural analysis of the application. Riegel et al [22]
propose using compiler analysis to identify and hence construct
the data partitions which exhibit different characteristics so that
various STM policies can be tuned independently for each
partition. A partition can be tuned at runtime from being read-
only to various states like transaction-local or thread-local. Based
on runtime profile information on number of aborts and access
frequency, they can associate different concurrency control with
each partition such as shared lock, exclusive lock or multiple
locks. However their scheme needs runtime profile information
for setting the concurrency control at runtime.

6. Conclusion
So far, we have discussed our SCLA-STM scheme where the sole
intention is aid the STM’s runtime fine grained lock assignment
scheme by assigning locks at compile time for certain shared data
selectively using compiler’s knowledge of the data access patterns
inside atomic sections. We have implemented a prototype of our
SCLA-STM scheme in IA-64 hp-ux C/C++ compiler using TL2
as our underlying STM implementation. We showed that our
SCLA-STM scheme can reduce aborts and improve application
performance from 1.67% to 37.1% for certain benchmarks.

References

1. Y. Zhang, V. Sreedhar, W. Zhu, V. Sarkar, and G. Gao.
Optimized lock assignment and allocation: A method
for exploiting concurrency among critical sections. TR-
CAPSL-TM-065, University of Delaware, Newark, DE,
2007.

2. M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar.
Lock allocation. In POPL’07: Proceedings of the 34th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 291–296, 2007.

3. S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks
for atomic sections. Technical Report MSR-TR-2007-
111, MSR, August 2007.

4. M. Hicks, J. Foster, and P. Pratikakis. Lock inference
for atomic sections. In TRANSACT’06: Proceedings of
the 1st ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional
Computing, 2006.

5. R. L. Halpert, C. J. F. Pickett, and C. Verbrugge.
Component-based lock allocation. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, September 2007.

6. Y. Zhang, V.C. Sreedhar, W. Zhu, V. Sarkar, and G. R.
Gao. 2008. Minimum Lock Assignment: A Method for
Exploiting Concurrency among Critical Sections. In
Languages and Compilers For Parallel Computing: 21th

international Workshop, LCPC 2008, Edmonton,
Canada, July 31 - August 2, 2008.

7. M. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In
Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289–300,
May 1993.

8. N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, Aug 1995.

9. M. Herlihy, V. Luchangco, M. Moir, and W. N.Scherer,
III. Software transactional memory for dynamic-sized
data structures. In PODC ’03: Proc. 22nd ACM
Symposium on Principles of Distributed Computing,
July 2003.

10. M.F. Spear, V.J. Marathe, W.N. Scherer III, and M.L.
Scott, “Conflict Detection and Validation Strategies for
Software Transactional Memory,” Proc. of the 20th Int’l
Symp. on Distributed Computing, Stockholm, Sweden,
Sept. 2006.

11. D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In Proceedings of the 20th International
Symposium on Distributed Computing (DISC),
Stockholm, Sweeden, September 2006.

12. P. Felber, C. Fetzer, and T. Riegel,. 2008. Dynamic
performance tuning of word-based software
transactional memory. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Salt Lake City, UT, USA,
February 20 - 23, 2008). PPoPP '08. ACM, New York,
NY, 237-246.

13. A. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R.
Murphy, B. Saha, and T. Shpeisman. Compiler and
runtime support for efficient software transactional
memory. In Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and
implementation, pages 26–37, NY, USA, 2006.

14. C. Zilles and R. Rajwar. Transactional Memory and the
Birthday Paradox. In Proceedings of the Nineteenth
ACM Symposium on Parallel Algorithms and
Architectures, June 2007.

15. C. Zilles, and R. Rajwar,. 2007. Implications of False
Conflict Rate Trends for Robust Software Transactional
Memory. In Proceedings of the 2007 IEEE 10th
international Symposium on Workload Characterization
- Volume 00 (September 27 - 29, 2007). IISWC. IEEE
Computer Society, Washington, DC, 15-24.

16. R. Yoo, Y. Ni, A. Welc, B. Saha, A. Adl-Tabatabai, and
H.S. Lee. 2008. Kicking the tires of software
transactional memory: why the going gets tough. In
Proceedings of the Symposium on Parallelism in
Algorithms and Architectures (Munich, Germany, June
14 - 16, 2008). SPAA '08. ACM, NY, 265-274.

17. C. Cascaval, C.Blundell, M. Michael, H. W. Cain, P.
Wu, S. Chiras, and S. Chatterjee. 2008. Software
Transactional Memory: Why Is It Only a Research
Toy?. Queue 6, 5 (Sep. 2008), 46-58.

18. B. Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the ACM Symposium on the
Principles of Programming Languages, St. Petersburg
Beach, FL, Jan 1996.

19. M. Burke and R. Cytron. 1986. Interprocedural
dependence analysis and parallelization. SIGPLAN Not.
21, 7 (Jul. 1986), 162-175.

20. C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proc. IEEE International
Symposium on Workload Characterization, pages 35–
46, Sep 2008.

21. G. Chaitin. 2004. Register allocation and spilling via
graph coloring. SIGPLAN Not. 39, 4 (Apr. 2004), 66-74.

22. T. Riegel C. Fetzer, and P. Felber. 2008. Automatic data
partitioning in software transactional memories. In
Proceedings of the Twentieth Annual Symposium on
Parallelism in Algorithms and Architectures (Munich,
Germany, June 14 - 16, 2008). SPAA '08. ACM, New
York, NY, 152-159.

23. T. Harris and K. Fraser. 2003. Language support for
lightweight transactions. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (Anaheim,
California, USA, October 26 - 30, 2003). OOPSLA '03.
ACM, New York, NY, 388-402.

24. R. Hundt, “HP Caliper: A framework for performance
analysis tools,” IEEE Concurrency, vol. 8, no. 4, pp.
64–71, 2000.

25. R. Hundt, S. Mannarswamy, and D. Chakrabarti,
“Practical structure layout optimization and advice,” in
Proceedings of the International Symposium on Code
Generation and Optimization, (Washington, DC, USA),
pp. 233–244, IEEE Computer Society, 2006.

26. D. Dice and N. Shavit. 2007. Understanding Tradeoffs
in Software Transactional Memory. In Proceedings of
the international Symposium on Code Generation and
Optimization (March 11 - 14, 2007). Washington, DC,
21-33.

27. S. Moon, X. D. Li, R. Hundt, D. R. Chakrabarti, L. A.
Lozano, U. Srinivasan, and S.-M. Liu, “Syzygy - a
framework for scalable cross-module ipo,” in CGO ’04:
Proceedings of the international symposium on Code
generation and optimization, (Washington, DC,
USA), p. 65, IEEE Computer Society, 2004.

