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A b s t r a c t  

Software-controlled data prefetching offers the potential for 
bridging the ever-inereasing speed gap between the memory 
subsystem and today's high-performance processors. While 
prefetching has enjoyed considerable success in array-based nu- 
meric codes, its potential in pointer-based applications has re- 
mained largely unexplored. This paper investigates compiler- 
based prefetching for pointer-based applications--in particular, 
those containing recursive data structures. We identify the 
fundamental problem in prefetching pointer-based data struc- 
tures and propose a guideline for devising successful prefetching 
schemes. Based on this guideline, we design three prefetching 
schemes, we automate the most widely applicable scheme (greedy 
prefetching) in an optimizing research compiler, and we evaluate 
the performance of all three schemes on a modern superscalar 
processor similar to the MIPS R10000. Our results demonstrate 
that compiler-inserted prefetching can significantly improve the 
execution speed of pointer-based codes--as much as 45% for the 
applications we study. In addition, the more sophisticated algo- 
rithms (which we currently perform by hand, but which might be 
implemented in future compilers) can improve performance by as 
much as twofold. Compared with the only other compiler-based 
pointer prefetching scheme in the literature, our algorithms offer 
substantially better performance by avoiding unnecessary over- 
head and hiding more latency. 

1 I n t r o d u c t i o n  

Memory latency is becoming an increasingly important perfor- 
mance bottleneck as the gap between processor and memory 
speeds continues to grow. While cache hierarchies are an im- 
portant step toward addressing the latency problem, they are 
not a complete solution. To further reduce or tolerate memory 
latency, automatic compiler techniques such as locality optimiza- 
tions [4, 21] and software-controlled prefetching [3, 16] have been 
proposed and evaluated in the past. While these techniques have 
shown considerable promise, they have been limited in scope to 
array-based numeric applications. In this paper, we explore how 
to expand the compiler's scope to include another important class 
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of applications: those containing pointer-based data structures 
(also known as "recursive" data structures). 

Recursive Data  Structures (RDSs) include familiar objects 
such as linked lists, trees, graphs, etc., where individual nodes 
are dynamically allocated from the heap, and nodes are linked 
together through pointers to form the overall structure. For 
our purposes, "reeursive data structures" can be broadly in- 
terpreted to include most pointer-linked data structures (e.g., 
mutually-recursive data structures, or even a graph of heteroge- 
neous objects). From a memory performance perspective, these 
pointer-based data structures are expected to be an important 
concern for the following reasons. For an application to suf- 
fer a large memory penalty due to data replacement misses, it 
typically must have a large data set relative to the cache size. 
Aside from multi-dimensional arrays, recursive data structures 
are one of the most common and convenient methods of building 
large data structures (e.g, B-trees in database applications, oc- 
trees in graphics applications, etc.). As we traverse a large RDS, 
we may potentially visit enough intervening nodes to displace a 
given node from the cache before it is revisited; hence temporal 
locality may be poor. Finally, in contrast with arrays, where 
consecutive elements are at contiguous addresses and therefore 
stride-one accesses can exploit long cache lines, there is little in- 
herent spatial locality between consecutively-accessed nodes in 
an RDS since they are dynamically allocated from the heap and 
can have arbitrary addresses. Therefore, techniques for coping 
with the latency of accessing these pointer-based data structures 
are essential. 

1 .1  C o p i n g  w i t h  M e m o r y  L a t e n c y  f o r  R D S s  

Ideally, the first step toward coping with memory latency would 
be to reduce latency by restructuring either the computation or 
the data to minimize cache misses. Unfortunately, the local- 
ity optimizations developed for numeric applications (e.g., tiling, 
loop interchange, etc. [4, 21]) are not applicable to RDSs. Al- 
though we do explore one optimization which potentially im- 
proves spatial locality in RDSs (data linearization, as described 
later in Section 2.2.3), a significant number of cache misses still 
remain, and therefore techniques for tolerating latency are also 
needed. 

Tolerating write latency is not a fundamental problem, since 
we can buffer and pipeline writes. The real challenge is tolerat- 
ing read latency, which requires that we decouple the request for 
data from the use of that data, while finding enough useful par- 
allelism to keep the processor busy in between. The two main 
techniques for tolerating read latency are prefetching [2, 3, 15] 
and multithreading [1, 9, 11, 13]. Prefetching tolerates latency 
by anticipating what data is needed and moving it to the cache 
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ahead of time. Prefetching can be controlled either by hardware 
or software. Hardware-based schemes typically look for patterns 
in previous accesses to predict future behavior, and software- 
based schemes rely on either the programmer or the compiler 
to insert explicit prefetch instructions. In contrast, multithread- 
ing tolerates latency by switching from one concurrent thread to 
another upon a cache miss. 

Comparing prefetching with multithreading, the advantage of 
multithreading is that unlike prefetching, it does not require the 
ability to predict data addresses ahead of time. Although this is 
not an issue in numeric codes (since affine array addresses can 
always be computed ahead of time), it does present a serious 
challenge when we want to prefetch RDS codes due to the tight 
control and data dependences (we will discuss this in detail later 
in Section 2). Prefetching, however, does offer some important 
advantages over multithreading. First, prefetching can accelerate 
a single thread of execution, unlike multithreading which requires 
multiple concurrent threads. This additional concurrency may or 
may not exist--particularly in a uniprocessor environment, it is 
unlikely that the programmer would go through the pain of par- 
allelizing their application just for the sake of multithreading. 
Second, multithreading requires a significant amount of hard- 
ware support to minimize thread switching overhead (e.g., repli- 
cated register files). In contrast, software-controlled prefetching 
requires very little hardware support-- in fact, most commercial 
microprocessors today already support prefetch instructions. 

Comparing software vs. hardware-controlled prefetching, a po- 
tential drawback of a software-based approach is the additional 
instruction overhead necessary to issue prefetches. However, with 
today's superscalar processors, it may be possible to overlap 
much of this overhead with other computation. The software- 
based approach has the major advantages of requiring less hard- 
ware support (the hardware already exists), being more flexible, 
and (most importantly) being able to exploit application-specific 
knowledge about future access patterns. (It is not clear how a 
hardware-based scheme could predict the chaotic-seeming access 
patterns that occur when an RDS is traversed.) 

Up until now, there has been no suitable solution for toler- 
ating the latency of RDS codes in commercial systems: there 
are no commodity microprocessors that support multithread- 
ing, effective hardware-based prefetching schemes have yet to be 
demonstrated, and the compiler support for exploiting software- 
controlled prefetching for RDSs has remained an open question. 
In this paper, we address this open research question by designing 
and evaluating compiler-based prefetching schemes which suc- 
cessfully tolerate the latency of accessing recursive data struc- 
tures in modern microprocessor-based systems. 

1.2 An  Overview 

This paper is organized as follows. We begin in Section 2 
by identifying the fundamental problem that makes prefetching 
RDSs difficult, and proposing a guideline for devising successful 
prefetching schemes. Based on this guideline, we design three 
different prefetching algorithms. In Section 3, we describe how 
the most widely applicable of these schemes (greedy prefetch- 
ing) has been implemented in an optimizing research compiler 
(SUIF). Section 4 describes our experimental framework, and 
Section 5 presents our experimental results where we evaluate 
all three prefetching algorithms on the Olden benchmark suite 
through detailed simulations of a MIPS R10000-1ike processor. 
Section 6 discusses related work, including a quantitative com- 
parison between our schemes and the only other compiler-based 
pointer prefetching scheme proposed in the literature. Section 7 
describes future work to improve our algorithms, and finally, we 
conclude in Section 8. 

2 Software-Controlled Prefetching for 

RDSs 

In this section we discuss the major issues and challenges in- 
volved in software-controlled prefetching for RDSs, we present 
guidelines for overcoming these challenges, and we describe three 
prefetching algorithms based on these guidelines. 

2.1 Challenges in Pre fe tch ing  RDSs 

Any software-controlled prefetching scheme can be viewed as hav- 
ing two major phases. First, an analysis phase predicts which dy- 
namic memory references are likely to suffer caches misses, and 
hence should be prefetched. Second, a scheduling phase attempts 
to insert prefetches sufficiently far in advance such that latency is 
effectively hidden, while introducing minimal runtime overhead. 
For array-based applications, the compiler can use locality anal- 
ysis to predict which dynamic references to prefetch, and loop 
splitting and software pipelining to schedule prefetches [15]. 

A fundamental difference between array references and pointer 
dereferences is the way addresses are generated. The address of 
an array reference A[i] can always be computed once a value of 
i is chosen. In contrast, the address of a pointer dereference *p 
is unknown unless the value stored in p is read. This difference 
makes both the analysis and scheduling phases significantly more 
challenging for RDSs than for arrays. 

(a) Example Code 

for ( i=l ;  i<=n; i++) { 

listNode *p = listHead[i] ; 
while(p) { 

work (p-+data) ; 

p = p-~next; 

} 
} 

(b) No Locality 

listHead[1] ~ " "  "-<~ 

listHead[2] 0-.0-*0--. • . - ~  

listHead[n] 0-<5-<)-'*---q3~ 

(c) Temporal Locality 

listHead[1] ~ 

listHead[2l: . .  ""(~ ) 

listHead[n] d -a-c°mm°n-i~'iT-" 

Figure h Example of list traversals, both with and without tem- 
poral data locality. 

2.1.I  Analysis  

To illustrate the difficulty of analyzing data locality in RDSs, 
consider the code in Figure l(a), where we are traversing n dif- 
ferent linked lists. In one extreme, the nodes may be entirely 
disjoint (as illustrated in Figure l(b)), in which ease we would 
want to prefetch every list node. Another possibility might be 
that each list shares a long common "tail" starting with the sec- 
ond list node (as illustrated in Figure 1(c)). In this latter case, 
there would be significant temporal locality (assuming the cache 
is large enough to contain the common tail), and ideally we would 
only want to prefetch the nodes in the common tail during the 
first list traversal (i.e. when ±=1). Unfortunately, despite the 
significant progress that has been made recently in pointer anal- 
ysis techniques for heap-allocated objects [6, 8, 10], compilers are 
still not sophisticated enough to differentiate these two cases au- 
tomatically. In general, analyzing the addresses of heap-allocated 
objects is a very difficult problem for the compiler. 
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(a) Traversing an RDS 

Currently visiting Would like to prefetch 

, i 

0 o o ~  ooo 

(b) Prefetching 3 Nodes Ahead 

while (p) { 
prefeteh(p-+next --+next -+next ); 
work(p--~data); 
p = p--+next; 

} 

(c) Prefetching 1 Node Ahead 

while (p) { 
prefetch(p-~next); 
work(p~data); 
p = p~next;  

} 

Figure 2: Illustration of the pointer-chasing problem. 

2.1.2 Scheduling 

Our ability to schedule prefetches for an RDS is also constrained 
by the fact that nodes are linked together through pointers. For 
example, consider the case shown in Figure 2(a), where assuming 
that three nodes worth of computation is needed to hide the 
latency, we would like to initiate a prefetch for node ni+a while 
we are visiting node ni. The problem is that to compute the 
address of node ni+a, we must first dereference a pointer in node 
ni+2, and to do that,  we must first dereference a pointer in node 
ni+h etc. As a result, one cannot prefetch (or fetch) a future 
node until  all nodes between it and the current node have been 
fetched. However, the very act of touching these intermediate 
nodes means that we cannot tolerate the latency of fetching more 
than one node ahead. For example, the prefetching code shown 
in Figure 2(b) will not  hide any more latency than the code in 
Figure 2(c).1 In fact, the code in Figure 2(c) is likely to run faster 
since it has less instruction overhead. This example illustrates 
what we refer to as the pointer-chasing problem. 

Since scheduling RDS prefetches is such a difficult problem, we 
make it the primary focus of this paper. Improvements in anal- 
ysis tend to reduce prefetching overhead by eliminating unnec- 
essary prefetches. However, without sufficient scheduling tech- 
niques, there will be no upside to prefetching and hence reducing 
overhead will be irrelevant. Fortunately, as we discuss in the 
next subsection, there are techniques for scheduling prefetches 
that avoid the pointer-chasing problem. 

2.2 Overcoming the Pointer-Chasing Prob- 
lem 

Let us formalize the pointer-chasing problem as follows. At a 
given RDS node ni with address Ai, we wish to prefetch the 
node ni+d that will be visited d nodes after hi. We choose d (the 
prefetching distance) to be just  large enough to hide the cache 
miss latency: d = [L] ,  where L is the expected miss latency 
and W is the estimated amount of computation between node 
accesses in cycles. To prefetch hi+d, we must compute its address 
Ai+d based on the information available at ni. The relationship 
between Ai and Ai+4 can be expressed as: 

Ai+d =" J:(d, Ai) 

where J:  is an address generating function. 

A key factor in whether prefetch scheduling is effective is the 
number of pointer-chain dereferences required within the RDS 
to evaluate ~-(d, Ai), which we denote as I1~'1]. To overcome the 

1Assuming that nodes are not larger than cache lines; if they are, then 
prefetching further ahead can potentially result in a pipelining benefit. 

pointer-chasing problem, we would like I1~'11 to be as small as 
possible. If ~" is implemented by following the pointer chain 
from ni to n,+u, then [l~II = d. Instead, we will consider the 
cases where I1~'11 = 1 and I1~'11 = 0 (other values of ll~'[I are 
possible, but  do not appear to be interesting). 

The case where I1~-II = 1 means that only one pointer deref- 
erence is needed within the R.DS to compute Ai+d at node ni. 
This implies that ni needs a direct pointer to ni+d--we call this 
pointer a jump-pointer. Jump-pointers can occur either naturally 
or artificially with respect to the RDS: a natural  jump-pointer is 
a pointer that already exists in ni, whereas an artificial jump- 
pointer is added ~o ni for the purpose of prefetching. With 
natural jump-pointers, we are using one of the pointers at ni 
to approximate Ai+d. The advantage is that  no extra storage 
or computation is needed to create a natural  jump-pointer,  but  
unfortunately the effectiveness of prefetching may be limited by 
the accuracy of this approximation. In contrast, we require ad- 
ditional storage and computation to add artificial jump-pointers 
to an RDS, but  hopefully these pointers will yield Ai+d more pre- 
cisely (particularly if the structure of the RDS does not change 
rapidly between times when the artificial jump-pointers are set). 

The case where I1~11 = 0 means that no pointer dereferences 
are required to compute Ai+u at ni. This is obviously a good 
case, but  how can one compute the address of a heap-allocated 
object (which normally can reside at an arbitrary address) with- 
out dereferencing any pointers? The answer is that we must have 
special knowledge of an RDS's layout in memory such that Ai+d 
can be directly implied from Ai and d. 2 There are many ways to 
accomplish this. For example, one could map a tree into an array 
structure such that there was a one-to-one mapping between the 
tree position and an array index. We will discuss the details of 
the approach we take later in Section 2.2.3. 

In the remainder of this section, we propose three prefetch- 
ing schemes with various I1~-II which avoid the pointer-chasing 
problem: greedy prefetehing corresponds to I[.~11 = 1 using nat- 
ural jump-pointers; history-pointer prefetching corresponds to 
I[~11 = 1 using artificial jump-pointers; and data-linearization 
prefetching is a caSe where II.TII = 0. 

2.2.1 G r e e d y  Prefetching 

In a k-ary RDS, each node contains k pointers to other nodes. 
Greedy prefetching exploits the fact that  when k > 1, only one 
of these k pointers can be immediately followed by control flow 
as the next node in the traversal. Hence the remaining k - 1 
pointers serve as natural  jump-pointers, and can be prefetched 
immediately upon first visiting a node. Although none of these 
jump-pointers may actually point to hi+d, hopefully each of them 
points to ni+d, for some d ~ > 0. If d ~ < d, then the latency may 
be partially hidden; if £ >_ d, then we expect the latency to be 
fully hidden, provided that the node is not displaced from the 
cache before it is referenced (which may occur if d ~ >> d). 

To illustrate how greedy prefetching works, consider the pre- 
order traversal of a binary tree (i.e. k = 2), where Figure 3(a) 
shows the code with greedy prefetching added. Assuming that 
the computation in p roces s ( )  takes half as long as the cache 
miss latency, we would want to prefetch two nodes ahead (i.e. 
d = 2) to fully hide the latency. Figure 3(b) shows the caching 
behavior of each node. We obviously suffer a full cache miss at 
the root node (node 1), since there was no opportunity to fetch 
it ahead of time. However, we would only suffer half of the miss 
penalty (L) when we visit node 2, and no miss penalty when 
we eventually visit node 3 (since the time to visit the subtree 

2We may also need to take other information into account, such as the 
traversal order, but nothing can involve dereferencing a pointer within ni. 
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(a) Code with Greedy Prefetching 

preorder(trseNode * t) { 
i f  ( t  != I~LL) { 

p r e f e t c h  ( t - + l e f t )  ; 
prefetch ( t-+right)  ; 
p r o c e s s  ( t - + d a t a )  ; 
preorder  ( t - + l e f t )  ; 
preorder ( t-+right)  ; 

} 
} 

(b) Cache Miss Behavior 

C) cache miss 0 cache hit 

0 partial latency cache miss 

Figure 3: Illustration of greedy prefetching. 

rooted at node 2 is greater than L). In this example, the latency 
is fully hidden for roughly half of the nodes, and reduced by 
50% for the other half (minus the root node). If we generalize 
this example to a k-ary tree, we would expect the fraction of 
nodes where latency is fully hidden to be roughly ~ (assuming 
that prefetched nodes are generally not displaced from the cache 
before they are referenced). Hence a larger value of k is likely 
to improve the performance of greedy prefetching, since more 
natural jump-pointers are available. 

Greedy prefetching offers the following advantages: (i) it has 
low runtime overhead, since no additional storage or computa- 
tion is needed to construct the natural jump-pointers; (ii) it is 
applicable to a wide variety of RDSs, regardless of how they are 
accessed or whether their structure is modified frequently; and 
(iii) it is relatively straightforward to implement in a compiler (in 
fact, we have implemented it in the SUIF compiler, as we describe 
later in Section 3). The main disadvantage of greedy prefetch- 
ing is that it does not offer precise control over the prefetching 
distance, which is the motivation for our next algorithm. 

2 . 2 . 2  H i s t o r y - P o i n t e r  P r e f e t c h i n g  

Rather than relying on natural jump-pointers to approximate 
Ai+d, we can potentially synthesize more accurate jump-pointers 
based on the actual RDS traversal patterns, while still achieving 
II~-II = 1. The idea behind the history-pointer prefetchiug scheme 
is that we create a new jump-pointer (called a history-pointer) 
in ni which contains the observed value of Ai+d during a recent 
traversal of the RDS. (Note that we could potentially store multi- 
ple artificial jump-pointers in ni to account for multiple traversal 
orderings.) On subsequent traversals of the RDS, we prefetch the 
nodes pointed to by these history-pointers. This scheme is most 
effective when the traversal pattern does not change rapidly over 
time, in which case the history-pointer in ni is likely to point 
to either ni+a or else hopefully a node that will be visited soon. 
On the other hand, if the structure of the RDS changes radically 
between traversals, the history-pointers might not be effective. 

To construct the history-pointers, we maintain a FIFO queue 
of length d which contains pointers to the last d nodes that have 
just been visited. When we visit a new node hi, the oldest node in 
the queue will be ni-d (i.e. the node visited d nodes earlier), and 
hence we update the history-pointer of ni-d to point to hi. After 
the first complete traversal of the RDS, all of the history-pointers 
will be set. Figure 4 illustrates a snapshot of this bookkeeping 
process for the tree shown earlier in Figure 3. Assuming that 
d = 3 and that we have just reached node 6, we would now update 
the history-pointer of the oldest node in the 3-entry queue (node 
10) to point to node 6. 

Comparing the performance of this scheme with greedy 
prefetching, history-pointer prefetching offers no improvement 
on the first traversal of an RDS, since the history-pointers have 
yet to be set (greedy prefetching would hide some fraction of 

youn o  
FIFO (d --3)~-~ j~] set 

oldest ~ ' ~ '  ~ " "  

• - ........... p- History Pointer 

Figure 4: Example showing the update of history-pointers 

the latency). 3 However, on subsequent traversals of the RDS 
history-pointer prefetching will hide nearly all of the latency, 
whereas greedy prefetching will continue to hide only a fraction 
of the latency. 

While history-pointer prefetching offers the potential advan- 
tage of improved latency tolerance, this comes at the expense 
of two additional forms of overhead: (i) execution ovc:head to 
construct the history-pointers, and (ii) space overhead for stor- 
ing these new pointers. To minimize execution overhead, we 
can potentially update the history-pointers less frequently, de- 
pending on how rapidly the structure of the RDS changes. In 
one extreme, if the RDS never changes, we only need to set the 
history-pointers once. The problem with space overhead is that 
it potentially worsens the caching behavior. The desire to elimi- 
nate this space overhead altogether is the motivation for our next 
prefetching scheme. 

2 . 2 . 3  D a t a - L i n e a r i z a t i o n  P r e f e t c h i n g  

The goal of data-linearization prefetching is to achieve an 5 c such 
that Ai+d can be predicted precisely, but without requiring any 
pointer dereferences (i.e. I1.%]1 = 0). Another advantage of this 
scheme is that it improves spatial locality. The basic idea is to 
map heap-allocated nodes that are likely to be accessed close 
together in time into contiguous memory locations. With this 
mapping, one can easily predict Ai+d and hence prefetch it early 
enough. 

Recall that the address of an array element x[i + d] can be 
computed relative to x[i] as follows (using C-like syntax): 

&x[i + d] = &x[i] + d x sizeof(x[O]) (1) 

Therefore, if we can map the RDS onto an array x of nodes such 
that Ai = 8zx[i], no pointer dereference is needed to compute 
Ai+d--we simply need two arithmetic operations per prefetch ad- 
dress. 

The question is how and when can this mapping (which we 
call data linearization) be performed? In theory, one could dy- 
namically remap the data even after the RDS has been initially 
constructed, but doing so may result in large runtime overheads 
and may also violate program semantics. 4 Instead, the best time 
to map the nodes is at creation time, which is appropriate if ei- 
ther the creation order already matches the traversal order, or 
if it can be safely reordered to do so. Since dynamic remapping 
is expensive (or impossible), this scheme obviously works best 
if the structure of the RDS changes only slowly (or not at all). 

aHence we may want to use greedy prefetching for the first traversal of 
an RDS when the history-pointers are being initialized. 

4All pointers to these objects would also need to be updated, and under- 
standing pointer alia.sing for heap-allocated objects is quite difficult for the 
compiler. 
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. . . . . .  I P - P r e ~ h  

Figure 5: Illustration of data-linearization prefetching 

If the RDS does change radically, the program will still behave 
correctly, but prefetching will not improve performance. 

Figure 5 illustrates how data-linearization prefetching works 
for the tree shown earlier in Figures 3 and 4. The ordering 
of nodes in the array corresponds to the pre-order traversal or- 
der. To prefetch d nodes ahead, one simply uses equation (1) 
to compute Ai+d. In addition, if a single cache line can hold 
m > 1 nodes, we can exploit this spatial locality by only issuing 
a prefetch once every m nodes. If we are traversing the RDS 
inside a loop, we can accomplish this by unrolling the loop by 
a factor of m (similar to what is done in array-based prefetch- 
ing [15]). For a traversal through recursion, one could potentially 
keep track of the number of nodes visited between prefetches, but 
the overhead of doing so may be comparable to simply issuing 
a prefetch for every node. The arrows in Figure 5 indicate the 
desired prefetches when d = 3 and m = 3. 

2 .3  S u m m a r y  

The nature of recursive data structures makes both the analysis 
and scheduling of prefetches quite challenging. Before attempt- 
ing to minimize prefetching overhead through improved analysis, 
we must first maximize the latency-hiding gain through effec- 
tive prefetch scheduling techniques. The fundamental problem 
in scheduling prefetches for RDSs is the pointer-chasing problem, 
which we formalize as the number of pointer-chain dereferences 
required to compute a prefetch address (11571). Based on our de- 
sire to minimize II.TII, we have identified three promising prefetch- 
ing schemes: greedy prefetching (11~-II = 1 with natural jump- 
pointers), history-pointer pre]etehing (11571 = 1 with artificial 
jump-pointers), and data-linearization prefetching (11~11 = 0). 

Of these three schemes, greedy prefetching is perhaps the most 
widely applicable since it does not rely on traversal history infor- 
mation, and it requires no additional storage or computation to 
construct prefetch addresses. For these reasons, we have imple- 
mented a version of greedy prefetching as an automatic compiler 
pass, and we will simulate the other two algorithms by hand to 
compare their performance with greedy prefetching. In the next 
section, we describe the implementation details of our greedy 
prefetching compiler pass. 

3 I m p l e m e n t a t i o n  
Prefe tch ing  

of  Greedy  

Our implementation of greedy prefetching within the SUIF com- 
piler [20] consists of an analysis phase to recognize RDS accesses, 
and a scheduling phase to insert prefetches. 

3 .1  A n a l y s i s :  R e c o g n i z i n g  R D S  A c c e s s e s  

To recognize RDS accesses, the compiler uses both type declara- 
tion information to recognize which data objects are RDSs, and 
control structure information to recognize when these objects are 
being traversed. An RDS type is a record type r containing 
at least one pointer that points either directly or indirectly to 
a record type s. (Note that r and s are not restricted to be 

struct T { struct h { struct C { 

int data; int i; int j; 

struct T *left; struct B **kids[8]; double f; 

struct  T *right; } } 
} 

(a) RDS type (b) RDS type (c) Not RDS type 

Figure 6: Examples of whether type declarations are recognized 
as being RDS typeS. 

the same type, since RDSs may be comprised of heterogeneous 
nodes.) For example, the type declarations in Figure 6(a) and 
Figure 6(b) would be recognized as RDS types, whereas Fig- 
ure 6(c) would not, 5 

After discovering data structures with the appropriate types, 
the compiler then looks for control structures that are used to 
traverse the RDSs. In particular, the compiler looks for loops or 
recursive procedure calls such that during each new loop iteration 
or procedure invocation, a pointer p to an RDS is assigned a value 
resulting from a dereference of p--we refer to this as a recurrent 
pointer update. This heuristic corresponds to how RDS codes 
are typically written. To detect recurrent pointer updates, the 
compiler propagates pointer values using a simplified (but less 
precise) version of earlier pointer analysis algorithms [7, 12]. 

(a) while (1) { (b) for ( . . . )  { 
listNode *m; listNode *n; 

m = 1-+next; n = g(n); 

1 = m--~next ; ... 

• '' } 

} 

(C) f(treeNode *t) { (d) k(treeNode in) { 

ii£ le t); i? ;(tn 
f( t-~right)  ; k(* ( tn . r igh t ) )  ; 

} } 

Figure 7: Examples of recognizable control structures for RDS 
traversals. 

Figure 7 shows Some example program fragments that our com- 
piler treats as RDS accesses. In Figure 7(a), 1 is updated to 
1--+next--mext inside the while-loop. In Figure 7(b), n is as- 
signed the result of the function call g (n) inside the for-loop. 
(Since our implementation does not perform interprocedural 
analysis, it assumes that g(n) results in a value n - + . . .  --~next.) 
In Figure 7(c), two dereferences of the function argument t are 
passed as the parameters to two recursive calls. Figure 7(d) 
is similar to Figure 7(c), except that a record (rather than a 
pointer) is passed as the function argument. 

Ideally, the next step would be to analyze data locality across 
RDS nodes--e.g, to distinguish the two cases shown in Fig- 
ure 1--to eliminate any unnecessary prefetches. Although we 
have not automated this step in our compiler, we will evaluate 
its potential benefit later in Section 5.3. 

3 .2  S c h e d u l i n g  P r e f e t c h e s  

Once RDS accesses have been recognized, the compiler inserts 
greedy prefetcheS as follows. At the point where an RDS object 

i 

5The compiler may fail to recognize cases with explicit type casting-e.g., 
casting j to be of type (struct C*) in Figure 6(c)--but such cases do not 
appear to be common. 
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Benchmark 

BH 

Bisort 

EM3D 

Health 

MST 
Perimeter 

Power 

TreeAdd 
TSP 

Voronoi 

Table 1: Benchmark characteristics. 

|/~twJWI;ll'~ 

Barnes-Hut's N-body force-calculation 
algorithm 
Sorts two disjoint bitonic sequences and' 
then merges them 

Simulates the propagation of electromaguetic 
waves in a 3D object 
Simulation of the Columbian health care 
system 
Finds the minimum spanning tree of a graph 
Computes perimeters of regions in images 

Solves the power system optimization 
problem 

Sums ihe values distributed on a tree 
Traveling salesman problem 
Computes the voronoi diagram of a set of 
points 

Recursive Data Structures Used 

Heterogenous octree 

Binary tree 

Singly-linked lists 

Four-way tree and doubly-linked 
lists 
Array of singly-linked lists 
A quadtree 

Multi-way tree and singiy-linked 
lists 

Binary tree 
Binary tree and doubly-linked lists 
Binary tree 

Input Data Set 
4K bodies 

250,000 integers 

2000 H-nodes, 100 
E-nodes, 75% local 

max. level = 5, 
max. time = 500 

Node Memory Allocated 

4K x 4K image 

4128 x 136 B = 548 KB 
+ 2 0 2 1 x 8 8 B = 1 7 3 K B  

131,017 x 12 B = 1535 KB 

512 nodes 
235','717 x 28 B = 6445 KB 

10,000 customers 

1024K nodes 
100,000 cities 
20,000 poin[s 

4000 x 28 B -- 109 KB 

+ 400,000 x 4 B -- 1562 KB 

341 x I00 B -- 33 KB 

+ 57,111x 16 B -- 892 KB 

5 1 2 x 2 0 B = I O K B  

2 0 0 x 5 6 B = l l K B  
+ 1 0 0 0 x 9 6 B - 9 4 K B  

+ 10,000x 32 B = 313 KB 
1,048,576 x 12 B = 12,288 KB 

131,071 x 40 B - 5120 KB 
633,032 x 16 B = 9891 KB 
+ 32,768 x 32 B = 1024 KB 

w h i l e  (i) { 
work(1---~data) ; 
I ffi l-+next; 

} 

(a) Loop 

f(treeNode *t) { 

treeNode *q; 
if (test (t-+data)) 

q ffi t--~left; 

else q ffi t-+right; 

if (q ~= NULL) 

f(q) ; 

} 

w h i l e  (1) { 
p r e f e t c h  (1-+next )  ; 
work(l--~data) ; 

1 = l--~next ; 

} 

f ( t r eeNode  * t )  { 
treeNode *q; 
p r e f e t c h  ( t  ---+left) ; 
p r e f e t e h ( t - ÷ r i g h t )  ; 
i f  ( t e s t  ( t - + d a t a ) )  

q ffi t - + l e f t ;  
e lse  q = t - ÷ r i g h t ;  
i f  (q ~= N U L L )  

f (q)  ; 
} 

(b) P rocedure  

Figure 8: Examples of greedy prefetch scheduling. 

is being traversed (i.e. where the recurrent pointer update oc- 
curs), the compiler inserts prefetches of all pointers within this 
object that point to RDS-type objects (these are the natural 
jump-pointers 6) at the earliest points where these addresses are 
available within the surrounding loop or procedure body. The 
availability of prefetch addresses is computed by propagating the 
earliest generation points of pointer values along with the val- 
ues themselves. Two examples of greedy prefetch scheduling are 
shown in Figure 8. 

4 E x p e r i m e n t a l  F r a m e w o r k  

To evaluate the performance of our three prefetching schemes, 
we performed detailed cycle-by-cycle simulations of the entire 
Olden benchmark suite [17] on a dynamically-scheduled, super- 
scalar processor similar to the MIPS R10000. The Olden bench- 
mark suite contains ten pointer-based applications written in C, 
which are briefly summarized in Table 1. The rightmost column 
in Table 1 shows the number and size of each node type that was 

SNore that we do not prefetch all pointers within an RDS object--only 
the ones that point to other RDS nodes (potentially of different types than 
the given object). 

Table 2: Simulation parameters. 

Pipeline Parameters 
Issue width 
Functional Units 
Reorder Buffer Size 
Integer Multipiy 
Integer Divide 
All Other Integer 
FP Divide 
FP Square Root 
All Other FP 
Branch Prediction Scheme 

Memor 

4 
2 Int, 2 FP, 2' Memory, 1 Branct~ 

3'2'" 
12 cycle's 
76 cycles 

1 cycle 
15 cycles 

2 cycles 
2-bit Counters 

' Parameters 

Primary Instr and Data Caches 
Unified Secondary Cache 
Line Size 
Primary-to-Secondary 'Miss 
Primary-to-Memory Mlss 
Data Cache Miss Handlers 
Data Cache Banks 
Data Cache Fill Time 
(Requires Exclusive Access ) 
Main Memory Bandwidth 

16KB, 2-way set-associative 
512KB,. 2-way set-associative 

32B 
12 cycles 
75 cycles 

4 cycles 

1 access per 20 cycles 

dynamica l ly  al located.  

Our  s imulat ion mode l  varies s l ight ly f rom the  actual  MIPS  

R10000 (e.g., we mode l  two m e m o r y  uni ts ,  and  we assume tha t  

all funct ional  uni ts  are  ful ly-pipel ined) ,  bu t  we do mode l  t he  
rich detai ls  of  the  processor  inc luding the  pipel ine,  register  re- 

naming ,  the  reorder  buffer, b ranch  predic t ion ,  ins t ruc t ion  fetch- 

ing, b ranch ing  penal t ies ,  the  m e m o r y  hierarchy ( including con- 
tent ion) ,  etc. T h e  pa rame te r s  of  our  mode l  are shown in Table 2. 

We use pixie [18] to i n s t rumen t  the  op t imized  MIPS  objec t  files 

p roduced  by the  compiler ,  and p ipe  the  resu l t ing  t race into our  
s imulator .  

To min imize  the  i mpac t  of  s tore  stalls  dur ing  the  in i t ia l iza t ion 
of  dynamica l ly-a l loca ted  objects ,  we use our  own m e m o r y  allo- 

ca tor  for these exper iments  which is s imilar  to  m a l l o p t  provided 

in the  Irix C l ibrary [19], b u t  also conta ins  bui l t - in  prefe tching 
to avoid such s tore  misses.  This  op t imiza t ion  alone led to dra-  
mat ic  improvements  (greater  t h a n  two-fold speedups)  over us- 
ing m a l l o c  for the  ma jo r i t y  of  the  a p p l i c a t i o n s - - p a r t i c u l a r l y  the  

ones t ha t  f requent ly  al locate smal l  objects .  
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Figure 9: Performance of compiler-inserted greedy prefetching (N -- no prefetching, G -- greedy prefetching). 
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Figure 10: Additional performance metrics for evaluating greedy prefetching. 

5 E x p e r i m e n t a l  R e s u l t s  

We now present results from our simulation studies. We start by 
evaluating the performance of compiler-inserted greedy prefetch- 
ing, and then compare this with hand-inserted versions of history- 
pointer prefetching and data-linearization prefetching. Next, we 
evaluate the potential performance gains from better analysis to 
reduce unnecessary prefetches. Finally, we explore the perfor- 
mance impact of architectural support. 

5.1 Performance of Compiler-Inserted 
Greedy Prefetching 

The results of our first set of experiments are shown in Figures 9 
and 10. Figure 9 shows the overall performance improvement 
offered by greedy prefetching, where the two bars correspond to 
the cases without prefetching (N) and with greedy prefetching 
(G). These bars represent execution time normalized to the case 
without prefetching, and they are broken down into four cate- 
gories explaining what happened during all potential graduation 
slots/ The bottom section (busy) is the number of slots when 
instructions actually graduate, the top two sections are any non- 
graduating slots that are immediately caused by the oldest in- 
struction suffering either a load or store miss, s and the inst stall 
section is all other slots where instructions do not graduate. Note 
that the load stall and store stall sections are only a first-order 
approximation of the performance loss due to cache stalls, since 
these delays also exacerbate subsequent data dependence stalls. 

7The number of graduation slots is the issue width (4 in this case) mul- 
tiplied by the number of cycles. We focus on graduation rather than issue 
slots to avoid counting speculative operations that are squashed. 

SStore misses only stall the processor when the 32-entry memory issue 
buffer is full. 

As we see in Figure 9, half of the applications enjoy a speedup 
ranging from 4% to 45% (the other half are within 2% of their 
original performance). For the applications with the largest 
memory stall penalties (i.e. health,  perimeter ,  and treeadd), 
much of this stall time has been eliminated. In the cases of 
b i s o r t  and rest, prefetching overhead more than offset the re- 
duction in memory stalls (thus resulting in a slight performance 
degradation), but this was not a problem in the other eight ap- 
plications. (Later, in Section 5.3, we will explore how to further 
reduce this overhead.) 

To understand the performance results in greater depth, Fig- 
ure 10 presents two additional performance metrics. Figure 10(a) 
breaks down the original primary cache misses into three cate- 
gories: (i) those that are prefetched and subsequently hit in the 
primary cache (pf_hit), (ii) those that are prefetched but remain 
primary misses (pf_miss), and (iii) those that are not prefetched 
(nopf_miss). The sum of the pf_hit and pf_miss cases is also 
known as the coverage factor, which ideally should be 100%. For 
em3d, power, and voronoi, the coverage factor is quite low (un- 
der 20%) because most of their misses are caused by array or 
scalar references-*--hence prefetching RDSs yields little improve- 
ment. In all other cases, the coverage factor is above 60%, and in 
four cases we achieve nearly perfect coverage. If the pf_miss cat- 
egory is large, this indicates that prefetches were not scheduled 
effectively---either they were issued too late to hide the latency, 
or else they were too early and the prefetched data was displaced 
from the cache before it could be referenced. This category is 
most prominent in rest, where the compiler is unable to prefetch 
early enough during the traversal of very short linked lists within 
a hash table. Since the natural jump-pointers in greedy prefetch- 
ing offer little control over prefetching distance, it is not surpris- 
ing that scheduling is imperfect--in fact, it is encouraging that 
the pf_miss fractions are this low. Later, in Section 5.2, we will 
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Figure 11: Increase in total memory traffic due to greedy 
prefetching. Numbers below the bars indicate the memory uti- 
lization with greedy prefetching. 

explore techniques for improving prefetch scheduling. 

To help evaluate the costs of prefetching, Figure 10(b) shows 
the fraction of dynamic prefetches that are unnecessary because 
the data is found in the primary cache. For each application, 
we show four different bars indicating the total (dynamic) un- 
necessary prefetches caused by static prefetch instructions with 
hit rates up to a given threshold. Hence the bar labeled "100" 
corresponds to all unnecessary prefetches, whereas the bar la- 
beled "99" shows the total unnecessary prefetches if we exclude 
prefetch instructions with hit rates over 99%, etc. This break- 
down indicates the potential for reducing overhead by eliminating 
static prefetch instructions that are clearly of little value. For ex- 
ample, eliminating prefetches with hit rates over 99% would elim- 
inate over half of the unnecessary prefetches in per±meter, thus 
decreasing overhead significantly. In contrast, reducing overhead 
with a flat distribution (e.g., bh) is more difficult since prefetches 
that sometimes hit also miss at least 10% of the time (therefore, 
eliminating them may sacrifice some latency-hiding benefit). We 
will quantify the benefit of eliminating unnecessary prefetches 
later in Section 5.3. 

To further evaluate the costs of greedy prefetching, Figure 11 
shows its impact on memory bandwidth. Ideally, prefetching 
will not increase memory traffic, since the original memory refer- 
ences will simply be converted into prefetches. (In fact, previous 
studies have demonstrated that prefetching can actually reduce 

the memory traffic in a shared-memory multiprocessor through 
exclusive-mode hints [15].) However, since the natural jump- 
pointers used by greedy prefetching may point to nodes that will 
not be accessed in the near future (or perhaps not at all), greedy 
prefetching can potentially increase the memory bandwidth de- 
mands through useless prefetches. As we see in Figure 11, greedy 
prefetching has increased memory traffic by less than 12% for all 
but one application (in one case--perimeter--the traffic actu- 
ally decreased slightly due to fortuitous cache replacement behav- 
ior in the set-associative caches). In the case of b±sort ,  where 
we do see a noticeable increase of 56%, the total memory utiliza- 
tion still remains so low with greedy prefetching (2%) that there 
is no impact on performance. Hence greedy prefetching does not 
appear to be suffering from memory bandwidth problems. 

Although space constraints prevent a detailed discussion of 
each application, we briefly summarize some of the highlights 
(code fragments are shown in Figure 12). 

bh:  Nodes of an octree are traversed in bh_walk(), and 70% 
of load stalls occur in bh_tes t ( )  and bh_work() (see Fig- 
ure 12(a)). The compiler immediately prefetches all eight 
children of the current node t before bh_tes t ( )  is called. 
Although 59% of prefetches are unnecessary, the overhead 
remains low and there is a 4% speedup. 

(a) bh  

bh_walk( . . , ,  n o d e * t ,  . . . )  { 
p r e f e t c h ( t  -+ch i ld ren[0] ) ;  
p r e f e t c h ( t  --~children[1D; 
p r e  f e t c h  ( t  -~ch i ld r en  [2] ; 
p r e f e t t h ( t  -~ch i ld r en  3]); 
prefetch(t--~cl  d r e n  4]); 
p r e f e t c h  ( t  -~ch i ld r en  [5]); 
p r e  l e t  c h  ( t  --~ chi ld  ren [6l) ; 
p r e  l e t  c h  ( t -~ch i ld ren[7] ) ;  
i f  ( b h _ t e s t ( p ) )  { 

for (k=O;  k < 8 ;  k + + ) {  
r = t - -~chi ldren[k];  
if ( r )  

bh_walk(..,, r ,  . . . ) ;  
) 

) else 
bh-work(..., t, ...); 

) 

(c) hea l th  

void w a i t i n g ( V i l l a g e  *vi l lase ,  L i s t  *l ist)  
whi le  ( l ls t  ! =  N U L L )  { 

p r e  l e t  c h  ( l ist  - e  for ward ); 
i = v i l l a&e-4hosp . f ree_personne l ;  
p = l l s t - ~ p a t i e n t ;  
i t  ( i  :> O) { 

t ~ v i l la4be-ohosp. f ree-personnel ;  
v i l l age -#hosp . f r ee .pe rno t lne l  = t - l ;  
p - ~ t i m e A e f t  = 3; 
p ~ t l m e  = t + 3; 
I ~ & ( v i l l a s e - O h o s p . w a i t i n g ) ;  
r e m o v e L i s t  (1, p) ;  
I = &(v i l l a se -+hosp . anses s ) ;  
8 d d L i s t ( I ,  p) ;  

else { 
t = p - - t t ime ;  
p ~ t i m e  ~ t + 1; 

) 
l lst  = llst--t  fo rward ;  

) 
} 

(b) b i sor t  

{st B{ m e r g e ( t o  o t  ,spr_val ,d l r  ) 
rv  = r o o t - ~ l u e ;  
pl ~ root--~left ;  p r  = r o o t - ~ r i g h t ;  

wldle  (pl [ =  N I L ) )  { 
pre fe tch  p --+left); 
p r e f e t c h ( p l - ~  r i g h t  ) ) ;  
p r e f l t c h ( p r - - H e f t  );  
prefetch(pr--~right ); 
Iv = p l - ~ v a l u e ;  
p]l ~ p l - t l e f t ;  p i t  ~ p l - - t r i gh t ;  
rv  = pr- -~vMue;  
p r l  ~ pr--~left ;  p r r  = pr--~r ight ;  

S wap  V&I R i g h t  (pl ,  p r ,p l  r ,p r r  ,I v , r  v);  
pl = pll ;  p r  ~ prl~ 

} else { 
pl ~ p i t ;  p r  ~ pr r ;  

} 
else 

i f  (.,.) { 
SwapVal Left (pl,pr,pll,prl,lv,rv); 
pl ~ plr; pr = prr; 

} ei6e { 
pl = pll; pr = prl; 

} 
} 

if ((root--~left ~= NIL)) { 
prefetch(root-#left); 
prefetch(root-~right ); 

rl = root-~left; rr ~ root-~right; 

r o o t - ~  v ~ l u e = B i m e r g e ( r l , v a l u e , d i r ) ;  
spr_val  ~ B h n e r g e  ( r r , spr  -va] ~dlr ) ; 

} 

) 

(d) res t  

void * H u h L o o k u p ( i n t  key,  H a s h  h a s h )  { 
j = ( h ~ h - ~ m a p f u n c ) ( k e y ) ;  
for ( e n t  = huh- -~a r r l t y [ j ] ;  

e n t  ~:~c e n t - - ~ k e y [ = k e y ;  
e n t = e n t - - #  n e x t  ) 

p r e f e r  c h  ( e n t  --+ n ex t ) ; 
i f  ( en t )  r e t u r n  e n t - e e n t r y ;  
r e t u r n  N U L L ;  

} 

Figure 12: Abstract representation of the output of the greedy 
prefetching compiler for some interesting code fragments in the 
Olden benchmarks. 

b isor t :  The main RDS is a binary tree, and the important cache 
misses occur in Bimerge O, which contains both loops and 
recurs(on (see Figure 12(b)). The four "grandchildren" of 
roo t  are prefetched early in the while loop. Although load 
misses are completely hidden, execution time increases by 
1.2% due to unnecessary prefetching overhead. Locality 
analysis might help this case by recognizing that a portion of 
data accessed in the recursive calls has already been brought 
into the cache by the while loop. 

hea l th :  Over 90% of load stalls are due to linked-list accesses 
inside waiting() (see Figure 12(c)). Despite a noticeable 
increase in overhead, the 50% reduction in load stalls results 
in a large speedup. 

rest :  90% of load stalls occur in HashLookup O, where it searches 
for an item in an array of linked lists (see Figure 12(d)). 
Although the compiler prefetches ent--+next, only a small 
portion of the latency can be hidden since the loop body is 
so small. This appears to be a general problem with hash 
tables, and prefetching prior to the hash function invocation 
is beyond the scope of our algorithm. 

pe r ime t e r :  A quadtree is traversed through recursive procedure 
calls. All load misses are covered, but the 94% unnecessary 
prefetches result in significant overheads. There are two rea- 
sons for the unnecessary prefetches: (i) the same parts of 
the quadtree can be visited through different recursive pro- 
cedures, thus resulting in unanticipated data locality; and 
(ii) each node contains a pointer to its parent, which the 
compiler prefetches along with the four child pointers, but 
the parent is already in the cache. 
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Figure 13: Performance of h e a l t h  with history-pointer prefetch- 
ing (N = no prefetching, G = greedy prefetching, H = history- 
pointer prefetching). 

t sp :  Each RDS node contains four pointers: two for binary tree- 
like accesses, and two for doubly-linked list-like accesses. 
The abundant unnecessary prefetches occur for the same rea- 
sons as per imete r .  Prefetching reduces the inst stall time 
(see Figure 9) in this case by accelerating data dependency 
chains. 

In summary, we have seen that automatic compiler-inserted 
prefetching can result in significant speedups for applications 
containing recursive data structures. In the next two sections, we 
will evaluate techniques for increasing these gains even further. 

5 .2  H i s t o r y - P o i n t e r  P r e f e t c h i n g  a n d  D a t a -  

L i n e a r i z a t i o n  P r e f e t c h i n g  

To quantify the performance potential of the more sophisti- 
cated prefetching schemes proposed earlier in Section 2.2, we 
applied them by hand to our applications. Figure 13 shows 
the performance of the one application that improves under 
history-pointer prefetching: hea l th .  History-pointer prefetch- 
ing works in this case because the structure of the lists accessed 
in waiting() (see Figure 12(c)) remains unchanged throughout 
the over ten thousand times it is called. Two history-pointers are 
added to the L i s t  record: one for prefetching l i s t  and one for 
prefetching l i s t - - + p a t i e n t ,  with prefetching distances of four 
and two, respectively. As we see in Figure 13, history-pointer 
prefetching results in a 40% speedup over greedy prefetching 
through better miss coverage and fewer unnecessary prefetches. 
Coverage is improved because list--~patient is successfully 
prefetched--under greedy prefetching, the compiler does not rec- 
ognize l i s t - + p a t i e n t  as an RDS access, 9 and even if it did, 
there would not be sufficient time to hide the latency. Although 
history-pointer prefetching has a smaller fraction of unnecessary 
prefetches, it has more overhead than greedy prefetching due to 
the extra work required to maintain the history-pointers. 

9The reason why greedy prefetching does not recognize l i s t - - + p a t i e n t  as 
an RDS access is that there is no recurrent pointer update for the patient 
object type. As we discussed earlier in Section 3, the compiler does not 
prefeteh pointers unless they point to RDSs. 
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Figure 14: Performance of perimeter and treeadd with data- 
linearization prefetching (N = no prefetching, G = greedy 
prefetching, D = data-linearization prefetching). 

Data-linearizati0n prefetching is applicable to both pe r ime te r  
and t reeadd,  because the creation order is identical to the ma- 
jor subsequent traversal order in both cases. As a result, data  
linearization does not require changing the data layout in these 
cases (hence spatial locality is unaffected). As we see in Fig- 
ure 14, data-linearization prefetching offers additional speedups 
ranging from 9%/0 to 18% through fewer unnecessary prefetches 
(and hence less prefetching overhead), while still maintaining 
good coverage factors. Unnecessary prefetches are reduced be- 
cause only one prefetch is issued per node (whereas greedy 
prefetching may follow multiple natural jump-pointers), and cov- 
erage suffers slightly because there are multiple traversai or- 
ders, and data linearization only captures the most common one. 
Overall, we see that both history-pointer prefetching and data- 
linearization can potentially offer significant improvements over 
greedy prefetching when applicable. 

5 .3  R e d u c i n g  O v e r h e a d  T h r o u g h  L o c a l i t y  

A n a l y s i s  

Our compiler currently does not attempt to analyze data locality 
across RDS node accesses. As a result, we may prefetch nodes 
unnecessarily that already reside in the cache (as discussed ear- 
lier in Section 5.1). For numeric applications, sophisticated lo- 
cality analysis techniques have been combined with loop split- 
ting techniques tO isolate the dynamic iterations that should be 
prefetched [16]. Unfortunately, the control structures in RDS 
codes are less amenable to isolating dynamic node visitations, 
so our only option may be to eliminate static prefetch instruc- 
tions altogether. This makes sense for prefetches that are almost 
always unnecessary (i.e. have very high hit rates). 

To estimate the performance potential of exploiting locality in- 
formation, we used memory feedback information from our sim- 
ulator to eliminate prefetch instructions with hit rates above a 
certain threshold from the greedy prefetching code. Figure 15 
shows our results for the four applications that were affected 
by setting this threshold to 99%, 95%, and 90% hit rates. As 
we see in Figure 15, eliminating prefetches with hit rates above 
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95% improves performance by 1-7% for these applications by 
eliminating unnecessary prefetches without sacrificing much cov- 
erage. However, eliminating prefetches with hit rates over 90% 
does hurt performance in per imeter ,  since the coverage factor 
drops dramatically. Therefore, improved locality analysis may 
help performance by eliminating prefetches that are almost al- 
ways unnecessary (e.g., the "parent" pointer in per imeter) ,  but 
without more powerful techniques for isolating dynamic node vis- 
itations, the gains do not appear to be as large as with numeric 
codes. 

5 . 4  A r c h i t e c t u r a l  S u p p o r t  f o r  P r e f e t c h i n g  

R D S s  

We now explore the impact of two key architectural issues on the 
performance of our greedy prefetching algorithm. 

5.4.1 N u m b e r  of  M e m o r y  Func t iona l  Uni t s  

Prefetching RDSs increases the demand for memory functional 
units in two ways. In addition to the prefetches themselves, we 
may also need additional loads (e.g., for jump-pointers) to com- 
pute the prefetch addresses. Figure 16(b) shows that an average 
of 0.4-1.4 loads were required per prefetch. Although the actual 

Figure 17: Greedy prefetching with excepting vs. non-excepting 
prefetches (N = non-excepting, E = excepting). Execution time 
is normalized to the N case. 

MIPS R10000 contains only a single address calculation unit, we 
ran the experiments presented thus far using two units, since 
we found this to be important. Figure 16(a) shows the perfor- 
mance when the number of memory units is varied for the five 
applications that showed significant improvements under greedy 
prefetching (the "2" bars correspond to the "G" bars in earlier 
figures). As we see in Figure 16(a), having two memory units is 
important, since it improves performance by up to 35% over a 
single unit. The marginal gain of having four units is consider- 
ably smaller. 

5.4.2 S u p p o r t  for N o n - E x c e p t i n g  M e m o r y  Ope ra t i ons  

In array-based codes, invalid prefetch addresses typically only 
occur if one prefetches off the end of an array. In contrast, invalid 
prefetch addresses may occur frequently in RDS codes due to 
invalid or NULL pointers. To quantify the benefit of having non- 
excepting prefetches, we forced the greedy prefetching compiler 
to enclose any prefetches that may have invalid addresses with a 
NULL test. As we see in Figure 17, our dynamically-scheduled 
processor was not able to hide all of this overhead, hence resulting 
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Figure 18: Performance comparison between SPAID and greedy prefetching (N = no prefetching, G - greedy prefetching, S = SPAID). 

in up to a 7% increase in execution time. In addition to non- 
excepting prefetches, non-excepting load instructions also appear 
to be quite useful for prefetching pointer-based codes, although 
we currently are not exploiting them aggressively in our compiler. 

6 Re la t ed  W o r k  

Although prefetching has been studied extensively for array- 
based numeric codes [2, 16], relatively little work has been done 
on non-numeric applications. Chen et al. [5] used global in- 
struction scheduling techniques to move address generation back 
as early as possible to hide a small cache miss latency (10 cy- 
cles), and found mixed results. In contrast, our algorithms fo- 
cus only on RDS accesses, and can issue prefetches much earlier 
(across procedure and loop iteration boundaries) by overcoming 
the pointer-chasing problem. Zhang and Torrellas [22] proposed a 
hardware-assisted scheme for prefetching irregular applications in 
shared-memory multiprocessors. Under their scheme, programs 
are annotated to bind together groups of data (e.g., fields in 
a record or two records linked by a pointer), which are then 
prefetched under hardware control. Compared to our compiler- 
based approach, their scheme has two shortcomings: (i) annota- 
tions are inserted manually, and (ii) their hardware extensions 
are not likely to be applicable in uniprocessors. 

To our knowledge, the only compiler-based pointer prefetching 
scheme in the literature is the SPAID scheme proposed by Lipasti 
et al. [14]. Based on an observation that procedures are likely to 
dereference any pointers passed to them as arguments, SPAID 
inserts prefetches for the objects pointed to by these pointer ar- 
guments at the call sites. Therefore this scheme is only effec- 
tive if the interval between the start of a procedure call and its 
dereference of a pointer is comparable to the cache miss latency. 
To quantify the performance difference between SPAID and our 
greedy prefetching scheme, we implemented several versions of 
SPAID in our experimental framework with different numbers of 
prefetches inserted per call site. Our results are consistent with 

the conclusion in the SPAID paper [14] that the best performance 
is achieved by inserting only one prefetch per call site--the S bars 
in Figure 18 correspond to this optimal case. When a procedure 
has multiple pointer arguments, we select the first one pointing to 
any RDS to prefetch. We also improved the performance of the 
proposed SPAID scheme for t reeadd from a slowdown of 13% to 
a speedup of 14% by prefetching two cache lines at a time rather 
than one. As we see in Figure 18, greedy prefetching outperforms 
SPAID in all cases except rest. The problem with SPAID is that 
it pays significant prefetching overhead without covering many 
cache misses, as shown by the low coverage factors and high frac- 
tion of unnecessary prefetches in Figure 18. In contrast, greedy 
prefetching does a better job of choosing what to prefetch, and 
can schedule prefetches earlier to hide more latency. 

7 Future  W o r k  

Based on the lessons we have learned from these experiments, 
we are currently extending our research in the following direc- 
tions. First, we are exploring how to automate history-pointer 
and data-linearization prefetching in the compiler--and how to 
automatically choose the best scheme among the three for a 
given application--to capture the benefits demonstrated in Sec- 
tion 5.2. Second, the results in Section 5.3 suggest that improved 
prefetching analysis can help to reduce overheads. However, since 
predicting data locality through static compile-time analysis is 
difficult--and since feedback-based compilation has its own set 
of problems--we are exploring the possibility of generating code 
with prefetching that dynamically adapts to its own memory be- 
havior. Third, our experience with the rest application illustrates 
the difficulty of prefetching hash table accesses, where linked lists 
are quite short, and the head of the list is data-dependent on 
the hashing function. To hide the latency in such cases, we must 
prefetch before the hashing function is called--although the over- 
heads of doing so may be significant, it does appear to be feasible. 
Finally, we are investigating the performance of our schemes in 
shared-memory multiprocessors, where although the large cache 
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miss latencies increase the potential benefit of prefetching, they 
also intensify the pointer-chasing problem. 

8 C o n c l u s i o n s  

While automatic compiler-inserted prefetching has shown consid- 
erable success in hiding the memory latency of array-based codes, 
the compiler technology for successfully prefetching pointer- 
based data structures has thus far been lacking. In this paper, we 
propose three prefetching schemes which overcome the pointer- 
chasing problem, we automate the most widely applicable scheme 
(greedy prefetching) in the compiler, and we evaluate the perfor- 
mance of all three schemes on a modern superscalar processor 
similar to the MIPS R10000. 

Our experiments show that automatic compiler-inserted 
prefetching can accelerate pointer-based applications by as much 
as 45%. In addition, the more sophisticated algorithms (which 
we currently simulate by hand) can improve performance by as 
much as twofold. Our experiments also demonstrate the poten- 
tial benefit of using data locality information to further reduce 
prefetching overhead. 

From an architectural perspective, these encouraging results 
suggest that the latency problem for pointer-based codes may be 
addressed largely through the prefetch instructions that already 
exist in many recent microprocessors. To fully exploit prefetch- 
ing, our results indicate that an architecture should provide at 
least two memory units and a non-excepting prefetch instruc- 
tion. We believe that this work provides a foothold for additional 
research on compiler-based prefetching for non-numeric applica- 
tions. 
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