
Compiler-Based Prefetching for Recursive Data Structures

Chi-Keung Luk and Todd C. Mowry

D e p a r t m e n t of C o m p u t e r Sc ience

D e p a r t m e n t of E l e c t r i c a l a n d C o m p u t e r E n g i n e e r i n g

U n i v e r s i t y of T o r o n t o

T o r o n t o , C a n a d a M5S 3G4

{luk, t cm}@eecg, toronto, edu

A b s t r a c t

Software-controlled data prefetching offers the potential for
bridging the ever-inereasing speed gap between the memory
subsystem and today's high-performance processors. While
prefetching has enjoyed considerable success in array-based nu-
meric codes, its potential in pointer-based applications has re-
mained largely unexplored. This paper investigates compiler-
based prefetching for pointer-based applications--in particular,
those containing recursive data structures. We identify the
fundamental problem in prefetching pointer-based data struc-
tures and propose a guideline for devising successful prefetching
schemes. Based on this guideline, we design three prefetching
schemes, we automate the most widely applicable scheme (greedy
prefetching) in an optimizing research compiler, and we evaluate
the performance of all three schemes on a modern superscalar
processor similar to the MIPS R10000. Our results demonstrate
that compiler-inserted prefetching can significantly improve the
execution speed of pointer-based codes--as much as 45% for the
applications we study. In addition, the more sophisticated algo-
rithms (which we currently perform by hand, but which might be
implemented in future compilers) can improve performance by as
much as twofold. Compared with the only other compiler-based
pointer prefetching scheme in the literature, our algorithms offer
substantially better performance by avoiding unnecessary over-
head and hiding more latency.

1 I n t r o d u c t i o n

Memory latency is becoming an increasingly important perfor-
mance bottleneck as the gap between processor and memory
speeds continues to grow. While cache hierarchies are an im-
portant step toward addressing the latency problem, they are
not a complete solution. To further reduce or tolerate memory
latency, automatic compiler techniques such as locality optimiza-
tions [4, 21] and software-controlled prefetching [3, 16] have been
proposed and evaluated in the past. While these techniques have
shown considerable promise, they have been limited in scope to
array-based numeric applications. In this paper, we explore how
to expand the compiler's scope to include another important class

Perrnission to make digital/hard copy of part or all of this work for personal
or c.lassroom use is granted without fee provided that copies are not made
or aistributad for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires pdor specific permission
and/or a fee.

ASPLOS VII 10/96 MA, USA
© 1996 ACM 0-89791-767-7/96/0010...$3.50

of applications: those containing pointer-based data structures
(also known as "recursive" data structures).

Recursive Data Structures (RDSs) include familiar objects
such as linked lists, trees, graphs, etc., where individual nodes
are dynamically allocated from the heap, and nodes are linked
together through pointers to form the overall structure. For
our purposes, "reeursive data structures" can be broadly in-
terpreted to include most pointer-linked data structures (e.g.,
mutually-recursive data structures, or even a graph of heteroge-
neous objects). From a memory performance perspective, these
pointer-based data structures are expected to be an important
concern for the following reasons. For an application to suf-
fer a large memory penalty due to data replacement misses, it
typically must have a large data set relative to the cache size.
Aside from multi-dimensional arrays, recursive data structures
are one of the most common and convenient methods of building
large data structures (e.g, B-trees in database applications, oc-
trees in graphics applications, etc.). As we traverse a large RDS,
we may potentially visit enough intervening nodes to displace a
given node from the cache before it is revisited; hence temporal
locality may be poor. Finally, in contrast with arrays, where
consecutive elements are at contiguous addresses and therefore
stride-one accesses can exploit long cache lines, there is little in-
herent spatial locality between consecutively-accessed nodes in
an RDS since they are dynamically allocated from the heap and
can have arbitrary addresses. Therefore, techniques for coping
with the latency of accessing these pointer-based data structures
are essential.

1 .1 C o p i n g w i t h M e m o r y L a t e n c y f o r R D S s

Ideally, the first step toward coping with memory latency would
be to reduce latency by restructuring either the computation or
the data to minimize cache misses. Unfortunately, the local-
ity optimizations developed for numeric applications (e.g., tiling,
loop interchange, etc. [4, 21]) are not applicable to RDSs. Al-
though we do explore one optimization which potentially im-
proves spatial locality in RDSs (data linearization, as described
later in Section 2.2.3), a significant number of cache misses still
remain, and therefore techniques for tolerating latency are also
needed.

Tolerating write latency is not a fundamental problem, since
we can buffer and pipeline writes. The real challenge is tolerat-
ing read latency, which requires that we decouple the request for
data from the use of that data, while finding enough useful par-
allelism to keep the processor busy in between. The two main
techniques for tolerating read latency are prefetching [2, 3, 15]
and multithreading [1, 9, 11, 13]. Prefetching tolerates latency
by anticipating what data is needed and moving it to the cache

222

ahead of time. Prefetching can be controlled either by hardware
or software. Hardware-based schemes typically look for patterns
in previous accesses to predict future behavior, and software-
based schemes rely on either the programmer or the compiler
to insert explicit prefetch instructions. In contrast, multithread-
ing tolerates latency by switching from one concurrent thread to
another upon a cache miss.

Comparing prefetching with multithreading, the advantage of
multithreading is that unlike prefetching, it does not require the
ability to predict data addresses ahead of time. Although this is
not an issue in numeric codes (since affine array addresses can
always be computed ahead of time), it does present a serious
challenge when we want to prefetch RDS codes due to the tight
control and data dependences (we will discuss this in detail later
in Section 2). Prefetching, however, does offer some important
advantages over multithreading. First, prefetching can accelerate
a single thread of execution, unlike multithreading which requires
multiple concurrent threads. This additional concurrency may or
may not exist--particularly in a uniprocessor environment, it is
unlikely that the programmer would go through the pain of par-
allelizing their application just for the sake of multithreading.
Second, multithreading requires a significant amount of hard-
ware support to minimize thread switching overhead (e.g., repli-
cated register files). In contrast, software-controlled prefetching
requires very little hardware support-- in fact, most commercial
microprocessors today already support prefetch instructions.

Comparing software vs. hardware-controlled prefetching, a po-
tential drawback of a software-based approach is the additional
instruction overhead necessary to issue prefetches. However, with
today's superscalar processors, it may be possible to overlap
much of this overhead with other computation. The software-
based approach has the major advantages of requiring less hard-
ware support (the hardware already exists), being more flexible,
and (most importantly) being able to exploit application-specific
knowledge about future access patterns. (It is not clear how a
hardware-based scheme could predict the chaotic-seeming access
patterns that occur when an RDS is traversed.)

Up until now, there has been no suitable solution for toler-
ating the latency of RDS codes in commercial systems: there
are no commodity microprocessors that support multithread-
ing, effective hardware-based prefetching schemes have yet to be
demonstrated, and the compiler support for exploiting software-
controlled prefetching for RDSs has remained an open question.
In this paper, we address this open research question by designing
and evaluating compiler-based prefetching schemes which suc-
cessfully tolerate the latency of accessing recursive data struc-
tures in modern microprocessor-based systems.

1.2 An Overview

This paper is organized as follows. We begin in Section 2
by identifying the fundamental problem that makes prefetching
RDSs difficult, and proposing a guideline for devising successful
prefetching schemes. Based on this guideline, we design three
different prefetching algorithms. In Section 3, we describe how
the most widely applicable of these schemes (greedy prefetch-
ing) has been implemented in an optimizing research compiler
(SUIF). Section 4 describes our experimental framework, and
Section 5 presents our experimental results where we evaluate
all three prefetching algorithms on the Olden benchmark suite
through detailed simulations of a MIPS R10000-1ike processor.
Section 6 discusses related work, including a quantitative com-
parison between our schemes and the only other compiler-based
pointer prefetching scheme proposed in the literature. Section 7
describes future work to improve our algorithms, and finally, we
conclude in Section 8.

2 Software-Controlled Prefetching for

RDSs

In this section we discuss the major issues and challenges in-
volved in software-controlled prefetching for RDSs, we present
guidelines for overcoming these challenges, and we describe three
prefetching algorithms based on these guidelines.

2.1 Challenges in Pre fe tch ing RDSs

Any software-controlled prefetching scheme can be viewed as hav-
ing two major phases. First, an analysis phase predicts which dy-
namic memory references are likely to suffer caches misses, and
hence should be prefetched. Second, a scheduling phase attempts
to insert prefetches sufficiently far in advance such that latency is
effectively hidden, while introducing minimal runtime overhead.
For array-based applications, the compiler can use locality anal-
ysis to predict which dynamic references to prefetch, and loop
splitting and software pipelining to schedule prefetches [15].

A fundamental difference between array references and pointer
dereferences is the way addresses are generated. The address of
an array reference A[i] can always be computed once a value of
i is chosen. In contrast, the address of a pointer dereference *p
is unknown unless the value stored in p is read. This difference
makes both the analysis and scheduling phases significantly more
challenging for RDSs than for arrays.

(a) Example Code

for (i=l ; i<=n; i++) {

listNode *p = listHead[i] ;
while(p) {

work (p-+data) ;

p = p-~next;

}
}

(b) No Locality

listHead[1] ~ " " "-<~

listHead[2] 0-.0-*0--. • . - ~

listHead[n] 0-<5-<)-'*---q3~

(c) Temporal Locality

listHead[1] ~

listHead[2l: . . ""(~)

listHead[n] d -a-c°mm°n-i~'iT-"

Figure h Example of list traversals, both with and without tem-
poral data locality.

2.1.I Analysis

To illustrate the difficulty of analyzing data locality in RDSs,
consider the code in Figure l(a), where we are traversing n dif-
ferent linked lists. In one extreme, the nodes may be entirely
disjoint (as illustrated in Figure l(b)), in which ease we would
want to prefetch every list node. Another possibility might be
that each list shares a long common "tail" starting with the sec-
ond list node (as illustrated in Figure 1(c)). In this latter case,
there would be significant temporal locality (assuming the cache
is large enough to contain the common tail), and ideally we would
only want to prefetch the nodes in the common tail during the
first list traversal (i.e. when ±=1). Unfortunately, despite the
significant progress that has been made recently in pointer anal-
ysis techniques for heap-allocated objects [6, 8, 10], compilers are
still not sophisticated enough to differentiate these two cases au-
tomatically. In general, analyzing the addresses of heap-allocated
objects is a very difficult problem for the compiler.

223

(a) Traversing an RDS

Currently visiting Would like to prefetch

, i

0 o o ~ ooo

(b) Prefetching 3 Nodes Ahead

while (p) {
prefeteh(p-+next --+next -+next);
work(p--~data);
p = p--+next;

}

(c) Prefetching 1 Node Ahead

while (p) {
prefetch(p-~next);
work(p~data);
p = p~next;

}

Figure 2: Illustration of the pointer-chasing problem.

2.1.2 Scheduling

Our ability to schedule prefetches for an RDS is also constrained
by the fact that nodes are linked together through pointers. For
example, consider the case shown in Figure 2(a), where assuming
that three nodes worth of computation is needed to hide the
latency, we would like to initiate a prefetch for node ni+a while
we are visiting node ni. The problem is that to compute the
address of node ni+a, we must first dereference a pointer in node
ni+2, and to do that, we must first dereference a pointer in node
ni+h etc. As a result, one cannot prefetch (or fetch) a future
node until all nodes between it and the current node have been
fetched. However, the very act of touching these intermediate
nodes means that we cannot tolerate the latency of fetching more
than one node ahead. For example, the prefetching code shown
in Figure 2(b) will not hide any more latency than the code in
Figure 2(c).1 In fact, the code in Figure 2(c) is likely to run faster
since it has less instruction overhead. This example illustrates
what we refer to as the pointer-chasing problem.

Since scheduling RDS prefetches is such a difficult problem, we
make it the primary focus of this paper. Improvements in anal-
ysis tend to reduce prefetching overhead by eliminating unnec-
essary prefetches. However, without sufficient scheduling tech-
niques, there will be no upside to prefetching and hence reducing
overhead will be irrelevant. Fortunately, as we discuss in the
next subsection, there are techniques for scheduling prefetches
that avoid the pointer-chasing problem.

2.2 Overcoming the Pointer-Chasing Prob-
lem

Let us formalize the pointer-chasing problem as follows. At a
given RDS node ni with address Ai, we wish to prefetch the
node ni+d that will be visited d nodes after hi. We choose d (the
prefetching distance) to be just large enough to hide the cache
miss latency: d = [L] , where L is the expected miss latency
and W is the estimated amount of computation between node
accesses in cycles. To prefetch hi+d, we must compute its address
Ai+d based on the information available at ni. The relationship
between Ai and Ai+4 can be expressed as:

Ai+d =" J:(d, Ai)

where J: is an address generating function.

A key factor in whether prefetch scheduling is effective is the
number of pointer-chain dereferences required within the RDS
to evaluate ~-(d, Ai), which we denote as I1~'1]. To overcome the

1Assuming that nodes are not larger than cache lines; if they are, then
prefetching further ahead can potentially result in a pipelining benefit.

pointer-chasing problem, we would like I1~'11 to be as small as
possible. If ~" is implemented by following the pointer chain
from ni to n,+u, then [l~II = d. Instead, we will consider the
cases where I1~'11 = 1 and I1~'11 = 0 (other values of ll~'[I are
possible, but do not appear to be interesting).

The case where I1~-II = 1 means that only one pointer deref-
erence is needed within the R.DS to compute Ai+d at node ni.
This implies that ni needs a direct pointer to ni+d--we call this
pointer a jump-pointer. Jump-pointers can occur either naturally
or artificially with respect to the RDS: a natural jump-pointer is
a pointer that already exists in ni, whereas an artificial jump-
pointer is added ~o ni for the purpose of prefetching. With
natural jump-pointers, we are using one of the pointers at ni
to approximate Ai+d. The advantage is that no extra storage
or computation is needed to create a natural jump-pointer, but
unfortunately the effectiveness of prefetching may be limited by
the accuracy of this approximation. In contrast, we require ad-
ditional storage and computation to add artificial jump-pointers
to an RDS, but hopefully these pointers will yield Ai+d more pre-
cisely (particularly if the structure of the RDS does not change
rapidly between times when the artificial jump-pointers are set).

The case where I1~11 = 0 means that no pointer dereferences
are required to compute Ai+u at ni. This is obviously a good
case, but how can one compute the address of a heap-allocated
object (which normally can reside at an arbitrary address) with-
out dereferencing any pointers? The answer is that we must have
special knowledge of an RDS's layout in memory such that Ai+d
can be directly implied from Ai and d. 2 There are many ways to
accomplish this. For example, one could map a tree into an array
structure such that there was a one-to-one mapping between the
tree position and an array index. We will discuss the details of
the approach we take later in Section 2.2.3.

In the remainder of this section, we propose three prefetch-
ing schemes with various I1~-II which avoid the pointer-chasing
problem: greedy prefetehing corresponds to I[.~11 = 1 using nat-
ural jump-pointers; history-pointer prefetching corresponds to
I[~11 = 1 using artificial jump-pointers; and data-linearization
prefetching is a caSe where II.TII = 0.

2.2.1 G r e e d y Prefetching

In a k-ary RDS, each node contains k pointers to other nodes.
Greedy prefetching exploits the fact that when k > 1, only one
of these k pointers can be immediately followed by control flow
as the next node in the traversal. Hence the remaining k - 1
pointers serve as natural jump-pointers, and can be prefetched
immediately upon first visiting a node. Although none of these
jump-pointers may actually point to hi+d, hopefully each of them
points to ni+d, for some d ~ > 0. If d ~ < d, then the latency may
be partially hidden; if £ >_ d, then we expect the latency to be
fully hidden, provided that the node is not displaced from the
cache before it is referenced (which may occur if d ~ >> d).

To illustrate how greedy prefetching works, consider the pre-
order traversal of a binary tree (i.e. k = 2), where Figure 3(a)
shows the code with greedy prefetching added. Assuming that
the computation in p roces s () takes half as long as the cache
miss latency, we would want to prefetch two nodes ahead (i.e.
d = 2) to fully hide the latency. Figure 3(b) shows the caching
behavior of each node. We obviously suffer a full cache miss at
the root node (node 1), since there was no opportunity to fetch
it ahead of time. However, we would only suffer half of the miss
penalty (L) when we visit node 2, and no miss penalty when
we eventually visit node 3 (since the time to visit the subtree

2We may also need to take other information into account, such as the
traversal order, but nothing can involve dereferencing a pointer within ni.

224

(a) Code with Greedy Prefetching

preorder(trseNode * t) {
i f (t != I~LL) {

p r e f e t c h (t - + l e f t) ;
prefetch (t-+right) ;
p r o c e s s (t - + d a t a) ;
preorder (t - + l e f t) ;
preorder (t-+right) ;

}
}

(b) Cache Miss Behavior

C) cache miss 0 cache hit

0 partial latency cache miss

Figure 3: Illustration of greedy prefetching.

rooted at node 2 is greater than L). In this example, the latency
is fully hidden for roughly half of the nodes, and reduced by
50% for the other half (minus the root node). If we generalize
this example to a k-ary tree, we would expect the fraction of
nodes where latency is fully hidden to be roughly ~ (assuming
that prefetched nodes are generally not displaced from the cache
before they are referenced). Hence a larger value of k is likely
to improve the performance of greedy prefetching, since more
natural jump-pointers are available.

Greedy prefetching offers the following advantages: (i) it has
low runtime overhead, since no additional storage or computa-
tion is needed to construct the natural jump-pointers; (ii) it is
applicable to a wide variety of RDSs, regardless of how they are
accessed or whether their structure is modified frequently; and
(iii) it is relatively straightforward to implement in a compiler (in
fact, we have implemented it in the SUIF compiler, as we describe
later in Section 3). The main disadvantage of greedy prefetch-
ing is that it does not offer precise control over the prefetching
distance, which is the motivation for our next algorithm.

2 . 2 . 2 H i s t o r y - P o i n t e r P r e f e t c h i n g

Rather than relying on natural jump-pointers to approximate
Ai+d, we can potentially synthesize more accurate jump-pointers
based on the actual RDS traversal patterns, while still achieving
II~-II = 1. The idea behind the history-pointer prefetchiug scheme
is that we create a new jump-pointer (called a history-pointer)
in ni which contains the observed value of Ai+d during a recent
traversal of the RDS. (Note that we could potentially store multi-
ple artificial jump-pointers in ni to account for multiple traversal
orderings.) On subsequent traversals of the RDS, we prefetch the
nodes pointed to by these history-pointers. This scheme is most
effective when the traversal pattern does not change rapidly over
time, in which case the history-pointer in ni is likely to point
to either ni+a or else hopefully a node that will be visited soon.
On the other hand, if the structure of the RDS changes radically
between traversals, the history-pointers might not be effective.

To construct the history-pointers, we maintain a FIFO queue
of length d which contains pointers to the last d nodes that have
just been visited. When we visit a new node hi, the oldest node in
the queue will be ni-d (i.e. the node visited d nodes earlier), and
hence we update the history-pointer of ni-d to point to hi. After
the first complete traversal of the RDS, all of the history-pointers
will be set. Figure 4 illustrates a snapshot of this bookkeeping
process for the tree shown earlier in Figure 3. Assuming that
d = 3 and that we have just reached node 6, we would now update
the history-pointer of the oldest node in the 3-entry queue (node
10) to point to node 6.

Comparing the performance of this scheme with greedy
prefetching, history-pointer prefetching offers no improvement
on the first traversal of an RDS, since the history-pointers have
yet to be set (greedy prefetching would hide some fraction of

youn o
FIFO (d --3)~-~ j~] set

oldest ~ ' ~ ' ~ " "

• - p- History Pointer

Figure 4: Example showing the update of history-pointers

the latency). 3 However, on subsequent traversals of the RDS
history-pointer prefetching will hide nearly all of the latency,
whereas greedy prefetching will continue to hide only a fraction
of the latency.

While history-pointer prefetching offers the potential advan-
tage of improved latency tolerance, this comes at the expense
of two additional forms of overhead: (i) execution ovc:head to
construct the history-pointers, and (ii) space overhead for stor-
ing these new pointers. To minimize execution overhead, we
can potentially update the history-pointers less frequently, de-
pending on how rapidly the structure of the RDS changes. In
one extreme, if the RDS never changes, we only need to set the
history-pointers once. The problem with space overhead is that
it potentially worsens the caching behavior. The desire to elimi-
nate this space overhead altogether is the motivation for our next
prefetching scheme.

2 . 2 . 3 D a t a - L i n e a r i z a t i o n P r e f e t c h i n g

The goal of data-linearization prefetching is to achieve an 5 c such
that Ai+d can be predicted precisely, but without requiring any
pointer dereferences (i.e. I1.%]1 = 0). Another advantage of this
scheme is that it improves spatial locality. The basic idea is to
map heap-allocated nodes that are likely to be accessed close
together in time into contiguous memory locations. With this
mapping, one can easily predict Ai+d and hence prefetch it early
enough.

Recall that the address of an array element x[i + d] can be
computed relative to x[i] as follows (using C-like syntax):

&x[i + d] = &x[i] + d x sizeof(x[O]) (1)

Therefore, if we can map the RDS onto an array x of nodes such
that Ai = 8zx[i], no pointer dereference is needed to compute
Ai+d--we simply need two arithmetic operations per prefetch ad-
dress.

The question is how and when can this mapping (which we
call data linearization) be performed? In theory, one could dy-
namically remap the data even after the RDS has been initially
constructed, but doing so may result in large runtime overheads
and may also violate program semantics. 4 Instead, the best time
to map the nodes is at creation time, which is appropriate if ei-
ther the creation order already matches the traversal order, or
if it can be safely reordered to do so. Since dynamic remapping
is expensive (or impossible), this scheme obviously works best
if the structure of the RDS changes only slowly (or not at all).

aHence we may want to use greedy prefetching for the first traversal of
an RDS when the history-pointers are being initialized.

4All pointers to these objects would also need to be updated, and under-
standing pointer alia.sing for heap-allocated objects is quite difficult for the
compiler.

225

. I P - P r e ~ h

Figure 5: Illustration of data-linearization prefetching

If the RDS does change radically, the program will still behave
correctly, but prefetching will not improve performance.

Figure 5 illustrates how data-linearization prefetching works
for the tree shown earlier in Figures 3 and 4. The ordering
of nodes in the array corresponds to the pre-order traversal or-
der. To prefetch d nodes ahead, one simply uses equation (1)
to compute Ai+d. In addition, if a single cache line can hold
m > 1 nodes, we can exploit this spatial locality by only issuing
a prefetch once every m nodes. If we are traversing the RDS
inside a loop, we can accomplish this by unrolling the loop by
a factor of m (similar to what is done in array-based prefetch-
ing [15]). For a traversal through recursion, one could potentially
keep track of the number of nodes visited between prefetches, but
the overhead of doing so may be comparable to simply issuing
a prefetch for every node. The arrows in Figure 5 indicate the
desired prefetches when d = 3 and m = 3.

2 .3 S u m m a r y

The nature of recursive data structures makes both the analysis
and scheduling of prefetches quite challenging. Before attempt-
ing to minimize prefetching overhead through improved analysis,
we must first maximize the latency-hiding gain through effec-
tive prefetch scheduling techniques. The fundamental problem
in scheduling prefetches for RDSs is the pointer-chasing problem,
which we formalize as the number of pointer-chain dereferences
required to compute a prefetch address (11571). Based on our de-
sire to minimize II.TII, we have identified three promising prefetch-
ing schemes: greedy prefetching (11~-II = 1 with natural jump-
pointers), history-pointer pre]etehing (11571 = 1 with artificial
jump-pointers), and data-linearization prefetching (11~11 = 0).

Of these three schemes, greedy prefetching is perhaps the most
widely applicable since it does not rely on traversal history infor-
mation, and it requires no additional storage or computation to
construct prefetch addresses. For these reasons, we have imple-
mented a version of greedy prefetching as an automatic compiler
pass, and we will simulate the other two algorithms by hand to
compare their performance with greedy prefetching. In the next
section, we describe the implementation details of our greedy
prefetching compiler pass.

3 I m p l e m e n t a t i o n
Prefe tch ing

of Greedy

Our implementation of greedy prefetching within the SUIF com-
piler [20] consists of an analysis phase to recognize RDS accesses,
and a scheduling phase to insert prefetches.

3 .1 A n a l y s i s : R e c o g n i z i n g R D S A c c e s s e s

To recognize RDS accesses, the compiler uses both type declara-
tion information to recognize which data objects are RDSs, and
control structure information to recognize when these objects are
being traversed. An RDS type is a record type r containing
at least one pointer that points either directly or indirectly to
a record type s. (Note that r and s are not restricted to be

struct T { struct h { struct C {

int data; int i; int j;

struct T *left; struct B **kids[8]; double f;

struct T *right; } }
}

(a) RDS type (b) RDS type (c) Not RDS type

Figure 6: Examples of whether type declarations are recognized
as being RDS typeS.

the same type, since RDSs may be comprised of heterogeneous
nodes.) For example, the type declarations in Figure 6(a) and
Figure 6(b) would be recognized as RDS types, whereas Fig-
ure 6(c) would not, 5

After discovering data structures with the appropriate types,
the compiler then looks for control structures that are used to
traverse the RDSs. In particular, the compiler looks for loops or
recursive procedure calls such that during each new loop iteration
or procedure invocation, a pointer p to an RDS is assigned a value
resulting from a dereference of p--we refer to this as a recurrent
pointer update. This heuristic corresponds to how RDS codes
are typically written. To detect recurrent pointer updates, the
compiler propagates pointer values using a simplified (but less
precise) version of earlier pointer analysis algorithms [7, 12].

(a) while (1) { (b) for (. . .) {
listNode *m; listNode *n;

m = 1-+next; n = g(n);

1 = m--~next ; ...

• '' }

}

(C) f(treeNode *t) { (d) k(treeNode in) {

ii£ le t); i? ;(tn
f(t-~right) ; k(* (tn . r igh t)) ;

} }

Figure 7: Examples of recognizable control structures for RDS
traversals.

Figure 7 shows Some example program fragments that our com-
piler treats as RDS accesses. In Figure 7(a), 1 is updated to
1--+next--mext inside the while-loop. In Figure 7(b), n is as-
signed the result of the function call g (n) inside the for-loop.
(Since our implementation does not perform interprocedural
analysis, it assumes that g(n) results in a value n - + . . . --~next.)
In Figure 7(c), two dereferences of the function argument t are
passed as the parameters to two recursive calls. Figure 7(d)
is similar to Figure 7(c), except that a record (rather than a
pointer) is passed as the function argument.

Ideally, the next step would be to analyze data locality across
RDS nodes--e.g, to distinguish the two cases shown in Fig-
ure 1--to eliminate any unnecessary prefetches. Although we
have not automated this step in our compiler, we will evaluate
its potential benefit later in Section 5.3.

3 .2 S c h e d u l i n g P r e f e t c h e s

Once RDS accesses have been recognized, the compiler inserts
greedy prefetcheS as follows. At the point where an RDS object

i

5The compiler may fail to recognize cases with explicit type casting-e.g.,
casting j to be of type (struct C*) in Figure 6(c)--but such cases do not
appear to be common.

226

Benchmark

BH

Bisort

EM3D

Health

MST
Perimeter

Power

TreeAdd
TSP

Voronoi

Table 1: Benchmark characteristics.

|/~twJWI;ll'~

Barnes-Hut's N-body force-calculation
algorithm
Sorts two disjoint bitonic sequences and'
then merges them

Simulates the propagation of electromaguetic
waves in a 3D object
Simulation of the Columbian health care
system
Finds the minimum spanning tree of a graph
Computes perimeters of regions in images

Solves the power system optimization
problem

Sums ihe values distributed on a tree
Traveling salesman problem
Computes the voronoi diagram of a set of
points

Recursive Data Structures Used

Heterogenous octree

Binary tree

Singly-linked lists

Four-way tree and doubly-linked
lists
Array of singly-linked lists
A quadtree

Multi-way tree and singiy-linked
lists

Binary tree
Binary tree and doubly-linked lists
Binary tree

Input Data Set
4K bodies

250,000 integers

2000 H-nodes, 100
E-nodes, 75% local

max. level = 5,
max. time = 500

Node Memory Allocated

4K x 4K image

4128 x 136 B = 548 KB
+ 2 0 2 1 x 8 8 B = 1 7 3 K B

131,017 x 12 B = 1535 KB

512 nodes
235','717 x 28 B = 6445 KB

10,000 customers

1024K nodes
100,000 cities
20,000 poin[s

4000 x 28 B -- 109 KB

+ 400,000 x 4 B -- 1562 KB

341 x I00 B -- 33 KB

+ 57,111x 16 B -- 892 KB

5 1 2 x 2 0 B = I O K B

2 0 0 x 5 6 B = l l K B
+ 1 0 0 0 x 9 6 B - 9 4 K B

+ 10,000x 32 B = 313 KB
1,048,576 x 12 B = 12,288 KB

131,071 x 40 B - 5120 KB
633,032 x 16 B = 9891 KB
+ 32,768 x 32 B = 1024 KB

w h i l e (i) {
work(1---~data) ;
I ffi l-+next;

}

(a) Loop

f(treeNode *t) {

treeNode *q;
if (test (t-+data))

q ffi t--~left;

else q ffi t-+right;

if (q ~= NULL)

f(q) ;

}

w h i l e (1) {
p r e f e t c h (1-+next) ;
work(l--~data) ;

1 = l--~next ;

}

f (t r eeNode * t) {
treeNode *q;
p r e f e t c h (t ---+left) ;
p r e f e t e h (t - ÷ r i g h t) ;
i f (t e s t (t - + d a t a))

q ffi t - + l e f t ;
e lse q = t - ÷ r i g h t ;
i f (q ~= N U L L)

f (q) ;
}

(b) P rocedure

Figure 8: Examples of greedy prefetch scheduling.

is being traversed (i.e. where the recurrent pointer update oc-
curs), the compiler inserts prefetches of all pointers within this
object that point to RDS-type objects (these are the natural
jump-pointers 6) at the earliest points where these addresses are
available within the surrounding loop or procedure body. The
availability of prefetch addresses is computed by propagating the
earliest generation points of pointer values along with the val-
ues themselves. Two examples of greedy prefetch scheduling are
shown in Figure 8.

4 E x p e r i m e n t a l F r a m e w o r k

To evaluate the performance of our three prefetching schemes,
we performed detailed cycle-by-cycle simulations of the entire
Olden benchmark suite [17] on a dynamically-scheduled, super-
scalar processor similar to the MIPS R10000. The Olden bench-
mark suite contains ten pointer-based applications written in C,
which are briefly summarized in Table 1. The rightmost column
in Table 1 shows the number and size of each node type that was

SNore that we do not prefetch all pointers within an RDS object--only
the ones that point to other RDS nodes (potentially of different types than
the given object).

Table 2: Simulation parameters.

Pipeline Parameters
Issue width
Functional Units
Reorder Buffer Size
Integer Multipiy
Integer Divide
All Other Integer
FP Divide
FP Square Root
All Other FP
Branch Prediction Scheme

Memor

4
2 Int, 2 FP, 2' Memory, 1 Branct~

3'2'"
12 cycle's
76 cycles

1 cycle
15 cycles

2 cycles
2-bit Counters

' Parameters

Primary Instr and Data Caches
Unified Secondary Cache
Line Size
Primary-to-Secondary 'Miss
Primary-to-Memory Mlss
Data Cache Miss Handlers
Data Cache Banks
Data Cache Fill Time
(Requires Exclusive Access)
Main Memory Bandwidth

16KB, 2-way set-associative
512KB,. 2-way set-associative

32B
12 cycles
75 cycles

4 cycles

1 access per 20 cycles

dynamica l ly al located.

Our s imulat ion mode l varies s l ight ly f rom the actual MIPS

R10000 (e.g., we mode l two m e m o r y uni ts , and we assume tha t

all funct ional uni ts are ful ly-pipel ined) , bu t we do mode l t he
rich detai ls of the processor inc luding the pipel ine, register re-

naming , the reorder buffer, b ranch predic t ion , ins t ruc t ion fetch-

ing, b ranch ing penal t ies , the m e m o r y hierarchy (including con-
tent ion) , etc. T h e pa rame te r s of our mode l are shown in Table 2.

We use pixie [18] to i n s t rumen t the op t imized MIPS objec t files

p roduced by the compiler , and p ipe the resu l t ing t race into our
s imulator .

To min imize the i mpac t of s tore stalls dur ing the in i t ia l iza t ion
of dynamica l ly-a l loca ted objects , we use our own m e m o r y allo-

ca tor for these exper iments which is s imilar to m a l l o p t provided

in the Irix C l ibrary [19], b u t also conta ins bui l t - in prefe tching
to avoid such s tore misses. This op t imiza t ion alone led to dra-
mat ic improvements (greater t h a n two-fold speedups) over us-
ing m a l l o c for the ma jo r i t y of the a p p l i c a t i o n s - - p a r t i c u l a r l y the

ones t ha t f requent ly al locate smal l objects .

227

1 0 0 100.0 96.6 100.0 100.0 99.8 100.0 100.0 100.0 99.9 101.2 I01.6 lO0.o

,_ 80
O 68.6

G) 6 0

~ 4o

z
N G N G N G N G N G N G N G

bh bisort em3d health mat perimeter power

~ loxd stall
store stall
Inst xtafl
buey

N G N G N G

treeadd tsp voronoi

Figure 9: Performance of compiler-inserted greedy prefetching (N -- no prefetching, G -- greedy prefetching).

w

~' 6o

,J
4o

2o

o III
bh blx°rtem3dhellth ml

~ogf_m/n i ~77 B? 89
pLmlmL

lOO 94

o
,ter treeadd voronol 100~ oG AO lo0n ~ iio TOON o5 ~ 1Qo90 I~ oo to~n o5 ~ I00~ o5 Io loON ss ~ 100~ 9s oo toos~ g6 9o 1~9~ ~
power tip bh blsort em3cl health rest perimeter power beeadd tep voronol

(a) Coverage Factor (b) Unnecessary Prefetches

Figure 10: Additional performance metrics for evaluating greedy prefetching.

5 E x p e r i m e n t a l R e s u l t s

We now present results from our simulation studies. We start by
evaluating the performance of compiler-inserted greedy prefetch-
ing, and then compare this with hand-inserted versions of history-
pointer prefetching and data-linearization prefetching. Next, we
evaluate the potential performance gains from better analysis to
reduce unnecessary prefetches. Finally, we explore the perfor-
mance impact of architectural support.

5.1 Performance of Compiler-Inserted
Greedy Prefetching

The results of our first set of experiments are shown in Figures 9
and 10. Figure 9 shows the overall performance improvement
offered by greedy prefetching, where the two bars correspond to
the cases without prefetching (N) and with greedy prefetching
(G). These bars represent execution time normalized to the case
without prefetching, and they are broken down into four cate-
gories explaining what happened during all potential graduation
slots/ The bottom section (busy) is the number of slots when
instructions actually graduate, the top two sections are any non-
graduating slots that are immediately caused by the oldest in-
struction suffering either a load or store miss, s and the inst stall
section is all other slots where instructions do not graduate. Note
that the load stall and store stall sections are only a first-order
approximation of the performance loss due to cache stalls, since
these delays also exacerbate subsequent data dependence stalls.

7The number of graduation slots is the issue width (4 in this case) mul-
tiplied by the number of cycles. We focus on graduation rather than issue
slots to avoid counting speculative operations that are squashed.

SStore misses only stall the processor when the 32-entry memory issue
buffer is full.

As we see in Figure 9, half of the applications enjoy a speedup
ranging from 4% to 45% (the other half are within 2% of their
original performance). For the applications with the largest
memory stall penalties (i.e. health, perimeter , and treeadd),
much of this stall time has been eliminated. In the cases of
b i s o r t and rest, prefetching overhead more than offset the re-
duction in memory stalls (thus resulting in a slight performance
degradation), but this was not a problem in the other eight ap-
plications. (Later, in Section 5.3, we will explore how to further
reduce this overhead.)

To understand the performance results in greater depth, Fig-
ure 10 presents two additional performance metrics. Figure 10(a)
breaks down the original primary cache misses into three cate-
gories: (i) those that are prefetched and subsequently hit in the
primary cache (pf_hit), (ii) those that are prefetched but remain
primary misses (pf_miss), and (iii) those that are not prefetched
(nopf_miss). The sum of the pf_hit and pf_miss cases is also
known as the coverage factor, which ideally should be 100%. For
em3d, power, and voronoi, the coverage factor is quite low (un-
der 20%) because most of their misses are caused by array or
scalar references-*--hence prefetching RDSs yields little improve-
ment. In all other cases, the coverage factor is above 60%, and in
four cases we achieve nearly perfect coverage. If the pf_miss cat-
egory is large, this indicates that prefetches were not scheduled
effectively---either they were issued too late to hide the latency,
or else they were too early and the prefetched data was displaced
from the cache before it could be referenced. This category is
most prominent in rest, where the compiler is unable to prefetch
early enough during the traversal of very short linked lists within
a hash table. Since the natural jump-pointers in greedy prefetch-
ing offer little control over prefetching distance, it is not surpris-
ing that scheduling is imperfect--in fact, it is encouraging that
the pf_miss fractions are this low. Later, in Section 5.2, we will

228

o 160 15e .4 [~ prefetch

140 ~(oad+store

100 ' • " " . ' • " "

eo ~ ~

(1%) (2%) (4%) (31%) (11%) (15%) (0%) (24%) (6%) (3%)
bh blsort em3d health rest perimeter power treeadd tap vo rono l

Figure 11: Increase in total memory traffic due to greedy
prefetching. Numbers below the bars indicate the memory uti-
lization with greedy prefetching.

explore techniques for improving prefetch scheduling.

To help evaluate the costs of prefetching, Figure 10(b) shows
the fraction of dynamic prefetches that are unnecessary because
the data is found in the primary cache. For each application,
we show four different bars indicating the total (dynamic) un-
necessary prefetches caused by static prefetch instructions with
hit rates up to a given threshold. Hence the bar labeled "100"
corresponds to all unnecessary prefetches, whereas the bar la-
beled "99" shows the total unnecessary prefetches if we exclude
prefetch instructions with hit rates over 99%, etc. This break-
down indicates the potential for reducing overhead by eliminating
static prefetch instructions that are clearly of little value. For ex-
ample, eliminating prefetches with hit rates over 99% would elim-
inate over half of the unnecessary prefetches in per±meter, thus
decreasing overhead significantly. In contrast, reducing overhead
with a flat distribution (e.g., bh) is more difficult since prefetches
that sometimes hit also miss at least 10% of the time (therefore,
eliminating them may sacrifice some latency-hiding benefit). We
will quantify the benefit of eliminating unnecessary prefetches
later in Section 5.3.

To further evaluate the costs of greedy prefetching, Figure 11
shows its impact on memory bandwidth. Ideally, prefetching
will not increase memory traffic, since the original memory refer-
ences will simply be converted into prefetches. (In fact, previous
studies have demonstrated that prefetching can actually reduce

the memory traffic in a shared-memory multiprocessor through
exclusive-mode hints [15].) However, since the natural jump-
pointers used by greedy prefetching may point to nodes that will
not be accessed in the near future (or perhaps not at all), greedy
prefetching can potentially increase the memory bandwidth de-
mands through useless prefetches. As we see in Figure 11, greedy
prefetching has increased memory traffic by less than 12% for all
but one application (in one case--perimeter--the traffic actu-
ally decreased slightly due to fortuitous cache replacement behav-
ior in the set-associative caches). In the case of b±sort , where
we do see a noticeable increase of 56%, the total memory utiliza-
tion still remains so low with greedy prefetching (2%) that there
is no impact on performance. Hence greedy prefetching does not
appear to be suffering from memory bandwidth problems.

Although space constraints prevent a detailed discussion of
each application, we briefly summarize some of the highlights
(code fragments are shown in Figure 12).

bh: Nodes of an octree are traversed in bh_walk(), and 70%
of load stalls occur in bh_tes t () and bh_work() (see Fig-
ure 12(a)). The compiler immediately prefetches all eight
children of the current node t before bh_tes t () is called.
Although 59% of prefetches are unnecessary, the overhead
remains low and there is a 4% speedup.

(a) bh

bh_walk(. . , , n o d e * t , . . .) {
p r e f e t c h (t -+ch i ld ren[0]) ;
p r e f e t c h (t --~children[1D;
p r e f e t c h (t -~ch i ld r en [2] ;
p r e f e t t h (t -~ch i ld r en 3]);
prefetch(t--~cl d r e n 4]);
p r e f e t c h (t -~ch i ld r en [5]);
p r e l e t c h (t --~ chi ld ren [6l) ;
p r e l e t c h (t -~ch i ld ren[7]) ;
i f (b h _ t e s t (p)) {

for (k=O; k < 8 ; k + +) {
r = t - -~chi ldren[k];
if (r)

bh_walk(..,, r , . . .) ;
)

) else
bh-work(..., t, ...);

)

(c) hea l th

void w a i t i n g (V i l l a g e *vi l lase , L i s t *l ist)
whi le (l ls t ! = N U L L) {

p r e l e t c h (l ist - e for ward);
i = v i l l a&e-4hosp . f ree_personne l ;
p = l l s t - ~ p a t i e n t ;
i t (i :> O) {

t ~ v i l la4be-ohosp. f ree-personnel ;
v i l l age -#hosp . f r ee .pe rno t lne l = t - l ;
p - ~ t i m e A e f t = 3;
p ~ t l m e = t + 3;
I ~ & (v i l l a s e - O h o s p . w a i t i n g) ;
r e m o v e L i s t (1, p) ;
I = &(v i l l a se -+hosp . anses s) ;
8 d d L i s t (I , p) ;

else {
t = p - - t t ime ;
p ~ t i m e ~ t + 1;

)
l lst = llst--t fo rward ;

)
}

(b) b i sor t

{st B{ m e r g e (t o o t ,spr_val ,d l r)
rv = r o o t - ~ l u e ;
pl ~ root--~left ; p r = r o o t - ~ r i g h t ;

wldle (pl [= N I L)) {
pre fe tch p --+left);
p r e f e t c h (p l - ~ r i g h t)) ;
p r e f l t c h (p r - - H e f t);
prefetch(pr--~right);
Iv = p l - ~ v a l u e ;
p]l ~ p l - t l e f t ; p i t ~ p l - - t r i gh t ;
rv = pr- -~vMue;
p r l ~ pr--~left ; p r r = pr--~r ight ;

S wap V&I R i g h t (pl , p r ,p l r ,p r r ,I v , r v);
pl = pll ; p r ~ prl~

} else {
pl ~ p i t ; p r ~ pr r ;

}
else

i f (.,.) {
SwapVal Left (pl,pr,pll,prl,lv,rv);
pl ~ plr; pr = prr;

} ei6e {
pl = pll; pr = prl;

}
}

if ((root--~left ~= NIL)) {
prefetch(root-#left);
prefetch(root-~right);

rl = root-~left; rr ~ root-~right;

r o o t - ~ v ~ l u e = B i m e r g e (r l , v a l u e , d i r) ;
spr_val ~ B h n e r g e (r r , spr -va] ~dlr) ;

}

)

(d) res t

void * H u h L o o k u p (i n t key, H a s h h a s h) {
j = (h ~ h - ~ m a p f u n c) (k e y) ;
for (e n t = huh- -~a r r l t y [j] ;

e n t ~:~c e n t - - ~ k e y [= k e y ;
e n t = e n t - - # n e x t)

p r e f e r c h (e n t --+ n ex t) ;
i f (en t) r e t u r n e n t - e e n t r y ;
r e t u r n N U L L ;

}

Figure 12: Abstract representation of the output of the greedy
prefetching compiler for some interesting code fragments in the
Olden benchmarks.

b isor t : The main RDS is a binary tree, and the important cache
misses occur in Bimerge O, which contains both loops and
recurs(on (see Figure 12(b)). The four "grandchildren" of
roo t are prefetched early in the while loop. Although load
misses are completely hidden, execution time increases by
1.2% due to unnecessary prefetching overhead. Locality
analysis might help this case by recognizing that a portion of
data accessed in the recursive calls has already been brought
into the cache by the while loop.

hea l th : Over 90% of load stalls are due to linked-list accesses
inside waiting() (see Figure 12(c)). Despite a noticeable
increase in overhead, the 50% reduction in load stalls results
in a large speedup.

rest : 90% of load stalls occur in HashLookup O, where it searches
for an item in an array of linked lists (see Figure 12(d)).
Although the compiler prefetches ent--+next, only a small
portion of the latency can be hidden since the loop body is
so small. This appears to be a general problem with hash
tables, and prefetching prior to the hash function invocation
is beyond the scope of our algorithm.

pe r ime t e r : A quadtree is traversed through recursive procedure
calls. All load misses are covered, but the 94% unnecessary
prefetches result in significant overheads. There are two rea-
sons for the unnecessary prefetches: (i) the same parts of
the quadtree can be visited through different recursive pro-
cedures, thus resulting in unanticipated data locality; and
(ii) each node contains a pointer to its parent, which the
compiler prefetches along with the four child pointers, but
the parent is already in the cache.

229

+,:, ,oo.o
i 60 68.6 ~ busy

40 49.0 , [ltt_
(a) Execution Time

ili+,!i°+ii i 40 " 40 4~ 4o
20

2 20

H O

(b) Coverage Factor (c) Unnecessary Prefetches

Figure 13: Performance of h e a l t h with history-pointer prefetch-
ing (N = no prefetching, G = greedy prefetching, H = history-
pointer prefetching).

t sp : Each RDS node contains four pointers: two for binary tree-
like accesses, and two for doubly-linked list-like accesses.
The abundant unnecessary prefetches occur for the same rea-
sons as per imete r . Prefetching reduces the inst stall time
(see Figure 9) in this case by accelerating data dependency
chains.

In summary, we have seen that automatic compiler-inserted
prefetching can result in significant speedups for applications
containing recursive data structures. In the next two sections, we
will evaluate techniques for increasing these gains even further.

5 .2 H i s t o r y - P o i n t e r P r e f e t c h i n g a n d D a t a -

L i n e a r i z a t i o n P r e f e t c h i n g

To quantify the performance potential of the more sophisti-
cated prefetching schemes proposed earlier in Section 2.2, we
applied them by hand to our applications. Figure 13 shows
the performance of the one application that improves under
history-pointer prefetching: hea l th . History-pointer prefetch-
ing works in this case because the structure of the lists accessed
in waiting() (see Figure 12(c)) remains unchanged throughout
the over ten thousand times it is called. Two history-pointers are
added to the L i s t record: one for prefetching l i s t and one for
prefetching l i s t - - + p a t i e n t , with prefetching distances of four
and two, respectively. As we see in Figure 13, history-pointer
prefetching results in a 40% speedup over greedy prefetching
through better miss coverage and fewer unnecessary prefetches.
Coverage is improved because list--~patient is successfully
prefetched--under greedy prefetching, the compiler does not rec-
ognize l i s t - + p a t i e n t as an RDS access, 9 and even if it did,
there would not be sufficient time to hide the latency. Although
history-pointer prefetching has a smaller fraction of unnecessary
prefetches, it has more overhead than greedy prefetching due to
the extra work required to maintain the history-pointers.

9The reason why greedy prefetching does not recognize l i s t - - + p a t i e n t as
an RDS access is that there is no recurrent pointer update for the patient
object type. As we discussed earlier in Section 3, the compiler does not
prefeteh pointers unless they point to RDSs.

100 100.0

i
Nperil

,ooo .2:::,
'

Inst stall
81.4 79.8 ;~ busy

I 67,6

beter D N G D treeadd

(a) Execution Time

m " ~ - " | ,0.|

ii ii+m :lift78
e D GI D

petlrueler lreeudd perlmelet treeadd

(b) Coverage Factor (c) Unnecessary Prefetches
[

Figure 14: Performance of perimeter and treeadd with data-
linearization prefetching (N = no prefetching, G = greedy
prefetching, D = data-linearization prefetching).

Data-linearizati0n prefetching is applicable to both pe r ime te r
and t reeadd, because the creation order is identical to the ma-
jor subsequent traversal order in both cases. As a result, data
linearization does not require changing the data layout in these
cases (hence spatial locality is unaffected). As we see in Fig-
ure 14, data-linearization prefetching offers additional speedups
ranging from 9%/0 to 18% through fewer unnecessary prefetches
(and hence less prefetching overhead), while still maintaining
good coverage factors. Unnecessary prefetches are reduced be-
cause only one prefetch is issued per node (whereas greedy
prefetching may follow multiple natural jump-pointers), and cov-
erage suffers slightly because there are multiple traversai or-
ders, and data linearization only captures the most common one.
Overall, we see that both history-pointer prefetching and data-
linearization can potentially offer significant improvements over
greedy prefetching when applicable.

5 .3 R e d u c i n g O v e r h e a d T h r o u g h L o c a l i t y

A n a l y s i s

Our compiler currently does not attempt to analyze data locality
across RDS node accesses. As a result, we may prefetch nodes
unnecessarily that already reside in the cache (as discussed ear-
lier in Section 5.1). For numeric applications, sophisticated lo-
cality analysis techniques have been combined with loop split-
ting techniques tO isolate the dynamic iterations that should be
prefetched [16]. Unfortunately, the control structures in RDS
codes are less amenable to isolating dynamic node visitations,
so our only option may be to eliminate static prefetch instruc-
tions altogether. This makes sense for prefetches that are almost
always unnecessary (i.e. have very high hit rates).

To estimate the performance potential of exploiting locality in-
formation, we used memory feedback information from our sim-
ulator to eliminate prefetch instructions with hit rates above a
certain threshold from the greedy prefetching code. Figure 15
shows our results for the four applications that were affected
by setting this threshold to 99%, 95%, and 90% hit rates. As
we see in Figure 15, eliminating prefetches with hit rates above

230

Z 0
G 1=99 F95 Fg0 G F99 F95 Fg0 G 199 F95 1=90 G F99 F95 1=90

blsorl perimeter treeadd tsp

(a) Execution Time (Normalized to G)

100

10o

i lllI
0 G F99F95FgO G F99FgSFgO

bleon perimeter

lOO ,oo.o ,7.0 ,oo.o ,~o ,®.,, ~ .l.,..,,v,

bh health perimeter treeadd tsp

(a) Execution Time (Normalized to case 1)

Ins ts pe r Loads pe r
. pt_m~ I Appl ica t ion I Prefetch [Prefetch [

p t ~ bh 3.6 0.5
bisor t , , 2.9 1.3

heal th 3.6 0.5 ,,
rxlst 5.9 0.7
pe r imete r 2.1 0.5
power 4.1 0.4
t reeadd 3.7 1.2

tsp 2.0 0.5
voronoi 3.2 0.9

G F99 F95 Fgo F99 FgS F90
. . . ~p (b) Prefetching Overhead

(b) Coverage Factor
'00i ~ ' | ~' Figure 16: Performance of greedy prefetching when the number

00 8r - of memory memory units is varied, plus a breakdown of the over-

i head per prefetch (1 = 1 memory unit, 2 = 2 memory units, 4 $0 7s 68 70

_= e2 - - = 4 memory units).
55

1073 ~oaa ;

r- loo i f # "

'fii II II il II ao
G F99 b'll!i FIKI G F99 F~ ~ G FI~ Fg!i Fg0 G ~ 1:95 1:90 ~1

blsorl perimeter treesdd tsp 60

(c) Unnecessary Prefetches Z . l ~ ~ • • ~ ~ ~_ ~ ~_

Figure 15: Performance of feedback-guided greedy prefetching o | ~_ ~ ~ ~ ~ ~_ ~ ~ ~
on four benchmarks (G = greedy prefetching, F x x = greedy "~ 0 ~ ~ >~ ~ ~- ~ ' ~ ~ ~ ~ - ~ ~- ~ ~- ~- ~- ~- ~- ~-
prefetching where static prefetch instructions with hit rates over bh health perimeter treeada tsp

xx% have been eliminated).

95% improves performance by 1-7% for these applications by
eliminating unnecessary prefetches without sacrificing much cov-
erage. However, eliminating prefetches with hit rates over 90%
does hurt performance in per imeter , since the coverage factor
drops dramatically. Therefore, improved locality analysis may
help performance by eliminating prefetches that are almost al-
ways unnecessary (e.g., the "parent" pointer in per imeter) , but
without more powerful techniques for isolating dynamic node vis-
itations, the gains do not appear to be as large as with numeric
codes.

5 . 4 A r c h i t e c t u r a l S u p p o r t f o r P r e f e t c h i n g

R D S s

We now explore the impact of two key architectural issues on the
performance of our greedy prefetching algorithm.

5.4.1 N u m b e r of M e m o r y Func t iona l Uni t s

Prefetching RDSs increases the demand for memory functional
units in two ways. In addition to the prefetches themselves, we
may also need additional loads (e.g., for jump-pointers) to com-
pute the prefetch addresses. Figure 16(b) shows that an average
of 0.4-1.4 loads were required per prefetch. Although the actual

Figure 17: Greedy prefetching with excepting vs. non-excepting
prefetches (N = non-excepting, E = excepting). Execution time
is normalized to the N case.

MIPS R10000 contains only a single address calculation unit, we
ran the experiments presented thus far using two units, since
we found this to be important. Figure 16(a) shows the perfor-
mance when the number of memory units is varied for the five
applications that showed significant improvements under greedy
prefetching (the "2" bars correspond to the "G" bars in earlier
figures). As we see in Figure 16(a), having two memory units is
important, since it improves performance by up to 35% over a
single unit. The marginal gain of having four units is consider-
ably smaller.

5.4.2 S u p p o r t for N o n - E x c e p t i n g M e m o r y Ope ra t i ons

In array-based codes, invalid prefetch addresses typically only
occur if one prefetches off the end of an array. In contrast, invalid
prefetch addresses may occur frequently in RDS codes due to
invalid or NULL pointers. To quantify the benefit of having non-
excepting prefetches, we forced the greedy prefetching compiler
to enclose any prefetches that may have invalid addresses with a
NULL test. As we see in Figure 17, our dynamically-scheduled
processor was not able to hide all of this overhead, hence resulting

231

t
1~.0101.;~1q

u l

N G S N G N G S
bh bisort em3d

llllill01010 II1
N G S N G S N G S N G S
health rest p e r i m t e r p o w e r

(a) Execution Time

.......

N G S N G S
t r e e a d d tsp

N G S
v o r o n o |

m, II li ll,tl hl [t lj It II : i 5 5
| ! , _ 1so .7 .° 9 , 9,

so 49 55 48

. 9 ~ Qs Qs Qs o s Qs a s a s Gs Gs o o s o s o s Gs o s o s Qs o s Gs o s
bh Msort emSd heaim rest pe~mtMpower treeadd tsp voronol bLimrt emSd hsaRh rest ptdmetorpowM b'eeadd tsp voro41~

(b) Coverage Factor (c) Unnecessary Prefetches
f

Figure 18: Performance comparison between SPAID and greedy prefetching (N = no prefetching, G - greedy prefetching, S = SPAID).

in up to a 7% increase in execution time. In addition to non-
excepting prefetches, non-excepting load instructions also appear
to be quite useful for prefetching pointer-based codes, although
we currently are not exploiting them aggressively in our compiler.

6 Re la t ed W o r k

Although prefetching has been studied extensively for array-
based numeric codes [2, 16], relatively little work has been done
on non-numeric applications. Chen et al. [5] used global in-
struction scheduling techniques to move address generation back
as early as possible to hide a small cache miss latency (10 cy-
cles), and found mixed results. In contrast, our algorithms fo-
cus only on RDS accesses, and can issue prefetches much earlier
(across procedure and loop iteration boundaries) by overcoming
the pointer-chasing problem. Zhang and Torrellas [22] proposed a
hardware-assisted scheme for prefetching irregular applications in
shared-memory multiprocessors. Under their scheme, programs
are annotated to bind together groups of data (e.g., fields in
a record or two records linked by a pointer), which are then
prefetched under hardware control. Compared to our compiler-
based approach, their scheme has two shortcomings: (i) annota-
tions are inserted manually, and (ii) their hardware extensions
are not likely to be applicable in uniprocessors.

To our knowledge, the only compiler-based pointer prefetching
scheme in the literature is the SPAID scheme proposed by Lipasti
et al. [14]. Based on an observation that procedures are likely to
dereference any pointers passed to them as arguments, SPAID
inserts prefetches for the objects pointed to by these pointer ar-
guments at the call sites. Therefore this scheme is only effec-
tive if the interval between the start of a procedure call and its
dereference of a pointer is comparable to the cache miss latency.
To quantify the performance difference between SPAID and our
greedy prefetching scheme, we implemented several versions of
SPAID in our experimental framework with different numbers of
prefetches inserted per call site. Our results are consistent with

the conclusion in the SPAID paper [14] that the best performance
is achieved by inserting only one prefetch per call site--the S bars
in Figure 18 correspond to this optimal case. When a procedure
has multiple pointer arguments, we select the first one pointing to
any RDS to prefetch. We also improved the performance of the
proposed SPAID scheme for t reeadd from a slowdown of 13% to
a speedup of 14% by prefetching two cache lines at a time rather
than one. As we see in Figure 18, greedy prefetching outperforms
SPAID in all cases except rest. The problem with SPAID is that
it pays significant prefetching overhead without covering many
cache misses, as shown by the low coverage factors and high frac-
tion of unnecessary prefetches in Figure 18. In contrast, greedy
prefetching does a better job of choosing what to prefetch, and
can schedule prefetches earlier to hide more latency.

7 Future W o r k

Based on the lessons we have learned from these experiments,
we are currently extending our research in the following direc-
tions. First, we are exploring how to automate history-pointer
and data-linearization prefetching in the compiler--and how to
automatically choose the best scheme among the three for a
given application--to capture the benefits demonstrated in Sec-
tion 5.2. Second, the results in Section 5.3 suggest that improved
prefetching analysis can help to reduce overheads. However, since
predicting data locality through static compile-time analysis is
difficult--and since feedback-based compilation has its own set
of problems--we are exploring the possibility of generating code
with prefetching that dynamically adapts to its own memory be-
havior. Third, our experience with the rest application illustrates
the difficulty of prefetching hash table accesses, where linked lists
are quite short, and the head of the list is data-dependent on
the hashing function. To hide the latency in such cases, we must
prefetch before the hashing function is called--although the over-
heads of doing so may be significant, it does appear to be feasible.
Finally, we are investigating the performance of our schemes in
shared-memory multiprocessors, where although the large cache

232

miss latencies increase the potential benefit of prefetching, they
also intensify the pointer-chasing problem.

8 C o n c l u s i o n s

While automatic compiler-inserted prefetching has shown consid-
erable success in hiding the memory latency of array-based codes,
the compiler technology for successfully prefetching pointer-
based data structures has thus far been lacking. In this paper, we
propose three prefetching schemes which overcome the pointer-
chasing problem, we automate the most widely applicable scheme
(greedy prefetching) in the compiler, and we evaluate the perfor-
mance of all three schemes on a modern superscalar processor
similar to the MIPS R10000.

Our experiments show that automatic compiler-inserted
prefetching can accelerate pointer-based applications by as much
as 45%. In addition, the more sophisticated algorithms (which
we currently simulate by hand) can improve performance by as
much as twofold. Our experiments also demonstrate the poten-
tial benefit of using data locality information to further reduce
prefetching overhead.

From an architectural perspective, these encouraging results
suggest that the latency problem for pointer-based codes may be
addressed largely through the prefetch instructions that already
exist in many recent microprocessors. To fully exploit prefetch-
ing, our results indicate that an architecture should provide at
least two memory units and a non-excepting prefetch instruc-
tion. We believe that this work provides a foothold for additional
research on compiler-based prefetching for non-numeric applica-
tions.

9 Acknowledgments

This work is supported by grants from the Natural Sciences and
Engineering Research Council of Canada, and by a grant from
IBM Canada's Centre for Advanced Studies. Chi-Keung Luk is
partially supported by a Canadian Commonwealth Fellowship.
Todd C. Mowry is partially supported by a Faculty Development
Award from IBM.

References
[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April:

A processor architecture for multiprocessing. In Proceedings of
the 17th Annual International Symposium on Computer Archi-
tecture, pages 104-114, May 1990.

[2] J.-L. Baer and T.-F. Chen. An effective on-chip preloading
scheme to reduce data access penalty. In Proceedings of Super-
computing '91, 1991.

[3] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetch-
ing. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems, pages 40-52, April 1991.

[4] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimiza-
tions for improving data locality. In Proceedings of the Sixth
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 252-262, October
1994.

[5] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu.
Data access microarchitectures for superscalar processors with
compiler-assisted data prefetching. In Proceedings of Microcom-
puting '24, 1991.

[6] A. Deutsch. A storeless model of aliasing and its abstractions us-
ing finite respresentation of right-regular equivalence relations. In
Proceedings of the 199'2 International Conference on Computer
Languages, pages 2-13, April 1992.

[7] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive inter-
procedural points-to anMysis in the presence of function point-
ers. In Proceedings of the ACM SIGPLAN'94 Conference on
Programming Language Design and Implementation, pages 242-
256, June 1994.

[8] R. Ghiya and L. J. Hendren. Is it a Tree, a DAG, or a Cyclic
Graph? A shape analysis for heap-directed pointers in C. In
Proceedings of the 23rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 1-15,
January 1996.

[9] R. H. Halstead, Jr. and T. Fujita. MASA: A multithreaded pro-
cessor architecture for parallel symbolic computing. In Proceed-
ings of the 15th Annual International Symposium on Computer
Architecture, pages 443-451, June 1988.

[10] L.J. Hendren, J. Hummel, and A. Nicolau. A general data depen-
dence test for dynamic, pointer-based data structures. In Pro-
ceedings of the SIGPLAN'94 Conference on Programming Lan-
guage Design and Implementation, pages 218-229, June 1994.

[11] J. S. Kowalik, editor. Parallel MIMD Computation : The HEP
Supercomputer and Its Applications. MIT Press, 1985.

[12] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modifica-
tion side effect analysis with pointer aliasing. In Proceedings of
the SIGPLAN '93 Conference on Programming Language Design
and Implementation, pages 56-67, June 1993.

[13] J. Landon, A. Gupta, and M. Horowitz. Interleaving: A multi-
threading technique targeting multiprocessors and workstations.
In Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, pages 308-318, October 1994.

[14] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roedi-
ger. SPAID: Software prefetching in pointer- and call-intensive
environments. In Proceedings of the 28th Annual IEEE/A CM
International Symposium on Microarchitecture, 1995.

[15] T. C. Mowry. Tolerating Latency Through Software-Controlled
Data Prefetching. PhD thesis, Stanford University, March 1994.
Technical Report CSL-TR-94-626.

[16] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evalua-
tion of a compiler algorithm for prefetching. In Proceedings of
the Fifth International Conference on Architectural Support for
Programming Languages and Operating "Systems, pages 62-73,
October 1992.

[171 A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting
dynamic data structures on distributed memory machines. ACM
Trans. on Programming Languages and Systems, 17(2), March
1995.

[18] M. D. Smith. Tracing with pixie. Technical Report CSL-TR-91-
497, Stanford University, November 1991.

[19] C. J. Stephenson. Fast fits. In Proceedings of the ACM 9th
Symposium on Operating Systems, October 1983.

[20] S. W. K. Tjiang and J. L. Hennessy. Sharlit: A tool for building
optimizers. In SIGPLAN Conference on Programming Language
Design and Implementations 1992.

[21] M. E. Wolf and M. S. Lain. A data locality optimizing algorithm.
In Proceedings of the SIGPLAN '91 Conference on Programming
Language Design and Implementation, pages 30-44, June 1991.

[22] Z. Zhang and J. Torrellas. Speeding up irregular applications
in shared-memory multiprocessors: Memory binding and group
prefetching. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 188-200, June
1995.

233

