
Abstract

Title of dissertation: COMPILER-DECIDED DYNAMIC

MEMORY ALLOCATION FOR SCRATCH-PAD

BASED EMBEDDED SYSTEMS

Sumesh Udayakumaran, Doctor of Philosophy, 2006

Dissertation directed by: Professor Rajeev Barua

Department of Electrical and Computer Enginnering

In this research we propose a highly predictable, low overhead and yet dynamic,

memory allocation strategy for embedded systems with scratch-pad memory. A

scratch-pad is a fast compiler-managed SRAM memory that replaces the hardware-

managed cache. It is motivated by its better real-time guarantees vs cache and by

its significantly lower overheads in energy consumption, area and overall runtime,

even with a simple allocation scheme.

Scratch-pad allocation methods primarily are of two types. First, software-

caching schemes emulate the workings of a hardware cache in software. Instructions

are inserted before each load/store to check the software-maintained cache tags.

Such methods incur large overheads in runtime, code size, energy consumption and

SRAM space for tags and deliver poor real-time guarantees, just like hardware

caches. A second category of algorithms partitions variables at compile-time into

the two banks. However, a drawback of such static allocation schemes is that they

do not account for dynamic program behavior.

We propose a dynamic allocation methodology for global and stack data and

program code that (i) accounts for changing program requirements at runtime (ii)

has no software-caching tags (iii) requires no run-time checks (iv) has extremely low

overheads, and (v) yields 100% predictable memory access times. In this method

data that is about to be accessed frequently is copied into the scratch-pad using

compiler-inserted code at fixed and infrequent points in the program. Earlier data

is evicted if necessary. When compared to an existing static allocation scheme,

results show that our scheme reduces runtime by up to 39.8% and energy by up to

31.3% on average for our benchmarks, depending on the SRAM size used. The actual

gain depends on the SRAM size, but our results show that close to the maximum

benefit in run-time and energy is achieved for a substantial range of small SRAM

sizes commonly found in embedded systems. Our comparison with a direct mapped

cache shows that our method performs roughly as well as a cached architecture in

runtime and energy while delivering better real-time benefits.

Compiler-Decided Dynamic Memory Allocation for Scratch-Pad
Based Embedded Systems

by

Sumesh Udayakumaran

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Rajeev Barua, Chair/Advisor
Professor Donald Yeung
Professor Shuvra Bhattacharrya
Professor Peter Petrov
Professor Chau Wen Tseng

c© Copyright by

Sumesh Udayakumaran

2006

This dissertation is dedicated to my loved ones, without whose support I could not

have completed this journey.

ii

ACKNOWLEDGMENTS

At times our own light goes out and is rekindled by a spark from another

person. Each of us has cause to think with deep gratitude of those who have lighted

the flame within us.

Albert Schweitzer

With these thoughts in mind, I embark on this humble duty to acknowledge

different people who have contributed to that light in their own ways.

First and foremost, I acknowledge my parents, my brother and my sister-in-

law whose concern for my health and wellbeing, always drives me to work harder

towards my goals.

I would also like to acknowledge those who have helped me to complete this

dissertation. My advisor, Dr. Rajeev Barua, has been an outstanding motivator.

I have learnt several important aspects of research from him, including technical

writing and preparing presentations. But most of all, I am extremely indebted to

him for all the valuable time he spent discussing my research and his help with

various publications and presentations.

I would also like to thank my committee members who gave valuable feedback

on my dissertation.

I also wish to thank several of my colleagues. I am most thankful to Angelo

Dominguez, whose help with the infrastructure was extremely invaluable. I am

iii

grateful to Surupa Biswas, Tom Carley, Steve Haga, Bhuvan Midha, Nghi Nguyen,

Mathew Simpson for their help with paper reviews and comments on my presen-

tations. I am also indebted to several of my fellow PhD friends – Brinda Ganesh,

Ankush Verma, Wanli liu, Sadagopan Srinivas – for their various inputs to my dis-

sertation.

Doing my PhD has been a tremendous learning experience for me. The 4 years

I have spent has given me the opportunity to learn and grow as a human being. The

journey would not have been so joyful and enriching if not for my friends in and

outside Maryland. I especially recognize the contribution of my friends – friends at

Yoga classes, tennis/racquetball sessions and friends sharing thoughts on spirituality,

politics and computer architecture – in keeping my spirits up through this journey.

Lastly, I believe the acknowledgement would be incomplete if I do not thank

the light within all of us that leads and guides us to live constructively.

iv

TABLE OF CONTENTS

1 Introduction 1
1.1 Our dynamic method for scratch-pad

management . 5
1.1.1 Scope and restrictions . 7
1.1.2 Impact . 8

1.2 Overview of thesis . 9

2 Scratch-Pad Memory 11
2.1 Relevance of scratch-pad memory in

embedded system design . 12
2.2 Scratch-pad management . 15

2.2.1 Software caching . 16
2.2.2 Static allocation . 17

2.3 Example architectures . 18
2.4 Summary . 20

3 Dynamic Allocation Overview 21
3.1 Designing a dynamic strategy . 22
3.2 Characteristics of our allocation strategy 26
3.3 Dynamic solution overview . 28
3.4 Dynamic memory allocation parts . 29
3.5 Summary . 31

4 Dynamic Allocation Algorithm 32
4.1 Deriving regions and timestamps . 32
4.2 Allocation of Global and Stack Objects 37
4.3 Algorithm extension for code objects 47

5 Handling Program Features 52
5.1 Join nodes . 52
5.2 Recursive functions . 55
5.3 Goto statements . 55

6 Layout and Code Generation 57
6.1 Layout assignment . 57
6.2 Code generation . 60

v

6.2.1 Code generation for accessing variable in scratch-pad 60
6.2.2 Memory transfer code . 64

7 Handling Pointers 66
7.1 Impact of invalid pointers on program

correctness . 67
7.1.1 Pointer translation . 68
7.1.2 Address constraining . 73

7.2 Impact of function pointers on program
correctness . 75

7.3 Impact of pointers on liveness . 76
7.4 Summary . 77

8 Framework For Partial Variable Optimizations 78
8.1 Generating partial variables . 81

8.1.1 Affine analysis for partial arrays 82
8.1.2 Adapting structure splitting 97
8.1.3 Impact of loop transformations 99

8.2 Framework extensions . 104
8.3 Summary . 107

9 Related Work 108
9.1 Software methods . 109

9.1.1 Static methods . 110
9.1.2 Dynamic methods . 110

9.2 Methods using hardware . 121

10 Results 125
10.1 Static method comparison . 127
10.2 Comparison with caches . 148
10.3 Results on dynamic method integrated with partial array handling . 153
10.4 Results on pointer handling . 158

11 Conclusion and Future work 162

vi

LIST OF TABLES

10.1 Application programs for comparison with static method. 129

10.2 Useful range of dynamic method and run-time gain vs. static allocation.130

10.3 Program and region statistics. 139

10.4 Additional scratch-pad memory area required by static allocation to
match runtime of dynamic method. 144

10.5 Benchmark programs for our experiments on integrated algorithm. . . 154

10.6 Benchmarks and characteristics for testing pointer handling strategy. 159

vii

LIST OF FIGURES

2.1 Architecture with scratch-pad . 12

2.2 Architecture with cache. 12

2.3 Per-access energy comparison between scratch-pad memory and var-
ious cache configurations. 14

2.4 Area comparison between scratch-pad memory and various cache con-
figurations. 14

2.5 Per-access latency comparison between scratch-pad memory and var-
ious cache configurations. 15

3.1 Dynamic memory allocation methodology 29

4.1 Example showing a program outline 34

4.2 Example showing the DPRG showing nodes, edges & timestamps. . . 35

4.3 Example DPRG with code nodes. 49

4.4 An example coalesced DPRG. 50

7.1 Code fragment with calls to the translate function for pointer p . . . 69

7.2 Translation and retranslation function 71

8.1 Part of a DPRG with partial variables 80

8.2 An example loop with affine references 91

8.3 Example output of affine analysis phase 92

8.4 Structure splitting optimization . 98

viii

9.1 Different kinds of scratch-pad allocators 109

10.1 Runtime gain from our dynamic method vs. static method for differ-
ent SRAM sizes. 133

10.2 Percentage of memory accesses going to the DRAM and Flash for
each benchmark for the maximum benefit configuration. 135

10.3 Reduction in energy consumption from dynamic method for the max-
imum benefit configuration. 136

10.4 Run-time gain for different data-transfer methods for the maximum
benefit configuration. 140

10.5 Run-time gain for different data-transfer methods 141

10.6 Effect of varying DRAM and Flash latencies on run-time gain from
our method for the maximum benefit configuration. 142

10.7 Comparison of our address assignment with perfect address assignment.145

10.8 Runtime comparison of profiled data-set and non-profile data-sets . . 146

10.9 Normalized run time for a cache only and scratch-pad only architec-
ture measured for maximum benefit configuration 147

10.10Normalized energy consumption for a cache only and scratch-pad
memory only architecture measured for maximum benefit configuration148

10.11Normalized runtime and worst-case runtime for cached architecture . 152

10.12Normalized runtime for our integrated method, different affine-only
methods, non-affine method and static method. 155

10.13Runtime overhead of pointer handling strategies. 159

ix

List of Algorithms

1 Algorithm for determining dynamic memory allocation 40
2 Algorithm to generate partial variables for affine references 94

x

Chapter 1

Introduction

The growing use of computing power in different aspects of daily life has led to

embedded systems becoming an important focus of computer architecture research

today. In these systems, performance requirements are accompanied by other goals

such as low power consumption and suitable form factor. Designers also often face

the challenge of ensuring that the task finishes its execution within a specified time.

Performance also being an important requirement in embedded systems, the

processor memory gap problem is also an issue in embedded systems. Towards

bridging this gap, design of memory systems has received a lot of attention. Mem-

ory systems generally are organized using a variety of devices that serve different

purposes. Devices like SRAM and flash memory are fast but expensive. On the

other hand, devices like DRAM and magnetic disks are slower but being cheaper

can be used to provide capacity. Designing a memory system therefore involves us-

ing small amounts of faster devices like SRAM along with slower devices like DRAM

to obtain satisfactory performance while keeping a check on the overall dollar cost.

In desktops, the usual approach to adding SRAM is to configure it as a hard-

1

ware cache. The cache dynamically stores a subset of the frequently used data in

on-chip memory. Caches have been a big success for desktops, a trend that is likely

to continue in the future. Caching is essential in desktop systems for another rea-

son. Using non-cached SRAM is usually not feasible for desktops; one reason is

the lack of binary-code portability. Caching, due to its runtime nature, delivers an

important benefit for desktop systsms – that of transparency with respect to the

cache parameters like the size and associativity. Allocations that are decided when

the application is compiled require that the size of the on-chip memory be known;

otherwise, they cannot reason about what variables will fit into it. This contrasts

with cache allocation which is decided only at run-time; and hence does not re-

quire compile-time knowledge of the size of cache. Binary portability is valuable for

desktops, where independently distributed binaries must work on any cache size.

Memory organization for embedded systems has other design constraints and

issues. Apart from performance, memory organizations now also have to meet other

embedded systems goals like real time guarantees, low power consumption and form

factor restrictions. However, unlike in desktop systems allocation solutions do not

have to provide binary portability. In embedded systems, software is configured

along with the hardware in the factory and rarely changes thereafter. This means

that embedded system designers can afford to customize the SRAM to a particular

size to reap the additional cost savings from customization. This makes alterna-

tives like deciding the allocation strategy at compile time possible. However, the

appropriate allocation strategy depends on the environment and requirements of

the embedded device. Thus, the choice of allocation strategy is an integral part of

2

memory system design of en embedded system.

Runtime memory management strategies such as hardware caching are often

not useful for embedded systems. Typically, embedded systems are used in resource-

constrained environments that places constraints like deterministic behavior, low

power consumption and small form factor on them. Subsequently, for embedded

systems the serious overheads of caches are less defensible. The extra tag hardware

that accompanies a cache adds significant power, area and latency overhead; not to

mention the non-deterministic behavior of the memory system in the presence of

cache. A recent study [13] has shown that non-cached SRAM’s use 34% lesser area

and consume 40% lower power than a cache of the same capacity. These savings are

significant since the on-chip cache typically consumes 25-50% of the processor’s area

and energy consumption, a fraction that is increasing with time [13]. Moreover, the

cacti tool [24] shows that the access latency of caches is significantly lower than that

of non-cached SRAM memory of the same capacity. So using a non-cached SRAM

is an promising alternative for embedded systems. Such memory is also called

scratch-pad memory. Given the power, cost, performance and real time advantages

of scratch-pad, it is not surprising that scratch-pads are the most common form of

on-chip SRAM in embedded CPUs today. Some examples of processors with scratch-

pad memory are the Intel IXP network processor, ARMv6 and ARM968E-S, IBM

440 and 405, Motorola’s MCORE, 6812 and Dragonball, TI TMS-370, Hitachi’s

MS32R-32192 and SuperH-SH7050, Infineon XC166, Philips LPC2290, and Atmel

AT91-C140; there are many others. Trends in recent embedded designs indicate that

the dominance of scratch-pad will likely consolidate further in the future [13] [49].

3

Although many embedded processors with scratch-pad exist, using the scratch-

pad effectively has been a challenge. In contrast, caches have been effectively used

in desktop systems for a long time. Central to the effectiveness of caches is their

ability to maintain, at each time during program execution, the subset of data

that is frequently used at that time in the fast memory. The contents of cache

constantly change during runtime to reflect the changing working set of data across

time. Unfortunately, two of the existing allocation approaches for scratch-pad –

program annotations and the recent compiler-driven approaches [11, 12, 73] – are

static allocators, i.e., they do not change the contents of scratch-pad at runtime.

This is a serious limitation. For example, consider the following thought experiment.

Let a program consist of three successive loops, the first of which makes repeated

references to array A; the second to B; and the third to C. If only one of the

three arrays can fit within the scratch-pad, then any static allocation suffers DRAM

accesses for two out of three loops. In contrast, a dynamic strategy can fit all three

arrays in the scratch-pad at different times. Although this example is oversimplified,

it intuitively illustrates the benefits of dynamic allocation.

In this thesis, we present a new compiler method for allocating three types of

program objects – global variables, stack variables and program code – to scratch-

pad. The method’s feature is that it is able to change the allocation at runtime while

avoiding the overheads of runtime methods. The method (i) accounts for changing

program requirements at runtime; (ii) has no tags like used by runtime methods;

(iii) requires no run-time checks per load/store; (iv) has extremely low overheads;

and (v) yields 100% predictable memory access times.

4

In the rest of the chapter, we first outline our method. We then outline the

layout of the thesis. Finally, we summarize the important contributions of the thesis.

1.1 Our dynamic method for scratch-pad

management

Our method is outlined as follows. The compiler analyzes the program to

identify locations we call program points where it may be beneficial to insert code

to copy a variable from DRAM into the scratch-pad. It is beneficial to copy a

variable into scratch-pad if the latency gain from having it in scratch-pad rather

than DRAM is greater than the cost of its transfer. A profile-driven cost model

estimates these benefits and costs. The compiler ensures that the program data

allocated to scratch-pad fits at all times by occasionally evicting existing variables

in scratch-pad to make space for incoming variables. In other words, just like in a

cache, data is moved back and forth between DRAM and scratch-pad, but under

compiler control, and with no additional overhead.

Key components of our method are as follows. (i) To reason about the contents

of scratch-pad across time, it helps to attach a concept of time to the above-defined

program points. Towards this end, we introduce a new data structure called the

Data-Program Relationship Graph (DPRG) which associates a timestamp with each

program point. (ii) A detailed cost model is presented to estimate the runtime cost

of any proposed data transfer at a program point. (iii) A compile-time heuristic is

5

presented that uses the cost model to decide which transfers minimize the runtime.

Program Code Our base method can allocate global and stack objects. We also

separately show how our method can also easily be extended to allocate program

code objects. Although, code objects are accessed more heavily than data objects

(one fetch per instruction), dynamic schemes like ours are not likely to be applicable

in all cases for two reasons. First, compared to data caches the use of instruction

caches is more feasible due to their effectiveness at much smaller sizes. So it is not

uncommon to find instruction caches (but not data caches) especially in high end

embedded systems like Motorola’s STARCORE, MFC5xx and 68HC. Second, for

low and medium end embedded systems code is typically stored in ROM/flash. An

example of such a system is Motorola’s MPC500. Unlike DRAM devices, ROM/flash

devices have lower seek times (in the order of 75ns-120ns, 20 ns in burst/page

mode) and power consumption. For low end embedded systems, this would mean

an access latency of a cycle or two. For such low end embedded systems using

ROM/Flash where cost is also a lot more important factor, speeding up accesses

to code objects as compared to accesses to data objects in DRAM is not very

attractive. Nevertheless, for high end systems, which store code in ROM/flash such

as the Motorola MCORE and Motorola 6812, methods to speed up accesses to code

can improve performance immensely. Our proposed extension for handling code

would thus enable our dynamic method to be used for speeding up code accesses in

such systems.

6

1.1.1 Scope and restrictions

Profile dependence Our method is profile-dependent; that is, its improvements

are dependent upon how representative the profile data set really is. Indeed, all

existing scratch-pad allocation methods, whether compiler-derived or programmer-

specified, are inherently profile-dependent. This cannot be avoided since they all

need to predict which data will be frequently used. Further, our method does not

require the profile data to be like the actual data in all respects; so long as the

relative re-use trends between variables are similar in the profile and actual data,

good allocation decisions will be made, even if the re-use factors are not identical.

A regions gain may even be higher with non-profile data if its data re-use is more

than in the profile data.

Heap data Our method does not allocate heap data in the program to the scratch-

pad. Programs with heap data still work; however, all heap data is allocated to

DRAM and the global stack and program code can still use the scratch-pad us-

ing our method, but no SRAM acceleration is obtained for heaps. Heap data is

difficult to allocate to the scratch-pad at compile-time because the total amount

and lifetime of heap data is often data-dependent and therefore unknowable at

compile-time. Software caching strategies [36, 59] can be used for heap, but they

have significant overheads. Method for allocating heap data to scratch pad [32] can

be easily integrated with our method; indeed that paper shows how.

7

1.1.2 Impact

Here we briefly preview the benefits of adopting our method over both exist-

ing compile-time technologies like static allocation and hardware mechanisms like

caching.

Quantitative benefits If adopted, the impact of this work will be a significant

improvement in the cost, energy consumption, and runtime of embedded systems.

Our results show up to 39.8% reduction in run-time for our method for global and

stack data and code vs. an existing static allocation scheme. With hardware sup-

port for DMA, present in some commercial systems, the runtime gain increases to

up to 42.3% respectively. The actual gain depends on the SRAM size, but our re-

sults show that close to the maximum benefit in run-time and energy is achieved

for a substantial range of small SRAM sizes commonly found in embedded systems.

Using an accurate power simulator, our method also shows up to 31.3% reduction

in energy consumption vs. an existing static allocation scheme. Our method also

does marginally better than a cached architecture both in runtime and energy con-

sumption. Finally, integrating our method with optimizations for partial variable

handling gives it ability to provide gains at much smaller SRAM sizes. At the same

time, the method still remains generally applicable for a large variety of programs.

The details of our results are provided in chapter 10.

Real-time guarantees Not only does our method improve run-time and energy

consumption, it also improves the real-time guarantees of embedded code. Our

method like all compiler-decided allocation methods, guarantees that the latency of

8

each memory instruction is known for sure. This translates into the behavior of the

memory system becoming totally predictable, thus immensely aiding in obtaining

a better WCET. Such real time benefits of scratch-pad have been observed before

too [89]; by improving runtime our method aims to improve the WCET’s more than

the existing static methods.

1.2 Overview of thesis

This section gives an overview of the thesis. First, it summarizes the significant

contributions of the thesis. Second, it gives an overview of the rest of the chapters.

Contributions Our thesis makes the following contributions.

• This research – the first version of which was published in [83] – represents

the first solution to the problem of compile-time dynamic allocation of the

scratch-pad memory using whole program analysis.

• To aid in a whole program analysis, the thesis introduces the notion of a

timestamped representation of the program. Such a representation, we believe,

can be useful in other region based optimizations.

• Towards making the solution comprehensive, the method can handle various

program structures and data types like pointer variables.

• The thesis provides an extension of the base solution to also allocate code

variables. This makes it a general solution capable of handling all non-heap

variables.

9

• Further, the thesis extends the method to a framework that can incorporate

a variety of optimizations that can create partial variables.

• To prove the effectiveness of the framework, the thesis presents an affine analy-

sis based optimization that can exploit the presence of affine accesses to arrays

in the code and create smaller partial variables.

• Finally, the method is implemented inside the gcc compiler as a proof of its

implementation viability in a commercial compiler.

Organization

The rest of the thesis is organized as follows. Chapter 2 introduces scratch-pad

memory and some aspects concerning its management. Chapter 3 overviews some

basics of our method. Chapters 4 through chapter 6 describe the details of the

method are described. Chapter 4 describes the precise method used to determine

the memory transfers of global and stack variables at each program point. Chap-

ter 5 describes how the algorithm is modified to correctly handle certain language

features. Chapter 6 describes the layout of variables in scratch-pad and the process

of code generation. Chapter 7 addresses how to handle programs with pointers.

Chapter 8 extends the method to a framework that can use various partial-variable

optimizations. It presents an example of how this can be done with the help of

affine-analysis-based optimization. Chapter 9 overviews related work. Chapter 10

presents an evaluation of our methodology. Chapter 11 concludes and discusses

some future direction.

10

Chapter 2

Scratch-Pad Memory

In this chapter, we discuss the concept of a scratch-pad memory. We further

look at its benefits for embedded systems and importance of its management.

Scratch-pad memory refers to on-chip memory that has a separate address

space as seen by the CPU. Such memory can be on chip SRAM or DRAM. The

terminology, perhaps, owes its origin to the use of such memory by CPU in some

superscalar processors for storing intermediate values or instructions, in other words

used as a scratch-pad memory. They are also sometimes referred as on-chip memory

or tightly coupled memory. The main characteristic of such memory is that it

is an explicit part of the complete address space. In other words, while a cache

memories address space is part or whole of the off-chip address space, a scratch-pad

memory has an address space outside the off-chip memory. Figure 2.1 and Figure

2.2 illustrates this difference.

The rest of the chapter is organized as follows. Section 2.1 describes the

benefits of using scratch-pad memory in an embedded device compared to using a

hardware cache. Section 2.2 overviews the importance of appropriate scratch-pad

11

Figure 2.1: Architecture with scratch-pad. Figure 2.2: Architecture with cache.

management technology with the help of two existing management technologies.

Finally, section 2.3 illustrates a few architectures that use the scratch-pad.

2.1 Relevance of scratch-pad memory in

embedded system design

Scratch-pad memories offer some inherent advantages that work towards mak-

ing them a more favorable alternative in embedded system design. Banakar et al

in [13] argued the case for use of scratch-pad in embedded systems. They reported

significant area, energy and latency gains for scratch-pad based embedded systems.

With the help of experiments similar to ones described by them, we show comparison

between different cache configurations and scratch-pad memory in figures 2.3, 2.4

and 2.5. These figures respectively show how area, per-access energy cost and per-

access latency vary for different sizes and different associativities. The sizes vary

from 64K to 512 K. The associativity is varied from direct mapped to associativity

of 4. The cache line size is chosen as 8 words and the technology fixed at 0.5 micron.

12

The numbers for the scratch-pad memory for a particular size is obtained from the

numbers of a direct mapped cache for that size by subtracting the contribution of

the tags.

From figure 2.3, we see that across all configurations, scratch-pad memory

consumes the least energy per-access. Energy is an important criterion in embedded

system design. Embedded systems are often battery powered. Due to weight, size

and cost constraints, these systems have to carry batteries limited in their power

availability. Power consumption also impacts the heat dissipation of the device,

which is factor in the usability of the device. With a lower per-access energy cost,

scratch-pad memory devices promise lower power consumption. The reduction in

energy is further helped by the reduction in area. In figure 2.4, we see that scratch-

pad devices also use lesser area for the same SRAM size. Area reduction in turn

leads to reduction in leakage current. Area reduction also means an improvement

in the production efficiency of the chips.

Scratch-pad devices also have lower per-access latency. This is seen in fig-

ure 2.5. Although this by itself does not translate into overall performance benefit

over caching, it offers the promise that good overall performance can be achieved.

These gains can be attributed to the absence of tags and other overhead bits in

a scratch-pad memory. The lack of tags also means that the designer is free to choose

his own memory management. Such a choice can be based on the specific needs of his

system. This, as we will see, is very useful as allocation strategies can have significant

impact on the constraints of an embedded system, particularly the predictability of

the memory system. The predictability of the memory system is an important

13

Figure 2.3: Per-access energy comparison between scratch-pad memory and various

cache configurations.

Figure 2.4: Area comparison between scratch-pad memory and various cache config-

urations.

14

Figure 2.5: Per-access latency comparison between scratch-pad memory and various

cache configurations.

component in providing real time guarantees. A proper allocation strategy is also

important in translating the inherent advantages of a scratch-pad memory to benefits

for the system. The absence of tags positions scratch-pad based systems to better

meet the goals of embedded systems compared to cached architectures.

2.2 Scratch-pad management

In order that the above said advantages of scratch-pad over cache translate

into benefits for the system, the choice of scratch-pad allocation strategy is very im-

portant. Different strategies favor different criterion. We will now using two existing

strategies, software caching and static allocation, see how a particular criterion is

affected by allocation strategies.

15

2.2.1 Software caching

Software caching [36, 59] represents a dynamic allocation strategy. This class

of methods emulate the behavior of a hardware cache in software. In particular, a

tag consisting of the high-order bits of the address is stored for each cache line in

software. Before each load or a store, additional instructions are compiler-inserted

to mask out the high-order bits of the address, access the tag, compare the tag with

the high-order bits and then branch conditionally to hit or miss code. On a hit, in

the hit code, using a mapping table the address is mapped to a new address in the

scratch-pad where the data resides. Otherwise it is a cache miss and new data is

brought into the scratch-pad. At that point, the index tables are updated to reflect

the presence of this new data in the scratch-pad. Being a runtime strategy like

caching, the strategy can adapt to runtime conditions. This makes it particularly

suited for workloads whose runtime conditions continuously vary.

However, the use of the extra inserted instructions also leads to some draw-

backs. Some methods are able to reduce the number of such inserted overhead

instructions [59], but much of it remains, especially for non-scientific programs.

Needless to say, the inserted code adds significant overhead, including (i) additional

runtime; (ii) higher code size and dollar cost; (iii) higher data size and cost from tags;

(iv) higher energy consumption; and (v) memory latency that is as unpredictable as

hardware caches. Similar to a cache, it is hard to predict if the latency of a memory

access would be that of a cache hit or a cache miss. Unpredictable memory latency

makes such a scheme unsuitable for applications with hard real time deadlines.

16

2.2.2 Static allocation

In static management of scratch-pad memory, the contents of the scratch-pad

are decided at compile time itself. A simple way of doing this is based on programmer

hints. Thus, the programmer provides annotations that tell if a variable is to be put

into the scratch-pad address space or not. In such a scheme, it is the programmer

responsibility to ensure that a particular variable fits completely inside the scratch-

pad address space. To make this process efficient, the selection strategy can be based

on compiler analysis of the application. Examples of such static allocation strategies

include [12, 13, 73, 77]. The advantage of a static scheme is that it does not involve

any additional per-access overhead like that of software caching as no translation

is required. So the inherent gains of a scratch-pad memory are still preserved. No

translation gives scratch-pad memory yet another advantage that makes it suited

for real time applications. For most memory memory access, its exact location is

known and hence also known is its latency. This enables predicting the memory

system behavior accurately.

A drawback of the static scheme is that being a static scheme, the allocation

cannot adapt to changing runtime conditions. This makes it unsuitable for memory

bound embedded applications where performance heavily depends on the program

locality. Examples of such applications are high performance scientific and DSP

applications. In spite of the drawback, researchers have shown for a limited set of

benchmarks that the inherent advantages of a a scratch-pad over the cache can be

translated to overall runtime, energy gains when compared to a cache [13].

17

2.3 Example architectures

Due to the numerous advantages offered by scratch-pad memory, it is dominant

in embedded systems. The prevalence of scratch-pad memory in embedded systems

is evident from the large variety of chips with scratch-pad memory available today

in the market (e.g., [1, 20, 41, 42, 60, 61, 81]).

A large number of systems exist that only use scratch-pad memory. Examples

of such architectures include low-end chips such as the Motorola MPC500, Ana-

log Devices ADSP-21XX, Motorola Coldfire 5206E; mid-grade chips such as the

Analog Devices ADSP-21160m, Atmel AT91-C140, ARM 968E-S, Hitachi M32R-

32192, Infineon XC166 and high-end chips such as Analog Devices ADSP-TS201S,

Hitachi SuperH-SH7050, and Motorola Dragonball. However, sometimes in some

high-end systems, scratch-pad memory is used in conjunction with either only Icache

or Dcache or sometimes both. This is done with the objective of combining the

benefits of both cache and scratch-pad memory. A majority of these systems also

provide DMA hardware for fast data transfers. We now illustrate some represen-

tative processors with varying scratch-pad memory based memory systems. Apart

from showing how scratch-pad memory is useful in these processors, these examples

also point to how the scratch-pad memory fits into the overall architecture of the

processor.

ARM968E-S The ARM968E-S [9], which belongs to ARM9E family, is tar-

geted for embedded real-time applications. Its key characteristic is that it is small

and low power. Its size and power advantages are partly contributed by separate

18

scratch-pad memories for instruction and data. The scratch-pad memory is also

termed tightly coupled memory and has customizable sizes. The ARM968E-S has

a dual-banked scratch-pad to store data and a DMA controller to share access to

the scratch-pad memory. The DMA interface accesses the data scratch-pad (also

called data tightly coupled memory or DTCM) through two separate ports, D0TCM

and D1TCM. The processor and the DMA controller alternately access the D0TCM

and D1TCM ports. This unique feature enables the DMA port to move external

data blocks into the Data scratch-pad without stalling the processor access during

the DMA block move. Some of the applications its particularly found use in are:

networking systems, wireless devices, storage devices consumer devices like audio

players.

MPC565 The MPC565 [62] from Motorola belongs to the MPC500 family.

The MPC500 family is targeted at a variety of Global Positioning Systems (GPS),

ranging from high-velocity, fast acceleration aircraft applications to low-speed, high

precision agriculture applications. Its memory sub-system consists of 1Mbyte of

embedded Flash memory and 36 KB scratch-pad memory. The scratch-pad is useful

in storing the data read by the sensors, while the embedded flash stores the code.

The 1Mbyte of embedded Flash is divided into 2 blocks of 512 Kbytes. Because the

memory is configured into two separate blocks, program code can be executed from

one block of Flash while programming into the other.

ADSP-21262 The ADSP-21262 [4] from Analog Devices belongs to the SHARC

programmable DSPs. The ADSP-21261 chip is used in a range of processors such as

high-quality audio and automotive entertainment systems, voice recognition, med-

19

ical appliances and measurement. The memory system of ADSP-21262 represents

how scratch-pad memory can be combined with different devices to provide a sophis-

ticated memory system. The memory system includes 256 KB of on-chip dual-ported

scratch-pad memory, 512 KB of mask programmable ROM memory and an on-chip

instruction cache of size 192 KB. The scratch-pad is dual-ported and enables sus-

tained processor and I/O performance without the need for external memory. For

fast delivery between the scratch-pad and the main memory, it has 22 zero-overhead

Direct Memory Access (DMA) channels, thus avoiding processor intervention. The

cache is used only when there is a conflict for the program memory bus between

instruction fetches and data fetches. This cache allows full-speed execution of core

and looped operations such as digital filter multiply-accumulates.

2.4 Summary

Scratch-pad memory offers several inherent advantages like lesser area, faster

per-access time and lower per-access energy cost. The choice of the allocation strat-

egy is important in not only translating these advantages to benefits for the system

but also ensuring other requirements like real time guarantees. Due to these advan-

tages, scratch-pad memory systems find use in many embedded systems in variety

of ways.

20

Chapter 3

Dynamic Allocation Overview

In the absence of hardware that helps un runtime management of memory,

ensuring good performance in the case of scratch-pad memory becomes the task of

the allocation algorithm. The role of the allocation algorithm is crucial in preserving

the advantages of a scratch-pad memory over a cache like lower per access energy

consumption, lesser area. Allocation algorithms have their most influence on the

behavior of the application – whether its memory system behaves deterministically

or not. Totally dynamic allocation algorithms that modify the memory contents

based on run-time conditions cannot provide good real time guarantees. Static

allocation schemes, although they provide for deterministic memory behavior, do

not adapt to runtime conditions; thus limiting their performance. So while the

allocation being dynamic is good for performance, it conflicts with providing real

time guarantees.

The motivation of this thesis is to explore a dynamic strategy that also offers

good real time guarantees. With such a strategy we target embedded real time

application that also require performance and low energy consumption. In this

21

chapter we discuss some of the basic aspects of such a strategy. Section 3.1 defines

some of the parameters of our solution strategy. Section 3.2 looks at some of the

characteristics of our method, some of which manifest as challenges in the problem.

3.1 Designing a dynamic strategy

Our choice of these features is guided by the applications we have targeted

– applications that have severe real time requirements. Additionally, we assume

that these applications are run in resource constrained environment and hence are

required to consume less power, have small memory footprint while also having a

performance requirement.

Greedy versus non-greedy solutions

We first consider if the dynamic algorithm should be heuristic driven or oth-

erwise. Towards that we prove that the problem is NP-hard.

Theorem 1. The dynamic memory allocation problem for Scratch-pad memory sys-

tems is NP-hard.

Proof. The dynamic allocation problem can be shown to NP-hard by reducing the

problem from register allocation; register allocation has been proven NP-Complete [69].

Consider the problem of global register allocation with k registers; each reg-

ister of size v words and an input variable set A. An equivalent dynamic memory

allocation problem can be constructed by the following two steps. First, determine

the scratch-pad size as k*v. Second, enforce a alignment restriction of v bytes.

Each of these steps is trivially done. Thus, from the NP-Completeness of register

22

allocation [69], it follows that the dynamic allocation problem is NP-hard.

The consequence of theorem 1 is that polynomial-time optimal solutions are

highly unlikely. With that in mind, we develop a heuristic solution. Our heuristic-

driven algorithm exploits several well known algorithm and program properties.

First, we restrict our program points to only points those that are likely to be useful.

Second, we use a divide-and-conquer approach to divide our problem into several

subproblems. Each of these problems falls into variants of well-known classical

problems namely the 0/1 knapsack problem and the bin packing problem that have

good greedy solutions.

Pseudo dynamic versus dynamic Next we consider if the algorithm should

be purely dynamic or not. The drawback of truly dynamic allocations is that the

memory behavior is then non-deterministic, which then impacts the real time guar-

antees. On the other end, static allocations do not exploit the locality of the appli-

cation and are hence likely to be inferior in runtime.

We choose a profile-guided pseudo-dynamic allocation strategy and hence

avoid a purely dynamic strategy. Using the profile information we find a dynamic al-

location at compile time. This involves using the compiler to insert code at different

program points to change the contents of the scratch-pad memory at different points.

While this can exploit the locality to some extent, the contents of the scratch-pad

are known exactly at different program points. This leads to total predictability of

latency for each memory access.

Number of allocations at a program point Due to the presence various

23

control structures, program execution can pass through a particular program point

multiple times; some of the paths through the point may be different from the others.

This leads to the following design question: how many different allocation should

be associated with a particular program point. A purely dynamic solution can be

considered one where allocation at any point is totally unconstrained. An example

of such a strategy is software caching discussed earlier. However, software caching

has drawbacks of non-determinism and per-access translation cost. A slightly less

dynamic allocation could be one where at any point a set of allocations is determined

for different execution paths through the point. We here consider if such alternative

methods can be designed that avoid the per-access translation overhead and non

determinism in truly dynamic allocations. We will see why two such approaches we

speculate on are not likely to be successful1.

First, cloning makes a copy of each code region for each of its possible dynamic

allocations. The program then checks runtime conditions and jumps to the most

suitable of the cloned alternatives. In this way, the overhead is reduced from being

per-access to per-region, making it manageable. Unfortunately such a solution has

a serious drawback: the code growth can be exponential in the number of program

variables in a region – for n variables, each in SRAM or DRAM, the number of pos-

sible allocations is 2n. In addition, selective cloning of a few variables is infeasible

since a factor of 2n increase in code size is un-acceptable even for small n. Further,

1These two hypothetical approaches are not used in any existing scratch-pad allocation method.

Further, these are the only approaches we could imagine for truly dynamic allocations – that is

not to say that others are not possible.

24

selectively cloning only a few time-critical regions is difficult. This is because alloca-

tion uncertainty in one region causes allocation uncertainty in subsequent regions,

requiring more cloning.

A second method to reduce per-access overhead is conditional allocation. Here

variables are accessed indirectly through conditionally assigned temporaries, elimi-

nating cloning, but an exponential number of check cases is still needed per region to

assign its temporaries. This is because the number of allocation possibilities is still

exponential, and the allocation decisions for different variables are not independent

since whether a variable fits in scratch-pad depends on the allocation of other vari-

ables. Further, the run-time overhead increases because of the access overhead from

indirection through temporaries. Because of the large overheads and complexity of

these alternatives, we do not believe these alternatives to be promising, and do not

study them further. This leads us to the next design criterion for our algorithm–

we restrict the number of allocations at any program point to one.

Need for Interprocedural Analysis Our next criterion is whether the al-

gorithm should be interprocedural or not. The need for interprocedural analysis

arises due to the large amount of data that a dynamic allocation strategy is likely

to handle. Without a interprocedural mechanism, it would mean the scratch-pad

is emptied at the boundaries of a procedure. In particular, if the function calls are

present inside a loop, then transfers accumulated over the whole loop would be a

significant fraction of the total runtime. Not only is this expensive, it is also unnec-

essary. Aggregate data types like arrays and structures often exhibit cross function

reuse. Unnecessary eviction of such large data at the boundaries of function can

25

severely degrade the overall runtime. In general, as will be shown by statistics in

the results chapter 10, interprocedural analysis enables the same allocation to be

retained with minimal transfers.

To summarize, our method is motivated by the following design goals.

• The strategy should be pseudo-dynamic and compiler-decided strategy so that

it would provide real time guarantees while adapting to runtime conditions.

• The strategy should be heuristic-driven to efficiently explore the large design

space.

• The strategy should have one allocation at every point to avoid unnecessary

code growth.

• The allocation strategy should be interprocedural to avoid unnecessary trans-

fers.

3.2 Characteristics of our allocation strategy

The choice of being a compiler-decided and dynamic scheme leads to several

characteristics that are inherent to both compiler-decided and dynamic methods.

Some of them are advantageous while there are some which a designer has to be

careful about. We now look at some of these characteristics.

Compiler schemes have a unique set of advantages and disadvantages due to

their view of memory that is different from how hardware schemes view memory.

26

While compiler schemes view memory as made up of various data types, hardware

schemes have a uniform view of memory made of bytes or words. Consequently,

compiler schemes can utilize a lot of program information; this is not easy for hard-

ware schemes. This difference can also work in favor of hardware schemes. Some of

the differences and their impact is discussed below.

Data size While a compiler scheme can handle precisely only those addresses

that belong to a particular variable, a hardware scheme handles all the addresses

that belong to the cache lines it is fetching. This characteristic can work in the

favor of hardware schemes as well. Hardware schemes can be totally oblivious of

the size of the variable. In the case of compiler schemes, size of a variable is an

important parameter that influences lot of decisions like if the variable would fit

into the memory, what addresses to assign the incoming variable.

Dead data Similarly, while a compiler scheme can use program information

to identify stale data in memory, hardware schemes cannot do so.

Code generation In the case of a hardware scheme, code can be generated

independent of the underlying memory. Such binary portability is not possible in

the case of compiler schemes. Information about the scratch-pad has to be taken

into account while generating the code.

Correctness issues Issues pertaining to correctness of the program also arise

because of the program view of memory. One such issue is due to the presence of

pointers. Hardware schemes can be totally oblivious of the kind of programs run.

In contrast, presence of pointers causes issues for compiler schemes. We elaborate

on the issue of pointers in Chapter 7.

27

Our method also has some characteristics due to being a dynamic scheme.

Some of these are discussed below.

Coherence issue Due to dynamic nature of the algorithm, several versions

of the same variable can exist in memory. For example, when a variable is copied

from the DRAM to the SRAM, two versions of the variable exist. If then a new

copy of the variable is created either from its copy in SRAM or from DRAM a third

new version results. Hence, the allocation algorithm has to keep track of the latest

copy of the variable to avoid coherence issues.

Runtime adaptability Being a dynamic scheme, our method has the ability

to adapt changing runtime conditions.

3.3 Dynamic solution overview

We next overview our method. The process flow of our method is illustrated

in figure 3.1. A brief description of the entire flow follows. The figure shows two

parallel paths of flow. The data inputs are shown in rounded rectangles. In the first

path, profile information is collected and stored in the stucture called the DPRG.

Depending on the application, the code can be optionally optimized and analyzed for

partial variable references. The results of the partial variable analysis is also stored

in the DPRG. The second path is the allocation strategy. The strategy is centered

around three steps that form the core of our method. After pointer analysis is

done, the main allocator takes in profile input and the memory model and outputs

an allocation. This is followed by address assignment and code generation. The

28

memory model provides memory device information like the latencies, energy model

and sizes of the different memory devices.

Figure 3.1: Dynamic memory allocation methodology

3.4 Dynamic memory allocation parts

Profiling The objective of profiling is to find the relative use of different

variables in different portions of the program. To achieve this, it proceeds in three

steps. First, it partitions the program into regions where the start of each region is a

program point. Then, instrumentation code is inserted at these program points. The

instrumentation involves code to capture information like how many times variable

around that point are accessed. Then when the instrumented code is run, profile

29

information is collected which is stored in the data structure called the DPRG. We

discuss this structure elaborately in section 4.1.

Allocator

The allocator forms the central part of our method. The allocator can be

further divided into two sub-parts. The first part takes the DPRG as input from

the profiler and associates a timestamp with every program point such that (i) the

timestamps form a partial order; and (ii) the program points are reached during run-

time roughly in timestamp order. Timestamping is discussed in detail in section 4.1

The second sub-part determines the contents of the scratch-pad memory at different

points. Changes in allocation are made only at program points by compiler-inserted

code that copies data between the scratch-pad and the DRAM. The method visits

these different points in a timestamped order and determines the variables to be

transferred between memories at each program point by using the cost-model. The

cost-model takes into account different factors like the current contents, possible

transfer points (eg. just outside the different loops of a loop nest), transfer costs

and parameters of the memory model. We discuss the algorithm and various aspects

of it in detail in chapters 4 and chapter 5.

Address assignment In the next step, the allocator decides on the addresses

of the scratch-pad memory variables in different regions. This involves deciding

which available address range in the scratch-pad memory (free hole) to use to ac-

commodate a variable allocated to the scratch-pad memory. To achieve this, the

methods again visits the regions in timestamp order and attempts to fit the vari-

ables newly allocated to the scratch-pad memory into the available free holes in

30

the scratch-pad memory in a best-fit manner. Since over time memory might get

fragmented and consequently free holes of desired size might not be available, the

method invokes a limited compaction mechanism when it runs out of adequate-sized

holes. The details of this step are discussed in section 6.1

Code generation Code generation involves using new temporaries to access

a variable allocated to the scratch-pad memory. A temporary represents a variable

allocated to the scratch-pad memory at a specific address. Use of temporaries also

implies that at any point multiple versions of a variable may exist, but with one latest

version known to the compiler. Code generation also includes memory transfers

inserted before and after regions to copy between the temporary and the original

variable. The details of this step are discussed in section 6.2

Optimizations and partial variable handling Finally, optimizations can

be integrated into the process flow to improve the allocation solutions. In chapter 8,

we discuss how our method can be extended to incorporate partial-variable handling.

3.5 Summary

In this chapter, we overviewed some fundamental aspects of our algorithm.

First, based on the requirements we wanted to meet, we fixed the different design

choices for our method. The design choices decided several characteristics and chal-

lenges that our method would need to address. Finally, we briefly described the

process flow of our solution.

31

Chapter 4

Dynamic Allocation Algorithm

This chapter describes the proposed algorithm for determining the memory

transfers of global and stack variables at each program point.

An outline of the chapter follows. We first in section 4.1 discuss the data

structure that is a key input to our algorithm. Then, we discuss our method that

allocates global and stack variables in 4.2. In section 4.3, we show how this method

can be extended to also allocate program code.

4.1 Deriving regions and timestamps

Our algorithm relies on identifying promising parts of the programs where

certain variables can be allocated to the scratch-pad memory. So an essential task

is identifying these parts. As the first task, the algorithm partitions the program

into regions where the start of each region is a program point. Changes in allo-

cation are made only at program points by compiler-inserted code that copies data

between SRAM and DRAM. The allocation is fixed within a region. The choice

32

of regions is discussed in the next paragraph. Then it associates a timestamp with

every program point such that (i) the timestamps form a partial order; and (ii) the

program points are reached during runtime in timestamp order. In general, it is

not possible to assign timestamps with this property for all programs. Later in this

section, however, we show a method that by restricting the set of program points

and allowing multiple timestamps per program point, is able to define timestamps

for all programs.

The choice of program points and therefore regions, is critical to our algo-

rithm’s success. Regions are the code between successive program points. Promis-

ing program points are (i) those after which the program has a significant change in

locality behavior, and (ii) those whose dynamic frequency is less than the frequency

of its following region, so that the cost of copying into SRAM can be recouped by

data re-use from SRAM in the region. For example, sites just before the start of

loops are promising program points since they are infrequently executed compared

to the insides of loops. Moreover, the loop often re-uses data, justifying the cost of

copying into SRAM. With the above two criteria in mind, we define program points

as (i) the start and end of each procedure; (ii) just before and just after each loop

(even inner loops of nested loops); (iii) the start and end of each if statement’s

then part and else part as well as the start and end of the entire if statement;

and (iv) the start and end of each case in all switch statements in the program

as well as the start and end of the entire switch statement. In this way, program

points track most major control-flow constructs in the program. Program points are

merely candidate sites for copying to and from SRAM – whether any copying code

33

main () {

if (. . .) { proc-D()} else {. . . }

proc-A()

proc-B()

}

proc-A () {

proc-C()

}

proc-B () {

proc-C()

while (. . .){Y =. . . }

}

proc-C () { X =. . . }

proc-D () { . . . }

Figure 4.1: Example showing a program outline.

is actually inserted at those points is determined by a cost-model driven approach,

described later in section 4.2.

Figures 4.1 and 4.2 shows an example illustrating how a program is marked

with timestamps at each program point. Figure 4.2 shows the program outline. It

consists of five procedures, namely main(), proc-A(),proc-B(), proc-C() and proc-

D(), one loop and one if-then-else construct. The only program constructs shown

are loops, procedure declarations and calls, and if statements – other instructions

are not. Accesses to two selected variables X and Y are also shown.

Figure 4.2 shows the Data-Program Relationship Graph (DPRG) for the pro-

34

main()

X

159,13 10,14 16

17

181

3

8 11 1272

463

4 5

if_header

elsethen

proc_D()

proc_A()

proc_C()

proc_B()

Loop

Y

Figure 4.2: Example showing the DPRG showing nodes, edges & timestamps.

gram in figure 4.1. The DPRG is a new data structure we introduce that helps in

representing regions and reasoning about their time order. The DPRG is the pro-

gram’s call graph appended with new nodes for loops, if-then’s and variables. In the

DPRG shown in figure 4.2, there are five procedures, one loop, one if statement, and

two variables represented by nodes. Separate nodes are shown for the entire if state-

ment (called if-header) and for its then and else parts. On the figure, oval nodes

represent procedures, circular nodes represent loops, rectangular nodes represent if

statement nodes, and square nodes represent variables. Edges to procedure nodes

represent calls; edges to loop and if nodes shows that the child is in its parent; and

edges to variable nodes represent memory accesses to that variable from its parent.

Continue and break statements are not modeled separately. The DPRG is usually

a directed acyclic graph (DAG), except for recursive programs, where cycles occur.

35

Figure 4.2 also shows the timestamps (1-18) for all program points, namely the

beginnings (shown on left of nodes) and ends (shown on right) of every procedure,

loop, if-header, then and else node. The goal is to number timestamps in the order

they are encountered during the execution. This numbering is computed at compile-

time by the well-known depth-first-search (DFS) graph traversal algorithm. Our

DFS marks program points in the order seen with successive timestamps. Our DFS

is modified, however, in two ways. First, our DFS is modified to number then and

else nodes of if statements starting with the same number since only one part is

executed per invocation. For example, the start of the then and else nodes shown in

the figure both are marked with timestamp 3. The numbering of the end of if-header

node (marked 7 in the figure) follows the numbering of either the then and else parts,

whichever consumes more timestamps. Second, it traverses and timestamps nodes

every time they are seen, rather than only the first time. This still terminates since

the DPRG is a DAG for non-recursive functions. Such repeated traversal results in

nodes that have multiple paths to them from main() getting multiple timestamps.

For example, node proc-c() gets timestamps 9 & 13 at its beginning, and 10 & 14

at its end.

Now we can see that the timestamps are a partial order rather than a total

order. This is because timestamps should not be used to derive an order between

two nodes such that one is a child of the then part of some if-header node, and the

other is a child of the else part of the same if-header. Such nodes have no relative

order.

Timestamps are useful since they reveal dynamic execution order: the run-

36

time order in which the program points are visited is roughly the order of their

timestamps. The only exception is when a loop node has multiple timestamps as

descendants. Here the descendants are visited in every iteration, repeating earlier

timestamps, thus violating the timestamp order. Even then, we can predict the

common case time order as the cyclic order, since the end-of-loop backward branch

is usually taken. Thus we can use timestamps, at compile-time, to reason about dy-

namic execution order across the whole program. This is a useful property, and we

speculate that timestamps may be useful for other compiler optimizations as well

that need to reason about execution order, such as compiler-controlled prefetch-

ing [53], value prediction [48] and speculation [22].

Timestamps have their limitations in that they do not directly work for goto

statements or the insides of recursive cycles; but we have work-arounds for both

which are mentioned in chapter 5.

4.2 Allocation of Global and Stack Objects

Before running this algorithm, the DPRG is built to identify program points

and mark the timestamps. Next, profile data is dynamically collected to measure

the frequency of access to each variable separately for each region. This frequency

represents the weight of the edge from a parent node to a child variable. Profiling

also measures the average number of times a region is entered from a parent region.

This represents the edge weight between two non-variable nodes. The edge weight

between a variable and a non-variable represents the access frequency of the variable

37

in the parent region. The total frequency of access of a variable is the product of

all the edge weights along the execution path from the main() node to the variable.

An overview of the first part of our memory transfer algorithm is as follows.

At each program point, the algorithm determines the following memory transfers:

(i) the set of variables to copy from DRAM into the scratch-pad and (ii) the set of

variables to evict from DRAM to the scratch-pad to make way for incoming variables.

The algorithm computes the transfers by visiting each program point (and hence

each region) once in an order that respects the partial order of the timestamps.

For the first region in the program, variables are brought into the scratch-pad in

decreasing order of frequency-per-byte of access. Thereafter for subsequent regions,

variables currently in DRAM are considered for bringing into the scratch-pad in

decreasing order of frequency-per-byte of access, but only if a cost model predicts

that it is profitable to do so. Variables are preferentially brought into empty space

if available, else into space evicted by variables that the compiler has proven to be

dead at this point, or else by evicting live variables. Completing this process for all

variables at all timestamps yields the complete set of all memory transfers.

The order in which different regions are visited by our method is guided roughly

by the timestamps of the regions. It is important to note that such reliance on the

timestamps does not have any correctness impact. Timestamps are used only as an

indicator of the common-case ordering between regions. No assumption is made that

the execution order at run-time is the same as the timestamp order. Moreover, since

timestamps define a partial order and not a total order, no common-case ordering

is assumed in the case of incomparable nodes For example, nodes such as ones

38

under the then part of some if-header node, and the else part of the same if-header

do not have any relative ordering. In such cases, our method derives allocation for

each branch independent of the other branch. The details are discussed in chapter 5.

Thus, using the timestamps to guide allocation does not have any correctness impact.

The cost model works as follows. Given a proposed incoming variable and one-

or-more variables to evict for the incoming variable, the cost model determines if

this proposed swap should actually take place. In particular, copying a variable into

the scratch-pad may not be worthwhile unless the cost of the copying and the lost

locality of evicted variables is overcome by its subsequent reuse from scratch-pad of

the brought-in variable. The cost model we use models each of these components

to derive if the swap should occur.

Detailed algorithm Algorithm 1 describes the above algorithm in pseudo-code

form. A line-by-line description follows in the rest of this section.

Algorithm 1 begins by declaring several compiler variables. These include V-

fast and V-slow to keep track of the set of application variables allocated to the

scratch-pad and DRAM, respectively, at the current program point. Bring-in-set,

Swap-out-set and Retain-in-fast-set store their obvious meaning at each program

point. Dead-set refers to the set of variables in V-fast in the previous region whose

lifetime has ended. The frequency-per-byte of access of a variable in a region,

collected from the profile data, is stored in freq-per-byte[variable, region].

We now consider the top level function Memory-allocator. Line 12 is the

main for loop that steps through all the subsequent program points in timestamp or-

39

Algorithm 1 Algorithm for determining dynamic memory allocation
1: Define ⊲ The values of all of the quantities defined below change at each program point

2: Set V-slow ⊲ Set of variables in DRAM at this point

3: Set V-fast ⊲ Set of variables in the scratch-pad at this point

4: Free space ⊲ Free space in scratch-pad memory

5: Set Bring-in-set ⊲ Variables to bring into the scratch-pad at this program point

6: Set Swapout-set ⊲ Set of variables for eviction to DRAM

7: Set Retain-in-fast-set ⊲ Set of variables to retain in the scratch-pad

8: Set Dead-set ⊲ Set of variables in V-fast whose lifetimes have ended

9: float freq-per-byte[variable,region] ⊲ Access frequency per byte of variable in region in profile

data

10: procedure Memory-allocator

11: initial-candidate-list ← Sort variables accessed in first region in decreasing order of freq-

per-byte[variable, first region

12: for all timestamped program points in the application visited in partial order of their

timestamps, starting at second region do

13: Swapout-set ← NULL SET; Bring-in-set ← NULL SET; Retain-in-fast-set ←

NULL SET

14: Free-space = Free-space + sizeof(Dead-set)

15: for all variables V accessed in this region in decreasing order of frequency-per-byte do

16: Consider-for-Vfast(V) ⊲ Check if V can be allocated into scratch-pad. If so,

update various

17: end for

18: V-fast ← V-fast
⋃

Bring-in-set − Swapout-set − Dead-set

19: V-slow ← V-slow
⋃

Swapout-set − Bring-in-set − Dead-set

20: Store V-fast and V-slow for this region

21: Dead-set ← Variables which are no longer alive at this program point

22: end for

23: return

24: end procedure

40

1: procedure Consider-for-Vfast(V)

2: if V ∈ V-slow then

3: if sizeof(V) ≤ Free-space then ⊲ V fits no need to swapout variables

4: Benefit-of-bring-in-V ← Find-benefit(V, NULL SET)

5: if Benefit-of-bring-in-V > 0 then

6: Bring-in-set ← Bring-in-set
⋃

{V}

7: Free-space ← Free-space − sizeof(V)

8: end if

9: else ⊲ V does not fit; try to swap out variables

10: Swapout-set-for-V ← Find-swapout-set(V)

11: if Swapout-set-for-V �= NULL then

12: Benefit-of-bring-in-V ← Find-benefit(V,Swapout-set-for-V)

13: if Benefit-of-bring-in-V > 0 then

14: Bring-in-set ← Bring-in-set
⋃

{V}

15: Swapout-set ← Swapout-set
⋃

Swapout-set-for-V

16: Bring-in-set ← Bring-in-set
⋃

{V}

17: Free-space ← Free-space + sizeof(Swapout-set-for-V) − sizeof(V)

18: end if

19: end if

20: end if

21: else ⊲ V ∈ V-fast

22: if V not in Swapout-set then ⊲ Has not been swapped out so far

Retain-in-fast-set ← Retain-in-fast-set
⋃

{V}

23: end if

24: end if

25: end procedure

41

1: procedure Find-swapout-set(V)

2: Swapout-set-for-V ← NULL SET

3: Swapout-candidate-list ← Sort variables in the scratch-pad in ascending order of size. In

case of a tie, choose variable with the higher next-timestamp-of-access. Exclude variables that

have become dead in this region.

4: Swapout-candidate-list ← Swapout-candidate-list − (Swapout-set
⋃

Bring-in-set
⋃

Retain-in-fast-set)

⊲ Update candidate-list with decisions taken until now

5: Size-required ← sizeof(V) - Free space

6: while (((Swapout-candidate ← next-element(Swapout-candidate-list)) �= NULL) and

(Size-required > 0)) do

7: Benefit-of-swap ← Find-Benefit(V, Swapout-candidate)

8: if Benefit-of-swap > 0 then

9: Swapout-set-for-V ← Swapout-set-for-V
⋃

{Swapout-candidate}

10: Size-required ← Size-required − sizeof(Swapout-candidate)

11: end if

12: end while

13: if (Size-required > 0) then ⊲ Could not find required space by swapping out

14: return (NULL) ⊲ Do not swap

15: end if

16: return (Swapout-set-for-V) ⊲ Found required space by swapping out

17: end procedure

42

1: procedure Find-benefit(V,Swapout-candidate)

2: Latency-gain ← freq-per-byte[V, this region] ⋆ size(V) ⋆ (Latency slow mem − La-

tency fast mem)

3: Latency-loss ← freq-per-byte[Swapout-candidate, this region] ⋆ size(Swapout-candidate)*

(Latency slow mem − Latency fast mem)

4: Migration-overhead ← Time for copying Swapout-candidate (if modified) to DRAM +

Time for copying V to the SRAM

5: Benefit-of-swap ← latency-gain − latency-loss − Migration-overhead

6: return Benefit-of-swap

7: end procedure

der. At each program point, 15 steps through all the variables, invoking Consider-

for-vfast. Consider-for-vfast considers if a variable can be allocated into SRAM.

Finally, after looping through all the variables, lines 18- 21 update, for the next pro-

gram point, the set of variables in scratch-pad and DRAM respectively and stores

this resulting new memory map for the region after the program point.

Now we consider function Consider-for-vfast. So in this function each vari-

able V in DRAM (line 2), it tries to see if it is worthwhile to bring it into the

scratch-pad (lines 2- 18). If the amount of free space in the scratch-pad is enough

to bring in V, V is brought in if the cost of the incoming transfer is recovered by

the benefit (lines 3- 8). Otherwise, if variables need to be evicted to make space

for V, the best set of variables to evict is computed by procedure Find-swapout-

set() called on line 10 and the swap is made (lines 12- 18). If the variable V is in

the scratch-pad (line 21), then it is retained in the scratch-pad provided it has not

already been swapped out so far by a higher frequency-per-byte variable.

43

Next we explain Find-swapout-set() called in line 10 in Consider-for-

vfast. It calculates and returns the best set of variables to copy out to DRAM

when its argument V is brought in. Possible candidates to swap out are those in

scratch-pad, ordered in ascending order of size (line 3); but variables that have al-

ready been decided to be swapped out, brought in, or retained are not considered

for swapping out (line 4 . Thus variables with higher frequency-per-byte of access

are not considered since they have already been retained in scratch-pad. Among the

remaining variables of lower frequency-per-byte, as a simple heuristic small variables

are considered for eviction first since they cost the least to evict. Better ways of

evaluating the swapout set of least cost by evaluating all possible swapout sets are

avoided to avoid an increase in compile-time; moreover we found these to be unnec-

essary since only variables with lower frequency-per-byte than the current variable

are considered for eviction. The while loop on line 6 looks at candidates to swap out

one at a time until the space needed for V has been obtained. A cost model is used to

see if the swap is actually beneficial (line 8); if it is the swapout set is stored (lines 9.

More variables may be evicted in future iterations of the while loop on line 6 if the

space recovered by a single variable is not enough. If swapping out variables that

are eligible and beneficial to swap out did not recover enough space (line 13), then

the swap is not made (line 14). Otherwise procedure Find-swapout-set() returns the

set of variables to be swapped out.

Cost model Finally, we look at Find-benefit() , called from Consider-for-vfast

in lines 4, 12 and Find-swapout-set() in 7. It computes whether it is worthwhile,

44

with respect to runtime, to copy in variable V in its first argument by copying out

variable Swapout-candidate in its second argument. The net benefit of this operation

is computed in line 5 as the latency-gain − latency-loss − Migration-overhead. The

three terms are explained as follows. First, the latency gain is the gain from having V

in the scratch-pad in the next region (line 7). Second, the latency loss is the loss from

not having Swapout-candidate in the scratch-pad in the next region (line 3). Third,

the migration overhead is the cost of copying itself, estimated in line 4. The overhead

depends on the point at which the transfer is done. So the overhead of transfers

done outside a loop is less than inside it. We conservatively choose the transfer

point that is outside as many inner loops as possible. The choice is conservative

in two ways. One, points outside the procedure are not considered. Two, transfers

are not moved beyond points with earlier transfer decisions. An optimization done

here is that if variable Swapout-candidate in scratch-pad is provably not written

to in the regions since it was last copied into the scratch-pad, then it need not be

written out to DRAM since it has not been modified from its DRAM copy. This

optimization provides functionality similar to the dirty bit in cache, without needing

to maintain a dirty bit since the analysis is at compile-time. The end result is an

accurate cost model that estimates the benefit of any candidate allocation that the

algorithm generates.

Optimizations The well-known dataflow concept of liveness analysis [8] is

used to eliminate unnecessary transfers – provably dead variables are not copied

back to DRAM; nor are newly alive variables in this region copied in from DRAM

to SRAM. Our current implementation only does dataflow analysis for scalars and a

45

simple form of array dataflow analysis that can prove arrays to be dead only if they

are never used again. If more-complex array dataflow analysis is included then our

results can only get better. In programs where the final results (only global) need

to be left in the memory itself, this optimization can be turned off in which case the

benefits would be reduced. Such programs are likely to be rare. Typically data in

embedded systems is used in a time critical manner. If persistent data is required,

it is usually written into files or logging devices. This optimization also needs to be

turned off for segments shared between tasks in multithreaded programs.

Another optimization that we consider is ignoring the multiple allocation de-

cisions inside higher level regions and instead adopting one allocation inside the

particular region. The static allocation adopted is found by doing a greedy allo-

cation based on the frequency-per-byte value of the variables used in the region.

Such an optimization can be useful in cases when transfers are done inside loops

and the resulting transfer cost is very high. In such cases allthough our method

would guarantee than the high cost can be recouped, it might be beneficial to adopt

a simple one allocation for the particular region. This is because the transfer cost

for a simple allocation may be smaller than when multiple allocations are present.

To aid in making this choice, our method compares the likely benefit from a purely

dynamic allocation with a static allocation for the region. Based on the result ei-

ther the dynamic allocation strategy is retained or the static allocation used for the

region.

We observe three desirable features of our algorithm. (i) No additional trans-

fers beyond those required by a caching strategy are done. (ii) Data that is accessed

46

only once is not brought into the scratch-pad, unlike in caches, where the data is

cached and potentially useful data evicted. This is particularly beneficial for stream-

ing multimedia codes where use-once data is common. (iii) Data that the compiler

knows to be dead is not written out to DRAM upon eviction, unlike in a cache,

where the caching mechanism writes out all evicted data.

Algorithmic Complexity The algorithmic complexity is O(T ∗ V 2) where

T is the number of timestamps in the program, and V is the number of program

objects. This can be explained as follows. Consider function Memory-allocator.

The outermost loop in line 12 iterates through all the timestamps in the program;

this contributes the factor T . For each timestamp, the algorithm then goes through

the variable list to check if they can be allocated to the scratch-pad. This is done

in line 15. While doing so, it may have to go through all the variables that are

already present in the scratch-pad. This is done in the function Find-swapout-

set(). These two steps contribute the factor due to V . We improve the complexity

by restricting the number of timestamps to only some program points.

4.3 Algorithm extension for code objects

Next, we show how the above framework can be extended for allocating pro-

gram code objects. The three key questions that that need to be answered are:

First, at what granularity do we allocate code objects (basic-block/procedures/files

); Second, how is an code object represented in the DPRG; and third, how is the

algorithm and cost model modified. The first issue we look at is the granularity of

47

the program objects. Like in the case of data objects, the smaller the size of the code

objects, the larger the benefits of scratch-pad placement are likely to be. One way

of achieving this is to consider code objects in units of basic blocks. However, code

generation for allocations at such small granularity is likely to involve introducing

too many branch instructions while also precluding the use of existing linker technol-

ogy for its implementation. The other drawback is that complexity of profiling also

increases. Another approach to obtaining smaller sized code objects is to selectively

create procedures from nested loop structures in programs since it is profitable to

place loops in scratch-pad. This optimization called outlining (inverse of inlining)

is available in some commercial compilers like IBM’s XLC compiler. Both methods

can yield code objects of smaller size but at vastly different implementation costs.

For its ease of implementation, we choose outlining to provide small-sized program

objects.

The next issue is how to represent the code objects in the DPRG. Since our

choice of program objects is at the level of procedures (native or outlined), we

attach code objects to parent procedures, just like variables are attached(henceforth

called code variable nodes). For simplicity of explantion, we assume promising

loops have been already outlined. Later, we will explain how outlining can be

integrated into the algorithm itself. Figure 4.3 shows an example of a DPRG which

also includes code objects shown as rectangular nodes. Every procedure node has a

variable child node representing the code executed before the next function call. For

example in figure 4.3, code A.1 represents all the instructions in proc A executed

before the procedure proc C is called and code A.2 represents all the instructions in

48

elsethen

Y

Loop

main()

proc_A()

X

proc_C()

if_header

proc_D()

code_main.1

code_D.1

proc_B()

code_main.4

code_B.2

code_B.1code_A.1 code_A.2

code_main.3

code_main.2

code_C.1

Figure 4.3: Example DPRG with code nodes.

proc A executed after return from proc C until the end the proc A. An advantage

of such a representation is that the framework for allocating data objects can be

used with little modification for allocating code objects as well. As in the case

of data objects, profiling is used to find for every node the frequency of access of

each child code variable accessed by that node. For a code variable its frequency

is given by its corresponding number of dynamic instructions executed. The size

of the code variable is the size of the portion of the procedure until the next call

site in the procedure. We also create a modified DPRG structure in which non

procedure DPRG nodes other than data nodes have been coalesced into the parent

procedure node. We call this new structure the coalesced-dprg. Figure 4.3 shows the

49

main()

proc_A() proc_B()

Y

proc_D()

X

proc_C()

code_main.2

code_D.1

code_A.1

code_B.2

code_main.3

code_main.4

code_B.1code_A.2

code_C.1

code_main.1

Figure 4.4: An example coalesced DPRG.

coalesced-dprg for the original DPRG in Figure 4.3. This structure does not replace

the original dprg; instead it is used only for program codes as described below.

Now the original algorithm described in the previous section is modified as

follows. When a procedure node in the DPRG is visited in the original algorithm,

first we check if the code node associated can be allocated in the scratch-pad. To

determine if a procedure node can be allocated to scratch-pad, it is helpful to use

the coalesced-dprg. It suffices to find out if a hypothetical allocation done at the

corresponding procedure node using the coalesced-dprg would allocate the procedure

50

node to the scratch-pad. If the procedure gets allocated to the scratch-pad then the

available scratch-pad memory is decreased by the size of the procedure node; the

rest of the allocation decisions are discarded. Then the algorithm proceeds with the

rest of the pseudo-code explained in the previous section using the original DPRG

with the only other difference that the procedure node is ignored, that is it is neither

considered for swapin or swap out. Thus the modified algorithm would allocate both

data and code while retaining the same framework.

The decision to whether outline a particular loop nest as a procedure can

be integrated into the algorithm. To do so, only thing required to do is consider

outermost loops in the procedure as possible candidates that can be outlined as pro-

cedures. Loop-nests in procedure that contain only one loop-nests can be exempted

from this modification. Then, in the modified DPRG, procedure nodes representing

the code in the loop nest are attached to the outermost loop of a loop-nest. The

scope of the extension described in the last paragraph is expanded to include all

nodes in the DPRG that have code variables attached to them. So now if the al-

gorithm decides to allocate the code node associated with the loop-nest, then the

loop-nest has to be outlined as new procedure. The cost of outlining is included in

the cost model.

51

Chapter 5

Handling Program Features

For simplicity of presentation, the algorithm in the previous chapter leaves

some issues unaddressed. Solutions to some issues concerning program features are

proposed in this chapter. All the modifications proposed here are carried out by

the algorithm presented before and are driven by the same cost model. They do not

define a new algorithm. An outline of the chapter is as follows. Section 5.1 looks

at the issue of join nodes arising out of loops, conditional statements etc. This

is followed by a discussion of handling goto statements and recursive functions in

section 5.2 and 5.3 respectively.

5.1 Join nodes

One complication with the algorithm in the previous chapter is that for any

program point visited along multiple paths (hence having multiple timestamps), the

outermost loop visits these points more than once, and thus more than one allocation

is made for that program point. An example is node proc C() in figure 4.2. We

52

call such nodes with multiple timestamps join nodes since they join multiple paths

from main(). Join nodes can arise due to many program constructs including (i) in

the case of a procedure invoked at multiple call sites, (ii) at the end of conditional

path or (iii) at the start of each loop. For parents of join nodes, considering the

join node multiple times in our algorithm is not a problem - indeed it the right

thing to do, so that the impact of the join node is considered separately for each

parent. However, for the join node itself, multiple recommended allocations result,

one from each path to it, presenting a problem. One solution is cloning the join

node and the sub-graph below it in the DPRG along each path to the join node, but

the code growth can be exponential for nested join nodes. Even selective cloning

is probably unacceptable for embedded systems. Instead, our strategy avoids all

cloning by choosing the allocation desired by the most frequent path to the join

node for the join node. Subsequently, compensation code is added on all incoming

edges to the join node other than for the most frequent path. The compensation

code changes the allocation on that edge to match the newly computed allocation

at the join node. The number of instances of compensation code is upper-bounded

by the number of incoming edges to join nodes. We now consider the most common

scenarios separately.

Join nodes: Procedure join nodes Our method chooses the allocation desired

by the most frequent path to the procedure join node for the join node. Subsequently

as discussed before, compensation code is added on all incoming edges to the join

node other than for the most frequent path.

53

Join nodes: Conditional join nodes Join nodes can also arise due to conditional

paths in the program. Examples of conditional execution include if-then, if-then-

else and switch statements. In all cases, conditional execution consists of one or

more conditional paths followed by an unconditional join point. Memory allocation

for the conditional paths poses no difficulty – each conditional path modifies the

incoming memory allocation in the scratch-pad and DRAM memory to optimize for

its own requirements. The difficulty is at the subsequent unconditional join node.

Since the join node has multiple predecessors, each with a different allocation, the

allocation at the join node is not fixed at compile-time. The solution used is the same

as for procedure join nodes and is used for similar reasons. Namely, the allocation

desired by the most frequent path to the join node is used for the join node, just as

above.

Join nodes: Loops A third modification is needed for loops. A problem akin to

join nodes occurs for the start of such loops. There are two paths to the start of

the loop – a forward edge from before the loop and a back edge from the loop end.

The incoming allocation from the two paths may not be the same, violating the

desired condition that there be only one allocation at each program point. To find

the allocation at the end of the backedge, procedure Find-swapout-set is iterated

once over all the nodes inside the loop. The allocation before entering the loop

is then reconciled to obtain the allocation desired just after entering the loop – in

this way, the common case of the back edge is favored for allocation over the less

common forward edge.

54

5.2 Recursive functions

Our approach discussed so far does not directly apply to stack variables in

recursive or cross-recursive procedures. With recursion the call graph is cyclic and

hence the total size of stack data is unknown. Hence, for a compiler to guarantee that

a variable in a recursive procedure fits in the scratch-pad is difficult. Our baseline

technique is to collapse recursive cycles to single nodes in the DPRG, and allocate

their stack data to DRAM. Edges out of the recursive cycle connect this single node

to the rest of the DPRG. This provides a clean way of putting all the recursive

cycles in a black box (not to be considered in the future). Our method can now

handle the modified DPRG like any other DPRG without cycles. DRAM placement

of stack variables is not too bad for two reasons. First, recursive procedures are

relatively rare in embedded codes. Second, a nice feature of this method is that

when recursion is present, all program objects other than stack frames of recursive

procedures such as data in non recursive descendents and non stack data can still

be placed in the scratch-pad by our method.

5.3 Goto statements

Our DPRG formulation in chapter 4 does not consider arbitrary goto state-

ments. Because it is widely known that goto statements are poor programming

practice they are exceedingly rare in any domain nowadays. Nevertheless, it is im-

portant to handle them correctly. We only refer to goto statements here; breaks and

continues in loops are fine for DPRGs.

55

Our solution to correctly handle goto statements involves two steps. First,

the DPRG is built and the memory transfers are decided without considering goto

statements. Second, the compiler detects all goto statements and inserts memory

transfer code along all goto edges in the control-flow graph to maintain correctness.

The fundamental condition for correctness in our overall scheme is that the memory

allocation for each region is fixed at compile-time; but different regions can have

different allocations. Thus for correctness, for each goto edge that goes from one

region to another, memory transfers are inserted just before the goto statement to

convert the contents of scratch-pad in the source region to that in the destination

region. In this way goto statements are handled correctly but without specifically

optimizing for their presence. Since goto statements are very rare, such an approach

adds little run-time cost for most programs.

The DPRG construct along with the extensions in this section enable our

method to handle all ANSI C programs. For other languages, structured control-flow

constructs likely will be variants, extensions or combinations of constructs mentioned

in this paper, namely procedure calls, loops, if and if-then-else statements, switch

statements, recursion and goto statements.

56

Chapter 6

Layout and Code Generation

Once the allocator has found the desired contents inside different regions, the

next step is to assign addresses inside the scratch-pad to different objects allocated

to the scratch-pad. The allocation at the end of this phase is the desired dynamic

allocation solution. Finally, to use the solution, code then has to be generated that

implements the allocation solution. This chapter addresses these issues. First, in

section 6.1 it discusses the layout assignment of variables in scratch-pad. Second, in

section 6.2 it discusses the code generation for our scheme. Code generation covers

two different aspects. First, how to generate code to access the objects allocated into

the scratch-pad; and second, how to generate code to transfer the objects between

the scratch-pad and the main memory.

6.1 Layout assignment

The first issue we consider in this chapter is deciding where in the scratch-

pad to place the program objects being swapped in. A good layout at a region

57

should be able to place most or all of the program objects desired in the scratch-

pad by the memory transfer algorithm in chapter 4. To increase the chances of

finding a good layout, the layout assignment algorithm should have the following

two characteristics. First, the layout should minimize fragmentation that might

result when program objects are swapped out, so as to increase the chance of finding

large-enough free holes in future regions. Second, when a memory hole of a required

size cannot be found, compaction in scratch-pad should be considered along with

its cost.

Our layout assignment algorithm runs as a separate pass after the memory

transfers are decided. It visits the regions of the application in the partial order of

their timestamps. At each region, it does the four tasks described in the following

paragraphs.

The first task is concerned with maintaining the data structures involved. An

essential input to the pass is the list of free holes and the memory locations occupied

by the different objects. Towards maintaining this information, in the first task, the

method updates the list of free holes in the scratch-pad by de-allocating the outgoing

variables from the previous region.

The second task is concerned with actual assignment of the incoming variable.

In this task, the method attempts to allocate incoming variables to the available

free holes in the decreasing order of their size. The largest variables are placed

first since they are the hardest to place in available holes. Also, as a measure to

prevent fragmentation, the assignment considers all the stack objects that are scalars

together as one object and does the layout assignment for that object. When more

58

than one hole can be used to fit a variable, the best-fit rule is followed: the smallest

hole that is large enough to fit the incoming program object is used for allocation.

The best-fit rule is commonly used for memory allocation in varying domains such

as segmented memory and sector placement on disks [80].

In the third task, when an adequate-sized hole cannot be found for a variable,

compaction in the scratch-pad is considered. In general, compaction is the process

of moving variables towards one end of memory so that a large hole is created

at the end. However, we consider a limited form of compaction that has lower

cost: only the subset of variables that need to be moved to create a large-enough

hole for the incoming request are moved. Also, for simplicity of code generation,

compaction involving blocks containing program objects used inside a loop is not

allowed inside the loop. Although compaction is done at run-time, its behavior is

completely decided at compile-time; hence, the change of addresses from it cause

no problems for code generation. Compaction is often more attractive than leaving

the incoming program object in DRAM for lack of an adequate hole; this is because

compaction only requires two scratch-pad accesses per word, which is often much

lower cost than even a single DRAM access. The cost of compaction is included in

our layout-phase cost model; it is done only when its cost is less than the benefit.

Compaction invalidates pointers to the compacted data and hence is handled just

like a transfer in the pointer-handling phase (chapter 7) of our method. Pointer

handling is delayed to after layout for this reason.

Finally as the fourth task, the method in the case that compaction is not

profitable attempts to find a candidate program object to swap out to DRAM.

59

Again, the cost is weighed against the benefit to decide if the program object should

be swapped out. If no program object in the scratch-pad is profitable to swap out,

our approach decides to not bring in the requested-incoming program object to the

scratch-pad. In our chapter on results, chapter 10, we show that this simple strategy

is quite effective.

6.2 Code generation

Code generation involves two different aspects. First aspect is generating

code such that the variables in the scratch-pad can be accessed. Second aspect is

generating copying code to move variables between the scratch-pad and DRAM. In

this section we discuss both these aspects.

6.2.1 Code generation for accessing variable in scratch-pad

After our method decides the layout of the variables in scratch-pad memory

in each region, it generates code to implement the desired memory allocation and

memory transfers. Code generation for accessing variables in scratch-pad in our

method involves changing the original code in two ways. First, for each original

variable in the application (Eg: a) which is moved to the scratch-pad at some point,

the compiler declares a new variable(Eg: a fast) in the application corresponding to

the copy of a in the scratch-pad. The original variable a is allocated to DRAM. By

doing so, the compiler can easily allocate a and a fast to different offsets in memory.

Such addition of extra symbols causes zero-to-insignificant code increase depending

60

on whether the object formats includes symbolic information in the executable or

not. Second, the compiler replaces occurrences of variable a in each region where

a is accessed from the scratch-pad by the appropriate version of a fast instead.

Since our method is dynamic, the fast versions of variables (declared above)

have limited lifetimes. As a consequence, different fast variables with non-overlapping

lifetimes may have overlapping offsets in the scratch-pad address space. Further,

if a single variable is allocated to the scratch-pad at different offsets in different

regions, multiple fast versions of the variables are declared, one for each offset. The

requirement of different scratch-pad variables allocated to the same or overlapping

offsets in the scratch-pad in different regions is easily accomplished in the backend

of the compiler. Later in the chapter, we will see a very simple implementation to

accomplish this by modifying the assembly file of a program.

Although creating a copy in scratch-pad for global variables is straightforward,

special care must be taken for stack variables. Stack variables are usually accessed

through the stack pointer which is incremented on procedure calls and decremented

on returns. By default the stack pointer points to a DRAM address. This does not

work to access the stack variable in scratch-pad; moreover the memory in scratch-

pad is not even maintained as a stack! Allocating whole frames to scratch-pad

means losing allocation flexibility. The other option of placing part of stack frame

in scratch-pad and the rest in main memory requires maintaining two stack pointers

which can be a lot of overhead. The easiest way to place a stack variable a in scratch-

pad is to declare its fast copy a fast as a global variable but with the same limited

lifetime as the stack variable. Addressing the scratch-pad copy as a global avoids

61

the difficulty that the scratch-pad is not maintained as a stack. Thus all variables

in scratch-pad are addressed as globals. Having globals with limited lifetimes is

equivalent to globals with overlapping address ranges.

It is instructive to see how exactly the executable changes because of adding

new global variables. Although adding new scratch-pad variables increases the size

of the symbol table in the compiler, it does not necessarily increase the size of the

executable. The executable does not usually contain symbolic information. Instead

declarations of new scratch-pad variables in the executable appear as labels (hex-

adecimal addresses) allocated to the scratch-pad range of addresses. Further, in

most instruction sets, the uses of those variables appear as references to their labels

in the code. In a few instruction sets (e.g., Motorola’s MCore [61]) where the ad-

dresses of the variables are stored in a memory table and accesses are through that

table, the size of the memory table does increase since one word is needed per new

added variable. This code size increase is incurred only for these instruction sets (or

object formats) and is usually insignificant compared to the size of the executable.

Also note that the above approach does not cause any runtime overhead.

Code generation for handling code blocks involves modifying the branch in-

structions between the blocks. The branch at the end of the block would need to be

modified to jump to the current location of the target. This is easily achieved when

the unit of the code block is a procedure, by leveraging current linking technology.

Similar to the case of variables, the compiler inserts new procedure symbols corre-

sponding to the different offsets taken by the procedure in the scratch-pad. Then

it suffices to modify the calls to call the new procedures. The backend and the

62

linker would (without any modifications) then generate the appropriate branches.

As mentioned earlier, outlining or extracting loops into extra procedures can be

used to create small-sized code blocks. For outlining to work, we promote the lo-

cal variables that are shared between the loop and the rest of the code as global

variables. These are given unique names prefixed with the procedure name. In our

set of benchmarks, we observe the overhead due to these extra symbols to be very

small.

Implementation of a simple code generator For a wide variety of pro-

grams a simple code generator can be implemented with minimal modifications

inside the compiler. The implementation relies on the ABS section provided by

the ELF object format. Essentially the ABS section contains all the symbols that

have been assigned absolute addresses in the assembly file by a simple assignment

symbolname = address. The only catch with this section is that the linker does

not prevent overlap between symbols. In our case that is not a problem as the

condition that no overlaps between symbols exist at a particular point in execution

would be ensured by the layout assignment pass. Overlaps between symbols used

at different execution points in the program as such does not affect the correctness.

The advantage of such a strategy is its ease of implementation. The input to the

implementation is the scratch-pad allocation inside different regions of the code.

The various steps involved in the implementation are as below.

• Modify source or compiler intermediate code to introduce new global tempo-

raries for every new offset that a program object takes in the scratch-pad.

63

• Now for every region where a variable is allocated to the scratch-pad, there

exists a new temporary variable. Modify the source or intermediate code to

use the new temporaries instead of the original variable.

• Generate the new assembly code. Address assignments can be now inserted

to modify the starting addresses of different symbols. The starting address

used is the address output by the layout pass corresponding to the different

temporaries

The executable at the end of the above steps implements the allocation solu-

tion.

6.2.2 Memory transfer code

The next aspect of code generation is the memory transfer code. Memory

transfers are inserted at each program point to evict some variables and copy others

as decided by our method. The memory transfer code is implemented by copying

data between the fast and slow versions of to-be-copied variables (Eg: between

a fast and a). This overhead is not unique to our approach – hardware caches also

need to move data between scratch-pad and DRAM. Such copying is accomplished

using copy functions. The code-size overhead of such copy function is minimized by

using a generic optimized copy function. In their simplest form, the copy function

takes a source address, destination address and the number of words to copy. In

chapter 8, we introduce optimizations as a result of which the addresses of variables

copied from need not be contiguous. We still ensure that the elements have a

64

constant stride between them. In such a scenario, we extend the copy function to

take a fourth parameter representing the stride. In the simple case that we discussed

here, the stride would be 0. In addition, faster copying is possible in processors with

the low-cost hardware mechanisms of Direct Memory Access (DMA) such as in

ARMv6, ARM7. DMA accelerates data transfers between memories and/or I/O

devices. The cost model is modified to take into account various parameters of the

DMA hardware like the setup time, minimum transfer limit and block size.

65

Chapter 7

Handling Pointers

Many compiler optimizations are severely constrained by the presence of point-

ers. Extensive research in the past two decades has been done on the topic of pointer

analysis as a way of managing this problem [38, 75]. All different pointer analysis

share the same goal of finding statically what variables may be pointed to by point-

ers in the program. Such a set of variables is termed the points-to set. One simple

scheme is to declare a pointer as pointing to all variables whose address has been

assigned in the program [38]. Such a scheme is called the address-taken scheme.

Presence of pointers to global variables, stack variables and function pointers

also causes issues for compiler-time dynamic scratch-pad memory allocators. In this

chapter, we study this problem of pointers to global variables, stack variables and

function pointers. The goals of this chapter are four fold:

• First, we describe the pointer problem in the context of scratch-pad memory

allocation for global/stack and code objects. We explain how different kinds

of pointers to globals, stack and program objects pose issues for dynamic

allocators.

66

• Our first part deals with the problem of correctness because of invalid pointers.

We propose two solutions- address constraining and pointer translation. We

show that the above schemes need only simple points-to information and can

be implemented with extremely low overhead. Our results also show that

between the two, address constraining does better consistently.

• We also discuss the impact of function pointers on correctness of the code

generated. Towards this, we propose a simple compensation strategy that

ensures all the memory accesses access the intended addresses.

• Finally, pointers in addition to impacting correctness also impact available

opportunities for optimization. We discuss how sophisticated pointer analysis

can enable better liveness analysis.

The rest of the chapter is organized as follows. Section 7.1. describes the

impact of pointers on correctness in programs. Section 7.2 looks at how presence

of function pointers affects generating correct code. Section 7.3 studies the im-

pact of pointers on opportunities for optimizations in dynamic allocation schemes.

Section 7.4 summarizes.

7.1 Impact of invalid pointers on program

correctness

Function pointers and pointer variables in the source code that point to global

and stack variables can cause incorrect execution when the pointed-to variable is

67

moved. For example, consider a pointer variable p that is assigned to the address of

global variable a in a region where a is in the DRAM. Later if p is de-referenced in

a region when a is in scratch-pad memory, then p points to the incorrect version of

a.

Reference parameters A special case of the incorrect pointer problem hap-

pens with the use of call-by-reference parameters. A reference parameter is used

when the parameter acts as an alias for a caller-provided argument. For correct-

ness, it is essential that the reference pointer points to the correct location of the

variable in each of the regions in the procedure.

We now discuss two alternatives for solving this problem.

7.1.1 Pointer translation

The first alternative that we present uses a runtime translator that corrects

the address of the pointer variable at points where it is dereferenced. Correcting a

pointer means finding out at each region which one among the variables in the points-

to set of the pointer is currently being pointed to by the pointer. The translator

then takes the current address of the pointer and translates it to the current location

of the variable it is pointing to, which may be in a different memory bank because

of the dynamic movement of the variables in our method.

To aid in the translation, pointer values are always maintained as DRAM ad-

dresses except when they are dereferenced. This is useful for finding which variable

is pointed-to by the pointer since every variable has a unique ”home location” in

68

if (p >= DRAM-starting-address-of-obj1 and p < DRAM-end-address-of-obj1)

p=Translate(p,identifier-of-obj1,DRAM-starting-address-of-obj1)

else (p >= DRAM-starting-address-of-obj2 and p < DRAM-end-address-of-obj2)

p=Translate(p,identifier-of-obj2,DRAM-starting-address-of-obj2)

Figure 7.1: Code fragment with calls to the translate function for pointer p.

DRAM. With the help of a runtime-updated table that keeps track of current lo-

cations of every variable, the pointer can be then translated. The table entry is a

two tuple – unique integer identifier for a variable (the lookup value) and current

location for the variable. The unique identifier can be utilized to generate code to

efficiently access the table entry corresponding to it. For a particular variables with

identifier i, its entry is located at base-of-table+ (i-1)*size-of(table-entry)

Formally, translation code is constructed with multiple comparisons involving

only the intersection set of the points-to set and the variables in the scratch-pad

memory in the region. To illustrate, consider a one level pointer p that has points-

to set as {obj1, obj2, obj3},and inside a particular region p is dereferenced. Let

obj1 and obj2 reside in the scratch-pad memory. The code fragment for translating

needed to correct the address of pointer p is shown in figure 7.1. In the code

fragment, DRAM-starting-address-of-obj1 is the starting address of the variable obj1

while DRAM-end-address-of-obj1 is the end address of the variable obj1. Similarly,

DRAM-starting-address-of-obj2 is the starting address of the variable obj2 while

69

DRAM-end-address-of-obj2 is the end address of the variable obj1. These values

can be easily known at compile time. The constants identifier-of-obj1 and identifier-

of-obj1 are also compile time known unique identifiers for obj1 and obj2. These are

used inside the Translate() function. The details of the function are discussed

later.

If the pointer’s address does not match with either the DRAM address of obj1

and obj2, then that means the pointer is pointing to obj3 which resides in DRAM

and hence, the pointer value which is a DRAM address is already valid. In this

case no translation is required. At the end of the region, similar code is used to

retranslate the pointer value to make it point to the DRAM location to. This helps

maintain our requirement that the pointer values be always DRAM address except

when they are dereferenced. For multilevel pointers, such as **p, such translation

has to be done recursively for all levels. The recursion ends when it reaches the

end of the pointer chain. In the case of reference pointers, such translation and

retranslation needs to be done before and after every region in the function.

The translation involves four steps. First, pointer analysis is done to find the

points-to set of different pointers in the program. Second, at statements where the

address of a global or a stack variable or a procedure is assigned including when

they are passed as reference parameters, the address of the DRAM location of the

variable is assigned. This is not hard since all compilers identify such statements

explicitly in the intermediate code. As mentioned before, the advantage of DRAM

addresses of variables is that they are unique and fixed during the variable’s lifetime

unlike its scratch-pad memory addresses which can be reused by other variables in

70

procedure Translate(p,identifier-of-a,DRAM-address-of-a)

{

p = current-location-of(identifier-of-a) + p - DRAM-address-of-a

}

procedure Retranslate(p,identifier-of-a,DRAM-address-of-a)

{

p = DRAM-address-of-a + p - current-location-of(identifier-of-a)

}

Figure 7.2: Translation and retranslation function.

other regions. Only direct assignments of addresses need handling in this manner;

statements that copy address from one pointer to another do not need any special

handling. The third step is that at each pointer dereference in the program the

pointer address is translated by compiler-inserted code from the DRAM address it

contains to the current address of the pointed-to variable. This translation is done

by the comparison scheme described in the last paragraph. Once the current base

address of the program object in the scratch-pad memory is obtained, the address

value may need to be adjusted to account for any arithmetic that has been done on

the pointer. This is done by using the function Translate() shown in figure 7.2 to

adjust the value of the pointer. The expression p - DRAM-address-of-a gives the

offset inside variable a, while current-location-of(identifier-of-a) retrieves the current

71

address of variable a from the table that we described before.

The final step that we do is that after the dereference the pointer is again made

to point to its DRAM copy. Similar to when translating, the pointer value may need

adjustments again to account for any arithmetic done on the pointer. But retrans-

lation differs in one way. The difference is that unlike translation no conditional

code is required. Instead, the constant identifier of the object p was pointing to

can be saved inside a temporary before translation. This can be used again during

retranslation for call to the function Retranslate() shown in figure 7.2. As before,

current-location-of(identifier-of-a) retrieves the current address of variable a from

the table described before.

It appears that the scheme for handling pointers described above suffers from

high run-time overhead since an address translation (and retranslation) is needed

at every pointer dereference. Fortunately, this overhead in real programs is actu-

ally very low for four reasons. First, if a pointer has been proven to point to heap

data alone, it does not require any translation since heap data is not moved by our

method. Second, even when translation and hence a subsequent retranslation is

needed in a loop (and thus is time-consuming) it is often loop-invariant and can be

placed outside the loop. The translation is loop invariant if the pointer variable is

single level and is never written to in the loop with a address taken expression.1 For

similar reasons, the retranslation can be done after the loop. Finally, one optimiza-

tion that can be employed is that in cases where it can be conservatively shown that

1Pointer arithmetic is allowed in the loop, however, it is not supposed to change the pointed-to

variable, since in ANSI-C, no inter-variable ordering is assumed.

72

the variable is not moved between the address assignment and pointer dereference,

then since it’s address does not change, none of the steps discussed is needed. Such

instances most trivially happen in cases when for optimized array traversal, the ad-

dress is assigned to a pointer just before the loop and then the pointer variable is

used in the loop.

7.1.2 Address constraining

A second alternative is to use a strategy of restricting the addresses a pointed-

to variable can take. The strategy involves the following constraint for correctness:

for all regions where the variable may be accessed through pointers, the variable

must be allocated to a common memory location.. Thus, all the variables in the

points-to set of a pointer are restricted in the above manner in all the regions

where the pointer is accessed. So for example if variable a has its address taken

in region R1, and may be accessed through a pointer in region R5 and R7 then all

the regions R1 , R5 and R7 must allocate a to the same memory location. This

ensures correctness as the intended and pointed-to memory will always be the same

obviating the need for translation. In an extreme case, when the points-to set is all

the variables in the program, every variable in all the regions where the pointer is

accessed is constrained to one address. We term variables that have to be constrained

as constrained variables and the addresses they take as constrained addresses. In the

event that such an address cannot be found by the layout assignment in the scratch-

pad memory, then the constrained variable is allocated to the DRAM. On the other

73

hand, all variables not in the points-to set of a pointer or in regions where no pointer

is used can be allocated in an unconstrained manner. For reference parameters such

constraining has to be done for all the scratch-pad memory addresses the variables

can take inside all the regions in the function.

The above scheme also requires some modifications in the address assignment

pass that we described in section 6.1. Apart from finding a free hole, the pass also

needs to find a consensus address for a constrained variable. We modify the pass

to enforce a simple consensus mechanism: the consensus region is decided by the

first region which makes the decision and following regions attempt to obey this

decision. As in the original algorithm, the modified pass visits all the regions in a

timestamped manner. In each region, the pass first checks if any variable has been

already assigned a constrained-address in an earlier region. If so, the variable is

assigned the same constrained-address. Otherwise, if it is a variable in the points-

to set of pointer accessed in the region, then it is assigned a free hole that has

not been assigned to any other constrained-variable. After all constrained variables

have been assigned addresses, the un-constrained variables are assigned free holes.

This assignment is done as before in the best-fit manner. In the event that no

hole can be found, compaction is used but not over address ranges occupied by

constrained-variables.

74

7.2 Impact of function pointers on program

correctness

Recall that multiple calls to the same procedure can give rise to the problem

of procedure-join-nodes. In the scenario where at least one of the calls is using a

function pointer, the default solution of adding custom compensation code before

the call cannot be used unmodified. This is because the default solution relied on

adding the code to immediately prior to the call site and with indirect function

calls the location of these call sites is not known precisely at compile-time. In the

worst case, pointer analysis may declare that a particular call site can call any of

the functions in the program.

The solution of using compensation code for a procedure whose address is taken

is modified in two ways. First, the compensation code for paths through function

pointers is inserted inside the callee, so that it is executed after the procedure is

entered. To enable detection of these paths, an additional parameter in the function

parameter list is used. The compensation code is executed when this parameter

value is 1. The parameter is set as 0 for calls along precisely known paths (i.e. paths

without function pointer calls or when the pointer can be resolved at compile-time).

For indirect function calls whose targets are not known precisely, the parameter

passed is 1 and the compensation code is thus executed. The second way the solution

is different is that unlike precisely known paths the compensation code cannot be

customized to a particular allocation pair. Instead, it has to be a generic function

that adapts any one allocation to any other allocation. Such a function would first

75

find out using the symbol table which variables are not in the same location as in the

new allocation. Then it would evict these and instead bring in the objects desired

in the new allocation into the desired locations. If the cost of such compensation

cannot be recouped by the benefits from the allocation, then the only alternative

might be to allocate all the variables in the function to the DRAM.

7.3 Impact of pointers on liveness

The concept of liveness of a variable or in other words whether a variable is

live or not pertains to the interval between the definition of the variable and its

last use. In the case of scalar variables, the variable can be even considered dead

between its use and its next redefinition. Aggregate objects like arrays have to use

a simpler definition. An aggregate object can be declared dead only after its last

use in the program. In the presence of pointers this problem of declaring a variables

as dead becomes harder . This is because a variable can be declared dead only after

its last use directly or through a pointer.

Liveness of a variable is an important question to answer for dynamic allocation

methods. Since dynamic allocation schemes achieve better locality with the help of

memory transfers, transfers can be reduced by avoiding swapping out data which is

dead or not needed again. As variables cannot be assumed dead until all the pointers

pointing to it are also dead, in the worst case when a variable can be pointed by all

the pointers, the variable has to be considered alive for the whole duration of the

program ! Thus, presence of pointers can sometimes mean that this optimization

76

cannot be used. Hence, pointer analysis [38,75] helps in improving liveness analysis,

and hence, scratch-pad allocation.

7.4 Summary

In this chapter, we presented low overhead pointer handling add-on’s to dy-

namic allocation schemes that ensure the correctness of benchmarks. We discussed

solutions for different issues arising from use of pointers. Towards handling pointers

pointing to incorrect locations, we proposed two schemes - pointer translation and

address constraining. A detailed evaluation of these two schemes is shown in chap-

ter 10. We give a brief preview of the results here. Our results show that both these

schemes are competitive and ensure correctness with little overhead. Between the

two schemes, address constraining does better all the time and is a less risk prone

strategy with a need for only simple pointer analysis. On the other hand, pointer

translation using simple pointer analysis can in some cases do very badly. So barring

the availability of sophisticated pointer analysis methods, constraining the address

is a better strategy to handle pointers to global, stack data and function pointers.

77

Chapter 8

Framework For Partial Variable Optimizations

As discussed in chapter 2, compiler schemes are constrained to treating the

memory contents of terms of data types. So unlike hardware that can treat data in

granularity of cache lines independent of the sizes of the program objects, compiler

schemes have to treat data in accordance with the size of the variable. This has both

advantages and disadvantages. The disadvantage for hardware systems is that even

if a variable spans only part of a cache line, the whole cache line has to be brought in.

In modern day systems with large register sets, this is not such a serious issue. Most

variables smaller than a cache line (typically 8-32 bytes) are allocated to registers.

On the other hand, the disadvantage because of this constraint for software schemes

can exact a severe performance loss. In the case of compiler schemes for scratch-

pad management such a restriction means that if a program variable cannot fit in

the scratch-pad, then it cannot be allocated to the scratch-pad. This is a serious

drawback especially for applications that process large variables.

Some solutions have been proposed to alleviate this drawback for array vari-

ables. These solutions use compiler analysis to generate new array variables that

78

are part of existing program arrays. These partial arrays are such that they can fit

into the scratch-pad. Unfortunately, the solutions that have been proposed so far

for dynamic memory allocation for scratch-pad memory systems have offered only

one of the two following features. First feature is being optimized for programs

that have tightly nested loops and a special category of array references known as

affine references. Affine references are array references that are linear functions of

the enclosing induction variables. For example A[2i+j] is affine while A[2*i*j] is

not. For simplicity, we term programs with only such references as affine programs.

The second feature is being applicable for all kinds of programs with arbitrary con-

trol structures and references in them. Although the wide variety of applications

on embedded platforms calls for general solutions, the presence of large amount of

media/signal processing applications that contain affine references means optimiza-

tions for such applications cannot be overlooked either. A naive solution is that the

designer having access to both kinds of strategies, uses heuristics to choose the one

that works best for his application. However, such an approach is not only expensive

but fraught with other issues like longer design time.

In this chapter, we for the first time propose a tightly integrated framework

that is optimized to handle parts of variables while retaining the features of our

general framework like handling non-affine references, arbitrary control flow and

scalar variables. We have extended the general framework proposed so far in this

thesis to enable it to accept partial variables. We show the effectiveness of the en-

hanced framework by incorporating an initial data transformation pass that creates

partial variables from parts of an array. For instance when the whole array does

79

Figure 8.1: Part of a DPRG with partial variables

not fit into the scratch-pad, a row or a column can perhaps be considered as a new

variable. Thus the pass essentially identifies the footprint of array references inside

loop nests.1. In general, any such pass that generates new partial variables can be

used. Towards showing this generality, we outline how another existing optimization

structure splitting [64, 78] could be adapted to work inside our framework.

The framework so far is extended in two parts. The first part deals with the

data structures. The partial variables from the initial pass are entered as additional

variables for our framework to consider, in addition to the original program vari-

ables, for allocation into scratch-pad memory. The DPRG is modified to include

the partial variables. An example of the modified DRPG with partial variables is

shown in figure 8.1. The subscripted variables are the partial variables. For exam-

ple, A 1, A 2 are partial variables belonging to variable A. The other property of

1we will formally define what a footprint is later, but for now consider it as the set of elements

accessed

80

these additional variables is that they can be safely allocated without affecting the

correctness of the program. The second part of the framework takes the modified

DPRG as input. The pass involves modifications to accommodate these partial vari-

ables. The modifications include checks to avoid copies of the same array element

in the the scratch-pad memory and appropriate code generation for these partial

variables. In extending our framework with these two parts, we use several novel

features like flexible transfer points and scatter-gather copying for non-contiguous

elements that further aid in a improved allocation. The result is a general dynamic

scratch-pad allocation strategy that also exploits the presence of affine access pat-

terns in the programs. The beauty of such an architecture is that the framework

can accommodate all such optimizations that can generate partial variables.

The rest of the chapter is organized as follows. Section 8.1 looks at the gener-

ation of partial variables. In section 8.2 we look at the details of how our framework

can be extended to utilize the partial variables generated. Section 8.3 summarizes

the chapter.

8.1 Generating partial variables

In this section, we study the problem of generating partial variables. We first

discuss an affine analysis pass that can create partial variables from parts of an

array. Next, we outline how an existing optimization for cache can be adapted to

fit into our framework. Lastly, we discuss how existing loop nest optimizations can

aid in our method.

81

8.1.1 Affine analysis for partial arrays

The affine analysis phase finds partial arrays that can be considered by the

dynamic allocator for allocation to the scratch-pad memory. Potentially, for every

reference and loop level there can be a partial array. Before a potential partial

variable can be considered by the allocator, two questions have to be answered. First,

what are the elements in the variable? Two, is it safe to place the partial variable in

the scratch-pad memory? Two different partial variables can be intersect in multiple

ways. This then can introduce correctness issues because of multiple copies of an

array element in the scratch-pad. We call this issue as the intersection problem. We

look into these issues in more detail.

Finding the elements in a partial variable

The size of a partial variable is due to the set of elements accessed by a reference

at a particular loop level. The footprint of a reference r in loop x, footprint(r, x),

is the set of data elements that can be accessed by the reference r in its enclosing

loop x. For simplicity of our analysis, we over estimate this set of elements as the

entire set of elements along the direction of the stride. This extended set is called

the spanned-footprint. So when the set of elements is a subset along a row,column or

diagonal, we estimate the extended set as the whole row,column or diagonal. When

the set is a subset of a plane, then the extended set is the whole plane itself. In

this way we extend the footprint(r,x) to spanned-footprint(r,x). The shape of the

spanned-footprint unlike the footprint(r,x) is always rectangular. The benefit of this

82

is that the index for addressing into the spanned footprint can be generated using

a constant strides.

Some terminology

We represent the loop nest that we want to examine by vector �z= {z1,....zk,..zn}

where {z1} is the outermost loop index and {zn} is the innermost loop index. The

subscript at a loop nest denotes the nesting level. The nesting level of any loop

in �z is equal to one more than the number of enclosing loops. A particular value

of �z is itself a vector made of the iteration numbers for each of the loops in order

of nesting level. We call the vector an iteration vector. For instance, for a loop

nest z={i,j}, {i=0;j=10} is an iteration vector. In other ways, z is a collection of

iteration vectors where i, j take different values between their respective lower bound

and upper bound.

Identifying spanned-footprint

To aid in a more precise identification of the spanned-footprint, we use the

concept of data access matrix and data offset matrix. The data access function of

each reference can be represented as F= Hz + K where H is the data access matrix

and K is the data offset matrix.

To illustrate with an example, consider a reference A[i][2j][2k+10] in a loop

nest {i, j, k} where i is the outermost and k is the innermost. The data access

function F for this reference decomposed into the form Hz+K is

83

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0

0 2 0

0 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i

j

k

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

10

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i

2j

2k + 10

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

As a first step in identifying the spanned-footprint for loop zk, our method

reduces each data access function F of a reference to a reduced data access function

using the following steps. First,H is reduced by setting all the elements of the rows

that have any 1 in columns k <= j <= n to zero. H is then further reduced by

setting all elements in columns k <= j <= n to 0. The reduced H is denoted

H ′. Then K is reduced to K ′ by setting the element of the rows that are all zero

in H ′ to zero. The resulting expression H ′z + K ′ represented by F ′ is our desired

reduced data access function at zk. The reduced access function represents the array

subspace affected only by the loop variables {zk,..zn}. This subspace identifies the

spanned-footprint(r, zk). In other words, it represents the set of memory locations

accessed by the set of iteration vectors {z1,..zk,...,zn} where loop indices {z1,....zk−1}

are fixed while the rest of the indices vary between their respective loop bounds.

Both these methods of looking at a spanned-footprint are useful.

As an example, the reduced data function F ′ for our earlier example reference

at loop j, which identifies spanned-footprint(A[i][2j][2k+10], loop j) is

F ′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i

j

k

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

84

In general,

F ′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x

y

z

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

represents element(s) A[x][y][z], except if any of x,y,z are zero, then it is replaced by

’*’ in the array expression,’*’ representing the range of legal values for that subscript

index. While the set of elements is called the spanned-footprint, reduced data access

function in both the matrix form and the reference form is a way to represent it.

Intersection analysis

The second part of the problem is examining the intersection between differ-

ent spanned-footprints. The intersection between spanned-footprints can happen in

many different ways. The spanned-footprints can be exactly equal, partially inter-

secting or one can be the subset of the other. Finding the kind of intersection has

two uses. First, such an analysis is important for the correctness of the program.

If two spanned-footprints intersect and they are both allocated into the scratch-

pad memory at different addresses, then multiple inconsistent copies of array ele-

ments may exist in the scratch-pad. Second, in the case of equal or subset/superset

spanned-footprints, only one variable needs to be generated. This in turn eliminates

redundant transfers.

We first introduce some fundamentals that would be handy in our analysis.

Lemma 1. If the reduced data access functions for two spanned-footprints are equal,

then the spanned-footprints are themselves exactly equal.

85

Proof. Reduced data access functions when equal means that they define the same

set of memory locations that constitute the spanned-footprints. Thus, it follows

that the spanned-footprints are equal.

We now look at relating how our definition of spanned-footprint relates to

the concept of dependence. First we review the concept of data dependence. A

data dependence between two references exists when they read or write a common

location [3]. Inside a loop, dependence exists between two statements S1 and S2

inside a common loop nest if and only there exist two iteration vectors i and j for the

nest, such that (1) i < j or i = j and there exists a path from S1 and S2 in the body

of the loop; and (2) Statement S1 accesses memory location M on iteration i and

statement S2 accesses location M on iteration j. Dependence due to read accesses

to a common memory location is not an issue and hence, we do not consider it

further. If one of the references is a write then the dependence can be categorized

as being a true/anti/output dependence. For a particular dependence, the reference

that first accesses the common memory location is called the source reference and

the other reference is called the sink reference. A useful way to characterize a data

dependence is based on the number of loop iterations for each loop index separating

the two references. This distance is called the dependence distance and is denoted

d. Various values of d for a loop index index forms the distance vector. This vector

can be further summarized based on if the value of d is greater than, less than or

equal to zero and correspondingly, it is denoted as >, <, =. This summary vector

86

is called the direction vector. The direction vector, in other words, indicates which

among two references is accessed at an earlier iteration.

To illustrate with an example, consider the dependence in the following loop.

for I=1 to N

for J = 1 to N

A[I][J]=A[I-1][J]

In this case the distance vector between the reference on the right and the

reference on the left is {1,0} and the direction vector {<,=}. The number of de-

pendence distances that can exist between two references can be as many different

pairs of memory locations in the source and sink. Direction vectors can help in

categorizing these distances into one of 3 types, >, <, =. Further, when multi-

ple directions exists between two references, a convenient method is to merge these

multiple direction vectors.

Another characteristic of a dependence is its level of the dependence. In a

distance vector, the outermost loop that has a non zero distance is said to carry the

loop dependence. The level of the loop also indicates the dependence level. Thus, a

dependence between S1 and S2 can be denoted as S1 δl S2 where l is the dependence

level. A loop-independent dependence is denoted as S1 δ∞ S2.

Using definitions of dependence and spanned-footprints, we now state the fol-

lowing lemma that will be used to determine if two spanned-footprints do not inter-

sect at all.

87

Lemma 2. For two references S1 and S2 that are involved in a loop carried depen-

dence such that S1 δl S2, the spanned footprints of the references at nesting level

greater than l do not intersect at all.

Proof. Recall that the memory location in a reference is a function of a set of loop

index values. The set of loop index values is called an iteration vector. Now from

the definition of dependency, a dependency S1 δl S2 implies that for S1 and S2,

the corresponding iteration vectors that access any common elements do no differ

in their inner most l − 1 inner loops. The valid set of iteration vectors for nesting

level greater than l can only differ in their last l− 1 loop indices. But for this set of

iteration vectors no common location is accessed between the two references. Hence,

the spanned-footprint do not intersect at all.

To illustrate how the above lemma can be useful, consider the following ex-

ample.

for I=1 to N

for J = 1 to N

A[I][J]=A[I-1][J]

As mentioned before the direction between the source reference and the sink

is vector {<,=} and hence the dependence level is the outermost loop. This means

that the spanned-footprint of both these references inside the innermost loop do not

intersect at all. From the definition of our spanned-footprint, the spanned-footprints

of these two references are the rows A[i] and A[i-1].

To formally determine the kind of intersection between two references, we

88

define four classes of intersection. In the first intersection class, a spanned-footprint

of a reference is exactly equal to the other spanned-footprint. In this case we term

them as being common-spanned-footprint references or in short CSF references and

the intersection class as common-spanned-footprint class. The second class is when

a spanned-footprint is a subset of another. The first class can be considered a sub

case of the second class as two spanned-footprints that are equal also share a trivial

subset relationship between them. For the sake of simplicity, we consider them

separate though our algorithm would not make that distinction. The third class is

when two spanned-footprints do not intersect at all. The fourth class happens when

the spanned-footprints are intersecting but not subset of each other. We term these

references intersecting but not subset or in short IBNS references. We now examine

how to first identify and then handle these classes.

The first class we define is when two spanned-footprints are exactly equal ie.

for reference r1, r2 and loop variable x, spanned-footprint(r1, x) is equal to spanned-

footprint(r2, x). In terms of the mathematical framework that we have described

earlier, two references at a particular loop level which have the same reduced data

function have a common spanned-footprint. For example, references A[i][2j][2k] and

A[i][j][2k] have the same spanned-footprint for only loop j, the reduced data access

function for loop j being (i, 0, 0). These references from the same common-spanned-

footprint class can be represented by one common partial variable.

The second class called the subset class occurs when one spanned-footprint

is a subset of the other. This is similar to common-spanned-footprint class as the

spanned-footprint of the the reference that is super set of the other reference can

89

be used as a common spanned-footprint. The superset reference is then termed the

representative reference. This class can also utilize the reduced data access function

that we defined before.

• Create string by concatenating all the indices of the reduced data access func-

tion including their coefficients.

• For every trailing *, convert the corresponding dimension in the other reduced

data access function to a *

• If both the strings are equal then they have a subset relationship.

For example, consider spanned-footprints due to A[i][i] and A[i][*], the common

string we obtain is ”i”, and hence the references involve a subset relationship between

them.

The third class of intersection is due to spanned-footprints that do not inter-

sect. To find such references, we make use of lemma 2. Two references that are

independent at a particular loop level give rise to spanned-footprints that do not

intersect. Some cases of partial intersection can be further resolved as independent

spanned-footprints. We will consider those cases in the next paragraph.

The fourth class we define is due to intersecting but not subset references and

we call it the IBNS class. These can simply be identified as ones which do not belong

to any of the earlier classes. Such references cause partial intersection. To handle

the spanned-footprints from IBNS references in the same way as common-spanned-

footprint references needs identifying the precise intersecting elements and accessing

them by using conditional code. To avoid such overhead, we instead adopt one of two

90

int A[10][10], B[10][10], C[10][10]

For i=0 to 10 step 1 do

For j=0 to 10 step 1 do

C[i][j]=A[i][j]+A[i][j+1]+A[i+1][j-1]+A[i+1][j+1]

B[i][j] =10

B[j][i]++

C[j][j]=10

EndFor

EndFor

Figure 8.2: An example loop with affine references

approaches. In the first approach, references are not considered at all for scratch-

pad memory allocation. Alternatively if safe to do so, we revert to our default

solution of considering these references separately or in other words as belonging

to spanned-footprints that do not intersect at all. The choice of approach is based

on what kind of dependences the two references involve. The idea of analyzing the

dependence is to ensure that there are no data coherence issues. The problem of data

coherence arises only when either there is a true dependence or it cannot be clearly

established as to which of the two references writes the last value always. The second

kind of coherence issue happens if for the loop that carries the dependence multiple

dependence directions exist. Such references cause cycles inside a dependence graph.

In all other cases, when there is no true dependence and writes to one reference

always occur after any writes to the other reference, the references can be handled

separately without impacting correctness.

Example To illustrate these ideas, lets consider the loop in figure 8.2. The

91

Partial Spanned Description Induced by Size

Variables Footprint of CSF ref. words

A 1 loop j Row i in A A[i][j] 10

A[i][j+1]

A 2 loop j Row i +1 in A A[i+1][j-1] 10

A[i+1][j+1]

C 1 loop j Diagonal in C C[j][j] 10

C 2 loop j Row i in C C[i][j] 10

Figure 8.3: Example output of affine analysis phase

loop has one inner-loop and eight references or a possible set of eight partial vari-

ables. The output of the analysis is given in the figure 8.3. An example partial

variable is A 1 representing an entire row A[i] of size 10 and induced by references

(A[i][j], A[i][j+1]). Formally, the first column gives the four different partial variables

prefixed by their parent variable name. Notice that since some spanned-footprints

of some references listed in the fourth column are equal, there are only four partial

variables. The second column gives the loop to which it belongs. The third column

gives a description of the spanned-footprint. The fourth column gives the references

which cause the partial variable to be generated. The last column gives the size of

the spanned-footprint. Notice that partial variables due to references to variable B

are not considered for scratch-pad memory allocation since they intersect partially

and involve true dependence between them. On other hand, references to variable C

can still be considered for partial handling as there is no true dependence between

them and the dependence direction is unidirectional. All these partial variables can

92

be safely considered for allocation in the scratch-pad memory. The modified DRPG

part for loop j with these partial variables is shown in 8.1.

The complete algorithm is shown as pseudocode in algorithm 2. An overview

of the algorithm is as follows. The algorithm works in two parts. First, all the

references for an array are partitioned into multiple classes according to the affine

analysis we discussed before. At the end of this, all the IBNS references are filtered

out and the rest of the references are grouped into classes. The references in each

class can be represented using a common spanned footprint. We call the class as a

common-spanned-footprint class. Finally, a representative reference from the class

is used to find the size of the common spanned footprint.

In detail, the algorithm defines functions find-partial-set that is the outer-level

function that does the affine analysis we described before, Partition references that

partitions the references and Compute-sizeof-CSF that finds the size of a common-

spanned-footprint class. The return value of find-partial-set which is termed Partial-

set contains all the partial variables generated with information like their sizes,

the members and transfer point. At line 5 Find-partial-set examines unconsidered

references in a nested loop. It first makes a call to partition-references that finds

different classes of references. Partial variables for these references are then found

in a while loop (lines 9- 14). In the while loop, it generates a partial variable to

represent the references (line 9. It then picks a representative reference to make a call

to Compute-sizeof-CSF. A representative reference is the reference whose spanned-

footprint is a superset of spanned-footprints of all other references. For references

that do not intersect with other references due to which the corresponding CSF-class

93

Algorithm 2 Algorithm to generate partial variables for affine references
procedure Partial-variable-generator

2: Define Set Partial-set ⊲ Set of partial variables

Define Set CSF-Classes ⊲ Set of class CSF-Class. Each CSF-Class stores all the

references that make up the class.

4: for all loop nests with outer loop o loop and i loop as the innermost loop do

for all loop x loop from i loop to o loop do

6: while there are references in Unconsidered-references do

partition-candidates(r, x loop) ← Find set of references in unconsidered-

references that have same base as r

⊲ The following sets of classes contain the output of the intersection analysis. Each

class in a set thus is in turn a set of references that belong to the class.

8: CSF-Classes ← partition-references(partition-candidates((r, x loop),x loop))

⊲ partial variables can be safely generated for equal and non intersecting references.

while there is an unconsidered class CSF-class in CSF-classes do

10: Generate new variable V(r, x loop) to represent CSF-class(r, x loop)

Partial set = Partial set
⋃

V(r, x loop)

12: r ← representative reference from CSF-class

⊲ representative reference is a reference that is a super-set of all other references.

Size(r,x loop) = Compute-sizeof-CSF(r, x loop)

14: end while

end while

16: end for

Unconsidered-references = Unconsidered-references - partition-candidates((r,

x loop),x)

18: end for

return (Partial-set)

20: end procedure

94

1: procedure Partition-references(partition-candidates,x)

2: CSF-classes ← NULL

3: for all references r in partition-candidates do

4: for all references s in partition-candidates do

5: if determine-intersection(r,s,x) == IBNS then

6: Remove reference s from partition-candidates

7: Remove reference r from partition-candidates, if not already removed.

8: end if

9: end for

10: end for

⊲ All references in partition-candidates can be considered for partial-variable handling.

11: for all references r in partition-candidates do

12: Create new CSF-Class(r)

13: for all references s in partition-candidates do

14: if (determine-intersection(r,s,x) == EQUAL) or (determine-intersection(r,s,x) ==

SUBSET) then

15: Add s to CSF-Class(r)

16: Remove reference s from partition-candidates

17: Remove reference r from partition-candidates, if not already removed.

18: end if

19: end for

20: Add CSF-Class(r) to CSF-Classes

21: end for

22: end procedure

95

1: procedure Compute-sizeof-CSF(r, x loop)

2: Set index set = Index expressions with loop variable x loop present in them

3: if size of index set == 1 then

4: size at current loop level = size of dimension

5: else if size of index set == 0 then

6: size at current loop level = 1

7: else ⊲ direction of iteration not parallel to dimension

8: size at current loop level=size of dimension

9: end if

10: size=size at current loop level*size(r, x loop -1)

11: return (size)

12: end procedure

has only one reference, the reference itself is the representative of its class. The

function Compute-sizeof-CSF returns the size of the the partial variable generated.

Function Partition-references partitions references by making the call to func-

tion determine-intersection. Function determine-intersection returns the intersec-

tion type between two references at particular loop level based on different rules

we described in our intersection analysis. It first, in lines 2 - 10, filters out IBNS

references that intersect with other references and cannot be safely allocated to the

scratch-pad memory. Next, in lines 10 - 21, it partitions the references into various

CSF-classes. A reference that does not have an equal or subset relationship with

other references forms a CSF-class by itself.

The Compute-sizeof-CSF function returns the size based on how the particular

loop level affects the reference. It first finds the size at the current loop level (lines

96

3- 4). If the current loop level does not affect the reference (lines 5- 6) , like for

reference b[i][i] in a loop with induction variable j,only one element is touched by the

reference, then the size at the level is 1. Otherwise (lines 7- 8) if the iteration progress

along the row or column or diagonal, then the size of the particular dimension is

returned. Line 10 uses the idea that the sizes in different loops inside a nested

structure form a hierarchy. Hence the size of a spanned-footprint in a outer loop is

product of the size at the current level and size of the spanned-footprint from one

level lower.

8.1.2 Adapting structure splitting

In this section, we outline how an existing optimization – Structure split-

ting [64,78]– can be adapted to work with our framework. Recall that the necessary

requirement for our framework is that the optimization generate partial variables.

Using this optimizations as an example, we speculate on how the particular opti-

mization can be useful for scratch-pad’s as well. The objective of this section is to

only illustrate the integration aspects of our framework; the details of how to adapt

the optimization is subject of future research.

Structure splitting [64,78] as shown in the figure involves splitting a structure

into hot and cold parts. Hot part comprises of fields that are used frequently and

cold part of the structure is made of infrequently used fields. Finally, a pointer field

to the cold part is included in the hot part. Figure 8.4 illustrates this optimization.

The figure shows the structure S before and after the optimization. S is transformed

97

Figure 8.4: Structure splitting optimization

to S hot with only field c, and a pointer. The pointer points to the cold part of the

structure S cold with fields a,b and d. For the optimization to work, there are two

requirements. First, all accesses to the cold part of the structure elements now have

to be accessed through the pointer in S hot. This represents an overhead. Second,

the cold pointer has to be initialized to point to the cold part of the structure. For

structures that are objects, this is easily done in the constructor of the object [78].

For structures that are statically allocated, such initialization is done at the load-

time [30]. For such structures, compiler only needs to annotate the pointers as

link-time constants, constant values being the addresses of the cold part of the

structure.

Structure splitting for statically allocated structures can be integrated with

our framework. Apart from the other exisiting requirements for the optimization to

work, two more tasks need to be done. First, partial variables representing the hot

part of the structures would need to be generated. Second, the cost of using the

partial variables has to be accounted in the cost model. This would include the cost

of indirection to access the cold part. The details of the heuristics for constructing

the hot and cold is a subject of future research. In our section on future work,

section 11, we discuss a general approach to generating partial variables. However,

98

regardless of the heuristics, the frame work with the help of the cost model would

ensure that the allocation selected does not degrade the performance compared to

when no optimization is used.

8.1.3 Impact of loop transformations

A significant body of research exists on transforming loops to improve both

parallelism and locality in the cache. In this section, we study if such transformations

can be useful in our framework. We look at cache locality improving transformations,

followed by transformations for improving parallelism.

Locality improving transformations

Loop transformations to improve cache locality aim to transform loop struc-

tures such that the resulting memory access pattern reduces accesses to the main

memory. Loop transformations can improve both temporal and spatial locality.

Some examples of such loop transformations are linear loop transformations, loop

interchange and loop fusion [3,55,74]. The caveat here is that loop transformations

are not always legal, and they can affect all arrays in a loop nest, some of them

perhaps adversely.

Before we consider how these optimizations may be beneficial in our frame-

work, it is useful to understand how concepts such as locality and reuse hold in the

context of scratch-pad memory systems. A reuse occurs whenever the same data

item is referenced multiple times. However, reuse by itself does not result in a cache

hit if intervening references flush the data item from the cache between uses. If the

99

reused data actually does remain in the cache, we say that the reference that enjoys

the cache hit has locality. Therefore, it is important to realize that reuse does not

necessarily result in locality. Instead, the references with data locality are a subset

of the references with data reuse. Using the same intuition, locality in scratch-pad

memory systems can be defined as references that go to the scratch-pad while the

program object already exists in the scratch-pad memory. In the case of a cache,

when a address is accessed, the cache line associated with it is loaded into the cache.

This means that while in the case of caches, temporal reuse necessarily translates

to locality, that is not the case for scratch-pad memory systems. If an object is

accessed multiple times while being in DRAM, it does not result in locality.

In spite of the differences, these transformations can be generally useful for

scratch-pad memory allocation. The change in the access pattern that results from a

locality improving transformation can help in two ways. First, such transformations

can enable partial variables to be generated and thus enable the use of the partial-

variable optimization that we have discussed. Second, they can minimize the transfer

cost that is a parameter in the cost model. We now look at some examples of such

transformations.

Loop Interchange Loop interchange involves switching the nesting order of

two loops in a perfect nest [3, 55].

Consider the following loop

for I=1 to N

for J = 1 to N

A[J][I]=5

100

Elements along a column can be composed to form a partial variable. The only

drawback is that transfer code for such a partial variable cannot make use of any

hardware acceleration available for transfer of blocks of adjacent addresses. This

drawback can be eliminated by using the interchange transformation.

With an interchange the following loop is obtained.

for J=1 to N

for I = 1 to N

A[J][I]=5

Now the elements being contiguous can utilize block transfers for less overhead

transfer.

Loop Fusion Fusion involves merging adjacent loops when such a merging is

valid [3,46]. Fusion that improves data locality can also be beneficial for scratch-pad

memory. Consider the following loop.

for J=1 to N

for I = 1 to N

A[i][j] = B[i][j]

for I = 1 to N

C[i][j] = A[i][j-1] + 1

Let us assume that three rows of any of the arrays can fit into the scratch-pad

memory. In spite of that only two rows one each of A and of B can be accommodated

during the first inner loop. At the end of each iteration. the rows have to be written

into the DRAM. During the second inner loop, the elements of A have to be reloaded

again. Such a redundancy can be avoided by using the following fused loop

101

for J=1 to N

for I = 1 to N

A[i][j] = B[i][j]

C[i][j] = A[i][j-1] + 1

Thus, we see that various cache optimizations that affect the access pattern

can benefit scratch-pad memory allocations. A modified access pattern can enable

generation of partial variables and also reduce the transfer

Dependency eliminating transformations

Transformations that improve parallelism are useful as they rely on eliminating

dependencies. By eliminating dependencies inside a loop, these transformations can

enable more partial variables to be generated resulting in better utilization of the

scratch-pad.

One such transformation is loop distribution [3,46]. Loop distributions breaks

statements in a loop into statements into separate loops. This can eliminate depen-

dencies. Consider the following loop

for I = 1 to N

for J=1 to N

A[i][j]= B[i][j] +C

D[i][j] = A[j][j]

The true dependence between the references A[i][j] and A[j][j] will prevent from

partial variables being made from the elements in the row of array or elements along

the diagonal. The loop can be distributed to eliminate the dependence.

102

for I = 1 to N

for J=1 to N

A[i][j+1]= B[i][j] +C

for J=1 to N

D[i][j] = A[i+1][j]

In the new loop nest shown above, partial variable for array A can be generated

inside the inner loop.

Loop transformations as scratch-pad optimizations The examples thus

far shown lead to a more general question of how to use these transformations

as optimizations for scratch-pad memory. Certainly, it appears that most such

optimizations can be beneficial for scratch-pad memory as well. While this may be

true in these cases, some examples that are contrary to these exist.

Consider the following example.

for I = 1 to N

for J=1 to N

if A[i][j]

B[i][j]++

A[i+1][j]=A[i][j]++ ;

Let us assume the capacity of the scratch-pad and cache to be both 2 lines.

Also assume that all variables are similar and the cache line size is equal to the

size of the row of any of the arrays. In the case of a cache, the cache would suffer

capacity misses. A transformation like distribution can alleviate this problem by

103

changing the code to as above.

for I = 1 to N

for J=1 to N

if A[i][j]

B[i][j]++

for I = 1 to N

for J=1 to N

A[i+1][j]=A[i][j]++ ;

Now the transformed code would be helpful in the case of a scratch-pad al-

location as well if the allocation desires to allocate a row each of A and B into

scratch-pad. Now consider the other case when B is not used very frequently. In

that case, scratch-pad allocation would desire to allocate only two rows of A into the

scratch-pad. In this scenario, the extra cost of the transformed code is unnecessary.

Thus, the question of adapting these transformations for the benefit of scratch-

pad allocators needs further study. Due to the large variety of existing optimizations,

we have not studied this topic further. We discuss this further in our concluding

chapter, chapter 11.

8.2 Framework extensions

We next describe the second part of our integrated framework – the modifica-

tions to the framework described in chapter 4. One of the key aspects of integrated

framework is that for most part of the algorithm, the additional variables generated

104

can be treated like other variables. This allows us to retain the biggest advantage

of non-affine frameworks which is their general applicability. We now look at four

aspects of the original framework which have to be modified.

The first modification required is due to the hierarchy of partial variables

originating from different loop levels. One partial variable for a particular reference

is a subset of another partial variable generated for the same reference but at a

higher loop level. The first case that needs to be handled differently is when a partial

variable is being considered for swap in, and a variable that includes it is already

in the scratch-pad memory then the swap in can be ignored. On the other hand,

if after the swap-in has been ignored, the superset variable itself gets swapped out,

then the previous decision to ignore the swap-in has to be reversed and the partial

variable swapped in. The opposite case that can happen is if a superset variable

is to be brought in, and a subset variable already exists, then the subset variable

needs to be evicted out.

The second modification is in the cost model. When considering a partial vari-

able that needs any special handling such cost has to be included in the cost model.

For instance, if the partial variable is composed out of non-contiguous elements,

then the copy code may involve extra overhead. Such overhead also needs to be

taken into account.

The third aspect of the original framework that needs different handling is

generating the copying code for transfers between the scratch-pad and DRAM. The

copying code sometimes needs to collect non-contiguous elements. This is done by

adding an additional parameter to the copy procedure. The parameter describes

105

the stride between the elements. For contiguous elements this stride is trivially one.

To simplify analysis, we only handle cases where the stride is a constant.

The fourth modification is regarding code generation to access the partial

variables. Code generation to access partial variables in scratch-pad memory is

done as in the original framework; that is by using a temporary variable.

To illustrate the code generation, consider the following example. In the first

example, we look at a simple loop.

for I = 1 to N

for J=1 to N

A[i+1][j]=B[j][i]++ ;

Lets say new partial variables are to be generated for both the references

representing the two rows from the array A. Lets call the partial variable A1 and

B1. Then, the loop would have to modified into the following loop.

for I = 1 to N

memcpy(A1,A[i],10,1);

memcpy(B1,B[i],10,10);

for J=1 to N

new-index1=j;

new-index2=j;

A1[new-index1]=A2[new-index2]++ ;

memcpy(A[i],A1,10,1)

memcpy(B[i],B1,10,1)

106

Apart from these changes, the rest of the framework including the allocation

skeleton and address assignment remains the same

8.3 Summary

In this chapter we extended our algorithm to a framework that can incorporate

optimizations that generates partial variables. To illustrate the workings of the

framework the first part of the chapter presented an affine analysis pass that can

generate partial arrays in affine code. With this add-on, besides the advantages

of an non-affine algorithm like general applicability, the framework can also places

parts of variables when they accessed using affine functions. Integration also allows

for selecting the transfer point using a cost-model. Our results discussed in detail

in chapter 10 show that the integrated algorithm combines the benefits of an affine

and non affine allocator. For a wide range of sizes, the integrated algorithm does

as well or better than either affine only or non-affine only allocators. In the second

part of the chapter, we consider the usefulness of existing optimizations including

structure splitting, loop transformations for locality improvement and dependency

elimination.

107

Chapter 9

Related Work

The complete space of existing memory allocation methods is shown in fig-

ure 9.1. Broadly, the existing methods to allocate date to on-chip SRAM can be

categorized as being either hardware, software or both. For brevity we have grouped

all methods that use some hardware as non S/w only methods. Further software

methods can be either static or dynamic. Dynamic methods again can be divided

into runtime solutions or compile-time solutions. Compile-time solutions can be

loop based or whole program based. The existing whole-program methods vary in

terms of their scope in yet another dimension. They either handle only data or both

data and code.

In this chapter, we look at some examples of existing methods for the different

categories illustrated in figure 9.1. Chapter 10 discusses how our methods compares

quantitatively with some of these methods. Here, while we survey the different

methods, we discuss how they compare qualitatively with our method. The chapter

is organized in terms of the broad categories shown in the figure. The chapter has

two main sections. In section 9.1, we consider the different software methods. Then

108

Figure 9.1: Different kinds of scratch-pad allocators

in section 9.2 we consider the other category of methods that require some hardware

or are purely hardware based like caching.

9.1 Software methods

First, we study the two different categories of software methods for scratch-pad

management – static methods and dynamic methods.

109

9.1.1 Static methods

Earlier methods by others on allocating a portion of the data to the scratch-

pad include [12,13,39,65,72,73,77,88]. The principle limitation of all these methods

is that all of them are static methods; hence scratch-pad allocation does not change

across run-time. In contrast, our method is a dynamic method which can change

the contents of the scratch-pad during the run of the application. Also, most of

these methods only handle data but not code. Some methods such as [77, 88] can

place both code and data in scratch-pad; however, their allocation does not handle

stack variables.

Some schemes for scratch-pad allocation have had different objectives from

ours; three such objectives are as follows. First, the primary goal of the method

in [39] is to provide an easily re-targetable compiler method for allocation of data

across many different types of memories. Second, the goal of the work in [7,77,86] is

scratch-pad memory allocation with the primary objective being energy minimiza-

tion. Third, the goal of the work in [6, 84] is to map the data in the scratch-pad

among its different banks in multi-banked scratch-pads; and then to turn off (or

send to a lower energy state) the banks that are not being actively accessed.

9.1.2 Dynamic methods

Run-time dynamic methods

One of the earliest dynamic methods proposed for memory management is the

seminal work by Belady on replacement algorithms for virtual storage [16]. Although

110

the solution is not particularly targeted for scratch-pad based embedded systems,

due to the similarity of the problems the question if the approach can be adapted

for scratch-pad allocation arises. The offline paging problem solved by [16] deals

with deriving an optimal page replacement strategy when future page references are

known in advance. Analogously, we look at finding a memory allocation strategy

when program behavior is known in advance. The solution by Belady also proposes

the use of ”furthest used” heuristic that we have employed as well using timestamps.

Offline paging, however, cannot be used for our purposes since it makes its page

transfer decisions at runtime (address translation done by virtual memory), while

we need to associate memory transfers with static program points.

As discussed in chapter 9, the problem of register allocation is a special case of

the problem of scracth-pad allocation. To revisit briefly, there are two fundamental

differences between the problems. First, unlike in the case of memory allocation,

the variables that need to be assigned to registers are of the same word size. In

many register allocation algorithms, this observation of same-size registers is used

to model register allocation as a graph-coloring problem. This formulation cannot

directly be used for scratch-pad allocation since the variables in SPM are of varying

sizes. Instead the formulation must take into account a more-complex constraint

that the sum of the sizes of the variables in SPM must be less than the SPM size.

This algebraic constraint cannot be expressed in terms of graph coloring. The second

difference is that while in registers, variables cannot be indirectly addressed. Both

these differences either completely eliminate some of the issues seen in scratch-pad

allocation or reduce their complexity. While problems such as due to pointers,

111

offset assignment are not present in the case of register allocations, problems such

as determining the liveness of variables can be done lot more precisely. Due to these

basic differences, register allocation solutions cannot be applied directly for scratch-

pad allocation. However, two different heuristics used in our method are derived

from heuristics used in register allocation methods. First, most of the register

allocation solutions [18, 21, 27, 29, 35, 69] also employ some sort of cost model that

finds the benefit of having a variable in register versus the cost of the transfers.

Second, spill heuritics such as ”furthest used” have also been used in some register

allocation methods [66].

Purely dynamic memory allocation strategies to date are mostly restricted

to Software Caching [36, 59]. Software caching emulates a cache in SRAM using

software. The tag, data and valid bits are all managed by compiler-inserted code at

each memory access. Software overhead is incurred to manage these fields, though

compiler optimizes away the overhead in some cases [59]. [59] targets the primary

cache; [36] manages the secondary cache in desktops. The only software caching

scheme that is a competitor is [59]; it however does not measure speedup vs. an

all-DRAM allocation, and does not quantify its overheads. All software caching

techniques suffer from significant overheads in runtime, code size, data size, energy

consumption, and result in unpredictable runtimes. Our dynamic allocation method

overcomes all of these drawbacks.

Some software caching schemes use dynamic compilation [40] which changes the

program at runtime in RAM. These schemes have all the disadvantages of software

caching mentioned in the previous paragraph in terms of increased overheads versus

112

our method. Moreover, most embedded systems store the program in unchange-

able ROM and dynamic compilation cannot be used. Even if RAM is available to

store dynamically compiled code, the run-time and energy cost of translation and

the dollar cost of the additional RAM needed for storing the translated code usu-

ally make dynamic compilation infeasible for embedded systems. There are other

software caching schemes that have been proposed with different goals and/or non-

applicable platforms [17,19,26,43,68,85]. None of these apply to our objectives; we

do not discuss these further.

Compile-time dynamic methods

Many studies [5,23,52,58,67,76,87] have been proposed that consider dynamic

management of the scratch-pad. However, only the strategy by [87] is a generally

applicable solution like ours. To better understand the merits and demerits of these

various approaches, these can be divided into two categories based on whether scope

of the method is at the level of a loop or the whole program. The approaches in [76]

and [87] are whole program solutions and are based on ILP formulations with the

primary objective of minimizing energy consumption. While Steinke et al in [76]

only consider program objects, Verma et al’s scheme in [87] is a comprehensive

ILP formulation and considers both data and program objects. So for a detailed

comparison we do not discuss the approach in [76] further. On the other hand,

the solution by Li etal [52] is also a whole program solution for global and stack

objects only. The second category of approaches [5, 23, 58, 67] consider each loop

nest separately. One common drawback of all these methods is that none of them

are one integrated solution that can handle non-affine code while being optimized

113

for presence of affine references. The next few paragraphs will make a detailed

comparison of our approach with these methods.

Methods optimizing loop nests

The methods in [5, 23, 58, 67] only allocate global arrays unlike our method

which is comprehensive and can allocate global, stack and program code. To com-

pare the global data allocation part of our method with theirs, like our method,

these schemes also move data (only global) between DRAM and the scratch pad un-

der compiler control. The primary distinguishing feature of these dynamic methods

is that they are focussed on optimizing perfectly nested loop nests for scratch-pad

accesses. So these methods while considering each loop independently allocate parts

or whole variables accessed in the loop nest into the scratch-pad. The local analysis

makes available the entire scratch pad for each loop nest. In contrast, our method

is globally optimized for the entire program. Our method is also not constrained

to make the entire scratch-pad available for each loop nest; instead it may choose

to retain data in the scratch-pad between successive regions thus saving on transfer

time to DRAM.

Another limitation of these methods is their limited applicability which stems

from these method only targeting arrays accessed through affine(linear) functions

of enclosing loop induction variable. Thus, these cannot handle non-affine accesses

such as accesses using pointers or indexed array expressions. These methods are

also restricted in their use because the required affine analysis for these methods

can be only done for only well structured loop without any other control flow such

114

as if-else, break and continue statements. In contrast, our method is completely

general and is able to exploit locality for all codes, including unstructured code, code

with irregular accesses patterns, variables other than arrays and code with pointers.

We now compare how these methods differ in their handling of affine references.

Among these strategies handling affine programs, there are two categories. The

first category similar to ours, identifies the footprint of an affine reference. The

second category of papers rely on data or code transformations to copy a part of the

working set. Some aspects of these techniques such as precise footprint analysis are

complementary to our method. One of the strengths of our integrated framework is

that if so desired it can easily accommodate any of these optimizations.

We now look into these methods in more detail. The papers by Eisenbeis et

al [23] and Schreiber et al [67] find the smallest footprint while Anantharaman et

al [5] similar to us find a bounding rectangle around the footprint. These methods

are similar to the general class of analysis techniques known as array section analysis

Several array section analysis techniques have been proposed that vary based on their

precision and speed. The precise techniques involve recording each reference to an

array seperately without summarizing them [50, 54]. Coarser level techniques also

exist that use approximations to represent the section [25, 37]. Compared to our

method of aligning footprints with array boundaries, these techniques are likely to

yield more precise array footprints.

Certainly, finding the smallest size may improve the utilization of the scratch-

pad memory. However, in most of the cases, these section are of non-rectangular

shapes and do not align with the array boundaries. The advantage of rectangular

115

sections is that the index into the section can be generated as a function of the base

of the section and an offset. This is not always possible for non-rectangular sections.

This makes it difficult for use in dynamic allocation strategies for scratch-pad where

explicit code has to be generated to address elements in scratch-pad. Thus, code

generation becomes extremely complicated for non-rectangular sections and that

further hinders optimization of the address generation code.

These solutions also differ from ours in the granularity of the loop nest at

which they work. The granularity is in terms of loop iterations [23] or the whole

loop nest [5,67]. The granularity of an iteration may mean not only extra overhead

but also large transfer cost due to transfers inside the loop. Now, the footprint

at the granularity of an iteration or even several iterations may be unnecessarily

small and handling them may even involve extra overhead. Also, the point at which

the transfer is done has a large impact on the cost of transfer. So in some cases,

it may be more beneficial to transfer the footprint outside as many inner loops as

possible, if possible outside the whole loop nest where the transfer cost is minimum.

On the other hand, doing the transfers only outside loop nests may not provide

any benefit of affine handling for loops that access the entire array like in various

stencil benchmarks. In contrast, our method for footprint analysis although with

conservative footprints, generates all possible footprints for different transfer points

in the loop nest. The choice of the footprint and the corresponding transfer point

is left to our cost-benefit model driven integrated allocator. The cost-model of the

framework is more sophisticated than any of the cost-models used by other affine

schemes. The cost-model takes decisions in a more sophisticated fashion by taking

116

note of the memory contents at that point. Finding footprints at different loop levels

allows us to leverage this cost-model.

The other category of work that handle affine references is due to Kandemir

et al [58]. Their solution involves tiling the loops to reduce working set and then

copying it to the scratch-pad memory. Such tiling is illegal for benchmarks with

imperfectly nested loops, hand optimized code, arbitrary control structures and it

also means that only programs where there is no overlap between successive working

sets can be targeted. So the solution flushes out the working set before the next

tile can be brought in. The other part of their work determines one common layout

for an array based on how it is accessed in different loop nests. We circumvent this

issue by using copying code that collects non-contiguous elements and scatters them

back into their original addresses when copying back. A drawback of such copying

code is that it is likely to be slower especially when special hardware like DMA is

available. In such a scenario, it might be more profitable to modify the layout to

obtain faster transfers.

Methods using whole-program approach

Two recent papers that are similar to our dynamic approach are by Verma et al [87]

and Li et al [52]. Both these methods have strategies motivated by register al-

location. An advantage that our method has over both these methods is that it

also provides a framework for incorporating optimizations for partial variables. Al-

though, without the implementation it is hard to say how these methods would

really perform, in the following paragraphs we attempt to qualitatively compare our

method with theirs. First, we describe how these methods work and then look at

117

how they handle various aspects of the allocation.

Method by Verma et al [87] The method by Verma et al is motivated by

the ILP formulation for global register allocation [34]. Both parts of the problem –

finding what variables should be in the scratch-pad at different points in the program

and what addresses they should be at – are solved using ILP formulations. Then

like our method, code is inserted to transfer the variables between the scratch-pad

and DRAM.

Being ILP based, their solution is likely to be optimal in the solution space

they have defined; however, ILP based solutions have two fundamental issues that

limit their usefulness. First, ILP formulations have been known to be undecidable in

the worst case and in many practical situations are NP hard. Their solution times,

especially for large programs can be exponential. Second, using ILP solutions is

also constrained by issues like intellectual property of source code from different

vendors, maintenance of the resulting large combined code and the financial cost

of ILP solvers. Due to these practical difficulties of ILP solvers, it is very rare to

find ILP solvers as part of commercial compiler infrastructures despite many papers

being published that use ILP techniques.

One other drawback of their approach is that like global register allocation

methods, the solution though optimal is per procedure. In other words, the for-

mulation does not attempt to exploit for reuse across procedures. This might lead

to some data being needlessly swapped out even if retaining it in the scratch-pad

might be more beneficial across two procedures. Also, even if a variable remains

in the scratch-pad in both the procedures and can be identified thus, its offsets in

118

both the procedures could be different. So code between two procedures would need

to copy data from old offsets to new offsets for all the variables that remain in the

scratch-pad. Similar costs exist for register allocation as well, but in the case of

register allocation spilling some registers and reloading them again at the end of the

procedure is not as expensive. Spilling contents of scratch-pad even if selectively

and reloading at the end of procedure is likely to be much more expensive. One,

latency to access the next level of storage the DRAM is many orders higher (10-100

times). Two, the size of the scratch-pad is likely to be larger. And finally, selective

spilling of only used offsets is not easy because of aggregate variables like arrays.

Hence, it is much more important that the copying cost be minimized in the case of

scratch-pad memory allocation. In other words, for scratch-pad memory allocation

interprocedural approaches are important.

One possible remedy to the problem might be to consider extending the for-

mulation to work with an interprocedural interference graph. This is not practically

feasible for the same reasons as why interprocedural register allocation schemes

based on interprocedural interference graphs would not work. One, the interference

graph is likely to be very large and two, the ILP solution which grows linearly with

the number of edges×variables would only become more difficult to solve. Hence

interprocedural approaches have to be different from per procedure approaches.

In contrast, our scheme also considers interactions across different regions in-

cluding procedures. This becomes possible because of our interprocedural approach.

Our method’s algorithmic complexity is polynomial even in the worst case and

hence can find an interprocedural solution efficiently. Consequently, our approach

119

may choose to retain some data between procedures and thus minimize the copying

overhead.

An issue that is not addressed in [87] is the issue of correctness in the presence

of pointers. To address this, the ILP formulation would need to be extended to

include one more extra constraint that the offsets be the same in both the loca-

tions namely when the address is taken and when the pointer is dereferenced. The

drawback of this is that it would make the formulation still harder to solve. In our

scheme the constraining of the offset is included in the greedy layout pass itself. The

details can be found in chapter 7. A final drawback of the scheme in [87] is that

it does not discuss how the compiler generates code to make use of the allocation

decisions.

Method by Li et al [52] Li et al also propose a dynamic strategy motivated

by register allocation. Theirs is a graph-coloring approach that works on pseudo

registers created from the scratch-pad memory. The method works in 3 parts. In

the first part arrays with similar sizes are grouped into a class and their sizes rounded

up to a common size. The common size is based on a tunable parameter. Using

these sizes, the available memory is partitioned into pseudo registers. Next, a cost

model similar to ours is used to identify profitable live ranges. Finally, the graph

coloring algorithm is invoked to map the live range and pseudo registers.

The method is an interesting application of graph coloring. But while graph

coloring fits the problem of register allocation naturally, in this case a lot of approx-

imations are needed. One such approximation is the use of a user-defined parameter

to round of the array sizes to a common size. For example, if the parameter is 64, a

120

variable of 8 bytes is considered to be of size 64. This leads to under utilization of

the scratch-pad. Another aspect of the memory allocation problem that makes the

graph coloring unsuitable is the scope of the coloring algorithm. While this method

propagates live ranges into functions, it does two things that restrict the solution.

First, it does not allow the live ranges to be broken at the boundaries of function.

What that means is that, a variable allocated to the scratch-pad will have to be

retained in the scratch-pad until the call returns. Second, like in the method by

Verma et al, the scope of the allocation is a procedure. Thus, an array variable can

be allocated to two different pseudo registers in the caller and the callee; thereby

requiring code to copy between the registers.

The method unlike ours and Verma et al’s does not handle program objects.

Lastly, unlike the method by Verma at al, the method by Li addresses the issue of

pointers but in a limited way. The paper restricts the breaking of live range in the

presence of pointer dereference whose alias set is greater than one. This does not

really solve the problem. As mentioned before, pointer also cause problems when a

variable is moved since its assignment to the pointer variable.

9.2 Methods using hardware

Schemes also have been proposed that use a hardware approach for managing

the scratch-pad [6]. Angiolini et al select a set of memory address ranges based

on their access frequency and map them to the scratch-pad. A special decoder

is then used to translate the addresses to locations in the scratchpad. The above

121

approach is based on hardware customization instead of software customization like

our method. Although hardware customization has the advantage that approaches

based on it do not require application source to be available, the applicability of the

approach is limited to only architectures which have the required special hardware.

An extension of the above approach was proposed by Francesco et al in [33] who

used a combination of hardware and software techniques to manage the scratch-pad

at runtime. Special hardware needed included a DMA engine and a configurable

dynamic memory management. Software support is mainly in the form of high-level

API’s. Apart from the limitation of special hardware the other drawback of the

approach is that it being a runtime approach, it would not be well suited for real

time applications with high predictability requirements. One advantage though is

that it can adapt to dynamic applications better.

Comparison with caches Other researchers have repeatedly demonstrated [7,13]

the power, area and run-time advantages of scratch-pad over caches, even with

simple static allocation schemes such as the knapsack scheme used in [13]. Further,

scratch-pads deliver better real-time guarantees than caches [89]. In addition, our

method is useful regardless of caches since our goal is to more effectively use the

scratch-pad memory already present in a large number of embedded systems today

such as the Intel IXP network processor, ARMv6, IBM’s 405 and 440 processors,

Motorola’s 6812 and MCORE and TI TMS 370. It is nevertheless interesting to see

a quantitative comparison of our method for scratch-pad memory against a cache.

Chapter 10 presents such a comparison. Overall, our method does slightly better

122

than caches, but for some benchmarks which deal with large program object that

do not fit into the scratch-pad, caches give better results.

Solutions for other scratch-pad based architectures

Some embedded systems allow both a scratch-pad and a cache to be present. Ex-

amples of such processor are Intel IXP and IBM 405 processors. For such processors

our method is best applied by placing the data as dictated by our method in scratch-

pad, and placing all the remaining data, assumed to be in DRAM in our method, in

cached (DRAM-backed) address space instead. In this way, the real-time improve-

ments from scratch-pad allocation are retained for all frequently used variables.

This is not the case with previous methods for cache-aware scratch-pad placement

such as [65] and [86] where frequently used variables are sometimes placed in cache;

leading to poor real-time bounds for their access. Further, both these methods are

static and apply to only some kind of variables. While the method in [65] is limited

to global variables, the method in [86] presents an approach for placing instruction

traces with the objective of energy minimization. In contrast, our method for run-

time reduction is dynamic and applicable for both instruction objects (procedures)

and data(global/stack) variables.

Cache designs that can deliver better real-time guarantees than ordinary caches

include [28, 47, 63, 70, 79]. Some disallow eviction of parts of the cache data; others

restrict parts of the cache to parts of the software; still others assign task priorities

for cache usage. Most still suffer the overheads of cache listed in the introduction.

Despite the possibility of such caches, the pre-dominant form of SRAM in embedded

123

systems remains scratch-pad memory. Trends in recent embedded designs indicate

that the dominance of scratch-pad will likely consolidate further in the future [13,49].

Hence methods to allocate data to scratch-pad are useful regardless of whether real-

time caches capture some share of the market. Given these facts we do not discuss

real-time cache designs further since they are not directly related to our goal of

utilizing the scratch-pad better.

124

Chapter 10

Results

In this chapter, we discuss the performance of our dynamic method. The re-

sults are presented in four sections. In the first section, section 10.1, we provide

detailed performance results for our basic dynamic method without the partial vari-

able pass. Briefly, the methodology is as follows. We first find the performance

comparison between static and dynamic methods for a variety of SRAM sizes. We

then choose the size at which maximum benefit is obtained subject to some restric-

tion as our maximum benefit configuration. The rest of experiments in this part are

done on this size. The experiments study our methods energy and area benefits,

influence of parameters like transfer cost and DRAM latency. Then in section 10.2,

we present a comparison between our method and hardware caches. The SRAM

size for the comparisons is again based on the size found in section 10.1, the size

at which maximum benefit is obtained when compared to the static method. Our

third set of results – section 10.3– study the effectiveness of our method extended

to incorporate an affine analysis pass. We show our comparisons at some selected

sizes. For all these experiments we use the address constraining strategy of pointer

125

handling. This choice is based on some experiments. We discuss these experiments

in our fourth part – section 10.4– of our results.

We first look at the experimental setup for all our results.

Experimental setup The memory characteristics for our studies are as follows.

In the experimental setup, an external DRAM with 20-cycle latency and an internal

SRAM (scratch-pad) with 1-cycle latency is simulated in the default configuration.

To store code, the experimental setup also includes a Flash device [57]. The Flash

has a seek time of 120 ns or about 24 cycles [57]. Such a configuration is typical

of high end embedded systems where designers have to choose to enable the cache

or not. To study the impact of the Flash and DRAM latencies, the latencies are

varied later on in an experiment. The current and voltage values of the devices

are also incorporated into the power simulator. For faster transfers we assume the

availability of DMA hardware.

Our experimental setup for estimating the energy consumption of programs

with and without our method is as follows. An M-core power simulator [14, 15],

kindly donated by that group, is used to obtain energy estimates for instructions and

SRAM. This is an instruction-level power simulator similar to [71,82]; its instruction

power numbers were measured using an ammeter connected to an M-core hardware

board. DRAM power is estimated by a DRAM power simulator we built into the

M-core simulator. It uses the DRAM power model described in [44, 56] for the

MICRON external DDR Synchronous DRAM chip. The DRAM chip size is set

equal to the data size in the energy model.

126

Our methodology is as follows. We have implemented the profiling and alloca-

tion algorithm in a GCC cross-compiler targeting the Motorola M-Core embedded

processor. Our experiments are based on two different versions of Gcc. All our ex-

periments except the experiments described in section 10.3 are based on GCC v3.2.

Due to lack of affine analysis support in GCC v3.2, we have used GCC 4.0 for the

extending our framework for affine references. After compilation, the benchmarks

are executed on the public-domain cycle-accurate simulator for the Motorola M-

Core available as part of the GDB v5.3 distribution. DMA is simulated by counting

the estimated costs of those mechanisms in the simulator.

10.1 Static method comparison

This section presents results comparing our dynamic method against a static

method. As mentioned before, static methods developed so far have been of various

kinds. Some have solved the problem when the memory systems has both cache and

scratch-pad; some have looked at the problem of energy minimization and others

have targeted only global or only code objects. The approaches of these methods

either have been ILP formulations or heuristic-driven strategies based on the knap-

sack problem. Since ILP formulations are not practical in real world compilers, for

the static method we choose a heuristic-driven knapsack based solution. Avissar et

al. [10] shows that the heuristic to be very competitive compared to the ILP for-

mulation . The heuristic is similar to the the profit-based greedy heuristic for the

0/1 Knapsack formulation. The approach works as follows. First, all the objects

127

are sorted in the descending order based on their frequency/size value. Then, ob-

jects are selected until no more objects can fit. The next object that cannot fit is

termed the critical object. A comparison is done between the total frequencies of

all the objects selected and the frequency of the critical object. In the case that the

frequency of the critical object is lesser, then the objects selected until now are re-

tained and make up the static allocation. Otherwise, if the frequency of the critical

object is higher, then the critical object is selected and set of objects selected until

now are dropped. The scratch-pad size is updated by subtracting the size of the

critical object. Also, the critical object is removed from the initial set of objects.

The process is repeated with the new set of objects and the new scratch-pad size.

The process ends when either of the following two happens. One, all the objects

not selected have size greater than the remaining scratch-pad size or two, the total

frequency due to all the objects selected is greater than the critical object.

The embedded applications evaluated are shown in table 10.1. The applica-

tions selected primarily use global and stack data, rather than heap data, since our

method is not meant to handle heap data.

In the experiments below, the SRAM size is varied and for each size the run-

time gain from the dynamic method in this thesis vs. the static method is measured.

The DRAM and Flash sizes, of course, are assumed to be large enough to hold all

program data and code respectively. Other experiments below perform more detailed

studies, including varying different parameters, and measure the impact of doing so.

Results on run-time improvement Before presenting results, it is important

128

Application Source Description Lines Object Data Data memory

of code code size instructions as %

size in bytes total dynamic

in KB instructions

Lpc UTDSP Linear predictive 493 340 7684 29.1

coding encoder

Edge Detect UTDSP Image edge 368 350 196600 7.0

detection

Gsm MIbench Speech 5473 417 20287 29.2

compression

Spectral UTDSP Power spectral 449 332 4356 47.5

estimation

Compress UTDSP Discrete cosine 296 324 70752 12.2

transform

G721.Wendyfung UTDSP G.721 ADPCM 627 250 4148 44.0

(G721) algorithm

Stringsearch MIbench String search 2757 242 1572 47.1

Rijndael MIbench AES algorithm 1142 315 22160 26.0

Table 10.1: Application programs for comparison with static method.

129

Benchmark Useful range of dynamic method Maximum benefit vs. static

Minimum Maximum Length % Accesses SRAM Run-time

SRAM SRAM of range to SRAM at size gain vs.

size size (bytes) max size (%) (bytes) static

(bytes) (bytes) (%)

Lpc 210 1600 1390 86 234 23.0

Edge detect 220 950 730 96.0 500 55.0

Gsm 200 1850 1650 85.1 870 35.0

Spectral 200 2000 1800 60.1 800 15.0

Compress 40 2000 1960 96.8 490 60.0

G721 180 2500 2320 98.0 600 55.0

Stringsearch 40 400 360 72.3 280 21.2

Rijndael 7170 8000 830 66.7 7170 54.0

AVERAGE 82.7 39.8

Table 10.2: Useful range of dynamic method and run-time gain vs. static allocation.

to understand that our dynamic method does not give a benefit versus a static

allocation for all scratch-pad sizes. This is obvious at the extremes. For a scratch-

pad size close to 0% of data+ code size (or object code size), the two methods are

equal since neither can put any important data or code in the (absent) scratch-pad.

Similarly, at the other extreme of the scratch-pad size when scratch-pad size is close

to 100% of program size, both methods are nearly equal since they both fit all the

data and code in the scratch-pad. The benefit from any dynamic method is seen only

for intermediate scratch-pad sizes which can fit some but not all of the data and code

130

in scratch-pad. Thus instead of presenting the benefit of the dynamic method for a

fixed scratch-pad size, we measure a range of scratch-pad sizes for which our method

shows an improvement and by how much.

Table 10.2 shows, for each benchmark, the range of scratch-pad sizes for which

our method yields an improvement over the static allocation method; and the maxi-

mum improvement in that range. In particular, columns two through four show the

range of scratch-pad sizes for which our method improves performance as compared

to the static method by at least 1%. Columns two and three present the minimum

and maximum of the useful scratch-pad sizes, respectively, for each benchmark. For

example, for the Lpc benchmark, the dynamic method outperforms the static by at

least 1% when the scratch-pad size is between 210 and 1600 bytes. Column four

presents the length of the range. Columns five is discussed in the next paragraph.

Finally, columns six and seven show the scratch-pad size for which the maximum

improvement over the best static allocation is obtained, and the size of the improve-

ment. The maximum improvement configuration shown is not the maximum across

all sizes, but is restricted in two ways. First, only scratch-pad sizes which yield a

good absolute performance, defined as sizes for which at least 60% of accesses go

to the scratch-pad, are considered for finding the maximum gain. Also scratch-pad

sizes greater than 20% of the total data size are not considered since they are likely

to be too expensive to be used. In this way, we attempt to derive a maximum ben-

efit across feasible scratch-pad sizes only. In the case of range of sizes for maximum

benefit, we select the smallest size. The average of the maximum improvements

across benchmarks in the last column is 39.8%.

131

From table 10.2 we can derive two salient conclusions. First, our method yields

a significant run-time benefit for many of the commonly occurring small scratch-pad

sizes that typically appear in embedded systems (under a kilobyte for most embed-

ded systems; a few kilobytes for some high-end embedded systems). The maximum

improvement ranges from 15.0% (Spectral) to 60.0% (Compress); averaging 39.8%.

Second, the reason that larger scratch-pad sizes do not yield a benefit is that larger

sizes are not needed for our benchmarks. Hence, larger sizes would not be used,

and a lack of improvement for those sizes is not harmful. To see why, consider that

in most programs a small fraction of the data accounts for a large fraction of the

accesses. If the scratch-pad size is large enough to accommodate this frequently

used data using the static allocation, the dynamic method yields little run-time

improvement for that and larger sizes. This reasoning is verified by column five of

table 10.2. Column five shows the percentage of memory accesses that go to scratch-

pad for the maximum useful scratch-pad size. The high average of 82.7% shows that

the maximum useful scratch-pad size already has good performance for most bench-

marks so a much larger scratch-pad is not needed. This is further verified by our

observation that even doubling the scratch-pad size compared to the maximum use-

ful scratch-pad size in column three yields only an average 0.6% and a maximum

2.0 % improvement (details not shown). This shows that the maximum useful range

is already at the point of diminishing returns for our benchmarks; and hence cost-

effective scratch-pad sizes are in the useful range. The maximum scratch-pad size

larger than which diminishing returns are seen is highly application-dependent and

is likely to be larger for applications with larger data sets.

132

0

5

10

15

20

25

0 400 800 1200 1600
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

0

10

20

30

40

50

60

0 200 400 600 800 1000

Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

(a) Lpc (b) Edge-detect

0

5

10

15

20

25

30

35

40

0 400 800 1200 1600 2000
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

0

2

4

6

8

10

12

14

16

0 400 800 1200 1600 2000
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

(c) Gsm (d) Spectral

0

10

20

30

40

50

60

70

0 400 800 1200 1600 2000 2400
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

(e) Compress (f) G721

0

5

10

15

20

25

0 100 200 300 400
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

0

10

20

30

40

50

60

0 2000 4000 6000 8000
Sram size

P
e

rc
e

n
ta

g
e

 g
a

in
 o

v
e

r
s

ta
ti

c

(g) Stringsearch (h) Rijndael

Figure 10.1: Runtime gain from our dynamic method vs. static method for different

SRAM sizes.

133

Figure 10.1 shows the same data as in table 10.2 but in more detail. For each

benchmark, the X-axis varies the scratch-pad size and the Y-axis shows the run-

time gain of the dynamic method in this paper over the static allocation method.

From the figure we see two trends. First, for any given scratch-pad size the dynamic

method does at least as well as the static method and for the small sizes shown,

it often does better. Second, the shapes of the curves follows steps; this is not

surprising since those are the discrete points at which the allocation of individual

variables in the application changes in either the static or dynamic allocations.

The shapes of the curves in figure 10.1 can be understood by why the up-

steps, down-steps and valleys occur. First, an up-step is when the gain from the

dynamic method suddenly increases beyond a certain scratch-pad size; an example

is for compress at scratch-pad size=490 bytes. This happens when an increase in

the scratch-pad size enables the dynamic method to accommodate an additional

variable in the scratch-pad, perhaps by replacing a lower-frequency variable; while

the static method has the same allocation since the additional space is not enough

for another variable. Thus, the dynamic method’s gain over static increases. Second,

a down-step is when the gain from the dynamic method suddenly decreases beyond a

certain scratch-pad size; an example is for compress at scratch-pad size=790 bytes.

This happens when the static method can accommodate some of the additional

variables in the dynamic allocation and bridge the gap with it. Third, a valley is

when the gain in a certain range is lower than either before or after it; an example

is for Edge-detect in the range 350-500 bytes in scratch-pad size. A valley is nothing

more than an down-step at its start and an up-step at its end. The down-step and

134

up-step occur because of changes in allocations of different variables.

Experiments on maximum benefit configuration The rest of the experiments

vary several architectural and method parameters to measure the impact. They are

conducted for the smallest scratch-pad size which yields the maximum run-time

improvement for our method versus the static method. The reason for this choice is

that presenting all the remaining data for all the possible scratch-pad sizes yields a

volume of data that is too large to present. Thus we had to choose one scratch-pad

size per benchmark to show the underlying reasons as to why our method improves

performance. The point of maximum benefit is a good choice to gain such insights.

Figure 10.2: Number of memory accesses going to the DRAM and Flash for each

benchmark for the maximum benefit configuration.

Figure 10.2 shows the reduction in memory accesses going to the non SRAM

135

0

20

40

60

80

100

120

Lpc

Edge-
det

ec
t

G
sm

Spec
tr
al

C
om

pre
ss

G
72

1

Str
in

gse
ar

ch

 R
ijn

dae
l

A
ve

ra
ge

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n Processor Sram Dram Flash Static DynamicS D

S S S S S S S S S

D D
D

D

D

D
D D

D

Figure 10.3: Reduction in energy consumption from dynamic method for the maxi-

mum benefit configuration.

devices, the DRAM and Flash, because of the improved locality to the scratch-pad

afforded by our method. The average reduction across benchmarks is a very signifi-

cant 38% reduction in Flash+DRAM accesses versus the static allocation. The total

number of memory accesses actually increases(not shown) in our method because of

the added transfer code, but the reduced number of accesses to Flash+DRAM more

than compensates for this increase by delivering an overall reduction in runtime.

Figure 10.3 compares the total system-wide energy consumption of applica-

tion programs with our method versus the static allocation. Each bar is further

divided into the different energy components namely the DRAM, Flash, SRAM and

processor energy consumption. We measured an average reduction of 31.3% in total

energy consumption for our applications by using our method vs. the best static

136

allocation. This number is noteworthy since it refers to total system energy and not

just memory system energy. The savings in energy are because our method reduces

the number of Flash and DRAM accesses in the program by converting them to

SRAM accesses. Flash and DRAM accesses cost more energy than SRAM accesses

for two reasons. First, these devices take more energy to access than SRAM banks

in our platform. The ratio of DRAM bank energy to SRAM bank energy for a single

access is about 5.7:1 in our energy model; but this number is highly implementation-

dependent. From data sheets [56, 57], we found that the energy cost of our Flash

device to be similar to the DRAM device. So for simplicity, we assume that the

ratio of Flash bank energy to SRAM bank energy for a single read access is also

about 5.7:1. Second, when a DRAM access occurs in an in-order processor such as

our Motorola MCore, the processor is idle while waiting for the DRAM access to

complete, but it still dissipates substantial amounts of energy (although slightly less

than when instructions are executing). Most embedded processors are in-order; out-

of-order processors are rare in embedded systems. Current-day technologies to turn

down the processor to a low-energy energy-saving state typically take thousands of

cycles to complete. This is infeasible during a DRAM access which typically only

takes 10-100 cycles. Thus the processor burns a substantial amount of energy while

waiting for a DRAM access. These reasons can be also verified from the figure.

From the figure it can be seen that on average the 82.5% of the energy consumption

in the static case and 52% of the energy consumption in the dynamic case is con-

sumed by the processor. Consequently, the energy savings in the processor portion

by eliminating unnecessary stalls contributes the most to the total savings. Energy

137

reduction in smaller measure is also contributed by reduction in DRAM or Flash

accesses or in some cases both. This is accompanied by an increase in the SRAM

portion.

Table 10.3 shows some whole program and some region statistics for our bench-

marks. Columns two and three show the number of global and stack variables per

benchmark. There are a substantial number of them in our benchmarks. Column

four shows the code growth (in bytes of code portion) from our method as a per-

centage of the original code size, primarily because of the inserted transfer code.

The average code growth is a modest 1.8% versus the un-modified original code for

a uniform memory abstraction; such as for a machine without scratch-pad memory.

Column five shows the run time spent in the copy procedure. Column six shows

the number of static regions in each benchmark. Column seven shows the average

static size of regions in instructions. We see that regions contain about 57 static

instructions on average. (In columns six and seven only the regions that are vis-

ited at least once during run-time are counted.) Column eight shows the average

turnover fraction across regions, where the turnover fraction for a region is defined

as the amount of new data allocated in the scratch-pad for that region expressed

as a percentage of the SRAM size. The average turnover fraction is 11.0%; thus on

average 11.0% of the scratch pad data is new per region. The relatively low turnover

fraction shows that the method is careful not to unnecessarily transfer data: it does

so only when beneficial and when it does bring something in scratch-pad, it retains

it for several regions before eviction. The turnover is higher for benchmarks such as

Rijndael where transfers are carried out inside loops.

138

Benchmark Program statistics Region statistics

of # of Code % Runtime # of Ave. Turnover

global stack growth vs in copy regions static fraction (%)

variables variables original (%) block (instr) size

Lpc 17 36 1.0 0.1 44 57.3 9.1

Edge Detect 10 9.0 4.1 0.1 24 64.0 0.6

Gsm 39 382 0.2 4.4 156 58.2 6.3

Spectral 12 33 2.4 1.2 28 45.2 5.6

Compress 8 11 3.2 1.9 39 18.5 1.1

G721.Wendyfung 25 57 2.6 2.0 21 49.1 0.5

Stringsearch 6 9 0.5 16.8 13 13.4 16.0

Rijndael 11 58 0.1 4.9 26 134.8 49.0

AVERAGE 15.5 83.3 1.8 3.9 43.9 57.0 11.0

Table 10.3: Program and region statistics.

Figure 10.4 shows the run-time gain for different data-transfer strategies be-

tween the scratch-pad and DRAM. Note that a data transfer involves a call to a

copy procedure(13 lines). Also at a program point there may be multiple calls to the

copy procedure for different address ranges. The data transfer strategies that are

shown for each benchmark are (i) all-software transfer (used in all experiments so

far in this paper); (ii) transfers accelerated by DMA; and (iii) a hypothetical zero-

run-time (free!) data transfer mechanism. DMA is a hardware mechanism available

in some embedded processors and is discussed in chapter 6. Faster transfers can

provide additional benefit in two ways. One, due to lower cost of transfers the allo-

139

Figure 10.4: Run-time gain for different data-transfer methods for the maximum

benefit configuration.

cation method might be able to bring in more variables and in some cases choose a

totally different allocation. Two, faster transfers also means that the cost of trans-

fers is lower. But comparing the first and third bar, we see that the run-time gain

suffers only by 44.6%-39.8%=4.8% because of transfers. This shows that in general

software transfers can deliver good performance. This is because (as we observed)

allocations do not change much with faster transfers for our benchmarks. Also, our

method is largely successful in transferring data only when doing so yields a benefit;

at the same time unnecessary transfers of dead data and non-dirty scratch-pad data

are not done. Given these reasons, not surprisingly, the additional run-time gain

140

Figure 10.5: Run-time gain for different data transfer methods (with allocations

re-computed).

from using faster transfer mechanisms is small: only an additional 2.5% with DMA

transfers.

While the runtime increase is modest, another benefit results because of faster

transfers. We observed that faster transfers can result in increase in the useful range

of SRAM sizes for a benchmark. Figure 10.5 shows the run-time gain for software vs.

DMA data-transfer strategies between SRAM and DRAM for the G721.Wendyfung

benchmark for different SRAM sizes. The figure verifies our claim that the useful

range can increase with faster transfers: for G721.Wendyfung benchmark the useful

range of the dynamic method is increased from 180 to 2500 bytes (all-software) to

180 to 2700 bytes (DMA).

Figure 10.6 shows the effect of increasing Flash and DRAM latency on the run-

141

Figure 10.6: Effect of varying DRAM and Flash latencies on run-time gain from our

method for the maximum benefit configuration.

time gain from our dynamic method versus the best static allocation. Apart from

the original latencies labeled as x, the gain is shown for two other latencies namely

twice the original termed 2x and latency four times the original termed 4x. Recall

that the original DRAM and Flash latency is assumed 20 and 24 cycles respectively.

Since our method reduces the number of accesses to Flash and DRAM, the gain from

our method is greater with higher latencies for most benchmarks. The figure shows

that the run-time gain from our method increases from 39.8% with the original

DRAM and Flash latencies to 54.8% with latency 4 times the original latencies.

Area benefits A different perspective on the impact of our method can be seen by

considering the reduction in area that it can offer to a embedded system designer,

142

who has a desired performance requirement in mind. To measure the reduction in

area, we performed a study on the area benefits. For lack of a better heuristic, we

measured the area benefits at three different SRAM sizes specified as a fraction of

the useful range. These sizes are 25%, 50%, 75% of the useful range. Now we ask,

how much additional SRAM size would be needed by the static method to obtain

the same runtime as the dynamic method at these sizes. Table 10.4 shows the area

benefits of our method over the static method. The table shows the additional

SRAM size that would be needed by the static method to match the runtime of the

dynamic method at these three different sizes. The additional memory is expressed

as a percentage of the SRAM size used by the dynamic method. For some of these

benchmarks like Rijndael, Spectral the static method already does as well as the

dynamic method at these sizes. This can also be seen in figure 10.1 where for these

benchmarks the runtime gain at these points is small. But for the other benchmarks,

we measured a decent reduction in area ranging from 5% to a high of 220%. On

an average, at these three different sizes of 25%, 50% and 75% we obtain 75%, 43%

and 33% reduction in area respectively. All of these are significant when considering

that on chip memory uses upto 50% of the total chip area [45]

Efficacy of offset assignment As discussed before, our offset assignment pass

is made up of two parts – a best fit memory management along with a limited

compaction when an appropriate size hole cannot be found. To study how well this

simple strategy performs, we compare it with a perfect address assignment method.

The perfect address assignment method is assumed to magically fit all the variables

143

Benchmark SRAM size

25 % of 50% of 75 % of

useful range useful range useful range

Lpc 220.0 74.0 28.5

Edge Detect 28.5 57.0 33.0

Gsm 70.0 52.0 23.5

Spectral 5.0 5.5 0.0

Compress 80.0 51.0 30.1

G721.Wendyfung 70.4 37.5 25.0

Stringsearch 60.0 60.7 100.0

Rijndael 66.6 6.7 3.9

AVERAGE 75.0 43.0 33.3

Table 10.4: Additional scratch-pad memory area required by static allocation to

match runtime of dynamic method.

at different program points without requiring to sacrifice any variable to fit another

variable or using compaction. Further, at every program point it needs only one copy

procedure and hence the minimum call overhead. Figure 10.7 shows the degradation

of our method compared to a hypothetical method with perfect address assignment

pass. Column two of the table shows the run time degradation when compared to

the perfect assignment and column three shows the runtime spent in compaction as a

percentage of the total runtime. The results show that that our address assignment

pass suffers negligible degradation for almost all the benchmarks and on an average

suffers a 1.1% degradation. This happens primarily because, program objects do not

live in the scratch-pad for too long and hence free holes get easily created. Secondly,

144

fragmentation is almost totally overcome with the help of compaction which at a

negligible cost delivers a huge benefit.

Benchmark % Runtime % Runtime

Degradation in

Vs Perfect Compaction

Assignment

Lpc 0.0 0

Edge Detect 8.1 0

Gsm 0.01 0.00002

Spectral 0.04 0.00001

Compress 0.02 0.00002

G721 0 0

Stringsearch 0.5 0

Rijndael 0.0 0

AVERAGE 1.1

Figure 10.7: Comparison of our address assignment with perfect address assignment.

Profile sensitivity We next measure the profile-sensitivity of our method.

Recall that our allocation (like most scratch-pad methods) is based on profile data

input. The objective of the experiment is to find out how portable our allocation is

across other data inputs.

In figure 10.8 we show the how our method fares in this measure. The ex-

periment uses two data sets. For most benchmarks, these data sets are part of the

benchmark suite. In cases when a second data set does not exist, we have used

similar data from other benchmark suites. The experimental methodology is as fol-

145

Figure 10.8: Runtime comparison of profiled data-set and non-profile data-sets

lows. First, the benchmark’s runtime on profiled data set is obtained by training it

on one data input which we call profile data set, thus obtaining one profile output.

The profile output is used to derive the allocation for the benchmark and then the

runtime for the benchmark is measured with the same input data set. This repre-

sents the first bar in the figure. Next, the benchmark is trained on a second data

set. Using the allocation obtained, the benchmark runtime is obtained by running

it on the first data set. This represents the second bar in the figure, which we term

non-profile data set. The difference between the bars measures the profile sensitivity.

The figure shows that no variation in profile sensitivity happens for any of our

benchmarks. While to some extent this might be characteristic of the benchmarks

that we have used, we believe it represents a large class of embedded benchmarks

whose control characteristics largely depend on the the length of the input and not

146

Figure 10.9: Normalized run time for a cache only and scratch-pad only architecture

measured for maximum benefit configuration

the actual content. Examples of such benchmarks are various encoding/decoding

benchmarks that compress/decompress, encrypt/decrypt. Such benchmarks do such

encoding/decoding on streaming characters or small buffers of such characters. The

outermost loop receives the input. With a different data set, apart from the trip

count of the outer loop, nothing else changes much, thus making no difference to

the relative weights between the different variables. Hence, the allocation desired

by the non profiled data set is the same as the one for the profiled data set.

147

Figure 10.10: Normalized energy consumption for a cache only and scratch-pad

memory only architecture measured for maximum benefit configuration

10.2 Comparison with caches

Here we compare our method with an architecture that uses a cache. It is

important to note that our method is useful regardless of the results of a comparison

with caches because there are a great number of embedded architectures which

have a scratch-pad and DRAM directly accessed by the CPU, but have no data

cache or I-cache. Examples of such architectures include low-end chips such as the

Motorola MPC500, Analog Devices ADSP-21XX, Motorola Coldfire 5206E; mid-

grade chips such as the Analog Devices ADSP-21160m, Atmel AT91-C140, ARM

968E-S, Hitachi M32R-32192, Infineon XC166 and high-end chips such as Analog

Devices ADSP-TS201S, Hitachi SuperH-SH7050, and Motorola Dragonball. We

148

found at least 80 such embedded processors with no D-cache but with SRAM and

external memory (usually DRAM) in our search but have listed only the above

eleven. These architectures are popular because scratch-pad is simple to design and

verify, and provide better real-time guarantees for global and stack data [89], power

consumption, and cost [7, 13, 77, 86] compared to caches.

Nevertheless, it is interesting to see how our method compares against pro-

cessors containing caches. We choose our desired data capacity as the SRAM size

at which the dynamic method obtains maximum benefit compared to the static

method. Note that this SRAM size is only an indication of relative gain versus

static method. So for purposes of comparing with caches, it is a fairly unbiased

choice. To ensure a fair comparison the total silicon area of fast memory (scratch-

pad or cache) is equal in both the architectures and roughly equal to the silicon area

of the scratch-pad. For our experiments we choose an cache architecture similar to

the intel IXP network processor which has an Icache and a Dcache of equal sizes.

The goal of our experiment is to compare the performance of cache and SPM of

equal silicon area.1 So the desired data capacity is divided equally between the

Icache and Dcache. For a scratch-pad and cache of equal area the cache has lower

data capacity because of the area overhead of tags and other control circuitry. Area

estimates for cache and scratch-pad are obtained from Cacti [90]. The cache simu-

1Actually since cache must be a power of two in size and Cacti has a minimum line size of 8

bytes, the sizes of caches are not infinitely adjustable. To overcome this difficulty we first fix the

sizes of the Icache and Dcache to the nearest possible SRAM size. Then a scratch-pad of the same

total area is chosen; this is easier since scratch-pad sizes are less constrained.

149

lated is direct-mapped2, has a line size of 8 bytes, and is in 0.5 micron technology.

On a cache miss, we assume the first word incurs the full DRAM latency of 20 cy-

cles and 1 cycle for each byte thereafter. The scratch-pad is of the same technology

but we remove the decoder, tag memory array, tag column multiplexers, tag sense

amplifiers and tag output drivers in Cacti that are not needed for the scratch-pad.

The Dinero cache simulator [31] is used to obtain run-time results; it is combined

with Cacti’s energy estimates per access to yield the energy results.

Figure 10.9 shows the normalized run time for cached and non-cached archi-

tectures. The first bar represents our method with software transfers. The third

bar represents the runtime with cached architecture. As caches have the advantage

of hardware mechanisms for fast transfer, we thought it would be interesting to

compare when our method also can use some faster transfer mechanism. So the

second bar represents our method with faster transfers using hardware like DMA.

Our method does better than cached architecture for four of the benchmarks. On

the average our method on scratch-pad has 4.1% less runtime when compared to

cached architecture. This increases to 5.2% savings with the help of faster transfers.

Of course, the improvement in real-time guarantees from the scratch-pad is much

larger.

Figure 10.10 shows the normalized energy consumption for cache and our

dynamic method with software transfers. For lack of a energy model for DMA we

do not show energy consumption for our dynamic method with DMA transfers. On

2due to the small sizes involved and Cacti’s inability to generate parameters for such sizes,

higher associativities were not included

150

the average our method has 16% less energy consumption compared to a direct

mapped cache.

The reason we believe our method does better for four benchmarks is that it

can correctly identify the more reused program object and retains it in the scratch-

pad whereas cache is likely to evict it even when fetching less-used program object.

This is especially significant in case of programs with large loops and loops with pro-

cedure calls in them. In such cases a cached architecture might do worse because

of large transfers. For Lpc the performance of the dynamic method is very close to

the cached architecture. But for rest of the three benchmarks namely Gsm, Spec-

tral and Stringsearch, cached architectures do better than our method. These were

benchmarks which had some very large variables which do not fit in the scratch-

pad. So while our method cannot fit these variables into the scratch-pad, the cached

architecture which only deals with cache lines can bring in data belonging to these

variables. This is a general advantage cached architectures would have over any

compile time scratch-pad method. In general, to some extent at least for regular

programs, this gap can be bridged with the help of more aggressive outlining and

advanced array optimization techniques like array blocking [2, 51], structure split-

ting [78]. Nevertheless, we believe it is remarkable for a compile-time method to do

so well compared to a hardware cache.

For real time tasks with hard deadlines, the use of our method offers an im-

provement in the worst-case runtime. For such tasks, all the improvements of our

method translate to improvement in the worst case estimate since the worst-case

access time for an SPM is the same as the average case. As compared to this,

151

Figure 10.11: Normalized runtime and worst-case runtime for cached architecture

the worst case estimate for a cache has to be conservative regardless of the observed

average-case performance, since for the worst case accesses have to be assumed to be

cache misses. A practical methodology used by a designer to check if his task meets

the worst case scenario is to test his system when the cache is disabled. We use this

methodology to approximately quantify our real time gains3. In figure 10.11, we

show the comparison between the measured and worst case estimated runtimes of a

cache. For the worst case, we assume all the memory accesses are cache misses. Two

3In this experiment we compare the worst-case run-time with the one data set used in our

experiments. This is not really the worst-case run-time of the program, since that is measured

across all possible data sets. Since the true worst-case data set is hard to find (or prove that it

is the worst case), we use this admittedly inaccurate, approximate method for worst-case time

comparison for the lack of a better method.

152

possible worst cases are shown with faster transfer rates(12 cycles for a read/write)

and normal transfer rates (20 cyles for read/write). For our method with dynamic

transfers, the worst-case runtime is same as the measured runtime. In the case of

a cache, the ratio between the average worst case and average observed run-time is

2.07:1. Thus, the big difference between the real and the worst cases in the figure

shows the importance of using a scratch-pad memory with dynamic method that

would offer good performance while ensuring a tighter real time bound.

10.3 Results on dynamic method integrated with

partial array handling

This section presents results comparing our method integrated with a par-

tial array pass using affine analysis discussed in chapter 8. We compare against

several other allocation alternatives. These include the static allocation method

and the basic dynamic method without the partial variable pass. We also consider

three variations of an affine-only method that only handles affine loops, flushing the

scratch-pad memory after each loop. The objective is to approximately illustrate

how some of the other methods cited in chapter 9 can benefit from being a part of a

integrated framework. The first variation called ”Inflexible-Affine1” performs trans-

fers just before the loop where the affine reference is located. In the second variation

called ”Inflexible-Affine2” the transfer point is located outside the whole loop-nest.

This approach is not likely to be able to move partial arrays for the kind of bench-

153

Benchmark Source Lines of code Data size(in KB)

Wss Perfect club 68 2.5

Compress UTDSP 309 70.7

Tomcatv Spec 95 104 28.1

G721.Wendyfung MiBench 673 2.9

lpc MiBench 522 7.5

Gsm MiBench 6035 20.2

Table 10.5: Benchmark programs for our experiments on integrated algorithm.˙

marks that we have chosen, since the loop nest accesses the whole array. The only

objective of including it in our experiments here is to illustrate this drawback. Both

of these variations employ a simple knapsack allocation that is based on a list of

spanned-footprints sorted by their frequency per byte. The only constraint is that a

check is made if the cost of transfer can be recovered. The third affine-only method,

called the Flexible-Affine method, allows transfers at any of loop levels. The final

choice of the transfer point is left to the framework since it uses a sophisticated cost

model to find the best point of transfer. The Flexible-Affine method differs from

our integrated method in that it empties the scratch-pad memory after each loop

nest and moreover, the integrated method can also handle non-affine loops.

The embedded applications evaluated are shown in table 10.5. Only some of

the benchmarks from our original table of 10.1 have been selected. This is since the

three that we have selected are similar to the rest of the benchmarks in the kind of

opportunities they offer for partial-variable allocation.

Figure 10.12 shows the runtime at some key scratch-pad memory sizes using

154

Static Inflexible-Affine1 Inflexible-Affine2 Flexible-Affine Non-Affine Integrated

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 80 300
Sram Sizes (in bytes)

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

0

0.2

0.4

0.6

0.8

1

1.2

50 100 200 600
Sram Sizes(in bytes)

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

(a) Lpc (b) Gsm

Static Inflexible-Affine1 Inflexible-Affine2 Flexible-Affine Non-Affine Integrated

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 200 400

Sram Sizes (in bytes)

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

0

0.2

0.4

0.6

0.8

1

1.2

2400 42000 85000
Sram Sizes

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

(c) G721.Wendyfung (d)Tomcatv

Static Inflexible-Affine1 Inflexible-Affine2 Flexible-Affine Non-Affine Integrated

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 672 780
Sram Sizes (in bytes)

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

32 64 252
Sram Sizes (in bytes)

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e

(e) Wss (f) Compress

Figure 10.12: Normalized runtime for our integrated method, different affine-only

methods, non-affine method and static method .

155

six different allocation methods. Sizes are chosen to show overall trends. Typically

the sizes include the first size when the runtime of the integrated dynamic methods

changes significantly (by more than 1%), the final size beyond which the runtime

of the integrated method is very close to static allocation and sizes in between this

range where any of the dynamic methods perform significantly differently than the

other methods. Outside of this scratch-pad memory size range dynamic methods

generally perform no better than static methods because for smaller sizes no variable

fit, while for larger sizes all variables fit in the scratch-pad memory with no need

for dynamic swapping. The figure also shows two important observations in favor

of our integrated method.

The first observation is that the integrated method always does as good or

better than all the other other methods. In particular, the method does as well or

better than both affine and non-affine method. This can be seen in affine bench-

marks Tomcatv, Compress and Wss where the integrated method does as well as

the Flexible-Affine method while for benchmarks with no affine loops, G721, Gsm

and Lpc, the integrated and non-affine methods do better.

It is instructive to see why different benchmarks have different best-allocation

strategies. In the case of benchmarks with affine loops, the affine and the integrated

method can allocate partial variables to scratch-pad memory whereas neither the

static nor the non-affine method can do that. On the other hand, for the same

benchmarks but larger scratch-pad memory sizes like for example Tomcatv at size

85,000, the integrated method does better than the affine methods. This happens

due to the simple cost model of the affine methods and higher transfer cost arising

156

from the flushing of the scratch-pad memory at the end of the loop nest. The

other three non-affine benchmarks, namely Gsm, G721 and Lpc, do not offer any

opportunities for partial variable allocation. Hence, the integrated and the non-

affine method do equally well and better than the affine alternatives. In conclusion,

the best-allocation strategy is a function of both the benchmark characteristic and

scratch-pad memory size, with the integrated method uniformly being the best.

The second salient observation is that even among the affine alternatives, flex-

ible transfers makes a difference. This is supported by the observation that flexible-

affine either outperforms or equals the other affine alternatives. For two benchmarks

Wss and Compress, the flexible-Affine does better than the other affine alternatives.

These benchmarks contain triply nested loops and three points where transfer can be

done. Transfers outside the outer loop mean that the whole variable has to be placed

while transfer just outside the innermost loop causes the transfer cost to be high.

Transfers outside the whole loop can exploit partial-variable opportunities only if

the complete loop nest accesses only part of the array. The flexible-Affine method

on the other hand compares between all the three transfer points and chooses the

most beneficial one, which in this case is the middle loop. In case of Tomcatv that

contains only doubly nested loops, the runtime of Flexible-Affine is the same as one

of the other affine methods.

The results presented here we believe show the importance of integrating

partial-variable optimizations with a general framework. The different affine meth-

ods we have shown represent important characteristics of some of the existing meth-

ods. The better results of our integrated method over affine methods for non-affine

157

benchmarks illustrate how existing methods [5, 23, 58, 67] are limited to affine pro-

grams. Further, as discussed in the last paragraph, integration is also important so

that the memory transfers can be inserted at the optimal point in the loop nest.

Methods similar to the affine alternatives that we have presented such as ones by

Eisenbeis [23] et al’s method and Schrieber et al [67], do not offer the flexibility to

choose the transfer point. However, these methods propose several sophisticated

strategies to determine the footprint in a more precise fashion. These are comple-

mentary to our scheme and in combination with our approach to integrate such

optimizations can yield further benefits.

10.4 Results on pointer handling

In this section, we present some results on the effectiveness of our pointer

handling strategies discussed earlier. These results from these experiments also

form our basis for the choice of our default pointer handling strategy.

Our experimental methodology involves comparing three different dynamic

schemes. The first one is where the dynamic scheme uses address constraining.

The second dynamic scheme is where it uses pointer translation implemented in

software; we call this software pointer translation. The third also involves pointer

translation but at zero overhead; this would represent a perfect but hypothetical

dynamic scheme.

An important objective in these experiments is to show the promising applica-

bility of our schemes. Towards this, we base our schemes on a simple address-taken

158

Benchmark Source SPM Size Additional

in bytes Code Growth

from Translation

Compress UTDSP 700 1.4 %

Edge-detect UTDSP 500 0.0 %

Spectral UTDSP 800 0.0%

Gsm MIbench 400 0.2%

Fft MIbench 300 0.8 %

Dijkstra MIbench 180 1.2 %

Table 10.6: Benchmarks and Characteristics.

0

20

40

60

80

100

120

140

C
om

pre
ss

Edge-
det

ec
t

Spec
tr
al Fft

G
sm

D
ijk

st
ra

A
ve

ra
ge

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Zero-Cost Translation Address Constraining

S/w Translation

Figure 10.13: Runtime overhead of pointer handling strategies.

pointer analysis strategy. Further, we design our application set and parameters to

illustrate various scenarios likely to be seen in real programs. Table 10.6 shows our

benchmark set used in these experiments and its source. The benchmarks involve

the different kinds of pointer usages such as reference parameters (eg. Compress,

159

Spectral), pointers to global/stack (eg. Compress, Spectral), function pointers (eg.

Gsm) and pointers to heap (eg. Fft, Dijkstra). Only four of the benchmarks from

our original table of 10.1 have been selected. This is since these the rest are simi-

lar to one of these benchmarks in the kind of pointers they use. However, all the

results presented in section 10.1 already have these benchmarks using the address-

constraining strategy. One other parameter in our experiments is the scratch-pad

memory size. The scratch-pad memory size chosen for each benchmark is shown in

the table. The choice of our size is based purely on illustrating various scenario’s

that occur involving pointers and their points-to sets. At the same time, we make

sure that the size that we choose is a reasonable size from a designers perspective.

To introduce our results in this section– the overhead of our schemes has two

dimensions. Both the schemes can cause some runtime loss. This is illustrated

in the figure 10.13. Additionally, pointer translation can cause some code growth.

This is in addition to code growth due to memory transfer code needed by dynamic

methods. The code growth is shown in the benchmarks figure in column 4. The

results show that constraining the layout does as well as the zero-overhead dynamic

schemes. On the other hand, the overhead from pointer translation both in code

growth and runtime varies from benchmark to benchmark. The runtime overhead

ranges from 0 % to 18% and averages 4% over the benchmarks. The code growth is

between 0% and 1.4% and averages 0.6%.

The spectrum of results can be understood based on various allocation scenar-

ios involving global and stack variables pointed by pointers. We first try to under-

stand pointer translation. In Edge-detect and Spectral all the variables pointed to

160

by pointers are never allocated to scratch-pad memory, hence the strategies do not

cause any overhead. This is important since this means the strategies preserve the

runtime totally when not applicable. Benchmarks Compress, Gsm and Fft involve

some pointer translation but translation is avoided inside the inner loop and hence

does not cause much overhead. The benchmark Gsm involves function pointers and

hence causes some additional code growth due to the need for compensation code

inside all functions whose address has been taken. Again, this is negligible. The

overhead of translation is maximum in the case of Dijkstra. The benchmark in-

volves a dynamic queue traversal and requires a check for heap pointer inside the

loop. Further using simple address-taken pointer analysis this pointer cannot be

disambiguated as being a heap pointer. This leads to the large runtime loss of 18%.

The results also show that address constraining does very well. This is because

these benchmarks do not exercise constraining code at all. This happens due to two

main reasons. One, when the variables pointed to by pointers are in DRAM, no

constraining is required. Two, even when the variables are in scratch-pad memory

and are pointed to by reference pointers, constraining is not required because the

variable once swapped out from scratch-pad memory is never brought in again. This

we believe stems from several programming practices that have evolved for coding

a procedure. Generally procedures are kept short and so sometimes involve just

one region. Also even when they are long they process one aggregate variable at a

time and the output is passed on to the procedure’s next part. So inside a function

variables are required to be in the scratch-pad memory only for a few consecutive

regions, eliminating the need for constraining.

161

Chapter 11

Conclusion and Future work

This thesis presents compiler-driven memory allocation scheme for embedded

systems that have SRAM organized as a scratch-pad memory instead of a hardware

cache. Most existing schemes for scratch-pad rely on static data assignments that

never change at runtime, and thus fail to follow changing working sets; or use soft-

ware caching schemes which follow changing working sets but have high overheads

in runtime, code size memory consumption and real-time guarantees. We present

a scheme that follows changing working sets by moving data from scratch-pad to

DRAM, but under compiler control, unlike in a software cache, where the data

movement is not predictable. Predictable movement implies that with our method

the location of each variable is known to the compiler at each point in the program,

and hence the translation code before each load/store needed by software caching

is not needed. The benefit of our method depend on the scratch size used. When

compared to an existing static allocation scheme, results show that our scheme re-

duces runtime by up to 39.8% and overall energy consumption by up to 31.3% on

average for our benchmarks, depending on the scratch-pad size used.

162

We identify two directions of future work. We outline these directions below.

Optimizations One direction for further research is developing loop trans-

formations and data transformations that would benefit scratch-pad memory allo-

cators. In this thesis we have addressed one issue associated with some of these

optimizations namely integration of such optimizations with an existing allocation

framework. Another issue in the developement of such optimizations is the ques-

tion of cost model. Such optimizations currently are based on cost-models that are

cache specific. Adapting them for optimizing scratch-pad allocation would require

adapting the cost-model as well. One alternative to a precise cost-model is to gen-

erate several versions of the output of the optimization. An example is to generate

multiple partial variables from a structure variable, composed of different fields in

the structure. The exact choice of partial variable is left to the algorithm. In the

extension that we described, the framework is already extended be able to utilize

different partial variables belonging to the same variable. A similar approach can

be adopted in the case of loop transformations; multiple versions of the same loop

that are transformed accroding to different heuristics can be generated. To handle

such cases, the framework would need additional extensions.

Memory allocation for multitasking environment Another direction for

future research can be to extend the scheme to multithreading environments. Many

such systems use preemptive multitasking, especially those with an underlying real-

time operating system (RTOS). Priorities are assigned to tasks, and the RTOS

always executes the ready task with highest priority. We believe the key aspect

of the problem would be the trade of between predictability of memory accesses

163

and utilization of scratch-pad memory. If total predictability is still desired, then

statically partitioning the scratch-pad memory among the different task according to

their priority and then using our method for each task separately might be the only

solution. If instead utilization were more important, slightly dynamic extensions to

our scheme might be required.

164

BIBLIOGRAPHY

[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and

H. Wilkinson. The Next Generation of Intel IXP Network

Processors. Intel Technology Journal, 6(3), August 2002.

http://developer.intel.com/technology/itj/2002/volume06issue03/.

[2] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-nested

loop nests. In Proceedings of the 2000 ACM/IEEE conference on Supercomput-

ing (CDROM), page 31. IEEE Computer Society, 2000.

[3] Randy Allen and Ken kennedy. Optimizing Compilers for Modern Architecture.

Morgan Kaufmann Publishers Inc, 2001.

[4] ADSP-21xx 16-bit DSP Family. Analog Devices, 1996. http://-

www.analog.com/processors/processors/ADSP/index.html.

[5] S. Anantharaman and S. Pande. Compiler optimization for real time execution

of loops on limited memory embedded systems. In Proc. of the 19th IEEE

Real-Time Systems Symposium, 1998.

[6] Federico Angiolini, Luca Benini, and Alberto Caprara. Polynomial-time algo-

rithm for on-chip scratchpad memory partitioning. In Proceedings of the 2003

165

international conference on Compilers, architectures and synthesis for embed-

ded systems, pages 318–326. ACM Press, 2003.

[7] Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini, and

Mauro Olivieri. A post-compiler approach to scratchpad mapping of code. In

Proceedings of the 2004 international conference on Compilers, architecture,

and synthesis for embedded systems, pages 259–267. ACM Press, 2004.

[8] Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in

C. Cambridge University Press, January 1998.

[9] ARM968E-S 32-bit Embedded Core. Arm, Revised March 2004. http://-

www.arm.com/products/CPUs/ARM968E-S.html.

[10] Oren Avissar. Heterogeneous Memory Management for Embedded Systems.

Master’s thesis, University of Maryland, College Park, 2002.

[11] Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous Memory Man-

agement for Embedded Systems. In Proceedings of the ACM 2nd International

Conference on Compilers, Architectures, and Synthesis for Embedded Systems

(CASES), November 2001. Also at http://www.ece.umd.edu/∼barua.

[12] Oren Avissar, Rajeev Barua, and Dave Stewart. An Optimal Memory Alloca-

tion Scheme for Scratch-Pad Based Embedded Systems. ACM Transactions on

Embedded Systems (TECS), 1(1), September 2002.

[13] R. Banakar, S. Steinke, B-S. Lee, M. Balakrishnan, and P. Marwedel. Scratch-

pad Memory: A Design Alternative for Cache On-chip memory in Embedded

166

Systems. In Tenth International Symposium on Hardware/Software Codesign

(CODES), Estes Park, Colorado, May 6-8 2002. ACM.

[14] Kathleen Baynes, Chris Collins, Eric Fiterman, Brinda Ganesh, Paul Kohout,

Christine Smit, Tiebing Zhang, and Bruce Jacob. The performance and en-

ergy consumption of three embedded real-time operating systems. In Proc.

Fourth Workshop on Compiler and Architecture Support for Embedded Systems

(CASES’01), pages 203–210, Atlanta GA, November 2001.

[15] Kathleen Baynes, Chris Collins, Eric Fiterman, Brinda Ganesh, Paul Kohout,

Christine Smit, Tiebing Zhang, and Bruce Jacob. The performance and energy

consumption of embedded real-time operating systems. IEEE Transactions on

Computers, 52(11):1454–1469, November 2003.

[16] L.A. Belady. A study of replacement algorithms for virtual storage. In IBM

Systems Journal, pages 5:78–101, 1966.

[17] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache

management for distributed shared memory architectures. In Proc. of the 17th

Annual Int’l Symp. on Computer Architecture (ISCA’90), pages 125–135, 1990.

[18] David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, Yishay

Mansour, Itai Nahshon, and Ron Y. Pinter. Spill code minimization techniques

for optimizing compilers. 24(7):258–263, July 1989.

[19] Azer Bestavros, Robert L. Carter, Mark E. Crovella, Carlos R. Cunha,

Abddsalam Beddaya, and Sulaiman A.Mirdad. Application-level document

167

caching in the internet. In Proceedings of the Second Intl. Workshop on Ser-

vices in Distributed and Networked Environments (SDNE)’95, pages 125–135,

1990.

[20] David Brash. The ARM architecture Version 6 (ARMv6). ARM Ltd., January

2002. White Paper.

[21] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring

heuristics for register allocation. 24(7):275–284, July 1989.

[22] R. A. Bringmann. Compiler-Controlled Speculation. PhD thesis, University of

Illinois, Urbana, IL, Department of Computer Science, 1995.

[23] D.Windheiser C. Eisenbeis, W. Jalby and C.B. Fran. A strategy for array

management in local memory. In Technical Report 1262, INRIA, Domaine de

Voluceau, France, 1990.

[24] Cacti 3.2. P. Shivaumar and N.P. Jouppi, Revised 2004. http://-

research.compaq.com/wrl/people/jouppi/CACTI.html.

[25] D Callahan and K Kennedy. Analysis of interprocedural side-effects in a parallel

programming environment. In Journal of Parallel Distributed Computing, 1988.

[26] Martin C. Carlisle and Anne Rogers. Software caching and computation migra-

tion in Olden. Journal of Parallel and Distributed Computing, 38(2):248–255,

1996.

168

[27] G. J. Chaitin. Register allocation and spilling via graph coloring. 17(6):98–105,

June 1982.

[28] Derek Chiou, Prabhat Jain, Larry Rudolph, and Srinivas Devadas. Application-

Specific Memory Management in Embedded Systems Using Software-Controlled

Caches. In Proceedings of the 37th Design Automation Conference, June 2000.

[29] Frederick Chow and John Hennessy. Register allocation by priority-based col-

oring. 19(6):222–232, June 1984.

[30] Intel Fortran compiler. http://www.intel.com/cd/software/products/asmo-

na/eng/compilers/index.htm.

[31] DineroIV Cache simulator. J. Edler and M.D. Hill, Revised 2004.

http://www.cs.wisc.edu/ markhill/DineroIV/.

[32] Angel Dominguez, Sumesh Udayakumaran, and Rajeev Barua. Heap Data Allo-

cation to Scratch-Pad Memory in Embedded Systems. In Journal of Embedded

Computing(JEC), Issue 4, 2005. IOS Press, Amsterdam, Netherlands.

[33] Poletti Francesco, Paul Marchal, David Atienza, Francky Catthoor Luca Benini,

and Jose M. Mendias. An integrated hardware/software approach for run-

time scratchpad management. In In Proceedings of the Design Automation

Conference, pages 238–243. ACM Press, June,2004.

[34] D. W. Goodwin and K. D. Wilken. Optimal and near-optimal global register

allocation using 0-1 integer programming. In Software-Practice and Experience,

pages 929–965, 1996.

169

[35] Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register allocation via clique

separators. 24(7):264–274, July 1989.

[36] G. Hallnor and S. K. Reinhardt. A fully associative software-managed cache

design. In Proc. of the 27th Int’l Symp. on Computer Architecture (ISCA),

Vancouver, British Columbia, Canada, June 2000.

[37] Paul Havlak and Ken Kennedy. An implementation of interprocedural bounded

regular section analysis. In IEEE Transactions on Parallel and Distributed

Systems, July 1991.

[38] Michael Hind and Anthony Pioli. Which pointer analysis should i use? In

Proceedings of the 2000 ACM SIGSOFT international symposium on Software

testing and analysis, page 113, 2000.

[39] Jason D. Hiser and Jack W. Davidson. Embarc: an efficient memory bank

assignment algorithm for retargetable compilers. In Proceedings of the 2004

ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for

embedded systems, pages 182–191. ACM Press, 2004.

[40] C. Huneycutt and K. Mackenzie. Software caching using dynamic binary rewrit-

ing for embedded devices. In Proceedings of the International Conference on

Parallel Processing, pages 621–630, 2002.

[41] The PowerPC 405 Embedded Processor Family. IBM Inc. Microelectronics,

2002. http://www-306.ibm.com/chips/products/powerpc/processors/.

170

[42] The PowerPC 440 Embedded Processor Family. IBM Inc. Microelectronics,

2002. http://www-306.ibm.com/chips/products/powerpc/processors/.

[43] Arun Iyengar. Design and performance of a general-purpose software cache.

Journal of Parallel and Distributed Computing, 38(2):248–255, 1996.

[44] Jeff Janzen. Calculating Memory System Power for DDR SDRAM.

In DesignLine Journal, volume 10(2). Micron Technology Inc., 2001.

http://www.micron.com/publications/designline.html.

[45] D. Keitel-Sculz and N. Wehn. Embedded dram development technology, physi-

cal design, and applicationissues. In IEEE Design and Test of Computers, June

2001.

[46] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and

improving data locality via loop fusion and distribution. In 1993 Workshop on

Languages and Compilers for Parallel Computing, number 768, pages 301–320,

Portland, Ore., 1993. Berlin: Springer Verlag.

[47] David B. Kirk. SMART (strategic memory allocation for real-time) cache de-

sign. In Proceedings of the IEEE Symposium on Real-Time Systems, pages

229–237, December 1989.

[48] Eric Larson and Todd Austin. Compiler controlled value prediction using

branch predictor based confidence. In Proceedings of the 33th Annual Interna-

tional Symposium on Microarchitecture (MICRO-33). IEEE Computer Society,

December 2000.

171

[49] Compilation Challenges for Network Processors. Industrial Panel, ACM Con-

ference on Languages, Compilers and Tools for Embedded Systems (LCTES),

June 2003. Slides at http://www.cs.purdue.edu/s3/LCTES03/.

[50] Zhiyuan Li and Pen-Chung Yew. Efficient interprocedural analysis for program

parallelization and restructuring. In ACM/SIGPLAN conference on Parallel

programming: experience with applications, languages and systems, June 1988.

[51] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and array contrac-

tion across arbitrarily nested loops using affine partitioning. In Proceedings of

the eighth ACM SIGPLAN symposium on Principles and practices of parallel

programming, pages 103–112. ACM Press, 2001.

[52] L.Li, L. Gao, and J. Xue. Memory coloring: A compiler approach for scratch-

pad memory management. In International conference on Hardware/Software

Codesign and System Synthesis(CODES+ISSS). ACM, 2004.

[53] Chi-Keung Luk and Todd C. Mowry. Cooperative instruction prefetching in

modern processors. In Proceedings of the 31st annual ACM/IEEE interna-

tional symposium on Microarchitecture, pages 182–194, November 30-December

2 1998.

[54] Burke M and Cytron R. Interprocedural Dependence Analysis and Paralleliza-

tion. In SIGPLAN Symposium on Compiler Construction, July 1986.

172

[55] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data local-

ity with loop transformations. ACM Transactions on Programming Languages

and Systems, 18(4):424–453, July 1996.

[56] 128Mb DDR SDRAM data sheet. (Dual data-rate synchronous DRAM) Micron

Technology Inc., 2003. http://www.micron.com/products/dram/ddrsdram/.

[57] 128Mb Q-Flash memory. Micron technology Inc.

http://www.micron.com/products/nor/qflash/partlist.aspx.

[58] M.Kandemir, J.Ramanujam, M.J.Irwin, N.Vijaykrishnan, I.Kadayif, and

A.Parikh. Dynamic Management of Scratch-Pad Memory Space. In Design

Automation Conference, pages 690–695, 2001.

[59] Csaba Andras Moritz, Matthew Frank, and Saman Amarasinghe. FlexCache:

A Framework for Flexible Compiler Generated Data Caching. In The 2nd

Workshop on Intelligent Memory Systems, Boston, MA, November 12 2000.

[60] CPU12 Reference Manual. Motorola Corporation, 2000. (A 16-bit processor).

http://e-www.motorola.com/brdata/PDFDB/MICROCONTROLLERS/-

16 BIT/68HC12 FAMILY/REF MAT/CPU12RM.pdf.

[61] M-CORE - MMC2001 Reference Manual. Motorola Corporation,

1998. (A 32-bit processor). http://www.motorola.com/SPS/MCORE/-

info documentation.htm.

[62] MPC500 32-bit MCU Family. Motorola/Freescale, Revised July 2002. http://-

www.freescale.com/files/microcontrollers/doc/fact sheet/MPC500FACT.pdf.

173

[63] Frank Mueller. Compiler support for software-based cache partitioning. In

Proceedings of the ACM SIGPLAN 1995 workshop on Languages, compilers, &

tools for real-time systems, pages 125–133. ACM Press, 1995.

[64] K. Palem, R. Rabbah, V. Pinar, and K. Kiran. Design space optimization of

embedded memory systems via data remapping, 2002.

[65] P. R. Panda, N. D. Dutt, and A. Nicolau. On-Chip vs. Off-Chip Memory:

The Data Partitioning Problem in Embedded Processor-Based Systems. ACM

Transactions on Design Automation of Electronic Systems, 5(3), July 2000.

[66] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM

Transactions on Programming Languages and Systems, 21(5):895–913, Septem-

ber 1999.

[67] D. C.Cronquist R. Schreiber. Near-optimal allocation of local memory arrays.

In HPL-2004-24, 2004.

[68] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James

R.Larus, and David A. Wood. Fine-grain Access Control for Distributed Shared

Memory. In Proceedings of the Sixth International Conference on Architecture

Support for Programming Languages and Operating Systems, pages 297–306,

1994.

[69] R. Sethi. Complete register allocation problems. In SIAM J. of Computing,.

[70] S. M. Shahrier and J. C. Liu. On the Design of Multiprogrammed Caches

for Hard Real-Time systems. In Proceedings of the IEEE International Perfor-

174

mance, Computing and Communications Conference (IPCCC’97), pages 17–25,

February 1997.

[71] Amit Sinha and Anantha Chandrakasan. JouleTrack - A Web Based Tool for

Software Energy Profiling. In Design Automation Conference, pages 220–225,

2001.

[72] Jan Sjodin, Bo Froderberg, and Thomas Lindgren. Allocation of Global Data

Objects in On-Chip RAM. Compiler and Architecture Support for Embedded

Computing Systems, December 1998.

[73] Jan Sjodin and Carl Von Platen. Storage Allocation for Embedded Proces-

sors. Compiler and Architecture Support for Embedded Computing Systems,

November 2001.

[74] Monica S.Lam and Michael E.Wolf. A data locality optimizing algorithm. In in

Proceedings of the SIGPLAN ’91 Conference on Programming Language Design

and Implementation, pages 30–44, 1991.

[75] Bjarne Steensgaard. Points-to analysis in almost linear time. In Symposium

on Principles of Programming Languages (POPL), St. Petersburg Beach, FL,

January 1996.

[76] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and

P. Marwedel. Reducing energy consumption by dynamic copying of instructions

onto onchip memory. In Proceedings of the 15th International Symposium on

System Synthesis (ISSS). ACM, 2002.

175

[77] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data

objects to scratchpad for energy reduction. In Proceedings of the conference on

Design, automation and test in Europe, page 409. IEEE Computer Society,

2002.

[78] B. Davidson T. M. Chilimbi and J. Larus. Cache-conscious structure definition.

In ACM SIGPLAN Notices, pages 13–24. ACM, 1999.

[79] Yudong Tan and Vincent Mooney. A Prioritized Cache for Multi-tasking Real-

Time Systems. In Proceedings of the 11th Workshop on Synthesis And System

Integration of Mixed Information technologies (SASIMI), pages 168–175, April

2003.

[80] Andrew S. Tanenbaum. Structured Computer Organization (4th Edition). Pren-

tice Hall, October 1998.

[81] TMS370Cx7x 8-bit microcontroller. Texas Instruments, Revised Feb. 1997.

http://www-s.ti.com/sc/psheets/spns034c/spns034c.pdf.

[82] V. Tiwari and M. T.-C. Lee. Power Analysis of a 32-bit embedded microcon-

troller. VLSI Design Journal, 7(3), 1998.

[83] Sumesh Udayakumaran and Rajeev Barua. Compiler-decided dynamic memory

allocation for scratch-pad based embedded systems. In Proceedings of the in-

ternational conference on Compilers, architectures and synthesis for embedded

systems (CASES), pages 276–286. ACM Press, 2003.

176

[84] Sumesh Udayakumaran, Bhagi Narahari, and Rahul Simha. Application spe-

cific memory partitioning for low power. In Proceedings of ACM COLP 2002

(Compiler and Operating Systems for Low Power. ACM Press, 2002.

[85] Osman S. Unsal, Rakshit Ashok, Israel Koren, C. Manik Krishna, and

Csaba Andras Moritz. Cool-cache for hot multimedia. In Proceedings of the

International Symposium on Microarchitecture, pages 274–283, 1990.

[86] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratchpad allocation

algorithm. In Proceedings of the conference on Design, Automation and Test

in Europe. IEEE Computer Society, 2004.

[87] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of scratchpad

memory for energy minimization. In Parallel Architectures and Compilation

Techniques (PACT). IEEE, 2005.

[88] L. Wehmeyer, U. Helmig, and P. Marwedel. Compiler-optimized usage of parti-

tioned memories. In Proceedings of the 3rd Workshop on Memory Performance

Issues (WMPI2004), 2004.

[89] L. Wehmeyer and P. Marwedel. Influence of onchip scratchpad memories on

wcet prediction. In Proceedings of the 4th International Workshop on Worst-

Case Execution Time (WCET) Analysis, 2004.

[90] S.J.E. Wilton and N.P. Jouppi. Cacti: An enhanced cache access and cycle

time model. In IEEE Journal of Solid-State Circuits, 1996.

177

