
Compiler-Directed Array Interleaving
for Reducing Energy in Multi-Bank Memories�

V. Delaluz, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, A. Sivasubramaniam, and I. Kolcuy

Microsystems Design Lab
Pennsylvania State University

University Park, PA 16802, USA
mdl@cse.psu.edu

Abstract

With the increased use of embedded/portable devices such
as smart cellular phones, pagers, PDAs, hand-held comput-
ers, and CD players, improving energy efficiency is becoming
a critical issue. To develop a truly energy-efficient system, en-
ergy constraints should be taken into account early in the de-
sign process; i.e., at the source level in software compilation
and behavioral level in hardware compilation. Source-level
optimizations are particularly important in data-dominated
media applications that have become pervasive in energy-
constrained mobile environments.

This paper focuses on improving the effectiveness of en-
ergy savings from using multiple low-power operating modes
provided in current memory modules. We propose a source-
level data space transformation technique called array inter-
leaving that colocates simultaneously used array elements in
a small set of memory modules. We validate the effectiveness
of this transformation using a set of array-dominated bench-
marks and observe significant savings in memory energy.

1 Introduction

Data-dominated media applications have become perva-
sive in energy-constrained mobile environments. Systems
running such applications have been found to consume a sig-
nificant portion of their energy budget in the memory hi-
erarchy [1, 11]. Significant strides made in the low-power
memory design encompassing circuit and architectural tech-
niques have helped to partially alleviate this problem. One
such technique is the provision of multiple low-power operat-
ing modes through partial shutdown of the memory modules
when they are not in active use. Many current memory sys-

�This work was supported in part by Grants from GSRC and NSF CA-
REER Awards 0093082 and 0093085

yComputation Department, UMIST, Manchester M60 1QD, UK.

tems (e.g., [9]) provide mechanisms for utilizing such power
modes to save energy.

The effectiveness of power mode control schemes de-
pends critically on the memory access patterns and data al-
location strategies in these memories. In particular, a poor
data allocation strategy can lead to large energy loss by keep-
ing large number of modules active most of the time. An
optimization strategy should try to cluster data with temporal
affinity in a small set of memory modules and turn off the
remaining modules to save energy. In this paper, we focus
on improving the effectiveness of these low-power operat-
ing modes through a data space (array layout) optimization
framework. More specifically, we propose an array inter-
leaving mechanism that clusters the data elements of mul-
tiple arrays accessed simultaneously into a single common
data space so that fewer memory modules need to be active
at a given time. This mechanism is particularly useful in em-
bedded signal and video processing environments that use
array structures extensively. Given an application, the pro-
posed mechanism automatically determines the arrays to be
interleaved, and also transforms the code accordingly by re-
placing the original array references and declarations with
their transformed equivalents.

The proposed mechanism has been evaluated using a set of
array-based applications. We have utilized a cycle-accurate
simulator developed in-house to model the energy and per-
formance behavior of a memory architecture with low-power
operating modes. The simulator models three different mode
control mechanisms with varying degrees of sophistication.
Our preliminary results indicate significant savings in mem-
ory energy. Based on these results, we conclude that array
interleaving is very beneficial from an energy viewpoint and
should be supported by compilers targeting multi-bank mem-
ory systems.

The remainder of the paper is organized as follows. The
next section discusses the memory system architecture we
considered and the low-power operating modes we used.



Energy Re-synchronization
Consumption (nJ) Time (cycles)

Active 3.570 0
Standby 0.830 2
Napping 0.320 30

Power-Down 0.005 9,000
Disabled 0.000 NA

Figure 1. Energy consumption and re-
synchronization times for different operating
modes.

Section 3 gives a description of array interleaving. Our en-
ergy optimization strategy (based on array interleaving) is ex-
plained in Section 4. The experimental results are presented
in Section 5. Finally, we summarize the contributions of this
work in Section 6.

2 Memory Architecture

The target system for our approach is a memory sys-
tem that contains a number of modules organized into banks
(rows) and columns. We refer to such banked architectures as
partitioned-memory (or banked-memory) architectures. Ac-
cessing a word of data would require activating the corre-
sponding bank and columns of the shown architecture. There
are several ways of saving energy in such a memory orga-
nization. The approach adopted in this paper is to put the
unused memory banks into a low-power operating mode.

In all our experiments, we use one module in a bank and
hence, use the terms bank and module interchangeably. Note
that we are assuming a RAMBUS style of memory [8] which
obviates the need for conventional interleaving. Each bank
operates independently, and when not in active use, it can be
placed into a low-power operating mode to conserve energy.
This paper considers only dynamic energy consumption and
does not account for leakage current. In addition to the op-
timization proposed in this paper, it is also possible to ap-
ply leakage energy reduction techniques to unused memory
modules. Each operating mode works by activating specific
portions of the memory circuitry such as column decoders,
row decoders, clock synchronization circuitry and refresh cir-
cuitry [8], and can be described using two related metrics:
energy consumption and re-synchronization time. The energy
consumption is the amount of energy consumed per cycle in
a given operating mode. The re-synchronization time is the
time (in cycles) it takes to bring a bank from a low-power
mode to the active (fully-operational) mode. Typically, lesser
the energy consumption, higher the re-synchronization time.
Consequently, the selection of low-power operating mode has
both energy and performance impacts and usually involves a
tradeoff between them.

For the purposes of this paper, we assume five different
operating modes: an active mode (the only mode during
which the memory read or write activity can occur) and four
low-power modes, namely, standby, napping, power-down,
and disabled. Current DRAMs [9] support up to six en-
ergy modes of operation with a few of them supporting only
two modes. We collapse the read, write, and active with-
out read or write modes into a single mode (called active
mode) in our experimentation. However, one may choose
to vary the number of modes based on the target DRAM ar-
chitecture and specification. The energy consumptions and
re-synchronization times (to bring the module back to active
mode) for these operating modes are given in Figure 1. The
energy values shown in this figure have been obtained from
the measured current values associated with memory mod-
ules documented in memory data sheets (for a 3.3V, 2.5ns
cycle time, 8MB memory) [8]. The re-synchronization times
are also obtained from data sheets. Based on trends gleaned
from data sheets, the energy values are increased by 30%
when module size is doubled.

Typically, several of the DRAM modules are controlled by
a memory controller which interfaces with the memory bus.
The interface is used not only for latching the data and ad-
dresses, but is also used to control the configuration and op-
eration of the individual memory modules as well as their op-
erating modes. The controllers contain some prediction hard-
ware to estimate the time until the next access to a memory
module and circuitry to ask the memory controller to initiate
mode transitions. A limited amount of such self-monitored
power-down is already present in current memory controllers
(e.g., Intel 82443BX and Intel 820 Chip Set). In this paper,
we utilize three such predictors: constant threshold predictor
(CTP), adaptive threshold predictor (ATP), and history-based
predictor (HBP).

The CTP mechanism is similar to the mechanisms used in
current memory controllers. After 10 cycles of idleness, the
corresponding module is put in standby mode. Subsequently,
if the module is not referenced for another 100 cycles, it
is transitioned into the napping mode. Finally, if the mod-
ule is not referenced for a further 1,000,000 cycles, it is put
into power-down mode. We do not utilize the disabled state
that shuts off the refresh circuitry to avoid loss of data in the
memory modules. Whenever the module is referenced, it is
brought back into the active mode incurring the correspond-
ing re-synchronization costs (based on what mode it was in).
The other two schemes are enhancements to the CTP mech-
anism. The ATP scheme dynamically adapts the thresholds
to adjust for any mispredictions it may have made. The HBP
scheme maintains a history of the operating mode changes
to predict the future mode transitions more accurately. These
schemes are adapted from [2], and their details are beyond the
scope of this paper. In addition, to keep the issue tractable,
this paper bases the experimental results on a single program



environment and does not consider the virtual memory sys-
tem (i.e., we assume that the compiler directly deals with
physical addresses). Note that many embedded environments
[4] operate without any virtual memory support. The mode
control capabilities in the DRAM have also been explored
recently for developing novel power-aware page allocation
policies [6].

3 Array Interleaving

Array interleaving is a data space (array layout) transfor-
mation technique that takes multiple arrays, and maps them
into a single array. This mapping should be one-to-one (i.e.,
each array element should be mapped into a unique place,
and no two array elements should be mapped into the same
place in the new array) and, after the mapping, the array refer-
ences in the program and array declarations should be mod-
ified (re-written) accordingly. Consider the following loop
nest that accesses two one-dimensional arrays using the same
subscript function.

Example 1:
for(i=1;i �N;i++)
b+ = U1[i] + U2[i];

We consider the following mapping of arrays U1 and U2

to the common data space (array) X .

U1[i] �! X [2i� 1] and U2[i] �! X [2i];

in which case we can re-write the loop nest as follows:

for(i=1;i �N;i++)
b+ = X [2i� 1] +X [2i];

A pictorial representation of this mapping is given in Fig-
ure 2(i). Note that, in this new (transformed) nest above, for
a given loop iteration, two references access two consecutive
array elements whereas the original code accesses two non-
consecutive elements (each from a different array) for a given
iteration execution. The same transformation can be applied
to multidimensional arrays as well. As an example, consider
the following two-level nested loop:

Example 2:
for(i=1;i �N;i++)
for(j=1;j �N;j++)
c+ = U1[i][j] + U2[i][j];

If we use the data transformations

U1[i][j] �! X [i][2j � 1] and U2[i][j] �! X [i][2j];

we obtain the following nest:

for(i=1;i �N;i++)
for(j=1;j �N;j++)
c+ = X [i][2j � 1] +X [i][2j];

U1

U2

X

U1

U2

X

(i) (ii)

Figure 2. (i) Interleaving two one-dimensional
arrays; (ii) Interleaving two two-dimensional
arrays.

This transformation can be viewed as converting two N�N
arrays to a single N�2N array. Figure 2(ii) illustrates this
mapping. For the sake of clarity, in this figure, only the inter-
leaving of the elements in the first rows are shown explicitly;
the remaining rows are interleaved in a similar manner.

3.1 Energy Savings due to Interleaving

Interleaving can reduce the energy consumption in the off-
chip partitioned memory by increasing the effectiveness of
low-power operating modes. As mentioned earlier, in the
partitioned-memory architecture, only those memory mod-
ules containing the parts of the arrays currently being ac-
cessed need to be active. If we use the array interleaving
strategy, it would colocate portions of different arrays which
are accessed at the same time in a smaller number of mod-
ules. This can provide an opportunity for transitioning more
modules into a low-power mode, and in most cases, keeping
them in a low-power operating mode for a longer period of
time.

3.2 Energy Savings due to Improved Locality

Interleaving can also reduce the number of accesses to
the off-chip memory modules by enhancing spatial locality
(cache locality) and can increase the inter-arrival times of
off-chip memory accesses. This gives the compiler/hardware
more opportunities for exploiting deeper sleep modes (more
energy-saving operating modes) and/or keeping modules in
low-power operating modes for longer periods of time.

Let us consider Example 1. In this example, if considered
individually, each of the references has perfect spatial local-
ity as successive iterations of the i loop access consecutive
elements from each array. However, if, for example, the base
addresses of these arrays happen to cause a conflict in the



Benchmark Dataset Number of
Size Arrays

biquad n sections (biquad) 7 MB six
convolution (conv) 8 MB two
fir 8 MB two
lms 8 MB two
n complex updates (complex) 4 MB four
n real updates (real) 8 MB four
fft 7 MB four
eflux 7 MB eight

Figure 3. Benchmark codes used in our exper-
iments and their important characteristics.

cache, the performance of this nest can degrade dramatically.
The characteristic that leads to this potential degradation is
that between two successive accesses to array U1 there is an
intervening access fromU2, and vice versa (which can distort
locality). On the other hand, after interleaving, for a given
loop iteration, two references (in a given iteration) access two
consecutive array elements (much better locality).

3.3 Other Impacts of Interleaving

In addition to those listed above, array interleaving can
have other benefits as well. Since it improves spatial locality,
it helps to reduce the number of cache write-backs which, in
turn, can reduce the energy spent in the cache memory itself.
Improved spatial locality also has a positive impact on per-
formance. It should be noted, however, that array interleav-
ing makes array subscript calculations (address calculations)
more complex; this may, in turn, depending on the capabili-
ties of the back-end compiler, cause an increase in datapath
(core) energy consumption. Also, in cases where one (or a
small group) of interleaved arrays are accessed in a separate
nest, the cache performance (and energy behavior) can suffer
due to large strides.

4 Optimization Framework

We focus on array-dominated codes used extensively in
image and video processing application domains. A com-
mon characteristic of these codes is that they manipulate ar-
rays of signals using multiple nested loops, with array sub-
script expressions and loop bounds being affine (linear plus
a constant term) functions of the enclosing loop indices and
loop-independent variables. To interleave arrays in a given
program, two subproblems need to be addressed. First, we
need to identify the arrays to be interleaved. Second, we need
to transform the program by replacing the original array ac-
cesses and declarations with their interleaved (transformed)
counterparts.

We formulate the problem of selecting the arrays to be
interleaved on an undirected graph called array transition

graph (ATG). In a given ATG(V;E), V represents the set
of array variables used in the program, and there is an edge
e = (v1; v2) 2 E with a weight of w(e) if and only if there
are w(e) transitions between the arrays represented by v1 and
v2. A transition between v1 and v2 corresponds to the case
when the array variable represented by v2 is touched immedi-
ately after the array variable represented by v1, or vice versa.
Once the ATG has been built, our approach discovers the
paths it contains, and interleaves the arrays that belong to the
same path. The details of the algorithm to build an ATG and
determine paths can be found elsewhere [5].

Once the arrays to be interleaved have been selected, they
may still not be amenable to array interleaving transforma-
tion. This could be due to one of the following reasons:

� The arrays are not accessed with the same frequency
in the innermost loop. Interleaving two arrays will be
most useful when they are traversed within the inner-
most loop at the same speed. If, however, the subscript
functions of two arrays do not contain exactly the same
set of loop indices, one of them will be traversed faster
than the other rendering interleaving difficult and not as
effective.

� The arrays in question are of different dimensionality.
Although, in principle, it is possible to interleave these
arrays (e.g., by replicating the smaller array), this can
bring about subtle coherence problems between replicas
when the original array is updated.

Our current framework can interleave arrays with the same
access frequency and dimensionality even if they differ in one
or more different dimension sizes (extents). In such cases,
the framework first determines the smallest rectilinear por-
tions (from each array) that capture the simultaneously ac-
cessed array elements, and then interleaves only those por-
tions. Having pruned the set of arrays to be interleaved, for
the remaining arrays in each path, we use data transforma-
tions to interleave them [5].

5 Experiments

In this section, we evaluate the proposed interleaving
optimization from energy as well as performance perspec-
tives using eight array-dominated codes. Six of these codes
(biquad, conv, fir, lms, complex, and real) are
from the DSPstone benchmark suite [3]; fft is a two-
dimensional Fast Fourier Transform code and eflux is
an array-dominated benchmark code from the Perfect Club
benchmarks. The important characteristics of these codes are
given in Figure 3. Unless stated otherwise, our default bank
(module) configuration is 4� 2MB, i.e., four memory banks,
each with a capacity of 2 megabytes. Further, all energy con-
sumption values are those consumed in the DRAM memory



Figure 4. Energy impact of mode control (the
CTP scheme) over a strategy in which all mem-
ory modules are fully active (ON) during the
entire execution (cacheless system).

modules and do not include the (negligible amount of) en-
ergy consumed by the predictors that are part of the memory
controller.

We first evaluate the energy benefits due to operating
mode control only. Figure 4 gives the energy consumption in
Joules (J) for two different versions of each code: (i) without
mode control; that is, all memory modules are in active mode
during the entire execution; and (ii) with mode control using
the CTP strategy (without any cache memory). The energy
consumption varies for each benchmark based on the num-
ber of memory operations executed. Further, we observe that
using mode control is beneficial from energy perspective for
all codes in our suite (an average of 24.6% saving in energy).

Figure 5 compares our three prediction mechanisms with
and without array interleaving (again, for a cacheless sys-
tem). In this graph, CTP, ATP, and HBP denote the cases
where only the respective mode control mechanism (predic-
tor) is activated. On the other hand, CTP Opt, ATP Opt,
and HBP Opt denote the corresponding versions with ar-
ray interleaving. We observe that array interleaving makes
a large impact on energy behavior of all three mode con-
trol mechanisms. The average percentage reduction brought
about by interleaving is 54.2% for the different configura-
tions. Also, as far as the versions without array interleaving
are concerned, the HBP version outperforms the rest. How-
ever, except for a few cases, using array interleaving with
CTP or ATP results in better energy consumption than ob-
tained through HBP without array interleaving. Considering
that the HBP requires a more complex hardware mechanism,
we can tradeoff this complexity using a less sophisticated
hardware and array interleaving. In the rest of the paper, we
consider only HBP and CTP schemes as they represent two
extremes in sophistication.

Figure 5. Comparison of differentmode control
mechanisms (cacheless system).

Figure 6. Comparison of CTP and HBP (with a
32KB, 4-way set associative cache).

Figure 6 shows the energy consumption resulting from
CTP and HBP with and without array interleaving for a 4
� 2MB memory configuration with a 4-way data cache of
32KB. We see that, as compared to a cacheless system, the
effectiveness of array interleaving here is reduced. On the
average, array interleaving improves the energy consumption
over mode control by 15.3%. The largest improvement oc-
curs with fft, which is more than 80% for CTP. The reason
for this reduced effectiveness is the fact that the existence of a
cache memory reduces the number of accesses to the memory
banks, allowing more memory banks to be placed into a low
power mode, and for longer periods of time. This increased
effectiveness of mode control diminishes the additional im-
provements due to array interleaving. We also observe that
array interleaving causes an increase in energy consumption
with conv as the miss rate of this code slightly increases
after array interleaving.

We also investigated the impact of using mode control



Figure 7. Performance impact of themode con-
trol using CTP.

on performance. Figure 7 shows the performance penalty
(increased percentage of cycles due to transition from low-
power mode to active mode) when using CTP with different
cache sizes. It must be noted that for the experimented set of
benchmarks, the miss rate reduction due to interleaving was
not significant enough to overcome the mode control perfor-
mance penalty.

6 Conclusions

This paper presents an automatic mechanism for array in-
terleaving to save energy in partitioned (multi-banked) mem-
ory architectures with power control features. This automatic
mechanism is developed on top of a mathematical framework
in which array access patterns of an application are captured
using a graph-based representation (ATG), and transformed
using linear one-to-one data transformation matrices. We
validate the effectiveness of this transformation mechanism
using a set of DSP benchmarks, and observe energy sav-
ings across different memory configurations and mode con-
trol mechanisms.

References

[1] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle. Custom memory management methodology – ex-
ploration of memory organization for embedded multimedia system
design. Kluwer Academic Publishers, June 1998.

[2] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. DRAM energy management using software and
hardware directed power mode control. In Proc. the 7th International
Conference on High Performance Computer Architecture, Monterrey,
Mexico, January 2001.

[3] DSPstone Benchmark Suite. http://www.ert.rwth-
aachen.de/Projekte/Tools/ DSPSTONE/dspstone.html.

[4] W-M. W. Hwu. Embedded microprocessor compari-
son. http://www.crhc.uiuc.edu/IMPACT/ece412/public html
/Notes/412 lec1/ppframe.htm.

[5] M. Kandemir. Array unification: a locality optimization tech-
nique. In Proc. International Conference on Compiler Construction,
ETAPS’2001, Genova, Italy, 2-6 April, 2001.

[6] R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power-aware page allo-
cation. In Proc. Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, November
2000.

[7] S. Y. Liao. Code generation and optimization for embedded digital
signal processors. Ph.D. Thesis, Dept. of EECS, MIT, Cambridge,
Massachusetts, June 1996.

[8] Rambus Inc. http://www.rambus.com/.

[9] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.

[10] W-T. Shiue and C. Chakrabarti, Memory exploration for low power,
embedded systems, CLPE-TR-9-1999-20, Technical Report, Center
for Low Power Electronics, Arizona State University, 1999.

[11] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W.
Ye. Energy-driven integrated hardware-software optimizations using
SimplePower. In Proc. the International Symposium on Computer Ar-
chitecture, June 2000.

[12] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc.
ACM Symposium on Programming Languages Design and Implemen-
tation, pages 30–44, June 1991.

[13] M. Wolfe. High-performance compilers for parallel computing,
Addison-Wesley Publishing Company, 1996.


