COMPILER GENERATION FROM DENOTATIONAL SEMANTICS™
Neil D. Jones"z
David A. Schmidi23

Abstract

A methodoiogy is described for generating provably correct compilers
from denotational definitions of programming languages. An application is
given to produce compilers into STM code (an STM or state transition ma-
chine is a flow-chari-like program, low-ievel enough to be translated into
efficient code on conventional computers). First, a compiler ¢: LAMC + STM
from a lambda calculus dialect is defined. Any denoiational definition A
of tanguage L. defines a map AL~ LAMC, so Z"go compiies L. into STM
code. Correctness follows from the correctness of o.

The algebraic framework of Morris, ADJ, etc. is used. The set of
STMs is given an algebraic structure so any Z"tp may be specified by
giving a derived operator on STM for each syntax rule of L.

This approach yields quite redundant object programs, so the paper
ends by describing two flow analytic optimization methods, The first analyzes
an already-produced STM to obtain information about its runtime behaviour
which is used to optimize the STM. The second analyzes the generated com-
piling scheme to determine runtime properties of object programs in general

which a compiler can use to produce less redundant STMs.

1. University of Kansas, Lawrence,Kansas, USA
2. University of Aarhus, Aarhus Denmark
3. Kansas State University, Manhattan, Kansas, WUSA

This publication contains material which may be used in this
author!s forthcoming doctoral dissertation.

* Steven $. Muchnick was also involved in the earlier stages of
this research.

71

INTRODUCTION

Recent advances in the formai definition of programming languages
[STO77] and the verification of translators constructed to formal spe-
cifications {{[MOR73], [MIS76], [ADJ79]) have motivated attempts to
generate provably correct transliators automatically from language
specifications ({GAN79], [MOS79], [RAS79]). This paper describes
one solution to this problem: a method which, when given a language
definition in the style of denotational semantics ([STO77], [GOR79]),

will produce a correct translator into a specific target language.

In part |, we establish the existence of universal compilers and compiier
generators. First, some definitions are given concerning terminology
and the nature of compilation. The target language (a flowchart~|like
language called State Transition Machines, or STMs) is described,
followed by descriptions of the compiling and compiler generation
methods. This leads to the definition of a compiling scheme: a formalism
for associating with each correctly parsed source program a cor-
responding object program. Next, a specific scheme is presented

which translates lambda-expressions into STM form, The existence of
the latter scheme allows us to show that for every denotational definition
there is a corresponding scheme which translates source programs into
STM code.

Since the object programs produced by this method are inefficient,

part Il briefly describes optimization techniques. These use the concepts
of mixed computation {(or partial evaluation) [ERS78] and abstract
interpretation {or flow analysis) [COU77]. First, a method is given to
optimize a fixed STM, transforming it into an STM in which every state
transition performs an action whose effects cannot be predicted at com-
pite time. This method can be applied to the output of a universal compiler.
Second, methods are described to perform a flow analysis on an STM
scheme, determining ai compiler generation time those computations
performable at compile time (e.g., symbol table or environment tookups)
and those executable at run time. The effect is to split the STM scheme
into two parts - a compile time executable portion and a portion generating
run time transition rules. This makes possible the automatic generation of

compilers which produce more efficient code.

72

PART | EXISTENCE OF COMPILER GENERATORS

Compilers and . Interpreters

The compiler generation process to be described is concerned entirely
with semantic issues. The parsing problem is well understood [AhU74],
so we assume that the source program is presented in the form of a

parse tree . The set Parsetrees of all parse trees for a specific pro-
gramming language £ will be structured as an abstract syntax algebra

{e. g. [McC63]), so each production is viewed as a tree-construction
operator. Assuming that each program ff denotes a function from a set of
Inputs to a set of Outputs, a semantics maps each program into its denoted
Input-Qutput function. An interpreter realizes this function directly,
while a compiler produces an object program whose denotation is the same

as the denotation of 7.
semantics: Parsetrees = (Inputs - Outputs)
interpreter: Parsetrees X Inputs - Outputs

compiler: Parsetrees - Targetprograms

target semantics: Targetprograms - (Inputs -+ Outputs)

We will use an object language which is first-order and closer to

machine codes, namely the set of state transition machines, or STMs

for short,

In a sense one could define a compiler from an interpreter:

compiler(r) =X 1€ Inputs. Interpreter(m,i)

by freezing the first argument of the interpreter. This approach requires
the entire language implementation machinery to be present in the object
program, including parts for constructions which may not be present In

the program . Further, the object program compiler(ff} is not

73

specialized to 7 ~ for example all while loops in 7 would be processed

by the same part of "interpreter, This contrasts sharply with conventional
compiled code, in which distinct paris of the parse tree give rise to
distinct parts of the object program. The compilers which we generate wilil

generate code which is specialized in this sense.

Our goals naturally lead to consideration of the language definition itself
as a parameter, A denotational semantics of a language & associates with
each syntactic form A =+ A - 'An and each related semantic function C

C : A-trees - denotations, a corresponding definition clause
A-’Al...An:C[[A] =,.,. C[[A] ... G[An T--..

This defines C[[?TA] for a iree 5 of sort A in terms of the denotations of
its subtrees. The right side of this equation is an expression, usually in
some extension of the lambda-caiculus. We will use the term LLAMC to

describe a suitable extension of the lambda-caiculus.

Now let DDs be the set of denotational definitions of programming languages
in terms of LAMC., The compiler~interpreter distinctions above naturally

generalize as follows:

universal interpreter: Ul =DDs x Parsetrees x Inpuis + Outputs
universal compiter @ UC = DDs xParseirees » Targeiprograms
compiler generator : CG=DDs = Compilers

compiler semantics : Compilers =+ {Parsetrees + Targetprograms)

Note: The term luniversal!' refers to the fact that the denotational definition
is nearly arbitrary, the only restrictions being expressibility in LAMC,
and that inputs and outputs be first-order objecis (this restriction comes
from the fact that our object program language of STMs involves only
first~order data sets).

A denotational definition C[II may be viewed as a single lambda—expression
A which denotes a function: Parsetrees (inputs » Outputs), For any parse

tree T, the lambda-expression Alf) (A applied to #) denotes the meaning of ;

74

this meaning may be applied computationally to an input i by forming

(A(m))i and B-reducing the expression as far as possible. Actually,

many of these reductions will be independent of i. The semantics imple-
mentation system SIS of [MOS75] contains a set of rules which 8-reduce
A7) to normal form in the absence of I. The resulting reduced)\ ~expressiot
may be considered as an object program for 7, so SIS may be regarded

as a universal compiler,

From a practical view this approach has two drawbacks: first, the object
programs are in the A-calculus {although some researchers favor higher-
order machine languages, e.g. [BER76] and [BAC 78]); and second, the

compiler may enter an infinite loop if the semantics is badly defined.

Compiling Schemes

We propose the following solution for the above restrictions. Let £1, 512
be source and target languages. Following [MOR?73] and [ADJ79] a
compiler com: S,] -+ ‘SZ may be described by putting appropriate algebraic
structures on £T and SLZ {typically .521 becomes a free "syntax! algebra) so
that a compiler "com! becomes a homomorphism. A syntax al gebra S,‘

is finitely generated, so com may be finitely specified by a compiling
scheme which associates with each abstract syntax production

pr A A1 ‘e An a corresponding operator B in the target language algebra.

For generality we want to use the same target language for many source

languages. This is easily done by representing P as a derived operaior,

described by an expression involving the natural operators of Siz.

As an example, any denotational definition A may be viewed as a compiling
scheme K £ + LLAMC, To do this we put an algebraic structure on LAMC
with sort "lambda expression!! and operators "apply®, 'abstraction" etc.
Clearly a semantic rule C[Al =... C[Al]] oo LA ... associates
with each syntax operator (i.e. production)p: A » Ay ... A off, a
corresponding LLAMC derived operator ﬁ(al goeey an) = 81 e B
Given a parse tree T, the LAMC expression Alm) may be computed by a

syntax-directed transduction invelving only syntactic substitution.

75

Compiler Generation

Given a compiler ¢ LAMC + STM, where LAMC and STM are the source
and target algebras, ¢o Z defines a compiler from £ to STM - a parse

tree ® is compiled by first constructing the LAMC expression 4An and

then applying ¢ to the result. The action of computing (p(z‘ﬂ) constitutes
universal compilation. Further, the function cg which takes a denotational
definition Ainto cgld) = po A is a natural compiler generator, as the result

has functionality £~Parsetrees + STM,

Formally, since A& LAMC is a homomorphism into the derived theory

of LAMC, and ¢ LAMC 4 STM is also a homomorphic map, the STM algebra
can be extended to an f-algebra, and ¢ may also be extended. In this
fashion ¢» A : £+ STM becomes an £~homomorphism and thus an f£~compiler.
Pragmatically, a compiling scheme which maps f~terms directly into
STM-terms is constructed by treating both K and ¢ as syntax directed
transductions. Given production p: A -+ A‘ ‘e An of £ and its corresponding
derived operator B(a‘ gees an) expressed in LAMC, apply ¢ directly to

6, expanding the LAMC-term into an STM~term with free variables
TR The result is a derived operator for ¢» A which can be used
for a direct translation from £ to STM, and which is easily realized as a

syntax-directed transduction.

State Transition Machines

We now define the target language previously mentioned, The set of STMs
provides a useful target language because an STM at the same time is close
to conventional flow charts and has a semantics closely related to the

A~calculus,

An STM is a system of equations which defines a function from one first
order data set to another. (A data set is first order if it can be defined
by a finite set of possibly recursive set equations involving predefined
base sets, +, and x, e.g. ATOM =N+ T, LIST = ATOM + L.IST x LIST).

76

An STM possesses a finite number of control states s; with each is
associated a local memory state x, ranging over some first order data
set. Each equation defines a rule for transition from one state to another
{or to a final answer). An STM has a strong resemblance to an automaton
or a flow chart, one difference from the latter being that the memory
state is not global but is attached to each control state. Another is that
control state names can be treated as data, allowing simulation of

Ycomputed gotos!' and function call/return linkages.

Intuitively, application of an $TM to a data value proceeds by a series of
state transitions sv = siv! =+ sy =« . .., where each transition involves
only application of base functions and testing of conditions. An STM is
easily translated into efficient code on conventional architectures, since
all memory, data binding and control flow activities are explicitly spe-
cified (see [KIT80]).

Definition An STM M is a sequence of transition rules SoX = SeXgy .-y
S X T sex where x is a variable name, s,,...,s, are distinct control

state names (s is the entry state), and each sex; has one of the forms

i) ex a halt transition, producing a final answer;
i) i ex an explicit transition to control state t;
(not necessarily one of s, ... ,sn);
i) ex + sex', sex!" a conditional transition; or
iv) lex, Jex, a pop transition.

In this each ex is an expression built from x and primitive operators

such as WM, =t < > 1§ (tupling and subscripting).

Aside from the pop transitions, an STM is merely a flow chart represented
in the form of a system of equations. An STM to compute n! iteratively

might have transition rules

1

$% $1<%, 1>

Sp% = (ebl= X291, s <xil=1, xIT * x12>)

77

The second rule can be syntactically sugared:

sy<n, acc>= (n=0 + acc, s,<n-1, nx acc>)

An operational semantics for an STM I is now described. For each initial
data object a, I will have a computation history S0@ = tyay, thdn, ...
where the ti‘s and ai's are control states and memory states. The hisiory
is builf in this manner: For any i 2 1, suppose Il has the transition rule

tix = sexi. Then ti a.

. next(sexi, ai) where the "next! function is

+1
defined as follows.

Let eval(ex, a) be the value of expression Yex!!, given that variable x is

bound to value a. Then

reval(ex, a) if sex = ex
t eval(ex, a) if sex =t ex
next{sex!, a} if sex = ex 3 sex!, sex!
next(sex, a) = and eval{ex, a) = true
next{sex™, a} if sex = ex 2 sex!, sex!
and eval(ex, a) = false
t <c,d> if sex=[ex1] eXy,
" eval(ex1 sa) = <t,c> and

eval(exz, al=d

Closures and pop transitions are used to naturally model call by name,

upward FUNARGs etc. A closure is a tuple <s, Viseeey V> whose first

component is a control state name. Typically it is used to represent a

function A Kb 10+ %y 8% with free variables, where s is the entry state
of an STM to compute "ex!", and Viseew,v, are the values of the free
variables of ex. A pop transition is an expression [c] eX p1ee+ €%, 0N

a transition rule. Computationally the effect is this: suppose the value of
¢ is the closure ¢ = <8, Viyyens 1 V> and v is the value of ex, (mt1 <7< n)

then conirol is itransferred to the state

s<
Vs Vit Vi1 » V>

Figure 1 iliustrates the ease with which this mechanism aliows translation

of a recursive definition into STM form, via continuation semantics.

78

ST™ RULES
Sg¥ = loop <x, <halt>>
loop <x, c> = {x=0-[c]1, loop <x~1, <exit x ¢ >>}
exit <x, ¢,y> = [¢c] glx,vy)
halt y =Yy

COMPUTATION FOR x = 2

502 = loop <2, <halt>>
= loop <1, <exit, 2, <halt>>>
= loop <0, <exit, 1, <exit, 2, <halt>>>>
= exit <1, <exit, <halt>>, 1>
= halt g(2, ol1,1})

= g(2, ol1,1))

Figure 1. STM for f(x) = if x = 0 then 1 else glx, f(x~1))

STM Compiling Schemes

The techniques described earlier can be applied to STMs provided we give
them a suitable algebraic structure. There will be one carrier, namely
the set STM of all state transition machines and one operator for each

n=0,1,2,... used to combine n STMs into a single STM.

To define the combination operator, identify certain control stiate names

s] R sz, ... as linkage states. Given STMs ml, ey m.n we define

combine (m’ srey mn) =mt.mt {concatenated equation sequence)

where i, L ,mn' are obtained as follows:

a) rename states as necessary so ho two equations have the same

left-hand-side control state

b} identify linkage states s’, sz, fees s" with the entry states

of m,, -+, , respectively.

79

A compiling scheme £ » STM will associate with each syntax operator
A A1 A An of £ a derived STM operator defined by a term involving
Ucombine!'. Figure 3 is an example of a compiling scheme ¢: SAL. + STM
from a simple assignment language SAL into STM code {a continuation
semantics for the same language is given in Figure 2) - note its similarity

to the continuation semantics. For example, Figure 3 specifies that

go{[stmt, M stmtzﬂ =

combine { {so <P,0,c> = s, (stmt,) <p, 0, <5y, 0, C>>,
sy <ps0, 0> = 54 (stmt,) <p, g, c>},

(pﬂ: stmtl-_ﬂ, (p[[stmtzﬂ

where s,(stmt,) and solstmt,) are linkage states, identified with the
entry states of o[stmt,] and o[stmt,].

Note that ¢ may be easily realized as a syntax-directed transduction.

80

SYNTACTIC DOMAINS

prog - stmt
simt -+ id :=id | new id; stmt | stmt; simt

id - identifier

SEMANTIC FUNCTIONS

run 2 PROG =+ N-=+N {(input and output in variable X
at location 0)
exec STMT » ENV =S 4C =+ N

SEMANTIC DOMAINS

loc : LOC =N {location)
o} : ENV =N x (ID = LOC) (an environment is a pair
<max loc allocated, allocation function>)

c : C =S 4N (statement continuations)

BASE DOMAINS AND FUNCTIONS {undefined here}

o HE- {store)

inits : N=23S (initial store - n in loc 0, O elsewhere)
fetch : S x LOC =N (load from store)

update : Sx LOCx NS {store into store)

SEMANTIC EQUATIONS

1. prog = stmt
runflprogfin = exec[stmt:ﬂp inits{n) (A . fetchig, 0})
wherep =<0,)\ id, id =X =+ 0,L >

2. stmt = stmtl; stmt2

exec[[stmt]ip 0 ¢ = exec[stmt Jlp oA 0. exec[stmt, Jlo o)

3. stmt <+ new id; Stmtl

exec[[stmtfo o ¢ exec[stmt, Jo' o ¢

wherep! =<pl1+1,pi2 4+ [id'wpll+ 1]>

4. stmt = id := [d!
exec[stmt]p o ¢ = clupdate(q, (o ! 2)id!, fetch(z, (o | 2)id)))

Figure 2. Continuation Semantics of Simple Assignment Language

8.
9.
10.

prog = stmt

It

&, N

0
$4 ide =
So o =

-y .

stmt stmt], stmtz
SO poCc
51 p co =

stmt + new Iid; stmt

i
Sg pOC =

t

Sy pidc

stmt < id = id!

sq PoOC
) pocloc

H
52 foc g ¢ loc

81

spistmi) €0,<s,>> inits(n) <s,>
{id =X = [c]o,4)} {initial environment}

fetchio, 0) {final answer in loc 0}

solstmtdp 0 <s;pc> {do stmt, }

so(stmtz)p e {then do stmtzﬁZ
solstmt) <pil+1, <s p>>gc {do stmt,}
(id = id' =+ [¢] pi1+1, [pi2] id ¢) {new env lookup
function}
= fpi2}id <s, pogec> {find id toc}
= [el2] id <s, locgc> {find id! loc}

i

[c] update (o, loc!, fetchio, toc)) {do assignment

Fligure 3. Compiling Scheme for Simple Assignment Language

Note: Tuple brackets on state arguments have been omitted, e.d.

the functionality of Sy Inline 4 is Sgt ENV X S x C +N. For convenience,

inits, fetch, and update are taken as primitive operators upon the memory
state g.

82

A = prog 1. sO(A) n= sO(B)< 0,<s 1(A)>> inits(n) < SZ(A)>
2. sA)ide=(id=XxX=[c]o,l)
sz(A) g = fetchig,0)

B = stmt 4, so(B)p gc= so(c) <pl1+1, <sI(B)p> oc
s,B)pidc=id=Yapll+l, [pi2] idc

/ C= stmt 6. syClpoc =[pi2] X<s,(Clooc>
s1(C)o o cloc={pi2] Y<sZ(C) loc g c>

sz(C) loc o ¢ loc! =

[c] updatelg, loc!, fetch(z, loc))

LT ———
® X

new Y

Figure 4, Example of a Compiled Program

A Compiling Scheme from LAMC to STM

Figure 6 contains a scheme for iranslation of LAMC terms to STM programs.
The scheme was developed by applying methods in [REY’?Z] to figure 5
and performing ad-hoc optimization. The conventions and techniques used

with figure 3 can also be applied here to give a compiler.

83

SYNTACTIC DOMAINS
prog -+ ex
ex = con | var | ex, ex, { Avar, ex, | base function | fix X var., ex

i v e s

SEMANTIC DOMAINS

C = VAL = A continuations

THUNK = C - A meanings of call-by name operands
VAL = CON + [THUNK = THUNK]

ENV = VAR = THUNK

SEMANTIC FUNCTIONS

run i CON =2 CON
ev | EXP 9 ENV =4 THUNK

SEMANTIC EQUATIONS

runprog] v = ev[progTl(A xc. L)\ f.fX c.ev)(A vi.vh))

evlcon]lp ¢ c{ value] con])

evfvar]p c pllvar] ¢

ev[exlexz] pc = evlex,Jplt. f(ev[exzﬂ plc)

ev[[}\x.ex]]p c = clitievlexJlp + [x»t]})

eV basef] p ¢ el tct.t{h v. v € CON = cl{basefen{v}), error}}

ev[[ex; + ex,, ex3]lp c=ev[ex1]p {Ab. b € CON -
(barevex,fpc, evl e><311 e <,
error)

It

]

evfix X f.ex]lpc = evex]pc
where p! = X x c. (x=f-’ev[ex1:l]p‘ ¢, p[x] <)

Figure 5. Continuation Semantics of LAMC

prog -+ ex

50

s
1
ex - con

Sg<p,c>

ex -+ X
SO <P,C>
h
ex (exlexz)
so<p,c>

ex -+ Ax cexy

50<P’C>

ex - basef ex,

SO <p,c>

51<i,c>

ex -+ ex, d exy, ex

so<,o,c>

solex) << >, <<op, <s

84

et finish>>

=[el 1] <v, ci2>

It

3

[ci1] <value[con] ci2>
bk=pit) 2 [pi2] c, sy<pi3,c>

so(ex1)<p, <<op, <sylex,),p>>, c>>

{citit =_<2Q)~!so(ex1)<<x, cltiz , p>, ci2>,

err

so(ex1)<p, <<s >, c>>
[ci1] <basefenii), cl2>

= so(ex1}<p, <<s,,p>, c>>

sl <p1 i,ec>*= i~ so(exz) <P’, c>, So(ex3) 4p’c>

ex = fix A X o.exy

so<p,c> =so(ex1)<<x, <sgp>, P>, ©>

Figure 6, LAMC to STM Compiling Scheme

85

Construction and Correctness of STM-Schemes

Earlier we consiructed a compiler by composing two syntax directed
translation schemes: one, the denotational definition A: L % LAMC,

the other, a map ¢: LAMC + STM. Now we show that the construction
method is universal, and computations using the translated programs

are correct, The key step in showing correctness is in describing a
close correspondence between computation in STMs versus leftmost
B-reduction in LAMC. Now, given a ¢, such as the one in figure 6, if

it can be shown that computation by a translated LAMC expression faithfully
simulates S-reduction, then ¢ can be considered '"correct!. This theorem
is proved in {Sch80] for one such ©; it Is shown there that the STM com-
putation simulates leftmost 8~reduction upon head redexes [CUF58].

This allows us to state:

Theorem: For each language £ whose semantics is described by a denota-
tional definition C, there exists a compiling scheme from £ into STM code

which produces programs correct with respect to C.

Proof By the above, (A o @}7 is an STM equivalent to 7, for any pro-
gram £ in 7. Further, Ao @ may be described as a compiling scheme as
follows: For any production A - A}. . 'An and semantic rule

clAal =... C[Aﬂ] e C[[An]] «.., apply the LAMC~STM compiling
scheme to ... C[A,] ... C[A.J ..., and replace each C[A.T} in the re-
sult by SO(Ai)' This derived operator on STM associates with each pro-
duction and semantic rule a finite set of STM transition rules, and so

defines the required compiling scheme.

Remark This construction associates with each production a derived
operator on the STM algebra, specified as a term involving 'combine!.
These terms may be ''flattened" using properties of 'combine' to yield
a specification in the style of example 3 or 6. For example if Co and C

1
are constant $STMs then

combine(co, combine(cj,x)) = combine(C,4' C ', X)

where Co' and C 1' are obtained from C0 and C] by renaming control states,

86

This establishes the existence of compiler generators from (nearly)
arbitrary denotational definitions into STM code. Clearly the same ideas
could be used to translate into other object languages, or further trans-
lation could be applied to the STM object programs (one such example

is found in [KIT80]).

Although the fundamental task has been achieved, a number of pragmatic
isgsues need resolution. Foremost is the improvement of the STMs produced
for programs in £. These tend to contain many compile-time evaluable
operations, such as symbol table lookups derived from £'s semantics and
trivial interface transitions used to join together STMs corresponding to
subtrees of a source program (both may be seen in figure 3). Part i
describes the use of flow analysis and mixed computation to produce more

economical STMs.

87

PART [I OPTIMIZATION OF THE OBJECT CODE {Overview]

Assume we are given a state transition machine M which computes a
function f: IN 2+ OUT. For a given control siate, define its argument

to be dynamic {(or runtime) if it depends functionally on

the input to M, and static otherwise. This notion is also generalized

to parts of a data item, e.g. a component of a tuple. A transition rule

is said to be dynamic if it cannot be carried out without knowledge of the
input value, i.e., if a dynamic object is involved in an essential way,
such as In a test, as operand of a base function, or as operand of a pop

transition.

Note that in the example of figure 3 transition rules 1, 3, 8 and 10

are dynamic, Rules 4, 6, and 9 are used to pass control to other rules
associated with other nodes of the input parse tree; these rules are static.
Other examples of static computations are the access and update of environ

ments (symbol tables), e.g. rules 2, 6, and 7,

Optimization after STM Creation

A general analysis and optimization of an arbitrary STM M can be achieved

in the following stages

i) analyze M to determine which state arguments or parts thereof
are static and which are dynamic. Compute the values of the

static arguments;
it} mark those transition rules which are static;

iii) combine each static transition ruie with its successor
{which is unique since the transition is static}. This is

known as chain collapsing.

iv) remove those static arguments whose values were computed in
i} as they no longer affect the computation. This is known as

argument simplification.

88

These steps create an STM in which each transition and data item depends
upon the input arguments. The optimization resembles Ershov's mixed
computation [ERS78] in that, to compile, one executes the program as
completely as possiblie in the absence of input data, and outputs as the
object program those residual program parts not executabie at compile

time.

A straightforward symbolic execution is not adequate, due to states which
may be repeatedly entered during execution. The solution is to do a flow
analysis, or abstract interpretation in the sense of Cousot [COU77]
(certain extensions are needed to handie pop transitions). Briefly, the

idea is as follows,

Abstract interpretation is done by associating with each conirol state s

an argument description g{s}. The values of §(s) are elements of a description
lattice appropriate to the argument domain of s. Initially, each 4(s) equals

4 {indicating that nothing is known about the argument of s} except that the

entry state s, is described by &(s]) = idep {indicating that its argument is

1
input dependent). The program is now abstractly executed in paratiel,
updating each state descriptor Als) as soon as new information is obtained

about the argument of s,

Thus an atomic argument may have one of 4 descriptions: L (no information);
a specific value, e.g. 17; ?, indicating that the value is not input depen-

dent but is not known at compile time; and idep, input dependent,

We note that the principal domain types of STM states are primitive domains
and domain products. These and a third type, the set of closures, are
assigned descriptors. Noting that the set of closures is a set of tupled
objects, one of whose members is a control state name, the description

lattices are as follows,

A
Argument type T Description Lattice T
Primitive domain N NU {idep} where ¥xeN, xEidep
A A
Product domalex...an DIX"'XDn

Closure domain Dlx...an D1
where D, is a domain 2 , a powerset lattice

of control state names

In the first case the lattice is of the form
idep
7
v\\iz/.. .
L

The special treatment given to ciosure domains stems from their elements'
use in pop transitions - it is a control domain, Hence analysis of closure
objects analyzes control, viz. the set of possible successor siates of a
given program state. The abstiract interpretation needs to determine a set
of possible successors, and so the powerset lattice form is required. To
maintain the finite chain property we only record the state; the other
components may be recovered from the argument description at the place

where the closure was created.

The STM is viewed as defining a continuous fucntion G: AD = AD, where
AD is the domain of functions X s.g&(s). The minimal fixpoint fix G Is the
desired analysis. Figure 7 contains the result of abstract interpretation on

the program of figure 4.

Given this information, chain coliapsing and argument simplification are

straightforward. Drawbacks to this method are:

90

1. Abstract interpretation is expensive in
time : (0 must be iterated until each ¢ s has converged.

space : Retention of the memory state descriptions is necessary.

2, Properties invariant with respect to the language definition are

rediscovered each time a program is compiled.

3. The algorithm is a post processor rather than a compiler

generator.
asyA) = idep
o s (A) = <X,§ST(C)}>
as,(A) = idep
asy(B) = < <0, {s(A)} > idep,| s, (A)] >
o s, (B) = < <0, {51(A)}>, ? {s (€), s, (Cii>
aso(C) = « <1, {s (B)} >, idep,{s 2(A)}>
&S](C) = < <1, {S (B” :.__E:{ Z(A)}’0>
o SZ(C) = <0, T?% SZ(A)}5

Figure 7. Result of Abstract Interpretation of Figure 4,

Scheme Analysis and Compller Generation

Current research centers on the development of methods suited for flow
analysis of the compiling schemes themselves., Application of such algorithms
to the schemes would determine which elements of the definition are siatic
regardless of the input program being compiled, and hence can be

evaluated at compile time, For example, consider the language rule

stmt =+ new id; stmtI” from the scheme of figure 3. The associated STM
rules have two generic states -~ an entry state so(stmt) p ¢ c, and an
environment application state s](stmt) p id c. Analysis of the language
scheme would reveal that p and ¢ are static in so(stmt), but g is dynamic.
For 51(stmt), all of p, id, and ¢ are found to be static in behavior but

receive multiple values during compilation {i.e., their flow analytic values

91

map to ' 2!}, The conclusion is that both transition rules are static {no
computation with dynamic arguments occurs), Since so(stmt) has a unique
successor, it can be collapsed with its successor rule, sl(stmt) has many
predecessors, but only a single successor for each, Thus it may be
eliminated in faver of a compile time computation which performs the

rule's transition each time it is encountered.

Such an analysis could be used to determine in advance which parts of the
scheme must appear in the object program and which parts may be evaluated
at compile time. Analysis of figure 3 reveals that all environment and
location computations are performable at compile time and that only rules

1, 3, and 10 need appear in object programs.

Further, such analysis could reveal those state arguments which can
receive only one value description during abstract interpretation. Using
this information and that above, a more efficient compiling algorithm may be
visualized which does not explicitly build the full STM, abstractly interpret
it, and then reduce it as described above. Instead, the algorithm accom-
plishes all these effects simultaneously by traversing the parse tree in a
way corresponding to the possible flow of control in the STM, keeping in
memory only those descriptions of STM states which are needed to do the
abstract interpretation. During the traversal, compile time values are
computed (e.g. p, foc). Whenever a runtime transition rule is encountered,
the necessary compile time parameters are inserted {e.g. loc in rule 10}

and the residual rule is added to the object program.

This method would appear to have both time and space advantages over

the preceding one.

92

References

[ADJ79]

[ARU72]

[BACT78]

[BER76)

[cou77]

[ERS78]

[GAN79]

[GOR79]

Thatcher, J.W., Wagner, E.G., and Wright, J.B.
More Advice on Structuring Compilers and Proving Them
Correct, 6th Colloquium, Automata, l.anguages, and
Programming, Graz, Austria, 1979, Springer Lecture

Notes in Computer Science 71.

Aho, A.V., and Uliman, J.D, The Theory of Parsing, Transliation,
and Compiling, Prentice~Hall, Englewood Cliffs, N, J. 1972,

Backus, J. Can FProgramming Be Liberated from the von Neumann
Style? Comm. ACM 21-8, 1978, 613-641,

Berkling, K.J. Reduction L.anguages for Reduction Machines,
Rpt. ISF-76-8, Gesellschaft fUr Mathematik und
Datenverarbeitung MbH, Bonn, 1976.

Cousot, P., and Cousot, R. Abstract interpretation: A Unified
Lattice Model for Static Analysis of Programs by Con-
Struction or Approximation of Fixpoints, 4th ACM
Symposium onPrinciples of Programming L.anguages,

Los Angeles, 1977, 234-252.

Ershov, A.P. On the Essence of Compilation, in Formal
Description of Programming L.anguage Concepts,
E. J. Neuhold, ed., North-Holland, Amsterdam, 1976, 391-420.

Ganzinger, H. Some Principles for the Deveiopment of Compiler
Descriptions from Denotational Language Definitions,

Tech. Rpt., Technical University of Munich, 1979,

Gordon, M. J.C. The Denotational Description of Programming

Languages, Springer-Verlag, Berlin, 1979,

[KITGO] Kitchen, C. Compiling State Transition Machines into Machine

Language, M.S. Thesis, University of Kansas, forthcoming.

93

[McC63] McCarthy, J. Towards a Mathematical Science of Computation,
in IFIP 62, C.M. Poppelwell, ed.,, North-Holland,
Amsterdam, 21-28.

(MiS76] Milne, R., and Strachey, C. A Theory of Programming Language
Semantics, Chapman and Hall, L.ondon, 1976.

[MOR?S] Morris, F.L. Advice on Structuring Compilers and Proving
Them Correct, 1st ACM Symposium on Principles of
Programming L.anguages, Boston, 1973, 144152,

[MOS75] Mosses, P.D. Mathematical Semantics and Compiler Generation,
Ph.D. Thesis, University of Oxford, 1975,

[MOS?Q] Mosses, P.D. A Constructive Approach to Compiler Correctness,
DAIML IR~ 16, University of Aarhus, 1979,

[RAS79] Raskovsky, M., and Turner, R. Compiler Generation and
Denotational Semantics, Fundamentals of Computation Theory,
1979,

[REY?Z] Reynolds, J.C. Definitional Interpreters for Higher-Order
Pregramming Languages, Proc, of the SCM National Con-
ference, Boston, 1972, 717-740,

[REY74] Reynolds, J.C. On the Relation Between Direct and Continuation
Semantics, 2nd Colloquium on Automata, Languages, and
Programming, Saarbr(}cken, Springer-Verlag, Berling,
1974, 141..156,

[SCHSO] Schmidt, D. A, Compiler Generation from Lambda~Calculus
Definitions of Programming Languages, Ph.D. Thesis,

Kansas State University, Manhattan, Kansas, forthcoming.

[8TO77] Stoy, J.E. Denotational Semantics, MIT Press, Cambridge,
Mass., 1977.

