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Abstract

Quantum computing (QC) offers huge promise to accelerate a
range of computationally intensive benchmarks. Quantum com-
puting is limited, however, by the challenges of decoherence: i.e., a
quantum state can only be maintained for short windows of time be-
fore it decoheres. While quantum error correction codes can protect
against decoherence, fast execution time is the best defense against
decoherence, so efficient architectures and effective scheduling al-
gorithms are necessary. This paper proposes the Multi-SIMD QC
architecture and then proposes and evaluates effective schedulers to
map benchmark descriptions onto Multi-SIMD architectures. The
Multi-SIMD model consists of a small number of SIMD regions,
each of which may support operations on up to thousands of qubits
per cycle.

Efficient Multi-SIMD operation requires efficient scheduling.
This work develops schedulers to reduce communication require-
ments of qubits between operating regions, while also improving
parallelism.We find that communication to global memory is a
dominant cost in QC. We also note that many quantum benchmarks
have long serial operation paths (although each operation may be
data parallel). To exploit this characteristic, we introduce Longest-
Path-First Scheduling (LPFS) which pins operations to SIMD re-
gions to keep data in-place and reduce communication to memory.
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The use of small, local scratchpad memories also further reduces
communication. Our results show a 3% to 308% improvement for
LPFS over conventional scheduling algorithms, and an additional
3% to 64% improvement using scratchpad memories. Our work is
the most comprehensive software-to-quantum toolflow published
to date, with efficient and practical scheduling techniques that re-
duce communication and increase parallelism for full-scale quan-
tum code executing up to a trillion quantum gate operations.

Categories and Subject Descriptors B.3.2 [Memory Structures]:
Design Styles – cached memories, shared memory; D.2.8 [Soft-
ware Engineering]: Metrics – performance metrics; D.3.2 [Pro-
gramming Languages]: Language Classifications – design lan-
guages; D.3.4 [Programming Languages]: Processors – compil-
ers, optimization, memory management

Keywords Quantum, LLVM, Compilers, Scheduling

1. Introduction

Quantum computing (QC) is a powerful paradigm with a potential
for massive computational speedup. QC-based algorithms, in con-
trast to classical algorithms, traverse large solution spaces exponen-
tially fast by manipulating qubits, which are superpositions of 0 and
1 states, instead of individual bits. Taking advantage of this, QC al-
gorithms have been devised for important scientific problems that
have high computational complexity. For example, recent work re-
quired 8400 MIPS-years to factor RSA-155 on a classical machine
[4], while Shor’s QC factoring algorithm offers the potential for a
significant speedup on large problems due to a reduction in asymp-
totic complexity.

Although the QC algorithms we use as benchmarks offer dra-
matic reductions in computational complexity, it is also important
to optimize their actual runtimes. Quantum bits (qubits) are highly
error-prone, susceptible to decoherence over time, and require ex-
pensive Quantum Error Correcting Code (QECC) operations for



reliable computation. Accelerating quantum computation is impor-
tant because it allows the computation to “stay ahead of the errors”.

In this paper, we propose the Multi-SIMD(k,d) architecture for
quantum computation. Multi-SIMD approaches combine operation-
level parallelism (with k different gates or operating regions) along
with data-level parallelism (up to d qubits can be operated on within
a single gate). We show that QC machines of this type are well-
suited to the parallelism and computational needs of large-scale
QC benchmarks. In addition, we explore parallelism and locality
scheduling techniques as a means to optimize the performance of
quantum computations onto Multi-SIMD hardware.

A natural source of state degradation in this architecture is
communication delay, due to the fact that qubits need to be moved
between regions in order to undergo an operation or to interact with
other qubits (to support data and instruction parallelism). QECC
requires many physical qubits to represent a single logical qubit.
This makes compute regions and memories large in area, which
results in large communication distances. When we add support for
operation- and data-level parallelism, distances become even larger.

These high communication costs push us towards a communication-
centric scheduling model. Exploiting the “mostly-serial” nature
(at the operation level) of many of our applications, we adopt a
Longest-Path-First scheduling (LPFS) strategy that keeps operands
in-place for computations. Small scratchpad memories can further
avoid global communication by capturing some temporal locality.
In fact, the scratchpad memories are critical to leveraging the local-
ity generated by LPFS, since it is often the case that one operand
stays in a region for the next operation, but other operands must
temporarily be moved aside. To maintain scheduling quality while
reducing analysis times, we have developed a hierarchical approach
that performs fine-grained scheduling in leaf modules with higher-
level coarse-grained scheduling to stitch them together. Our results
show an increase in speedup when incorporating communication
from 3% to 308% and when incorporating local memories from 3%
to 64%. With both modifications, total speedups can reach 9.83X.

This paper makes the following contributions:

• To exploit parallelism while mitigating control complexity, we
propose a novel Multi-SIMD(k,d) quantum architectural model.
Ion trap technology with microwave control provides a practical
basis for our model.

• We propose a hierarchical scheme to apply the scheduling al-
gorithms to large-scale QC benchmarks. Through remodular-
ization and application of the algorithms at coarse-grained and
fine-grained levels, we show that our algorithms can effectively
analyze large-scale QC benchmarks and generate schedules that
are comparable to their estimated critical path lengths.

• We propose and evaluate communication-aware scheduling al-
gorithms that reduce communication overheads while maximiz-
ing parallelism. We compare a traditional scheduling algorithm
to the designed algorithm that considers the structure of quan-
tum programs, and evaluate the speedup of both algorithms over
sequential execution and naive communication models.

• We analyze the benefits of scheduling for local, scratchpad
memories next to each compute region in reducing long com-
munication delays to the global memory and overall execution
speedup.

The rest of the paper is organized as follows: Section 2 dis-
cusses the technology and architectural model proposed. Section 3
discusses the design of the ScaffCC compiler and the program ex-
ecution model. Section 4 discusses the scheduling algorithms in
depth. Section 5 discusses the schedules found. Sections 6 and 7
discuss related work, future work, and conclusions of the paper.

Figure 1: Microwave control for Ion Traps. Note the large off-chip
coaxial connectors for the microwave signals. Figure is reproduced
from [40] with permission.

2. Architectural Model

We propose Multi-SIMD(k,d), a family of quantum architectures
motivated by practical constraints in ion trap technology. Multi-
SIMD architectures support parallelism at both the operation and
data levels. In this section, we describe the concept, feasibility
and challenges of trapped ion quantum computation. Our proposed
architectural model and the choice of its parameters are based on
ion trap QC, but are applicable to other technologies as discussed
later.

2.1 Background on Quantum Computation

This section briefly describes background on aspects of QC most
relevant to the work described here. In particular, one key con-
straint in quantum computation is the no cloning theorem [33],
which states that a superposition state cannot be perfectly copied
from one qubit to another qubit, without destroying the first one.
Thus, in order to use the state of a qubit in another part of the archi-
tecture, that qubit must be physically moved. This can be costly on
computation time, therefore in Section 2.3 we describe the use of a
technique called quantum teleportation, which allows these move-
ments to be hidden by pipelining them into the computation.

Another consequence of the no-cloning theorem, and also the
fact that quantum operations have to be norm-preserving unitaries,
is that these operations cannot have fan-in or fan-out, and all quan-
tum computations must be reversible. This general property of
quantum circuits means that normal, irreversible classical circuits
cannot be directly written as quantum circuits, and we have to equip
the compiler with a feature to convert classical operations to quan-
tum ones. This is described in Section 3.1.

2.2 Ion Trap Technology

A trapped-ion system is currently the most promising candidate
for realizing large-scale quantum computers. These include well
characterized qubits, long decoherence, and the ability to initial-
ize, measure and perform a universal set of gates [9, 27, 31, 38].
Experimental results with ion traps have demonstrated all the re-
quirements of a viable quantum technology for realistic quantum
computation [3, 6, 13, 37, 50], as laid down in the DiVincenzo cri-
teria [12].

In trapped-ion systems, operations are typically performed by
focusing lasers on each ion, which represents a physical qubit.
Because these lasers must have precisely tuned relative phase, they
can be extremely large in size, currently the size of a small room,
limiting current visions for QCs to roughly 6-12 lasers.

However, recent experiments with microwaves demonstrated
multi-qubit control that could scale from 10 to 100 ions for a single
microwave emitter [40], like the example hardware shown in Fig. 1.
Another level of fanout could create a small number of SIMD
regions each capable of performing a different operation (“gate”)
on roughly 100 to 10000 qubits. Microwaves are a natural choice
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Figure 2: Communicating the state of q1 using quantum telepor-
tation: The EPR pair of q2/q3 is distributed prior to teleportaion,
keeping q2 near the communication source q1, and using q3 as the
communication destination. By measuring the states of q1 and q2,
and classically transmitting those measurement results (classical 0
and 1 bits), the state of q3 takes on that of q1 using none, one, or
both of the X and Z operations at the target side. This completes
the transmission of q1 to q3, while the state of q1 is destroyed in the
process.

for driving single qubit gates and coupled with gradients they can
also drive two-qubit gates [22, 36]. The signals for different regions
can be tuned to cancel microwaves for some regions, effectively
shielding some ions from neighboring signals [11].

Microwave control does not currently allow for qubit measure-
ment, although schemes are under development. For this work,
we assume laser-controlled measurement, which has better fanout
characteristics than operation gates. This is because measurement
requires only a single laser and the phase between multiple ions is
not important.

All our analyses are performed at the logical level and ignore
the lowest-level physical operations. The logical gate operations
are actually sequences of microwave signals that operate on a
group of physical qubits to produce a single logical qubit state.
The encoding we assume is some form of concatenated code for
QECC [17, 42, 43]. As the need for better reliability increases
some of these codes can have an exponential overhead costs and
resulting runtime increases. By keeping the runtimes below these
boundaries, we can avoid these expenses.

2.3 Handling Data Movement and Teleportation

At a physical level, communication in the Multi-SIMD architecture
is assumed to be achieved through quantum teleportation (QT), a
phenomenon that makes transmission of exact qubit states possi-
ble. QT requires a pre-distribution of entangled Einstein-Podolsky-
Rosen (EPR) pairs of qubits between the regions where communi-
cation will occur. EPR pairs are generated at the global memory,
and distributed to the required regions. Fig. 2 illustrates the com-
putations required. The communication cost is four times as high
as a single quantum gate per move; in a naive movement model,
this quintuples the actual compute cost because of repeatedly mov-
ing qubits between SIMD regions and the global memory. In many
cases our compiler can schedule QT operations in parallel with the
computation steps. It should be noted that in the context of our log-
ical compiler, we treat all logical gates as having the same latency,
which effectively means we assume the system will be clocked at
the rate of the longest gate. More precise latencies can be found in
[18]. For example, 2-qubit gates may physically take up to 10 times
the latency of 1-qubits gates. Moreover, by choosing QT as the
method of communication, we mask the latency of moving qubits
around. This masking is possible by pre-distribution of these pairs
before they are needed for the teleportation.

For a teleportation operation to occur, EPR pairs must be dis-
tributed to each SIMD region and global memory so that the sender
and receiver each have one half of the pair. The distribution of
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Figure 3: Block diagram of Multi-SIMD quantum architecture
based on ion traps controlled by microwave technology. k oper-
ating regions each support quantum operations on d qubits simul-
taneously. Each operating region has a local memory for storing
qubits. EPR qubit pairs are prepared near the global memory and
distributed among regions via quantum teleportation.

such EPR pairs has been studied in detail in [49]. Since re-
peated movement of qubits on the physical fabric is error-prone,
QT reduces quantum decoherence by communicating informa-
tion through a classical channel. Our compiler schedules the pre-
distribution of EPR pairs statically, as with other parts of the over-
all schedule. While QT has constant latency with communication
distance, longer distances do imply higher EPR bandwidth require-
ments (larger communication channels to move enough EPR pairs
throughout the architecture). To minimize EPR bandwidth require-
ments, future work will investigate distributed global memory and
compiler algorithms for mapping to such a non-uniform memory
architecture. Additionally, the issue of correctly dealing with the
problem of decoherence at the physical level when moving EPR
pairs, which may arise in long communication channels, is studied
in [10].

2.4 The Multi-SIMD Architectural Model

Based on the ion trap technology with microwave signaling mecha-
nism, we propose to build a scalable system with multiple indepen-
dent operation regions, each offering gate-level parallelism. Fig.
3 shows the block diagram for our proposed architecture. Within
each SIMD region, a large amount of data-level parallelism is
available—100 - 10,000 qubits. In this manner, the architecture can
support k independent regions each allowing d bits of SIMD com-
putation, where k is limited by the number of microwave signals
and the complexity of generating interference to shield neighbor-
ing regions. The value of d is limited by the ability to fan out the
microwaves signal to all d qubits without disrupting the rest of the
system.

These k SIMD regions serve two purposes. First, they allow ac-
tive computation on qubits. Second, when idle, they can be used
as passive short-term storage for qubits between compute opera-
tions. We also optionally provision each SIMD region with a small
amount of scratchpad memory (or local memory) for temporary
storage of qubits during intermediate computations on other qubits
in the same region, similar to a traditional hierarchical memory sys-
tem. During a scheduled run of the benchmark, active qubits must
be moved between SIMD regions and idle qubits must be moved
to the global memory. Storing some qubits in the local memories
can potentially reduce overall communication cost to and from the
global memory.



Note that the centralized global memory is a simplification
that results from QT which makes the latency of long-distance
communication constant. This constant global communication cost
favors parallelism, since the serial version of our computations pay
just as much to access global memory as our parallel versions
do. In fact, parallelism breaks the computation into finer-grain
chunks on separate regions. This reduces global memory accesses
by leveraging local storage in regions and optional local memories,
which is analogous to spatial computing approaches in classical
computing [14, 45, 46].

Overall, efficient use of Multi-SIMD requires orchestration of
qubits to maximize parallelism and to reduce qubit motion. Devis-
ing and evaluating effective scheduling techniques for Multi-SIMD
is the focus of this paper.

2.5 Optimizing Communication using Local Memory

The communication overhead of four cycles per qubit movement in
QT can be reduced even further by adding a local memory storage
to each SIMD region. A local memory region bordering an operat-
ing region acts as a temporary store for a qubit that must be moved
out of the SIMD region for one or more cycles, and moved back
into the same region for the next computation on it. Due to the
proximity of the local memory region, qubits can be moved back
and forth physically using ballistic control. This eliminates the need
for computational cycles required for teleportation to global mem-
ory reducing the communication overhead considerably. While the
latency of ballistic transport of a qubit depends on the size of the
operating region (or the distance to be traversed), note that even
teleportation operation involves a similar ballistic latency for ac-
complishing the interaction of data qubits with an EPR qubit. In
our experiments, we assume a one-cycle latency overhead for local
communication.

2.6 Adaptability for Other Technologies

We use trapped-ion technology as a motivating example since
its scaling properties and parameters are well understood. Our
toolflow and the Multi-SIMD model, however, are not tied to any
particular physical implementation and can be applied so long as
the scaling properties hold. For example, superconducting qubits
could be electronically tuned in and out of resonance in parallel, al-
lowing SIMD operation in regions. Recent work with quantum dots
using rotating frames and microwaves also could support Multi-
SIMD in a manner very similar to trapped ions. A global operation
can also be applied to a lattice of neutral atoms. Further, work by
[5] utilized another SIMD approach based on electron spins on
helium technology.

3. Computation and Compilation Framework

Our evaluation framework consists of a set of large-scale quan-
tum benchmarks and a LLVM-based compiler toolchain designed
to perform deep analysis at scale. Since large-scale quantum bench-
marks can not be simulated on any classical computer, our compiler
is also designed to estimate the performance and resource require-
ments of the code we generate.

3.1 ScaffCC Compiler Framework

Our scheduler implementation is built within ScaffCC, a compiler
framework for synthesis of logical quantum circuits from a high-
level language description [21]. As input, ScaffCC takes programs
written in Scaffold, a C-like programming language for quantum
computing [20]. Scaffold includes data types to distinguished quan-
tum and classical bits and offers built-in functions for quantum
gates. It also offers additional constructs for parallelism and con-
trol, such as parallel for loops and conditional statements based on
the (probabilistic) state of qubits.

ScaffCC operates largely at the logical level, translating high-
level quantum algorithms (benchmarks) described in Scaffold into
the LLVM [26] intermediate representation and ultimately back-
end-targeting QASM which is a technology-independent quantum
assembly language [33, 44]. The basic data types in QASM are
qubits and cbits, and the instruction set includes a universal set of
gates (X, Y, and Z), and operations for measurement, as well as
preparation in the states of |0〉 and |1〉. Quantum gates of Con-
trolled NOT (CNOT), Hadamard (H) and Phase (S), referred to as
the Clifford group of gates, along with the π/8 phase (T) gate form
a minimum set for universal quantum computing. These logical
gates are assumed to incorporate QECC sub-operations; no attempt
in this paper is made to optimally schedule these sub-operations.

Many classical operations, such as a + b = c, cannot be ex-
pressed traditionally in reversible logic. To allow programmers
to work in more familiar ways, we incorpoarate a tool called
Classical-To-Quantum-Gates (CTQG) [21] into the compiler flow.
This tool decomposes certain common programming syntax, such
as arithmetic operations and if-then-else control structures, into
QASM operations suitable for linking into the more quantum code.

The set of gates allowed in QASM is a subset of the full vo-
cabulary allowed in Scaffold. To target just this subset (akin to
an instruction set architecture in classical processors) the compiler
uses a decomposition stage to translate arbitrary-angle Rotation
gates and Toffoli gates into either approximate or precise equiva-
lents. For Rotations, this is an approximate process implemented
through the SQCT [25] toolbox. We perform our compiler analysis
and scheduling on the quantum program after gate decomposition
has been applied.

To incorporate parallelism/communication analysis and schedul-
ing, we extend the ScaffCC compiler framework (based on the
LLVM intermediate format) with new analysis passes. The current
state-of-the-art in quantum programming is that nearly all of the
program control flow, iteration counts, and gate operations can be
determined classically, before program run time. As a result of this
deeply-analyzable program control flow, most work on synthesis
and optimization of quantum circuits has assumed a completely
flat and unrolled circuit format [8, 29]. While full linearization was
viable for early small QC benchmarks, quantum benchmarks have
now progressed to the point where the benchmarks we study (Sec-
tion 3.3) require 107to 1012 operations or more, and thus this full
unrolling is no longer tractable. We therefore incorporate a hier-
archical scheduling technique, dividing the benchmark up along
module boundaries into leaf and non-leaf modules. Leaf modules
make no calls to other modules and are composed solely of QC
primitive gates; non-leaves may use a mix of gates and submod-
ule calls. Fine grained scheduling of the leaves are discussed in
Sections 4.1 and 4.2. Coarse-grained parallel scheduling of the
non-leaves is discussed in Section 4.3.

3.1.1 Leaf Module Flattening

Our hierarchical process allows scheduling of very large codes, but
this comes at the cost of reduced parallelism being detected by the
scheduler. Larger leaf modules provide more opportunities for good
fine-grained scheduling, but when leaf modules are too large the
scheduling time becomes unacceptably long. Here we look at how
to flatten non-leaves into larger leaf modules optimally.

Fig. 4 illustrates a simple example of possible parallelism loss
at module boundaries. Here, a program to be scheduled on a Multi-
SIMD(4,∞) system, a Toffoli operation is followed by a depen-
dent Toffoli operation i. Toffoli(x,y,z) is a three-qubit operation that
flips the state of qubit z depending on states of x and y. Since qubits
are subject to the no-cloning theorem any common operand in two
operations presents a data dependency in quantum programs. In this
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Figure 4: Scheduling of two dependent Toffoli operations with flat-
tened and modular code. The Toffoli(x,y,z) operation is decom-
posed into gates supported by QASM. In the modular case, the
scheduler treats the Toffoli operations as blackboxes and does not
detect the inter-blackbox parallelism that exists between the de-
composed circuits.

case, the two gates share the input a and therefore the second is de-
pendent on the first.

In the example, the Toffoli operation is decomposed into a
circuit containing QASM-compatible gates. If these two modules
were conjoined and scheduled together using fine-grained schedul-
ing, they could be scheduled in 21 cycles, with k = 2. Maintaining
modularity, on the other hand, serializes the resulting blackboxes
due to the data dependency. At this granularity, we must execute
all of the scheduled sub-operations for Toffoli(a,b,c) before any of
those for Toffoli(a,d,e). In this case, the resulting k = 2 schedule
for the two Toffoli operations is 24 cycles.

This example motivates our desire to choose the appropriate
degree of modularity and flattening. To this end, we define and
explore here a Flattening Threshold (FTh). Namely, by performing
resource estimation analysis on each module, we determine the
number of gates within the module. If this is less than the flattening
threshold, then the module is flattened, i.e. all the function calls
contained within it are inlined. This results in leaf modules that
consist of at most FTh operations.

The flattening threshold is determined by characterizing the
initial modularity within a program. Fig. 5 shows the percentage
of modules with gate counts falling within specified ranges. This
reveals the proportion of modules that could be flattened for a
certain FTh. Based on these and other experiments, the remainder
of our studies use FTh set to 2 million operations. This flattened
80% or more of the modules contained within all benchmarks
except SHA-1. For SHA-1, we used a flattening threshold for 3
million which flattened the entire benchmark.

3.2 Execution Model

The Multi-SIMD(k,d) model allows 1 to k discrete, simultaneous
gates to be executed in a single logical timestep, each of which
can be applied on 1 to d qubits apiece. For example, if 10 different
qubits all require a CNOT operation applied to them, these can be
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Figure 5: Histogram of gate counts represented as percentage of
total modules in benchmarks. Using a flattening threshold of 2M
operations, 80% or more modules were flattened for fine-grained
scheduling for all benchmarks except SHA-1. For SHA-1, a flat-
tening threshold of 3M was used to flatten the entire benchmark.

positioned within a single operation region and the CNOT will be
applied in a single timestep.

In this compiler, we assume that modules are blackboxes, so
all active qubits are flushed to global memory during calls. This
is mitigated by the fact that module calls are relatively infrequent
and only cause a fixed overhead of a single teleportation cycle. It
is also assumed that all ancilla qubits are generated by global and
teleported to the SIMD region where they are needed.

Teleporting data between SIMD regions also must be orches-
trated by the scheduler so the quantum teleportation (QT) sub-
operations shown in Fig. 2 can be scheduled. If a qubit physically
residing in one region is scheduled in a different region in the next
timestep, it is moved to that region. If no operation is scheduled on
that qubit and that region is active in the next timestep, it is moved
to a memory region. In later variations, a local memory is used to
store qubits without teleporting them to global memory if they will
be reused in the same region next.

Our execution models and evaluations assume that each gate
operation takes 1 timestep. We also account for communication la-
tencies. Some models of QC communication have a latency that
varies proportionally to distance traveled, but QT approaches are
distance insensitive. Rather, in QT, the bulk of the latency of each
communication operation is the sequence of four qubit manipula-
tion steps shown in Fig. 2. Their schedule can be integrated into
the computation schedule for the program. In order to simplify
timestep sequencing and accounting, each timestep is constrained
to the longest operational time, for example 10µs for a CNOT [33].

3.3 Benchmarks

Finally, we also describe the quantum benchmarks our work stud-
ies. Promising quantum algorithms now exist for a range of prob-
lems such as factorization, searching, order and period finding,
eigenvalue estimation, phase estimation and discrete logarithms
[32]. We study eight quantum benchmarks of significant scale.
Fully implemented in Scaffold, these are the largest and most so-
phisticated quantum computing programs produced to date. They
are described below:

• Grover’s Search (GS): Uses a quantum concept called ampli-
tude amplification to search a database of 2n elements [15]. The
benchmark is parameterized by n.

• Binary Welded Tree (BWT): Uses quantum random walk algo-
rithm to find a path between an entry and exit node of a binary
welded tree [7]. The benchmark is parameterized by height of
the tree (n) and a time parameter (s) within which to find the
solution.



• Ground State Estimation (GSE): Uses quantum phase esti-
mation algorithm to estimate the ground state energy of a
molecule [48]. The benchmark is parameterized by the size
of the molecule in terms of its molecular weight (M).

• Triangle Finding Problem (TFP): Finds a triangle within a
dense, undirected graph [28]. The benchmark is parameterized
by the number of nodes n in the graph.

• Boolean Formula (BF): Uses the quantum algorithm described
in [2], to compute a winning strategy for the game of Hex. The
benchmark is parameterized by size of the Hex board (x, y).

• Class Number (CN). A problem from computational algebraic
number theory, to compute the class group of a real quadratic
number field [16]. The benchmark is parameterized by p, the
number of digits after the radix point for floating point numbers
used in computation.

• Secure Hash Algorithm 1 (SHA-1): An implementation of the
reverse cryptographic hash function [34]. The message is de-
crypted by using the SHA-1 function as the oracle in a Grovers
search algorithm. The benchmark is parameterized by the size
of the message in bits (n).

• Shor’s Factoring Algorithm (Shors): Performs factorization us-
ing the Quantum Fourier Transform [41]. The benchmark is pa-
rameterized by n, the size in bits of the number to factor.

The benchmarks modularly describe the quantum circuit acting
on logical qubits. The parameters dictate the problem size of the
benchmarks. Our studied benchmarks ranged from 107 to 1012

gates with their various problem sizes.

4. Scheduling

Efficient scheduling of large-scale benchmarks requires a scalable
approach and a delicate balance between maximizing parallelism
and minimizing communication. We implement and study two dif-
ferent scheduling algorithms with different approaches to schedul-
ing for parallelism with communication awareness. We also use a
hierarchical, coarse-grained scheduler to limit final program size.

As discussed in Section 2.3, the primary means of communi-
cation within the MultiSIMD architecture is QT, which potentially
requires an additional overhead of 4 timesteps per operation. If each
operation timestep requires QT to receive its operands, then the full
runtime could be 5X longer than the computation critical path. By
adapting our schedulers to account for data movement costs and to
reduce unnecessary movements, our runtimes remain much closer
to the computation-only ideal.

Schedules are stored as a list of sequential timesteps. Each
timestep consists of an array of k + 1 SIMD regions. The 0th
region contains a list of the qubits that will be moved and their
sources and destinations timestep. The remaining SIMD regions
contain an unsorted list of operations to be performed in that region.
Operations consist of an operation type (X, Z, CNOT, etc.), a list
of qubit operands and a list of pointers to each operand’s next
operation.

4.1 Communication-Aware Scheduling with RCP

The Ready Critical Path (RCP) algorithm is a traditional parallel
computing algorithm described in [51, 52]. The primary distin-
guishing feature is that it maintains a ready list instead of a free
list for all tasks, only queuing the tasks that have all of their de-
pendencies met. This prevents tasks from waiting for data during
execution and reduces the overall run time. The ready list is a sim-
ple, unsorted list of operations.

Here RCP is extended to support the Multi-SIMD execution
model by providing a priority scheduling mechanism that evaluates

Function rcp(Module my module) is
int simd, ts = 0;
OPTYPE optype;
RCP schedule;
OP rcpq[] = my module.top();
while not rcpq.empty() do

int simds[] = 1..k; while not (simds.empty() or
rcpq.empty()) do

{simd, optype} =
getMaxWeightSimdOpType(rcpq, simds);
schedule[ts][simd] = extract optype(rcpq,
optype);
simds.delete(simds.find(simd));

end
updateRcpq(ts, rcpq); ts++;

end

end
Function getMaxWeightSimdOpType(OP rcpq, list of int
simds) : {int, OPTYPE} is

for each op in rcpq do
optype cnt[op.optype()]++
for each qubit in op.args() do

locs[op] —= 1 ¡¡ qubit.simd();
end
// foreach location

end

// foreach op for each simd in simds do
for each op in rcpq do

weight = w op * op.optype() + w dist *
(locs[op] & (1 ¡¡ simd)) - w slack * op.slack();
if weight ¿ max then

max = weight;
max simd = simd;
max optype = op.optype();

end

end

end

return {max simd, max optype};
end

Function updateRcpq(int ts, OP rcpq[], RCP schedule) is
for each op in schedule[ts] do

for each child in op.children() do
if child.ready() then

rcpq.push unique(child);
end

end
op.slack–;

end

end

Algorithm 1: The RCP algorithm. At each timestep, it computes
the relative weight for scheduling an operation type to each SIMD
region based on the prevelence of that operation, the distance of
each qubit from that SIMD region, and the graph distance to the
next use of that qubit. The highest weighted operation type is
then scheduled to its preferred SIMD region and the calculation
is repeated until no more operations can be scheduled.

the operation type, movement cost, and slack. The operation type is
used for grouping qubits to expose data parallelism. The movement
cost indicates whether a bit needs to move (0) or is already in the
present SIMD region (1); minimized movement is preferred. Slack
is the graph distance between uses of a particular qubit, so if many
operations need to occur before the next use that qubit does not
need to be scheduled as soon; this is negatively correlated with the



priority. The metrics can be multiplied by weights, w op, w dist,
and w slack respectively, though in this paper all weights are set
to 1.

As shown in Algorithm 1, at each timestep the priority for each
operation type in each SIMD region is calculated. A maximum pri-
ority is maintained along with the SIMD region and operation type.
As the priority for each configuration is calculated, this maximum
and its corresponding values are updated. When all configurations’
priority have been computed, the SIMD region and operation type
with the highest priority is scheduled, the ready list is updated, and
the SIMD region is removed from the list of available regions. This
priority computation is repeated until all operations in the ready
list are scheduled or all SIMD regions are occupied. The scheduler
then updates the ready list with the operations that will be ready af-
ter the current timestep completes. The scheduler completes once
the ready queue is empty.

4.2 Communication-Aware Scheduling with LPFS

Many of our benchmarks are highly serial, with an average crit-
ical path speedup of around 1.5x (Fig. 6). This serialization pre-
vents the data dependencies from being accelerated significantly
through parallelization, but it does provide ample opportunity for
reducing expensive communication by optimizing the location of
qubits throughout the execution. To this end, the Longest Path First
Scheduling (LPFS) algorithm was developed (see Algorithm 2).

LPFS assigns l SIMD regions, where l < k, to be dedicated
to computing l longest paths. These longest paths are statically
assigned to those regions and so any qubits in their operational
paths will have relatively few movements. This is especially useful
when arbitrary rotations are decomposed, where a single qubit may
have up to several thousand operations performed sequentially with
no movement of the target qubit.

The longest path algorithm initially finds the critical path in the
program DAG generated by LLVM. It starts at the top of the DAG
and sets a tag at each node with the furthest distance from the top.
After finding the largest depth at the bottom, the path is traced back
and recorded. Multiple longest paths can be found sequentially, and
at arbitrary positions in the execution based on the current free list.
By being able to find multiple longest paths, further movement can
potentially be reduced. All longest paths are returned as an ordered
list of the operations to be performed in that path. These longest
paths are stored in an array of size l for each statically scheduled
region.

All operations that are not on any of the active longest paths
are added to a free list. These are scheduled in any of the SIMD
regions in the range [l+1, k] based on their order in the free list.
This order is not prioritized, but is instead populated based on the
order of operations as they are scheduled, and their descendants.

Two additional options can be used to control LPFS, SIMD
and Refill. SIMD scheduling allows any SIMD region dedicated
to a longest path execution to execute other free list operations
of the same type; this setting also allows any timesteps where
that SIMD region would have to stall for dependencies to execute
arbitrary operations from the free list as well, thus providing SIMD
parallelism. The Refill option is for the case when multiple longest
paths are used and they are of unequal lengths. Once the shorter
path completes, the next longest un-executed path will be found
and scheduled in the region that completed. Our experiments were
run with l = 1, and both SIMD and Refill enabled.

4.3 Hierarchical Scheduling

To allow benchmarks to scale beyond tractable sizes, we employ a
coarse-grained schedule which stitches together optimized sched-
ules for leaf modules scheduled by RCP and LPFS in our call tree.
The scheduler uses a simple, list-based approach to schedule leaf

Function lpfs(DAG G, list of int simds, int l) : Schedule S is
for i in 0 to l-1 do

// Get longest paths for allocated SIMD regions
simd[i] = getNextLongestPath(G.top);

end
ready = G.top();
while (! ready.empty() && ! simd.forall().empty() ) do

// Schedule each time
for i in 0 to l-1 do

// Schedule allocated SIMD regions
if (refill && simd[i].empty()) then

// Reuse SIMD region if it is out of
operations
simd[i] = getNextLongestPath(ready);

end

op = simd[i].pop();
S[time][i].push(op);
if (opportunistic simd) then

// Schedule ready operations of the same
type
S[time][i].push(ready.getAllOps(op.op type));

end

end

for i in l to k-1 do
// Schedule unallocated SIMD regions
optype = ready.top().op type;
S[time][i].push(ready.getAllOps(op.op type));

end

for op in S[time].forall().getAllOps() do
// Update ready list
ready.push(op.getReadyChildren());

end
ready.uniq();
time++;

end
return S;

end

Algorithm 2: The Longest Path First Scheduling algorithm. First,
the longest paths for l allocated SIMD regions. At each timestep
first schedule the allocated regions, then any unallocated regions
are assigned from the free list. If the SIMD option is set, add data
parallel operations to all regions. If refill is set, anytime a region
completes its path find a new one from the current free list.

modules and operations in non-leaf modules with the goals of im-
proving parallelism and/or reducing communication overheads. Al-
gorithm 3 illustrates the overall approach.

Given a set of pre-scheduled leaf nodes, the coarse-grained
scheduler completes the program scheduling by using a list sched-
uler to compose together a full schedule. Operations are assigned
priorities based on criticality and scheduled in priority order. The
quantum gate operations in non-leaf modules are scheduled along
with invocations to other modules. The invoked modules have
been previously scheduled by one of the fine-grained schedulers
discussed next and are now treated as blackbox functions. Once
the schedule for a module is determined, it is characterized as a
blackbox with a length dimension equal to schedule length, and a
width dimension equal to highest degree of parallelism found in
the schedule.

To allow the coarse-grained scheduler to effectively parallelize
the invoked blackboxes within the width (k) constraint, we con-
sider flexible rectangular dimensions for each blackbox. During
fine-grained scheduling of each module, multiple schedules are de-
termined to find schedule lengths with widths between 1 to k. The



for each non-flat module do
//Track schedule in terms of blackbox dimensions
totalL = 0; totalW = 0; // total length and width
currL = 0; currW = 0; //current length and width
for each operation Fi in a priority-ordered set of operations

{F : Priority(Fi) ≥ Priority(Fj ) if (i < j)} do
Check predecessors to find the earliest timestep te in which
Fi can be scheduled
Get width W and length L for Fi

if (te ≤ totalL+ currL) then
// dependencies show that Fi can be parallelized with
previous schedule
if (currW +W ≤ K) then

//parallelize the operation Fi

timestep(Fi) = max(totalL+1, te)
currW = currW+W
currL = max(currL, timestep(Fi)+L)
Fp = {Fp,Fi} //Add to set of parallel functions
in current schedule

else
//k-constraint would be violated if parallelized
for set of functions {Fp,Fi} do

Try all combinations of possible widths, and
compute length.

end

if one or more combinations found with

combined width ≤ K then
Choose combination with smallest length.
currW = Width of combination
currL = Length of combination
Fp = {Fp,Fi} //Add to set of parallel
functions in current schedule

else
//serialize Fi due to k-constraint
totalW = max(totalW , currW )
totalL = totalL + currL
timestep(Fi) = totalL+1
currW = W ; currL = L
Fp = {Fi} //set of parallel functions in
current schedule

end

end

else
// serialize Fi due to data dependency
totalW = max(totalW , currW )
totalL = totalL + currL
timestep(Fi) = totalL+1
currW = W ; currL = L
Fp = {Fi} //set of parallel functions in current
schedule

end

end

//merge current box with total box dimensions
totalW = max(totalW , currW )
totalL = totalL + currL
Store totalW and totalL in data structure

end

Algorithm 3: Hierarchical scheduling algorithm for k SIMD
regions. Operations are scheduled in priority order similar to
list scheduling. Flexible blackbox dimensions are considered for
parallelizable modules to find the best combination for them.

coarse-grained scheduler is presented these blackboxes with multi-
ple dimensions. When parallelizable modules are encountered, the
combination of blackboxes that yields the minimal length subject to
the width constraint is chosen. Algorithm 3 shows the pseudo-code
for coarse-grained scheduling with flexible blackbox dimensions.

In a k-resource constrained schedule, the width for any invoked
module is at most k. Any operations (other than invoked modules)
encountered by the coarse-grained scheduler have an operation
execution cost of 1 and a movement cost of 4.

4.4 Scheduling Communication using Local Memory

To reduce communication overheads, we study further optimiza-
tions using local memories attached to the SIMD regions. Once
computations are mapped to SIMD regions and the necessary com-
munication schedules are determined, some qubits can be moved
to local memories using a lower overhead ballistic movement in-
stead of teleportation to the global memory. Distinguishing a move
as a local move or teleportation primarily depends on where its
next computation is scheduled, but local memory regions may also
be constrained by capacity. With prior information about the next
computation and available space in the local memory, a move can
be directed to a local or global memory by the scheduler.

When a qubit in a SIMD region (source) must be stored for a few
cycles before being used in a different SIMD region (destination),
there are multiple options for storage: the global memory, the
source local memory, the destination local memory, or if idle, either
of the two SIMD regions. With limited local memory capacity,
holding qubits for other regions or holding additional qubits before
they are required can both reduce the space available for qubits
being currently operated upon. For simplicity, unless the source
SIMD region is idle, we move such qubits to the global memory
for storage.

After a computation or communication cycle, qubits which are
not scheduled for the next operation are moved to global or scratch-
pad memory, while those which undergo further operations in the
same region will stay in place. Physically, any qubits left behind
from the teleportation of state can be reinitialized and reused as
ancilla or EPR pairs.

The local moves are derived from the RCP or LPFS schedules
on leaf modules. The schedules are updated to reflect the single
cycle local move if its next operation location is in the same region
and there is space in the local memory, otherwise the original
teleportation movement is kept. If any SIMD regions in a timestep
have a global move, the full four cycle move time is retained to
avoid disrupting the schedule.

5. Results

We present three sets of results. First, we evaluate the amount of
parallelism our schedulers can expose when communication is as-
sumed to be zero-cost. Second, we demonstrate the benefits of
communication-aware schedulers when accounting for communi-
cation costs to global memory. Finally, we evaluate the benefits of
local scratchpad memories associated with each SIMD region.

In each set of results we look at all eight benchmarks under
the LPFS and RCP scheduling algorithms. Both algorithms are run
with k = 2 and 4 (the number of regions). For simplicity, we assume
infinite d (number of qubits in a region). LPFS also uses Refill and
SIMD options. Refill lets a region with a longest path schedule
a new path if the current one completes, and SIMD allows non-
path operations to be SIMD scheduled in a longest path region.
All experiments were run at the logical level, omitting physical
qubit sub-operations and error-correction, as these are constant
multipliers to the overall runtimes within the range of runtimes
involved.

5.1 Characterizing Logical Parallelism

In our first set of results, looking solely at the parallelism in the
benchmarks, we are able to compare the speedups provided by a
Multi-SIMD architecture against the theoretical maximum based
on the estimated critical path. As seen in Fig. 6, all of the bench-
marks except Shor’s were able to achieve near-theoretical speedup
on the Multi-SIMD architecture, at either k = 2 or 4. This is as-
sisted by using d = ∞, which allows for clustering as many qubits
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Figure 6: The speedup over sequential execution of each bench-
mark with each scheduling algorithm, compared to the estimated
critical path. Almost all benchmarks, except Shor’s, achieve near-
complete speedup by k = 4.
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Figure 7: Speedups using a communication-aware scheduler over a
sequential, naive movement model. All benchmarks show improve-
ment over Fig. 6, with GSE showing the largest gains. Notice the
renormalization of the y-axis in comparison to Fig. 6, as a result of
introducing the communication costs.

as possible into SIMD regions. In Section 5.4 we explain the dif-
ference in trend for Shor’s.

RCP speedups are lower than or equal to LPFS in every bench-
mark except TFP, in some cases tying at k = 4 with LPFS at k = 2.
This is due to RCP being better suited to coarse-grained schedul-
ing in classical functions, looking predominantly at data dependen-
cies, then operation- and data-level parallelism, and finally slack
based on graph distance. LPFS on the other hand focuses much
more heavily on critical path prioritization.

TFP under RCP behaved interestingly, where all of the leaves
scheduled by RCP had longer runtimes than those scheduled with
LPFS. However, under the coarse-grained hierarchical scheduler
the longer schedules were narrower, allowing for the blackboxes
to be scheduled in parallel instead of in serial. This higher level
parallelism allows for a shorter overall schedule.

5.2 Runtime Speedup with Data Movement Analysis

Fig. 7 shows all scheduling algorithm speedups over a naive move-
ment model where data is moved between SIMD regions and global
memory every timestep, effectively increasing the overall runtime
by 5X. All benchmarks show some speedup over communication-
unaware runtime models due to reduced movement. An average in-
crease in speedup of 46% is seen across all benchmarks. The largest
gain is seen in GSE (308%). The critical path was not used for a the-
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Figure 8: Speedups due to the addition of local memory to operat-
ing regions, computed over a sequential, naive movement model.
Results are shown for a Multi-SIMD(4,∞) architecture.

oretical bound in these or the next results because we did not have
a viable critical path model for incorporating movement.

Some benchmarks, such as BF, CN, Grovers, SHA-1 and Shor’s,
have a large number of highly dependent, serial operations. BF, CN
and SHA-1 are composed of several CTQG modules, which pro-
duces unoptimized code that is highly locally serialized. This re-
sults in benchmarks that have a low degree of parallelism and can-
not be well optimized. The interactions between data dependencies
also result in many small (1-2 qubit) moves between global mem-
ory and various SIMD regions that cannot be removed to improve
performance.

GSE shows the largest gains due to its distinctive structure. The
two key qubit registers containing the primary active qubits are
rarely moved out of an SIMD region once they are in place and
typically have long sequences of operations on the same qubits.
This results in very few moves either between SIMD regions or
memory.

5.3 Runtime Speedup with Local Memories

Fig. 8 illustrates the performance benefits of adding local mem-
ory to SIMD regions. To study the effectiveness of a small amount
of local memory in each SIMD region, we experiment with vary-
ing memory sizes. For each benchmark, we limit the capacity of
local memory to one-half and one-quarter of the minimum qubits
Q required by the benchmark. Q is computed by scheduling the
benchmark run sequentially, with maximal possible reuse of ancilla
qubits across functions. Table 1 shows the value of Q determined
for each benchmark. A parallel schedule of the benchmark may re-
quire more than Q qubits, thus the global memory may be much
larger than the size of Q. The maximum benefit of local memory is
demonstrated with an infinite capacity memory region.

Algorithms that are effective at reducing communication over-
heads do so by scheduling maximally interacting qubits in a single
region. Adding local memory to SIMD regions raises the effective-
ness of these algorithms since it allows the frequently interacting
qubits to stay close. Thus, LPFS naturally sees higher benefits than
RCP with local memory for most benchmarks.

These data movement based speedups show that, at least in
some cases, it is possible to minimize the communications within
the system to achieve a reasonable speedup (up to 9.82X in the
case of SHA-1) in a practical system with physical limits on EPR
distribution for teleportation and limited parallelism.



Benchmark Q

BF x=2, y=2 1895
BWT n=300, s=3000 2719
CN p=6 60126
Grovers n=40 120
GSE M=10 13
SHA-1 n=448 472746
Shors n=512 5634
TFP n=5 176

Table 1: The minimum number of qubits Q required by the bench-
marks, computed with sequential execution and maximum reuse of
ancilla qubits.

Rotation Operation Primitive Operations Approximating Rotations

Rz(q1, θ1) T (q1) – S†(q1) – H(q1) – Z(q1) – ...
Rz(q2, θ2) H(q2) – Y (q2) – X(q2) – H(q2) – ...
... ...

Rz(qn, θn) S(qn) – X(qn) – T (qn) – T †(qn) – ...

Table 2: Parallel rotations cannot be executed simultaneously on a
hardware with primitive operations, unless there are enough SIMD
regions to accommodate them.

5.4 Sensitivity to d and k parameters:

The preceding results show that in most quantum benchmarks,
data-level parallelism (d) achieved through microwave signaling is
able to capture most of the parallelism, even with modest numbers
of distinct SIMD regions. In fact, even though we practically as-
sumed infinite amount of data-parallelism available in our SIMD
regions, our other experiments have shown that decreasing this to
below 32 qubits only causes marginal changes. This is important,
since we have solely focused on the logical level, but we can see
that even with added qubits for error correction, the architecture is
able to cope and perform well.

Shor’s showed a greater sensitivity to the number of SIMD re-
gions available (k). The reason for this can be traced to the large
number of rotation operations that exists in this code. These rota-
tion operations can theoretically execute at the same time because
they are on distinct qubits, except for the fact that practically they
need to be decomposed into primitive, standard operations (as de-
scribed in 3.1). This can prohibit the parallelization of operations
unless more SIMD regions are created to accommodate them, as il-
lustrated in Table. 2. Since many of these rotations were not inlined
into the code, to keep the size manageable, they remain as black-
boxes in the course-grained schedule. That causes the scheduler to
allocate a separate region to each, effectively increasing the need
for these regions. In Fig. 9, we show how the speedups vary with k
for this benchmark.

6. Related and Future Work

This paper builds on several important previous studies relating
to SIMD parallelism [5, 24, 39], ancilla preparation [19, 23], and
quantum architecture [5, 30, 47]. Our work is the first to use a com-
plete compiler infrastructure to discover this parallelism, allowing
us to evaluate a non-trivial set of benchmarks (previous work fo-
cused almost exclusively on Shor’s and Grover’s, or other small
quantum circuits). It is also the first to incorporate data movement
analysis and optimizations within the compiler framework estab-
lished.

0"

2"

4"

6"

8"

10"

12"

8" 16" 32" 128" 8" 16" 32" 128"

rcp" lpfs"

S
p
e
e
d
u
p
&W

it
h
&L
o
ca
l&
M
e
m
o
ry
&O
v
e
r&

N
a
iv
e
&M

o
v
e
m
e
n
t&
S
ch
e
d
u
li
n
g
&

Varying&K&Values&

Shors&n=512&

Figure 9: Shor’s speedups as scheduled with a communication-
aware scheduler on a Multi-SIMD architecture with local memo-
ries. High numbers of rotations cause long serial threads of opera-
tions to each execute on a separate SIMD region, thus getting better
gains with higher k.

Some prior work has explored optimization of execution laten-
cies with SIMD architectures, but in a more limited context. Chi
et.al. [5] proposed a SIMD architecture based on the technology
of electron spins on liquid helium. For a quantum carry-lookahead
adder circuit, they evaluated pipelining of ancilla preparation for
CNOT and Toffoli gates to reduce latency, and optimization of
width of SIMD regions to reduce area requirements. Our work
builds on this model, with the implementation of a complete com-
piler and the study of a much larger and more diverse benchmark
suite.

Schuchman et.al. [39] identify a high-level parallelism per-
taining to specific quantum tasks of uncomputation (analogous to
garbage collection for qubits) and propose a multi-core architecture
to minimize latency and expensive inter-core communication dur-
ing their execution. This kind of parallelism fits well into our Multi-
SIMD model; it can be easily extended to support the proposed
multiple cores. Some degree of uncomputation already exists in the
compiled code of our benchmarks and is naturally parallelized by
our model, and more can be added in the future to reclaim unused
qubits.

The SIMD regions in our architecture are well-suited for a com-
monly used class of error-correction codes known as concatenated
codes [1, 42]. A new class of ensemble codes, known as surface
codes [17], have the potential of lowering ECC overhead for very
large problems. Future research will explore whether surface code
operations are amenable to SIMD parallelism.

7. Conclusion

We have proposed a Multi-SIMD architectural target for this com-
piler that incorporates practical physical constraints in quantum
computing technology. To fully exploit its computational power,
our work has also developed a scalable compiler that uses deep
analysis to create logical schedules that enable parallelism and min-
imize communication. Largely as a result of SIMD parallelism, ef-
ficient communication and fine-grained data locality, we achieve
speedups over our sequential baseline of 2.3X to 9.8X. Since quan-
tum error correction can have overhead exponential in program ex-
ecution time [1, 35, 42], these speedups can be even more signifi-
cant than they appear, because they offer important leverage in al-
lowing complex QC programs to complete with manageable levels
of QECC. The source for ScaffCC and benchmarks is available on
GitHub at https://github.com/ajavadia/ScaffCC.git.
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