
Compiler Optimization of Embedded Applications for an
Adaptive SoC Architecture

∗

Charles R. Hardnett
Spelman College

Computer Science
Department

Atlanta, GA 30314, USA

hardnett@spelman.edu

Krishna V. Palem
Center for Research on
Embedded Systems and

Technology
Georgia Institute of

Technology
Atlanta, GA 30308, USA

palem@ece.gatech.edu

Yogesh Chobe
Center for Research on
Embedded Systems and

Technology
Georgia Institute of

Technology
Atlanta, GA 30308, USA

ylchobe@ece.gatech.edu

ABSTRACT

Adaptive Explicitly Parallel Instruction Computing (AEPIC) is a
stylized form of a reconfigurable system-on-a-chip that is designed
to enable compiler control of reconfigurable resources. In this pa-
per, and for the first time, we validate the viability of automating
two key optimizations proposed in the AEPIC compilation frame-
work: configuration allocation and configuration scheduling. The
AEPIC architecture is comprised of an Explicitly Parallel Instruc-
tion Computing (EPIC) core coupled with an adaptive fabric and
architectural features to support dynamic management of the fab-
ric. We show that this approach to compiler-centric hardware cus-
tomization, originally proposed by Palem, Talla, Devaney and Wong
([26],[27]), yields speedups with factors from 150% to over 600%
for embedded applications, when compared with general purpose
and digital signal processor solutions. We also provide a normal-
ized cost analysis for our performance gains, where the normaliza-
tion is based on the area of silicon required. In addition, we pro-
vide an analysis of the AEPIC architectural space, where we iden-
tify the “sweet-spot” of performance on the AEPIC architecture
by examining the performance across benchmarks and computa-
tional resource configurations. Finally, we have a preliminary result
for how our compiler-based approach impacts productivity metrics
in the development of hardware/software partitioned custom solu-
tions. Our implementation and validation platform is based on the
well-known TRIMARAN optimizing compiler infrastructure [13].

Categories and Subject Descriptors: D.3.4 [Processors]: Com-
pilers;B.7.1[Types and Designs Styles]:Algorithms implemented in
hardware,Gate arrays

General Terms: Algorithms, Performance, Design, Experimenta-
tion

9∗This research was supported in part by a grant from DARPA
under MCHIP PCA contract #F33615-03-C-4105

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

Keywords: Compilers, Reconfigurable Computing, System on Chip,
Resource Allocation, Resource Scheduling

1. INTRODUCTION
The stringent performance requirements of embedded applica-

tions along the dimensions of power and execution time have tra-
ditionally been met via the development of application specific in-
tegrated circuits (ASICs). Nevertheless, as chip design moves into
the deep-sub-micron region, fundamental changes in the economics
and design cycles of chip design and manufacturing have rendered
ASICs an expensive and time consuming option. Non-recurring

engineering (NRE) costs and time-to-market have emerged as the
twin hurdles on the path to the proliferation of ASIC-based cus-
tomization in embedded systems solutions. The innovation of pro-
gramming languages, compilers, and instruction set architectures
(ISA) over the past four decades has produced great strides in in-
creasing the productivity associated with application development
in the software. Similar productivity gains must be made in the de-
velopment of customized hardware if the growth and productivity
benefits of embedded systems are to be realized.

Domain-specific ISA definitions such as those required for dig-
ital signal processing are aimed at providing many of the benefits
of hardware customization, while retaining the productivity advan-
tages of the software component of the application development
process. More recently, vendors such as Tensilica [38] have de-
veloped design methodologies for the user definition of custom in-
structions accompanied by streamlined and automated design flows
for generation of the software tool chain and ASIC implementation.
This kind of design time customization requires chip fabrication
for each customization cycle that in turn governs both the time-to-
market as well as a significant component of the NRE costs. In ad-
dition, domain-specific ISAs must be accompanied by compilation
and optimization techniques that effectively use these user-defined
custom instructions.

A significant step towards achieving these goals was through
the definition of the Adaptive Explicitly Parallel Instruction Com-

puting (EPIC) or AEPIC System-on-Chip (SoC) architecture [26].
Adaptive EPIC or AEPIC is a parametric architecture introduced by
Palem, Talla and Devaney [26] to help provide a reconfigurable or
adaptive SoC architecture for custom embedded computing, while
providing extremely fast embedded application development and
compilation times: on the order of minutes and comparable to ap-
plication development times in the context of a standard (non-adap-
tive) ISA. Thus, the goal was to provide support for customization

312

while dramatically lowering the non-recurring engineering costs

and time-to-market associated with COTS reconfigurable SoC archi-
tectures providing a judicious amount of architectural and micro-
architectural support. Specifically, AEPIC generalized the concept
of a traditional ISA that mediates between a programming model
and its compiler, and the underlying micro-architecture circuitry,
by providing an abstract interface to the reconfigurable component
by treating it as an “elastic” extension to the ISA. Subsequently,
Palem, Talla and Wong [27] defined a compilation “flow” and spe-
cific optimizations for compiling to the reconfigurable components.
The value of all of these concepts were established by Talla in his
dissertation [36] wherein the compiler optimizations were applied
to canonical embedded applications by hand.

In this paper, we present our approach to realizing this goal based
on the work of Palem, Talla and Devaney [26]. The contributions
of this paper are:

1. We revise, implement, and validate the algorithms and opti-
mizations for configuration allocation and scheduling of cus-
tom instructions on our AEPIC reconfigurable SoC. This is
based on work by Palem, Talla and Wong [27].

2. We evaluate the value of applying these algorithms to a range
of embedded system benchmarks and demonstrate signifi-
cant performance gains Specifically, the automation in this
paper yields speedups:

(a) Ranging from 50% to as high as 600% over a conven-
tional EPIC processor with 6 functional units, realized
using the HPL-PD framework [19].

(b) Ranging from 25% to over 500% in the context of a
TI TMS320C6713-300 DSP processor.

3. We also show that when these gains are normalized by the
area of the respective architectural implementations, the gains
in running time or speedups are evident:

(a) Ranging from 10% to as high as 500% over a conven-
tional EPIC processor with 6 functional units, realized
using the HPL-PD framework [19].

(b) Ranging from 5% to over 250% in the context of a TI
TMS320C6713-300 DSP processor.

4. By exploring the architecture space characterized by the ar-
eas used by the EPIC component and the AEPIC co-processor
of AEPIC, we determine that the gains stated above can be
sustained and grow with increasing area investments till a
point of diminishing returns is reached. Specifically, we show
that this occurs when the EPIC component in the AEPIC
processor or SoC is 66% of that used to realize a stand-
alone EPIC processor, whereas the adaptive component is no
greater than 75% of the Xilinx Virtex II FPGA.

1.1 Roadmap for the rest of the
paper

In the next section (Section 2) we present a brief survey of re-
lated work in terms of configurable architectures and the tools for
utilizing these architectures. In Section 3 we describe our compila-
tion flow and the relevant algorithms for managing and effectively
leveraging the AEPIC architecture. The three major steps (i) Parti-
tioning (Section 3.1) (ii) Configuration selection (Section 3.2) and
(iii) Configuration allocation and scheduling (Section 3.3) are de-
scribed as well. In Section 4 where we present the speedup obtained
from AEPIC architectures through our compile-time optimization

Figure 1: The AEPIC architecture is shown. We have outlined

the components of the AEPIC architecture that are part of an

EPIC architecture as specified by HPL-PD, and the compo-

nents contributed by AEPIC.

techniques, we also study area-performance trade offs in AEPIC
architectures. Finally in Section 5, we present avenues for future
research.

2. RELATED WORK
In this section we describe the work that has influenced the theme

of our work in the way we formulate solutions to the problems we
will present. We compose a context for our work by presenting
the origins of AEPIC, the basis of our allocation and scheduling
algorithms, and similar tools for adaptive architectures.

2.1 Origins of AEPIC
As NRE costs and time-to-market considerations have become

dominant in SoC designs, commercial platforms have emerged into
two paths to support custom hardware coupled with the host mi-
croprocessor. The first was a reconfigurable fabric (see for exam-
ple [23][29][12][34]), and the second was masking programmable
logic blocks in platforms now referred to as structured ASICs (see
for example [22][11]).

AEPIC is an architectural model that extends the Explicitly Par-

allel Instruction Computing Architectures (EPIC) [30] design phi-
losophy, wherein instruction level parallelism (ILP) is explicitly
communicated by the compiler to the hardware. AEPIC [26] [36]
extends this model into reconfigurable SoCs, and is shown in Fig-
ure 1. Here AEPIC has support for a reconfigurable fabric, which
can be dynamically configured as a collection of Adaptable Func-
tional Units (AFUs). The application software is viewed as having
program regions targeted for customization, and these regions are
then executed on AFUs. The AFUs are configured by a stream of
bits called a configuration. AEPIC specific instructions are exe-
cuted on the EPIC processor to send the configuration stream to the
adaptive fabric. Similar instructions are executed to manage con-
figurations within the configuration memory hierarchy composed
of configuration registers, configuration cache, and the C1 cache.
These instructions provide the ability to load and unload configu-
ration data to and from specified levels of the memory hierarchy.
The configuration registers are used as handles for configurations

313

within the configuration memory hierarchy. These handles are typ-
ically parameters to control instructions to begin execution, set up
input/output between the EPIC processor and adaptive fabric, and
to query status information about the custom instruction execution.
The cache hierarchy helps to minimize the long latency that results
from the loading/unloading configurations. In the next subsection,
we present our basis for the compiler algorithms to support cus-
tomization.

2.2 Architecture Allocation and Scheduling
Allocation and Scheduling have been at the forefront of com-

piler technology over the past several decades. Due to the preva-
lence of register allocation and instruction scheduling strategies and
the massive engineering tasks for developing compilers, our algo-
rithms for customization make use of technology currently found
in modern optimizing compilers [9][15]. Our allocation strategy is
based on concepts of register allocation and graph coloring [8] [7].
We treat the reconfigurable fabric as a register file via the config-
uration registers, where configurations are allocated to K Adaptive
Elements (AEs) to support the execution of the custom instruction
on an AFU, where an AFU is a collection of cooperating AEs. The
allocation of K AE resources is a constrast to the 1 data register re-
source required to store a data element. This makes the allocation
problem a graph multi-coloring problem which is a more general
problem than a graph coloring problem. We provide details for this
algorithm in Section 3. Our custom instruction scheduling strategy
is based on the scheduling problem and conjectures presented by
Talla, et al. [28]. The scheduler is based on greedy-list schedul-
ing [14] with ranks [25].

2.3 Tools for Customization and Adaptive
Architectures

We use custom instructions to extend the base ISA of an embed-
ded microprocessor under a variety of physical and performance
constraints. Companies such as Tensilica [38] and ARC [2] pi-
oneered commercial models of an approach for creating custom
implementations of microprocessors with an extended ISA. In ad-
dition, vendors started producing platforms with microprocessors
coupled with reconfigurable fabrics to host custom instructions/co-
processors. All of these efforts rely on sophisticated program anal-
ysis or user definition to identify custom instructions. See [40][10]
for a good overview of current and past research in custom in-
struction discovery. Further, Clark et.al [10][21] describe a com-
piler infrastructure for automating both the discovery of custom
instructions and its use within an optimizing compilation frame-
work from standard high-level languages. The AEPIC compiler
framework described here complements this body of work by au-
tomating the optimization phases of the compiler devoted to the
allocation and scheduling of these custom instructions, and to the
authors’ knowledge this has not been investigated where the allo-
cation and scheduling are automated for an AEPIC class proces-
sor with dyanamic reconfiguration ability, and region-sized custom
instructions. Where a region is considered a loop-body, function-
body, etc.

Other related tools include PICOExpress and PICO Flex from
the Program-In-Chip-Out (PICO) project at HP Laboratories who
pioneered an approach that leverages well known program transfor-
mations such as software pipelining to synthesize non-programma-
ble hardware accelerators and a custom companion Very Long In-
struction Word (VLIW) processor to implement loop nests found in
ANSI C programs [31]. More recent work on C-based design flows
have evolved under the umbrella of algorithm-based synthesis rec-
ognizing the differences from hardware based behavioral synthesis.

Figure 2: The AEPIC compiler flow where the boxes marked

with a
√

mark are the topic of this paper and are automated.

The flow on the left-hand side of the figure is a traditional EPIC

compiler-flow and is automated. The code partitioning and

other modules of the right-hand side are performed by-hand.

Significant examples include DEFACTO [33] [32], SilverC [37],
SpecC [35], ImpulseC [1], and HandelC [6]). Compilation of ap-
plications or kernels described in these languages are focused on
algorithm based synthesis to HDL implementations that can sub-
sequently be processed by standard EDA tool chains typically tar-
geting FPGA devices. These technologies also complement our
AEPIC compilation flow by providing algorithms for the genera-
tion of custom instruction implementations that are allocated and
scheduled by subsequent phases of the AEPIC compiler. These
compilers enable compilation to an FPGA, but are not designed to
compile to AEPIC and take advantage of the architectural support
AEPIC gives to the compiler. In addition, these tools rely on syn-
thesis tools during the compilation flow, which ultimately reduces
the productivity of these approaches.

3. COMPILER OPTIMIZATIONS FOR

CUSTOMIZATION
Our compiler flow is shown in Figure 2. The input program

or application is processed by a standard front-end, followed by
a partitioning phase. The partitioning module examines the Pro-
gram Dependence Graph (PDG) of the application for frequently
executed data parallel regions. We felt that data-parallel regions
of the application provided the best opportunity for performance
gains and make better use of the reconfigurable resources. These
regions are used to create a set of candidate custom instruction re-
gions. Conceptually, the compilation flow splits the program into
two portions: the left side (Figure 2) to handle traditional threaded
code and the right side to handle custom instruction regions. Our
work reported in this paper is on the right side, where it starts with
the configuration selection module. The configuration selection
module (Figure 2) selects the “best” machine configuration for a
given custom instruction candidate region that we perform by hand.
The choice is based on several criteria including latency, area, and

314

power. The PDG is then updated to include custom instruction op-
codes to replace the custom instruction regions. The main con-
tributions of this paper start at this point, where the configuration

allocation step examines the PDG (annotated with custom instruc-
tions) and generates a allocation/de-allocation mapping of custom
configurations to the adaptive resources. The custom instruction

scheduling step is used to determine a feasible schedule of por-
tions of the PDG that correspond to a the given Data Dependence
Graph (DDG). The schedule associates DDG nodes with AFUs at
a given time t.

3.1 Partitioning
Partitioning; done by hand, is illustrated in Figure 3, for the FFT

benchmark. In Figure 3, these custom instruction candidates are
parts of the main loops in the implementation to perform the FFT.
Our hand-partitioning requires application profiling to generate an
annotated dynamic call-graph to indicate the “hot-spots” of the ap-
plication. The “hot-spots” are fine-grained regions such as loop
bodies or coarse-grained regions such as entire functions. The “hot-
spots” are then analyzed for the following favorable characteristics:

1. The region must be an entire loop region or body of a loop
region,

2. The region must have data parallelism (no loop-carried de-
pendencies), and

3. The region must not contain system calls or application sub-
routine calls.

The partitioning phase involves applying well-known loop and
data transformations to remove loop-carried dependencies [3]. For
this paper, we have applied the transformations by hand when need-
ed. Transformations such as loop fusion, (look at textbook) carried
dependencies enables us to extract These loop transformations have
been used on parallel computing systems to enable more loop-level
parallelism and increase data locality. In addition, subroutine in-
lining is used to remove subroutine calls from the bodies of the
region[39].

3.2 Configuration Selection
Configuration selection constructs machine configurations from

carefully selected primitives. The machine configurations are the
AFUs that support the execution of custom instructions identified
in partitioning. The configurations are built from primitive opera-
tions such as adds, multiplies, and shifts. Each operation is charac-
terized by its area, power, frequency, and latency. These elements
are composed in different ways to produce configurations with the
same functionality but different area, power, frequency, and latency
features. All of these configurations are organized in a configura-
tion library(see Figures 2 and 4). Therefore, each custom instruc-
tion is supported by multiple configurations and the selection of a
configuration is the first step in meeting the performance require-
ments of the application.

3.3 Configuration Allocation
This subsection discusses Configuration Allocation, where the

PDG annotated with custom instruction regions is given as input.
The problem is to find a allocation strategy that enables custom
instructions to effectively share the adaptable resources during the
execution of the program. We have formulated the solution to this
problem within the context of register allocation. This allows us to
reuse the traditional compiler modules for supporting register allo-
cation including live-range analysis, pruning, and live-range split-
ting.

Table 1 summarizes the relationship between the allocation prob-
lem we solve for the adaptive fabric and the traditional register al-
location problem. In our scenario, we generate a hypergraph that
represents the allocation of custom instructions to resources of the
adaptive array. Our allocation algorithm views the adaptive com-
putational resources as a single-dimensional array. For this reason,
our allocation algorithm determines whether resources are avail-
able to be allocated instead of concerning itself with the layout and
shape of the allocation. In doing this, the allocation algorithm as-
sumes the fabric can be partially reconfigured during the execu-
tion of the application. Therefore, custom instructions with over-
lapping live-ranges should be allocated to non-intersecting sets of
AEs. Custom instructions with non-overlapping live-ranges may
share resources. We form an interference graph to identify these
live-range characteristics just as with register allocation algorithms.

A formal description of the configuration allocation problem as
a graph multi-coloring problem is:

Let G(V,E,ω) be an undirected graph where ω is a weight func-
tion, ω : v → Z where v ∈V .

Let C : v→ S be a function on the vertex set such that S ⊂ 1, . . . ,K.

Therefore, C is a valid multi-coloring of the graph if |C(v) |= ω(v)
and ∀e ∈ E, where e = (u,v) and C(u)∩C(v) = /0.

Algorithm 1 Graph Multi-Coloring Configuration Allocator
(GMCA)

Input: PDG :Program Dependence Graph

Input: TR :Total allocatable resources

Input: HEU :Heuristic for ordering allocations

Output: IG :Interference Graph(G)

Output: AHGRAPH :Allocation Hypergaph

IG ← BuildInterference(PDG) // Live-Range Interferences
ComputePriorities(IG, HEU) // Heuristic ordering
while IG not empty do

SaveUnconstrainedOps(PDG, IG)
v ← HighestPriorityCustomInstruction(IG)
if IsColorable(v) then

Color(v, IG, AHGRAPH, PDG)
else

if SelectAlternative(cop) then

continue
else

splitCost ← SplitCost(ig, v)
spillCost ← SpillCost(ig, v)
if splitCost ≤ spillCost then

Split(ig,v)
else

Unallocate(v)
RemoveCop(v)

end if

end if

end if

end while

ColorUnconstrained(PDG, IG, AHGRAPH)

Our configuration allocation algorithm is presented as Algorithm 1.
The algorithm builds live-range interferences [7] between pairs of
custom instructions to determine where the overlapping live-ranges
exist, this is done in the BuildInter f erences function which uses
the def-use chains of custom instructions to compute live-ranges

315

Figure 3: A demonstration of the effects of partitioning shows the call-graph with several regions, where the FFT region is the focus

for custom instructions. The right-hand side shows candidates for custom instructions that are parts of the bodies of loops in the

FFT region. Due to space constraints, we have not shown the entire custom instruction(s).

Register Allocation Configuration Allocation

Each virtual register requires one physical register Each virtual configuration “register” requires K adaptive re-
sources

Allocation processed in units of one register Allocation processed in units of K adaptive resources

Graph coloring one color per physical register Graph coloring K colors per virtual configuration “register”

Represented by a digraph Represented by a hypergraph

Live-range is a path of nodes that definitions and uses of a vari-
able

Live-range is a path of nodes that begins with the load of an
instance of a configuration and ends at the uses of that instance

Register pressure is where the maximum number of registers is
required by the program region

Resource pressure is where the maximum number of adaptive
resources is required by a program region

Register pressure may be reduced by splitting/altering conflict-
ing live ranges producing spill code

Resource pressure may be reduced by splitting/altering conflict-
ing live ranges, selecting alternative configurations, or executing
on the core processor (unallocating)

Table 1: Register Allocation vs Configuration Allocation. This table summarizes our motivation to treat the configuration allocation

problem as a generalized register allocation problem to reuse the compiler’s register allocation infrastructure.

and determine conflicts. Allocation of colors is controlled by pri-
ority queue controlled by the ComputePriorities function. Our
heuristic is designed to favor efficient configurations over less-efficient
configurations. This is done using a normalized latency/area. This
factor allows us to judge the amount of parallelism achieved. Low
latency and high area indicate high-levels of parallelism. These are
at the head of the priority queue followed by balanced configura-
tions with ratios of 1. The custom instructions (represented by v)
are then processed in order using the modified graph multi-coloring
algorithm presented in earlier work [36] [7]. Each custom instruc-
tion is assigned a set of colors (representing AEs) when there are
no conflicting neighbors in the IG. When conflicts arise, this algo-
rithm incorporates the following ideas to resolve them:

Live-Range Splitting: The live-range for all but one of the con-
flicting operations is split, and then compensation code is
generated to handle the unloading and loading of the config-
uration who’s live-range is being split. The cost of live-range
splitting is directly proportional to the amount and additional
latency incurred by the compensation code. This compensa-
tion code will ensure that conflicting configurations are in the
configuration cache, and have them loaded with other con-
figurations. This may affect the schedule and timing during
scheduling.

Alternative Selection: The library of configurations is consulted
for a replacement configuration that uses less area and still
achieves the latency and power requirements.

Unallocate: The custom instruction is not allocated to the adap-
tive array, and is executed on the core processor. This is sim-
ilar to spilling registers to memory because it uses another
resource (the fixed processor) and it is likely to decrease per-
formance.

In Figure 5, we show how a hypergraph is used to represent the
configuration allocations. In this figure, the AE’s are used to create
AFUs to support the custom instructions invoked by exec opera-
tions and corresponding virtual configuration registers, vcr’s. The
resource mapping shows the set of AE’s that form the AFU for each
custom instruction. This formulation allows our algorithm to deter-
mine which resources are shared between AFUs, which will drive
custom instruction scheduling decisions in the next phase.

3.4 Custom Instruction Scheduling
The custom instruction scheduler leverages the instruction sched-

uling infrastructure of a traditional compiler. As shown in Table 2,
the framework of the problem and the solution are similar. This
enables us to reuse the EPIC compiler scheduling infrastructure.
The added variability of AFUs in custom instruction scheduling is
what elicits the difference, which is manifested in the way resource

316

Figure 4: This demonstration of Configuration Selection shows where the custom instructions may be mapped to several configura-

tion options with trade-offs. These trade-offs are area, power, frequency, and latency

Traditional Instruction Scheduling Custom Instruction Scheduling

Fixed number of functional units over time Variable number of functional units over time

Instructions are given start times Custom instructions are given start times

At any time T , instructions are bound to functional units and
there is no more than one instruction bound to a given func-
tional unit

At any time T , instructions are bound to AFUs and there is
no more than one custom instruction bound to a given AFU

Scheduled Instructions obey precedence and latency con-
straints

Scheduled custom instructions obey precedence and latency
constraints

Table 2: Traditional Instruction Scheduling vs Custom Instruction Scheduling. This table shows that our scheduling problem is not

unlike a traditional instruction scheduling problem for a VLIW processor.

availability is done. This means that the framework for instruction
scheduling is identical with one relatively minor change.

Formally, the scheduler accepts as input a Program Dependence
Graph Gpdg, with a subset of nodes Ic that correspond to the cus-
tom instructions. As result, the proposed problem is to find a legal
schedule such that:

Latency: Given instructions i, j if i ≺ j,σ (i) + π (i) < σ (j),
therefore, instruction i appears in the schedule before instruc-
tion j, and instruction i completes execution before the start
of instruction j.

Resource Assignment: For custom instructions i, j if (ψ (j) ∩
ψ (i)) �= /0 then [σ (i),σ (i)+π (i)−1] ∩ [σ (j),σ (j)+πi−
1] = /0. If the instructions i and j share resources, then the
instructions must not have overlapping execution intervals.

where ∀i ∈ Ic

1. σ : i → N, where N is the set of start times,

2. ψ : i → S, such that S ⊂ 1, ...,T where there are T slices
of the reconfigurable fabric.

3. π : i → Z, defines the latencies of an instruction

Algorithm 2 Custom Instruction Scheduler

Input: DDG : Data Dependence Graph

Input: AHGRAPH : Allocation Hypergraph

Output: SCHED : List of tuples (start time,

custom instruction)

sorted by start time

Place ops on ReadyList
while ReadyList is non-empty do

cop ← ReturnHighestPriorityCop(DDG)
stime ← EarliestTimeforScheduling(cop)
while not ResourcesAvailable(stime, cop, SCHED,
AHGRAPH) do

stime ← stime+1
end while

schedule(cop,stime,SCHED)
end while

317

Figure 5: Hypergaph allocation strategy from configuration allocation is shown where custom instructions on are executed by exec

instructions. The custom instructions are require a configuration that is mapped to a subset of computational resources denoted on

the right-hand side of the figure.

The custom instruction scheduler is shown in Algorithm 2, and is
based on greedy list scheduling. The ResourcesAvailable function
is responsible for ensuring that resources are only assigned to the
the current cop if and only if:

• No two custom instructions share AFU resources in the same
cycle, and

• The total adaptive array resources used per cycle must be less
than or equal to the total adaptive resources.

Returning to Figure 5, all of the custom instructions can not ex-
ecute concurrently. This is because the custom instructions repre-
sented by vcr1 and vcr2 are both assigned to shared resources AE3

and AE4 by the allocation algorithm. As with configuration alloca-
tion, our scheduler adapts the traditional compiler infrastructure to
solve this new problem of scheduling custom instructions.

Both our allocation and scheduling algorithms leverage existing
EPIC compiler infrastructure which may translate into a more eas-
ily verifiable compiler and faster to market to target an AEPIC pro-
cessor. These factors directly affect the productivity of the AEPIC
design and development process.

4. RESULTS AND DISCUSSION
In this section, we present the experimental methodology and re-

sults. Our results are based on simulations of the AEPIC architec-
ture, EPIC architecture and the DSP TMS320C6713-300 processor.
We have chosen to implement our algorithms and simulator within
the Trimaran [13] compilation framework, as shown in Figure 6. In
our framework, we also utilize CoDeveloper from ImpulseC [1] as
a configuration size and latency estimation tool to create the config-
uration library. We do not build the entire application in ImpulseC,
but rather just the regions we want to use for custom instructions.
The VHDL code was used for initial verification for the area re-
quirements and latency of custom instructions, but the VHDL is
was not used during simulation. Trimaran is used for all other com-
pilation tasks, and for the simulation. The simulation executes the
EPIC code and inserts the latency of the custom instructions when
the processor encounters them. We have plans to integrate a fab-
ric simulator in a future release, which will allow us to accurately
model the frequenices and timing in the fabric. As a result, the
outputs of the simulator are the number of cycles expended in vari-
ous regions of the program and the total cycles executed. The DSP

Figure 6: Experimental methodology that uses off-line parti-

tioning, instruction synthesis, and selection coupled with auto-

matic allocation, scheduling, and simulation

318

Figure 7: Speed ups of AEPIC compared to EPIC and TI DSP

processor using embedded applications from the MediaBench

and MiBench suites

is simulated using the Texas Instruments Code Composer Studio
Development Tools [16] using the product compiler provided for
it.

4.1 Main Results
In Figure 7 show the speed-ups that we achieved by applying out

algorithms through the AEPIC architecture against the EPIC and
DSP cases. These results are based on the following configurations
of the simulators:

Trimaran EPIC simulator: Trimaran is equipped with one data-
path, and thus it is configured with 4 integer ALUs and 4
floating-point ALUs along with 32 registers, and the same
cache hierarchy.

Trimaran AEPIC simulator: Uses the same EPIC core simula-
tor with additional support for executing the AEPIC ISA and
custom instructions on the adaptive fabric. It supports con-
figuration registers, array registers, and configuration cache
hierarchy.

TMS320C6713-300 TI DSP: This DSP is equipped with 2 iden-
tical data-paths each with 1 fixed-point ALU, 2 fixed- and
floating-point ALUs, and one multiplier. The DSP is also
equipped with 16 registers for each data-path. In addition,
there is a 4KB L1 cache and a 32KB L2 cache.

Our results show our algorithms consistently achieve gains over
both of the competing processor designs. The performance im-
provements that we see range from 150% to over 600%. The av-
erage improvement across the benchmarks is about 200%. These
improvements show the power our compile-time optimizations as
they interplay with the AEPIC architecture. However, we were
concerned with the area used by our design to achieve this perfor-
mance. We equate the cost of performance with the chip area. This
gives us a cycle/mm2 cost that can be directly related to dollars in
manufacturing and running the processor.

4.2 Comparing Hardware Costs
To understand the performance gains of our optimizations and

architectural extensions through AEPIC especially as it relates to
competing architectural styles, it is necessary to provide a mecha-
nism to normalize our performance against the area that supports it.

Itanium 2 TI DSP Virtex II Pro AEPIC

(XC2VP30)

Functional 9 6 2 6
Units

Caches L1, L2, L3 L1, L2, L1, L2 L1, L2

Area 432mm2 386mm2 389mm2 533mm2

Table 3: Architecture parameters affecting area

Figure 8: Speed-Ups normalized against area of AEPIC com-

pared to EPIC and TI DSP processor

The area estimates we make here are based on the (limited) infor-
mation publicly available about the details of the architectures we
used in our study. Our attempt is to be conservative in our estimates
such that our results in the AEPIC context are penalized rather than
enhanced by the area estimates.

The Itanium [24] [20] [4], TI DSP TMS320C6713-300 [17], and
Virtex II Pro [29] characteristics shown in Table 3 are based on re-
spective published reports. The AEPIC reconfigurable array costs
are based on those of the FPGA area from the Virtex II Pro. In
addition, the area of the 6 EPIC functional units needed to be de-
termined. Based on an inspection of the Itanium 2 [20], we deter-
mined that 66% of the area is devoted to the L3 cache, which is
not a component of our AEPIC configuration. This leaves 33% for
the processor core (includes registers, cache, and functional units),
and thus 144mm2 of area for the EPIC processor of AEPIC. There-
fore, our AEPIC processor is equivalent to 144mm2 + 389mm2 =
533mm2 in area.

In Figure 8, we show the results after normalizing the cycles
against the area of the respective processor. As expected, these re-
sults show that the AEPIC execution model does provide a means
to extract more performance from typical embedded system algo-
rithms, where the gains now can be as high as a factor of 500% over
an EPIC processor for the Blowfish benchmark, and over 250% in
the context of the GSM benchmark over the TI DSP processor.

4.3 Exploring our Architectural Space
In conventional EPIC architectures, additional silicon area can be

utilized to increase the number of functional units to implement the
(fixed) ISA. This increase in the number of functional units should
translate to an increase in performance for an application, till an
architectural “sweet spot” is reached. Beyond this point, further
investment in in area will yield diminishing returns in performance.

319

Area GSM

Adaptive
Array
Size

Number
of Fus

Speed-
Up(EPIC)

Speed-
Up(DSP)

64 2 1.05 0.93

64 3 1.04 0.92

64 4 1.03 0.91

64 5 1.03 0.91

64 6 1.05 0.93

128 2 1.04 0.92

128 3 0.89 0.79

128 4 1.04 0.92

128 5 1.04 0.92

128 6 1.06 0.94

256 2 0.89 0.79

256 3 1.04 0.92

256 4 1.04 0.92

256 5 1.04 0.92

256 6 1.06 0.94

512 2 3.15 2.80

512 3 3.15 2.80

512 4 3.77 3.35

512 5 3.77 3.35

512 6 3.89 3.46

1024 2 3.14 2.79

1024 3 3.14 2.79

*1024 4 3.76 3.34

1024 5 3.76 3.34

1024 6 3.89 3.45

2048 2 3.17 2.82

2048 3 3.17 2.82

2048 4 3.80 3.37

2048 5 3.80 3.37

2048 6 3.93 3.49

Table 4: Selected benchmark performance over range of archi-

tectural space parameters

The adaptive EPIC architecture introduces another dimension to
this area-performance tradeoff, which is also true of any generic
SoC. Specifically, in the AEPIC architecture, area can be used to
increase the number of functional units, or alternately to realize
the adaptive components. It is thus important to understand the
impact of adding area to the AEPIC architecture, either through
fixed functional units, or through increasing the size of the adaptive
fabric—the goal is to identify the sweet spot.

This phenomenon is characterized in the Tables 4 and 5, where
the optimal architectural configuration (in terms of number of EPIC
functional units and the area of the adaptive fabric) for three rep-
resentative benchmarks are summarized. All the benchmarks show
increasing performance gains as area is increased with the sweet
spot being reached when the adaptive component has an area that
is comparable to 50% total capacity of a Virtex II FPGA, and the
fixed EPIC component has 4 functional units. This is significant
because we would not like to see increased area producing abbera-
tions in performance, and we would not expect that. More impor-
tantly, we have shown that with our current algorithms, the fabric
can be reduced by 50% and still achieve our results. For our exper-
iments, we have estimated that the total area required is 331mm2,
which is significantly less area than the DSP and EPIC processors
and achieves better performance.

Area Blowfish FFT

Adaptive
Array
Size

Number
of
Fus

Speed-
Up(EPIC)

Speed-
Up(DSP)

Speed-
Up(EPIC)

Speed-
Up(DSP)

64 2 1.05 0.23 1.02 0.57

64 3 1.05 0.23 1.02 0.57

64 4 1.12 0.25 1.03 0.64

64 5 1.12 0.25 1.03 0.64

64 6 1.13 0.26 1.04 0.64

128 2 1.05 0.23 1.02 0.57

128 3 1.05 0.23 1.02 0.57

128 4 1.12 0.25 1.03 0.64

128 5 1.12 0.25 1.03 0.64

128 6 1.13 0.26 1.04 0.64

256 2 1.05 0.23 1.72 1.07

256 3 1.05 0.23 1.72 1.07

256 4 1.12 0.25 2.03 1.26

256 5 1.12 0.25 2.03 1.26

256 6 1.13 0.26 2.08 1.29

512 2 3.64 0.83 1.72 1.07

512 3 3.64 0.83 1.72 1.07

512 4 5.13 1.17 2.03 1.26

512 5 5.13 1.17 2.03 1.26

512 6 5.39 1.23 2.08 1.29

1024 2 3.64 0.83 1.72 1.07

1024 3 3.64 0.83 1.72 1.07

*1024 4 5.13 1.17 2.03 1.26

1024 5 5.13 1.17 2.03 1.26

1024 6 5.39 1.23 2.08 1.29

2048 2 3.64 0.83 1.72 1.07

2048 3 3.64 0.83 1.72 1.07

2048 4 5.13 1.17 2.03 1.26

2048 5 5.13 1.17 2.03 1.26

2048 6 5.39 1.23 2.08 1.29

Table 5: Selected benchmark performance over range of archi-

tectural space parameters

We believe that more performance can be gained from global
allocation and scheduling algorithms. This would allow us to de-
termine when a configuration should not be unloaed because it will
be used at a future point in the application outside of the current
region. This would allow us to minimize the load/unload overhead
for configurations. In addition, there are several applications with
timing constraints, and this means that the processor must process
the data at a target rate. A global scheduler would allow us to de-
termine if timing constraints are being met by the application as a
whole as the schedule and allocation mapping are being produced
and changed during compilation.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a compiler-centric strategy for

developing customized SoC solutions. Our work was done in the
context of automating the development of custom hardware designs
using compiler optimizations. We chose the hybrid architecture
of AEPIC as a proof-of-concept because it provides the compiler
with the necessary support for compiler-based customization. Our
overall approach is to innovate techniques that perturb the standard
optimizing compiler minimally. Thus, we aim to reuse large invest-
ments in program analysis such as live-ranges, interference graph
construction, and scheduling frameworks with careful and minimal

320

extension to target an entirely new class of reconfigurable or adap-
tive SoCs. In this context, we do not generate code for a fixed ISA,
but rather generate and coordinate customized hardware configura-
tions.

We have shown that our compiler is able to automatically pro-
duce an allocation strategy for the configurations, and an execution
schedule for the custom instructions. The novelty of our method-
ology is that we leverage existing compiler infrastructure in our
modules for scheduling and allocation. This decreases the time and
effort in developing our adaptive compiler from a traditional com-
piler. We have shown non-normalized speed-ups from 150% to
over 600% and normalized speed-ups from 110% to over 500%. In
addition, we identified an optimal architecture configuration, where
cost in area is minimized and benefits are maximized. Our per-
formance gains are attributable to several factors including highly
optimized regions of the source program executing on the recon-
figurable fabric, the ability of our allocator to select higher-perfor-
mance configurations for allocation when resources are at a pre-
mium, and the ability of our scheduler to take advantage of avail-
able instruction-level parallelism. Finally, we put forth preliminary
results capturing the productivity of our design process in the con-
text of more traditional processes.

Our future work will investigate the phase-ordering problem of
allocation and scheduling. This work will be done to determine
which phase ordering is most effective. In addition, we will present
other heuristics to more efficiently allocate and schedule custom
instructions. The automation process will also continue as we de-
velop automated techniques for partitioning and configuration se-
lection, which will be based on integer linear programming and
tree pattern matching. Finally, we will develop a set of metrics
and a strategy for evaluating the productivity of hardware/software
design processes.

In addition to the phase-ordering problem, we will be looking
at global allocation and scheduling algorithms that enable us to
schedule beyond function boundaries. This will address applica-
tions with global timing constraints and to globally minimize the
loading/unloading of configurations.

Finally, we will examine the productivity aspects of hardware
design and software design processes. Both industries guard their
productivity data closely because of the proprietary nature of the in-
dustries. So, our analysis will, in all likelihood be based on empir-
ical results, our experiences, and where possible, supporting docu-
mentation [5] [18].

When we compare ourselves to tools such as ImpulseC [1] and
Celoxica [6], the latter cases include a synthesis phase in their flow
that is consistent with the hardware design process. By contrast
in the AEPIC context, the synthesis phase is not required because
configurations are synthesized off-line and then the compilation-
flow only has to make selection decisions. Thus, since synthesis
is performed statically ahead of the application development and
compilation process, in our approach, the cost of synthesis will be
amortized over the development of several custom designs that may
reuse the configurations, thus allowing significantly improved de-
sign productivity.

Acknowledgments

The authors would like to gratefully acknowledge the assistance
provided by Romain Cledat, and Richard Copeland, Jr. of CREST
at the Georgia Institute of Technology in providing the performance
results for the TI TMS320C6713-300 processor, and Sung Kyu Lim
for numerous helpful editorial comments.

6. REFERENCES

[1] I. accelerated technologies. http://www.impulsec.com/.

[2] Arc. http://www.arc.com.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
transformations for high-performance computing. ACM

Computing Surveys, 26(4):345–420, 1994.

[4] R. Belgard. Chart watch: Server processors. Microprocessor

Report, 19(8):26–27, August 2005.

[5] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowits, R. Madachy, D. Reifer, and B. Steece. Software

Cost Estimation with COCOMO II. Prentice Hall, 2000.
cocomo II.

[6] Celoxica. http://www.celoxica.com/.

[7] G. Chaitin, M. Auslander, A. Chandra, J. Cocke,
M. Hopkins, and P. Markstein. Register allocating via
coloring. In Computer Languages, volume 6, pages 47–57,
1981. ACM Press.

[8] G. J. Chaitin. Register allocation and spilling via graph
coloring. In Proceedings of the SIGPLAN ’82 Symposium on

Compiler Construction, volume 17, pages 98–105. ACM
Press, 1982.

[9] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W. mei W. Hwu. Impact: an architectural framework for
multiple-instruction-issue processors. In ISCA ’91:

Proceedings of the 18th annual international symposium on

Computer architecture, pages 266–275, New York, NY,
USA, 1991. ACM Press.

[10] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In 36th

International Symposium of Microarchitectures. IEEE
Society, Dec 2003.

[11] E-Asic. http://www.easic.com.

[12] A. Excalibur. http://www.altera.com/literature/lit-exc.jsp.

[13] T. T. C. R. Framework. http://www.trimaran,org.

[14] P. B. Gibbons and S. S. Muchnick. Efficient instruction
scheduling for a pipelined architecture. In SIGPLAN

symposium on Compiler contruction, pages 11–16, Palo
Alto, California, United States, 1986. ACM Press.

[15] M. W. Hall, J.-A. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam.
Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer, 29(12):84–89, 1996.

[16] T. Instruments. C6000 code composer studio development
tools. http://dspvillage.ti.com/docs/catalog/devtools/.

[17] T. Instruments. TMS320C6000 technical brief. February
1999.

[18] H. H. Jones. How to slow the design cost spiral. In
Electronics Design Chain. http://www.designchain.com/,
2002.

[19] V. Kathail, M. Schlansker, and B. R. Rau. HPL-PD
architecture specification: Version 1.1. Technical report, HP
Labs, Feb. 2000.

[20] K. Krewell. Best servers of 2004. Microprocessor Report,
19(1):24–27, January 2005.

[21] M. Kudlur, K. Fan, M. Chu, R. Ravindran, N. Clark, and
S. Mahlke. FLASH: Foresighted latency-aware scheduling
heuristic for processors with customized datapaths. In
International Symposium on Code Generation and

Optimization. ACM Press, 2003.

[22] L. Logic. LSI logic rapid chip platform
ASIC:http://www.lsilogic.com/products/rapidchip platform asic/.

321

[23] S. Microelectronics. The Greenfield solution,
http://www.st.com/.

[24] H. Packard. Inside the Intel Itanium 2 processor: an Itanium
processor family member for balanced performance over a
wide range of applications. July 2002.

[25] K. Palem and B. Simons. Scheduling time-critical
instructions on risc machines. In ACM Transactions on

Programming Languages Systems, volume 15, pages
632–658, 1993.

[26] K. Palem, S. Talla, and P. Devaney. Adaptive Explicitly
Parallel Instruction computing. In Proceedings of the 4th

Australasian Computer Architecture Conference, 1999.

[27] K. Palem, S. Talla, and W.Wong. Compiler optimizations for
adaptive EPIC processors. In Proceedings of the First

International Workshop on Embedded Software, October
2001.

[28] K. V. Palem, S. Talla, and W. Wong. Compiler optimizations
for adaptive EPIC processors. In Lecture Notes in Computer

Science. First International Workshop on Embedded
Software, Springer-Verlag, Oct 2001.
This paper is a summary of Suren’s PhD Thesis.

[29] X. V. I. Pro.
http://www.xilinx.com/products/design resources/proc central/.

[30] M. Schlansker and B. R. Rau. EPIC: An architecture for
instruction level processors. Technical Report HPL-111, HP
Labs, February 200.

[31] R. Schreiber, S. Aditya, B. R. Rau, V. Kathail, S. Mahlke,
S. Abraham, and G. Snider. High-level synthesis of
non-programmable hardware accelerators. Technical report,
HP Labs, 2000.

[32] B. So, P. C. Diniz, and M. W. Hall. Using estimates from
behavioral synthesis tools in compiler-directed design space
exploration. In Proceedings of the IEEE/ACM Design

Automation Conference. ACM Press, 2003.

[33] B. So, M. W. Hall, and P. C. Diniz. A compiler approach to
fast hardware design-space exploration in FPGA based
systems. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation

(PLDI). ACM Press, 2002.

[34] S. D. P. C. Specs.
http://www.extremetech.com/article2/0,1558,1639233,00.asp.
chip specs.

[35] T. S. System. http://www.ics.uci.edu/ specc/.

[36] S. Talla. Adaptive Explicitly Parallel Instruction Computing,

PhD Thesis. PhD thesis, New York University, 2000.

[37] Q. technology. http://www.qstech.com/.

[38] Tensilica. http://www.tensilica.com/.

[39] T. Way and L. L. Pollock. Evaluation of a region-based
partial inlining algorithm for an ILP optimizing compiler. In
PDCS, pages 698–705. International Society for Computers
and their Applications, 2002.

[40] P. Yu and T. Mitra. Characterizing embedded applications for
instruction set extensible processors. In Proceedings of the

Design Automation Conference. IEEE Society, 2003.

322

