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Abstract

In this paper, we investigate the compiler transfor-

mation techniques to the problem of scheduling VLIW

instructions aimed to reduce the power consumption

on the instruction bus. It can be categorized into two

types: horizontal and vertical scheduling. For the hor-

izontal case, we propose a bipartite-matching scheme.

We prove that our greedy algorithm always gives the

optimal switching activities of the instruction bus. In

the vertical case, we prove that the problem is NP-

hard, and propose a heuristic algorithm. Experimen-

tal results show average 13% improvements with 4-

way issue architecture and average 20% improvement

with 8-way issue architecture for power consumptions

of instruction bus as compared with conventional list

scheduling for an extensive set of benchmarks.

1 Introduction

The push for low power design has recently gained

growing importance in designing various computer

systems and embedded systems. For that reason, we

will study the aspect of compiler transformations to

reduce power consumptions for such a system.

In CMOS circuits, power is dissipated in a gate

when the gate output changes from 0 to 1 or from

1 to 0. Minimization of power dissipation can be con-

sidered at algorithmic, architectural, logic and circuit

levels. Studies on low power design are abundant in

the literature [1, 2, 3] in which various techniques

were proposed to synthesize designs with low transi-

tional activities.

Recently, new research directions in reducing power

consumptions have begun to address the issues of ar-
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ranging software at instruction-level to help reduce

power consumptions [4, 5]. The energy reductions

through software modi�cations are essentially free, as

no extra hardware cost or overhead is needed. Previ-

ous improvements with software re-arrangements in-

clude the value locality of registers [4] and the swap-

ping of operands for booth multiplier [5]. This new

direction brings an interesting issue in the compiler

participation in software re-arrangements for reduc-

ing power consumptions for applications and systems.

In this paper, we investigate the compiler transforma-

tion techniques to the problem of scheduling VLIW

instructions aimed to reduce the power consumption

of the VLIW architectures on the instruction bus.

The energy, E, consumed by a program, is given by

E = P �T , where T is the number of execution cycles

of the program [5] and P the average power. The aver-

age power P is given by P = 1

2
�C �V dd2 �f �E, where C

is the load capacitance, V dd the supply voltage, f the

clock frequency, and E the transition count. In the

compiler optimizations, if we optimize programs for

the performances, T will be reduced, so does energy

consumption. If the compiler performs software re-

�nements to reduce P , without software performance

penalty, it will also reduce the energy consumptions.

Therefore, it is preferable that any power minimiza-

tion technique should incur no performance penalty.

Judging from the power equation, it is clear that

power can be reduced by the product of capacitance

loading and transition activity. Since bus wires have

large capacitance loading, the reduction of transition

activities of buses will be very e�ective in reducing to-

tal power consumption. Hence, we will study VLIW

instruction scheduling techniques aimed at the reduc-

tion of transition activity in the instruction bus.

We will �rst present a cost model to estimate the bus

switching activities of instruction executions on VLIW

architectures. Based on the model, we further develop

instruction scheduling techniques to reduce the power

consumption in the bus level.



The problem can be divided into horizontal schedul-

ing and vertical scheduling categories. For horizontal

case, we propose a bipartite-matching scheme for in-

struction scheduling. We prove at that our greedy

algorithm always gives the optimal bus switching ac-

tivities for given VLIW instruction scheduling poli-

cies. For vertical case, we prove that the problem is

NP-hard and propose a heuristic algorithm to solve it.

The remainder of the paper is organized as follows.

Section 2 describes our experimental VLIW platform,

and cost model for power consumption in the bus level.

Section 3 proposes the policies for low power VLIW

code generation. Section 4 gives our experimental re-

sults. Finally, section 5 concludes this paper.

2 Machine Architecture and Cost

Model

2.1 Machine Architecture

Figure 1 shows an example of our target machine

architecture on which our optimization is based. We

focus on the reduction of switching activities for in-

struction bus. The abstract VLIW machine has sev-

eral execution units. In the example given in Figure 1,

unit 1, 2, 3 are integer ALUs with integer multipli-

cation, division, and logic operation unit. Unit 4 is

either the same as other unit, or will be performing

branch/ow control, or executing a load/store func-

tion. In this architecture, a VLIW instruction can only

issue one load/store (or branch/ow control) microin-

struction and three integer/logic microinstructions at

the same time. Also, it can perform four integer/logic

microinstructions only. without load/store or branch

microinstructions.

Figure 1 is also the architecture model by which

we carry out our experiments later in Section 4. The

length of an VLIW instruction in our experiment will

be 128 bits. Memory addressing is byte address. Also,

we use real executable instructions of Alpha chip for

experiments. As Alpha is a 64 bit CPU and uses 64 bit

data bus, our experimental VLIW machine will have

32 integer registers (R0 through R31), and each is 64

bits wide. We assume this VLIW machine assign an

128 bit instruction into 4 function units per instruction

fetch. The instruction bus is 128-bit wide.

2.2 Cost Model

We will use hamming distance as our cost model

to estimate the transition activity in the instruction

PC
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Figure 1: Our VLIW Machine Architectures and Bus

Models
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Figure 2: Hamming Distance

bus. Hamming distance is the number of bit di�er-

ences between two binary strings. For example, the

hamming distance of two adjacent 32-bit microinstruc-

tions shown in Figure 2 is 15.

Suppose X and Y are two consecutive VLIW in-

structions with k way issues. The instruction compo-

nents ofX and Y are (x1; x2; :::; xk) and (y1; y2; :::; yk),

respectively. Then, the bus transition cost, H(X;Y ),

for instruction Y after the issue of X is de�ned as,

H(X;Y ) = �k
i=1 h(xi; yi);

where h is the hamming distance between two instruc-

tion components.

3 Instruction-Scheduling Policies for

Low Power

Both high performance and low power are two im-

portant objectives of compiler optimization. However,

since degradation of performance has negative e�ect

not only on performance but also energy consumption,

we require that any power minimization technique in-

curs no software performance penalty. Therefore, we

propose a two-phase instruction scheduling approach.

In the �rst phase, instructions are scheduled for per-

formance. Then, in the second phase, a scheduler is

employed to re-arrange the codes produced by the �rst

phase for low power without incurring performance

penalty.



In this work, list scheduling algorithm will be used

in the �rst phase for performance optimization. List

scheduling programs are easy to write, and can com-

pact original microinstructions approximately as fast

as linear analysis. However, any conventional VLIW

instruction scheduler can be used.

3.1 Horizontal Scheduling

We �rst propose a horizontal scheduling algorithm

to re-schedule instruction components of an instruc-

tion to minimize transition activity of instruction

buses, i.e., microinstructions of an instruction are to

be re-scheduled for di�erent instruction buses but ex-

ecuted in the same instruction. It is formally de�ned

as follows.

We focus on the basic block of a program. Sup-

pose in the basic block of a program we have n VLIW

instructions, and they are X1; X2; :::; Xn, where the

instruction components of instruction Xi is given as

Xi = (xi;1; xi;2; :::; xi;k); 1 � i � n

Then, our goal is to �nd an instruction scheduling

so that the total hamming distance of n consecutive

VLIW instructions X
0

1; X
0

2; :::; X
0

n is minimized. That

is, we want to minimize

�n�1
j=1 H(X

0

j ; X
0

j+1);

where X
0

i = (�i;1; �i;2; :::; �i;k), 1 � i �

n, and (�i;1; �i;2; :::; �i;k) is a permutation of

(xi;1; xi;2; :::; xi;k), for 1 � i � n.

Our horizontal scheduling algorithm proceeds to

re-schedule microinstructions from the �rst instruc-

tion to the last. Initially, the �rst instruction is re-

scheduled without changing it. Iteratively, the next

instruction is re-scheduled to minimize hamming dis-

tance between the instruction and the last instruc-

tion already scheduled. We model the re-scheduling

of microinstructions of an instruction as a weighted

bipartite graph matching. Let the bipartite graph

G = (UpLayer[LowLayer; E) be constructed, where

UpLayer and LowLayer are bipartite. Each ui 2

UpLayer represents a microinstructions in the last in-

struction already scheduled and li 2 LowLayer repre-

sents a microinstruction of an instruction to be sched-

uled. There is an edge linking ui and li if microin-

struction li can be assigned to the same bus as the

microinstruction ui. The weight on the edge is de-

�ned as �h(ui; li), the hamming distance of ui and li.

Note that the negative sign is used because a maxi-

mum weighted matching will be taken. Figure 3 il-

lustrates the construction of a bipartite graph. In
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Figure 3: An example of bipartite matching for hori-

zontal scheduling.

this �gure, there are four microinstructions in each

instruction. Instruction represented by UpperLayer

is the last instruction already re-scheduled. Instruc-

tion represented by LowLayer is the instruction to be

re-scheduled. The weight on the edge of ui and li is

�h(ui; li).

Now, we apply maximum weight bipartite match-

ing [6] on graph. If microinstruction li is matched with

microinstruction ui, li will be assigned to the same

bus as li. The matching procedure repeat till all in-

structions are re-scheduled. This matching procedure

re-schedules microinstructions so that the hamming

distance between the instruction of UpLayer and the

instruction of LowLayer is minimum. This greedy bi-

partite matching algorithm can actually produce op-

timal solution for our horizontal scheduling problem.

It can be proved by induction [7].

This algorithm presents the essential idea of our

low power optimization. It requires function units

of target VLIW architectures be identical, as we can

only perform microinstruction swapping with identical

function units on target host so that there will always

be no performance penalty. In the practice of mod-

ern VLIW architectures, our algorithm needs to be

re�ned to work with architecture constraints, as func-

tion units are normally classi�ed into several classes

in most VLIW architecture design. The swapping can

only be done with function units of the same class.

This constraint can be implemented by constructing

bipartite edges only among microinstructions using

functions units in the same class. In addition, this

algorithm will interact the data bus's activities while

CPU can issue more than 1 load/store microinstruc-

tions. Its inuence on instruction cache is depended

on the caching policies.
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Figure 4: An example of bipartite matching for verti-

cal scheduling.

3.2 Vertical Scheduling

While the discussions in the previous sub-section

are based on instruction scheduling with horizontal

movements, our vertical scheduling allows microin-

structions to move across instructions. Since we want

to optimize power consumption without degrading

performance, cares have to be taken so that no per-

formance penalty are incurred. Vertical scheduling is

formally de�ned as follows.

Suppose we are given a performance-optimized

VLIW scheduling, X , data dependence graph, DDG,

for a basic block, B, and the total cycle time, T , for

the execution of X . Let the given scheduling X be

< X1; X2; :::; Xn > and the instruction components of

instruction Xi are given below.

Xi = (xi;1; xi;2; :::; xi;k); 1 � i � n:

The vertical scheduling is to �nd a scheduling, Y ,

where Y is < Y1; Y2; :::; Yn >, and the instruction com-

ponents of instruction Yi are given below,

Yi = (yi;1; yi;2; :::; yi;k); 1 � i � n:

The vertical scheduling, Y , needs to satisfy the fol-

lowing constraints.

1. There exists a bijection Æ : A! B, where

A =
Sn

i=1fxi;j jxi;j 2 Xig, and

B =
Sn

i=1fyi;j jyi;j 2 Yig.

2. The cycle time of Y is less than or equal to T

We then try to �nd the scheduling Y for the mini-

mum bus transition activities, so that

�n�1
j=1 H(Yj ; Yj+1) is minimized. This problem to �nd

the minimum scheduling Y for the vertical case is NP-

Hard. The detailed proof is related to \Hamiltonian

Path Problem"can be �nd here [7]. Since the prob-

lem is NP-hard, we will propose a heuristic algorithm

based on allowable moving windows of instruction sets

and bipartite matching techniques.

Our algorithm is given an initial instruction place-

ment X as input. The initial placement can be ob-

tained from conventional instruction scheduling for

performance optimization. Our heuristic algorithm

is to �nd a new scheduling Y so that bus transition

activities are minimized as much as possible. Other

given inputs to our algorithm for the re-scheduling

of instructions of a basic block are data dependence

graph (DDG) and critical path information. The

data dependence graph speci�es the execution order

among the components of given instructions to obey

the original program semantics. The critical path in-

formation speci�es how far an instruction component

can be placed without incurring software performance

penalty.

Our vertical scheduling algorithm proceeds to re-

schedule microinstructions from the �rst instruction

to the last. First, a window size, w, needs to be speci-

�ed, which de�nes the number of instructions that are

allowed to be moved in each iteration. Because this

problem is NP-Hard, a larger w may cause unaccept-

able compilation time. In fact, horizontal scheduling

is a special case of vertical scheduling with w = 1.

Initially, the �rst instruction is re-scheduled without

changing it. Iteratively, the next w instructions are

candidates to be selected and to be re-scheduled to

minimize hamming distance. The microinstructions

in the next w instructions have to satisfy the data de-

pendence constraint and critical path constraint. To

satisfy data dependence constraint, it is required that

if the parents of a microinstruction have not been as-

signed, the microinstruction should be deleted from

the window. To satisfy critical path constraint, it is

required that microinstructions that are on the critical

path should be only re-scheduled by horizontal move.

We also model the vertical re-scheduling of microin-

structions as a weighted bipartite matching. A bipar-

tite graph G = (UpLayer [ LowLayerSet; E) is con-

structed, where UpLayer and LowLayerSet are bi-

partite and LowLayerSet represents the microinstruc-

tions in the next w instructions that satisfy data de-

pendence constraint. Each ui 2 UpLayer represents a

microinstructions in the last instruction already sched-

uled and li 2 LowLayerSet represents a microinstruc-

tion to be scheduled. There is an edge linking ui and

li if microinstruction li can be assigned to the same

bus as the microinstruction ui.

There are two ways to de�ne the weights on edges.

The �rst way is that if li is on the critical path, the

weights on all edges linking li are de�ned as1, which



guarantees that li will be selected in the matching.

Otherwise, the second way is that the weight on an

edge linking li and ui is de�ned as �h(ui; li), the ham-

ming distance of ui and li. Figure 4 illustrates the

construction of a bipartite graph for vertical schedul-

ing. In this example, the window size is 2, l4 is on

the critical path and l2 is the parent of l5 in the data

dependence graph. Therefore, edges linking l4 are set

to 1 and l5 is deleted from the window.

4 Experiments

We use the Alpha-based VLIW architecture de-

scribed in Figure 1 of Section 2 as the target archi-

tecture for our experiments. The proposed schedul-

ing policy is incorporated into the compiler tool with

SUIF [8] and MachSUIF Library [9]. Figure 5 shows

the three phases of compilations in incorporating our

algorithms into SUIF and MachSUIF systems. We

perform general compiler behaviors in �rst and sec-

ond phases. Finally, we work on the optimizations

with low-power issues. In this phase, we load the

almost-executable outputs from MachSUIF library,

and perform list scheduling to get VLIW instruction

sequences. We then execute bipartite matching al-

gorithm to schedule instructions to reduce the power

consumption of VLIW architectures in the instruction

bus. The Alpha assembly code (.s code) generated by

our software is annotated with additional information

for VLIW instructions so that the ATOM simulator

can pick up the VLIW instruction information.

Figure 6 gives the experimental result for the simu-

lations on a 4-way issue architecture described in Sec-

tion 2. The line with the black color is the base in-

formation which is the switching activities of instruc-

tion bus for programs scheduled by list scheduling.

It's used as the base line. The line with the white

color is the switching activities of instruction bus

for programs scheduled by our proposed multi-layer

bipartite-matching scheme with horizontal scheduling.

The improvement (reduction) with switching activities

ranges from 3% to 19% among test suites, and with

the average of 13%. The test suites in the experiment

include three parts. The �rst �ve suites of Figure 6

are from the common benchmarks listed in FAQ of

comp.benchmarks [10]. The next suite is the grep util-

ity routine taken from GNU Grep v2.2. The rest of

the 22 test suites in Figure 6 are from GNU TextUtils

v1.22. The line with gray color in the �gure is the

worst case you can do with switching activities of in-

struction bus for given programs. As the list schedul-

ing does not concern about the power consumption of

SUIF Phase

.c Source File

Front-End

   Classical
Optimization

 Parallelism
Optimization

 High SUIF
to Low SUIF

Alpha Code
 Generation

Pseudo Code
  Elimination

 Register
Allocation

 Stack Frame
HouseKeeping

MachSUIF

     List
Scheduling

 Low Power
Optimization

VLIW Code
Generation

.s Output File

 Low Power
Optimization

Figure 5: Our compiler phases on low power optimiza-

tions

the program, the worst case gives a reference point

for our experiments. We are also in the process of

evaluating more test suites for experiments.

Focus is now directed to Figure 7 which gives the

experimental result for the simulations on an architec-

ture similar to the previous experiment but with 8-way

issues. Again, the black color line is the base infor-

mation which is the switching activities of instruction

bus for programs scheduled by list scheduling. The

white and gray color lines are representing the results

with multi-layer bipartite-matching scheme(horizontal

scheduling) and the worst case, respectively. The aver-

age improvement (reduction) with switching activities

is around 20% over the list scheduling by incorporat-

ing our schemes.

Figure 8 is the vertical scheduling experimental re-

sults for 4-way issue architecture. The line with gray

color is the best case in 4-way issue horizontal schedul-

ing. The black line is the vertical scheduling with

w = 4. The white line is the vertical scheduling with

w = 8. The enhancement from horizontal scheduling

to vertical scheduling is around 6.0% to 9.5%.

5 Conclusion

In this paper, we �rst described a model for calcu-

lating the bus switching activities of instruction exe-

cutions on VLIW architectures. Based on the model,

we investigate the compiler transformation techniques

to schedule VLIW instructions aiming to reduce the

power consumption of VLIW architectures in the in-

struction bus. Our experiment is done on Alpha-based

VLIW architectures and ATOM simulator. Our com-

piler is implemented based on SUIF and MachSUIF,

and by incorporating our proposed schemes. Exper-

imental results show signi�cant improvements with

power consumptions over conventional list scheduling
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with 4-way Issues
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Figure 7: Horizontal Scheduling Switching Activities

with 8-way Issues
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Figure 8: Vertical Scheduling Switching Activities

with 4-way Issues

for an extensive set of benchmarks by incorporating

our proposed schemes. We think our work is im-

portant for a class of systems, high-performance em-

bedded systems, where we need to address both the

high-performance computing and power consumption

issues.
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