
Compiler Support for Reducing Leakage Energy Consumption �
W. Zhang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin and V. De*

Microsystems Design Lab, Penn State University and Intel Research Labs*

ABSTRACT
Current trends indicate that leakage energy consumption will be an im-
portant concern in upcoming process technologies. In this paper, we pro-
pose a compiler-based leakage energy optimization strategy. Our strat-
egy is built upon a data-flow analysis that identifies basic blocks that
do not use a given functional unit. Based on this information, the com-
piler then inserts activate/deactivate instructions in the code to set/reset
a sleep signal which controls leakage current for functional units. Our
experimental results show that the proposed compiler-based strategy is
very effective in reducing leakage energy of functional units.

1. Introduction and Motivation
While dynamic energy is the dominant energy component in today’s

CMOS circuits, the trends show that leakage energy consumption will
play a much larger role in upcoming circuit generations. This paper
presents a compiler-based leakage energy optimization strategy. Our
strategy first analyzes the control flow graph (CFG) representation of
the program and, for each functional unit, determines the paths along
which that functional unit is idle (unused). It then selects a suitable leak-
age control mechanism and inserts activate/deactivate instructions in the
code to enable/disable the functional unit. Since reactivating a functional
unit from the leakage control mode takes some extra execution cycles,
we also consider a circuit pre-activation strategy which tries to bring the
circuit to the normal operation mode before it is actually needed. In this
work, two leakage control mechanisms are considered to exploit the idle-
ness of functional units for reducing leakage energy. The first leakage
control mechanism, called input vector control, exploits the state depen-
dence of the leakage current and sets the inputs to values that have the
minimum leakage current when the units are idle [3]. The second mech-
anism, called supply gating, eliminates the leakage energy consumption
by cutting the power supply to the units [7].

The remainder of this paper is organized as follows. The details of our
data-flow analysis to insert leakage control instructions in the code are
explained in Section 2. The implementation and simulation environment
are discussed in Section 3. Experimental results are given in Section 4.
Section 5 shows the direction of our future work.

2. Data Flow Analysis to Reduce Leakage Energy
We formulate the idleness detection problem as a backward data-flow

analysis problem and solve it using a worklist algorithm[6]. The formu-
lation of our data-flow analysis can be described as the follows. Suppose
that we have � functional units and that the functional unit usage is de-
fined at the basic block level, instead of at the operation level. Obtaining
the basic block level functional usage information is easy (in a VLIW ar-
chitecture) as the scheduled code associates a functional unit with each
operation in the basic block. Our compiler identifies each basic block
using a number or id.

To build our data-flow equations, we use three different variables:�������
	 �
, ��� ��	 � , and ��� ��	 � . Informally,

��������	 �
tells us whether func-

tional unit � is used by basic block � . ��� ��	 � and ��� �
	 � , on the other
hand, are two sets and keep the numbers (ids) of basic blocks that will
contain deactivate and activate instructions, respectively.

More formally:

�
This work is supported in part by the NSF CAREER awards 0093082,

0093085, and NSF 0103583, and the MARCO GSRC grant 98-DT-660.

����� ��	 ��� ��� ������ if no operation in basic block � uses
functional unit �� � if at least one operation in basic block � uses
functional unit � (1)

Formal definitions for ��� ��	 � and ��� ��	 � depend on the position of
the basic block � in the CFG. If � is the last basic block (the terminal
basic block), then we have:

��� �
	 � �! #" �%$ � if
��������	 � � �& � if
����� ��	 ��� � (2)

and

��� �
	 � �' #" �($ � if
�������
	 � � �& � if
����� �
	 ��� � (3)

On the other hand, for the remaining blocks in the CFG, we have:

��� ��	 � �' " �%$ � if
�������
	 � � �)�*,+.-%/,01032 �54 ��� * 	 � � if
����� �
	 ��� � (4)

and

��� ��	 � �' " �($ � if
��������	 � � �)�*,+.-%/,01032 �54 ��� * 	 � � if
����� ��	 ��� � (5)

In these formulations,
)

denotes set union and
) *,+.-%/,01032 �54 ��� * 	 � (��� * 	 �)

indicates the union of all ��� * 	 � (��� * 	 �) sets, where 687:9<;>=?=A@��%B .
Note that ��� ��	 � is a set of basic block number, in which we need

to turn off functional unit � . Similarly, ��� �
	 � is a set of basic block
numbers, in which we need to turn the functional unit � on.

In the second step of our approach, the compiler inserts activate/ de-
activate instructions in the code using the ��� ��	 � and ��� ��	 � found in
the first step.

3. Experimental Framework
We used Trimaran infrastructure [8] to implement our approach. To

test the effectiveness of our energy-saving optimization, we used four
benchmarks from MediaBench suite (cordic, nbradar,raw caudio,
and rawdaudio [5]) and two array-intensive applications (tomcatv
and vpenta) from Spec benchmarks.

Our VLIW configuration has a total of nine functional units: 4 integer
ALUs, 2 floating-point ALUs, 2 load/store units, and 1 branch unit. All
results have been obtained using a register file of 32 entries and a perfect
cache configuration (that is, all cache accesses are assumed to be hits).
The energy numbers reported in this section are based on 0.1 micron
technology, 1V supply voltage and 0.26V threshold voltage.

For each benchmark code, we experimented with six different versions
as explained below. The versions differ from each other with respect to
the leakage control mechanism used, whether or not profile information
is utilized (in determining idle paths), and whether or not pre-activation
is employed. What we mean by profile data here is the profile data indi-
cating the duration of idleness.C Input Vector Control: This version uses only input vector con-

trol.

1530-1591/03 $17.00 2003 IEEE

Figure 1: % energy improvements (with floating-point units).

C Supply Gating: This version uses only power supply gating.C Both (without pre-activation): This version employs both input
vector control and supply gating. Depending on the duration of
idleness, it chooses one of these mechanisms. It does not use pre-
activation or profile data.C Both (with pre-activation): This is similar to the previous ver-
sion except that it employs pre-activation.C Supply Gating (profile-based): This version uses only power
supply gating. It uses profile data for obtaining duration of idle-
ness. It does not use pre-activation.C Both (profile-based): This version uses both input vector control
and supply gating. To determine duration of idleness, it exploits
profile data. It does not utilize pre-activation.

4. Results
Figure 1 gives the percentage leakage energy improvements for differ-

ent optimized versions. It should be noted any increase in dynamic en-
ergy consumption and additional leakage consumed due to performance
penalties resulting from our optimization strategies are also included in
these results. We can make several observations from these results. First,
the input vector control version performs very well. Specifically, it im-
proves the functional unit leakage energy consumption by 45.4% on the
average. The supply gating version, on the other hand, does not perform
that well. In fact, in three applications (nbradar, rawcaudio, and
rawdaudio), it hardly makes any difference in energy behavior. The
main reason for this is the large re-activation time. When we combine
these two leakage control mechanisms, we get an average improvement
of 45.8%. This is only slightly better than the input vector control ver-
sion. Again, the main reason for this is that in this combined version,
input vector control dominates; that is, the compiler selects the input
vector control in most cases due to the large re-activation time of the
supply gating mechanism.

We also observe that including pre-activation did not bring too much
benefit. This is again due to the fact that in most cases input vector
control is used. Since the initiation and reactivation latencies of input
vector control mechanism require a total of only 2 cycles, pre-activation
can only avoid additional leakage energy consumed during the reactiva-
tion cycle. We also see that the profile-based supply gating generates
much better results than the supply gating version. It generates an av-
erage energy reduction of 50.1%. This is because when we profile the
code, we generally detect larger idle periods (e.g., we can detect the real
execution time for loops instead of being conservative); as a result, the
compiler uses power supply gating more aggressively.

To evaluate the impact of pre-activation on energy savings , we per-
formed some experiments assuming per cycle energy savings similar to
input vector control but with a hypothetical initiation (and re-activation)
latency of 45 cycles (instead of 2 cycles). We see from the results given

Figure 2: % energy savings with an reactivation latency of 45 cycles.

in Figure 2 that when the activation latency is larger, pre-activation starts
to make a difference.

We also made experiments to measure the increase in execution time
when different optimized versions are used. We observe that, except for
cordic, the increase in execution cycles is bounded by 18%, and less
than 10% in many cases.

5. Conclusions and Future Work
In this paper, we have proposed a compiler-based technique for op-

timizing leakage energy consumption in VLIW functional units. Our
strategy is built upon a data-flow analysis that detects idle functional
units along control-flow graph paths. After detecting idleness, the com-
piler takes into account the estimated basic block execution times and
available leakage control strategies, and inserts (functional unit) activa-
tion/deactivation instructions in the code. Although the use of another
runtime leakage control mechanism — body biasing [4] has not been
considered in this work, it would be easy to investigate this technqiue
using our strategy. This technique fits well in the phases abstracted for
leakage control mechanisms except that it has no settling time penalty.
Further, the leakage reduction will be around 50%-70% [4]. However,
this technique will need a triple-well process for applying to both NMOS
and PMOS. We are in the process of performing experiments with body
biasing and of extending our data-flow analysis to an inter-procedural
setting.

6. REFERENCES
[1] J. Casmira and D. Grunwald. Dynamic Instruction Scheduling Slack. In

Proc. 2000 Kool Chips Workshop, December 2000.
[2] D. Duarte, Y-T. Fai, N. Vijaykrishnan, and M. J. Irwin. Evaluating

run-time techniques for leakage power reduction. In Proc. ASP-DAC,
January, 2002, Banglore, India.

[3] J. P. Halter and F. Najm. A gate-level leakage power reduction method for
ultra-low-power CMOS circuits. In Proc. IEEE Custom Integrated Circuits
Conference, pp. 475–478, 1997.

[4] A. Keshavarzi et al. Effectiveness of Reverse Body Bias for Leakage
Control in Scaled Dual Vt CMOS ICs In Proc. ISLPED, 2001.

[5] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool for
evaluating and synthesizing multimedia and communication systems. In
Proc. MICRO, 1997.

[6] S. S. Muchnick. Advanced Compiler Design and Implementation, Morgan
Kaufmann, 1997.

[7] S. Mutoh et. al. 1-V power supply high-speed digital circuit technology
with multi-threshold-voltage CMOS. IEEE Journal of Solid State Circuits,
vol. 30, no. 8, pp. 847–854, Aug. 1995.

[8] Trimaran homepage. http://www.trimaran.org.
[9] S.Rele, S.Pande, S.Onder, and R.Gupta, Optimization of Static Power

Dissipation by Functional Units in Superscalar Processors, International
Conference on Compiler Construction, LNCS 2304, Springer Verlag,
pages 261-275, Grenoble, France, April 2002

