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Power leakage constitutes an increasing fraction of the total power consumption in modern semi-

conductor technologies. Recent research efforts indicate that architectures, compilers, and software

can be optimized so as to reduce the switching power (also known as dynamic power) in micropro-

cessors. This has lead to interest in using architecture and compiler optimization to reduce leakage

power (also known as static power) in microprocessors. In this article, we investigate compiler-

analysis techniques that are related to reducing leakage power. The architecture model in our

design is a system with an instruction set to support the control of power gating at the component

level. Our compiler provides an analysis framework for utilizing instructions to reduce the leakage

power. We present a framework for analyzing data flow for estimating the component activities at

fixed points of programs whilst considering pipeline architectures. We also provide equations that

can be used by the compiler to determine whether employing power-gating instructions in given

program blocks will reduce the total energy requirements. As the duration of power gating on com-

ponents when executing given program routines is related to the number and complexity of program

branches, we propose a set of scheduling policies and evaluate their effectiveness. We performed

experiments by incorporating our compiler analysis and scheduling policies into SUIF compiler

tools and by simulating the energy consumptions on Wattch toolkits. The experimental results

demonstrate that our mechanisms are effective in reducing leakage power in microprocessors.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
optimization

General Terms: Algorithms, Experimentation Languages

Additional Key Words and Phrases: Compilers for low power, leakage-power reduction, power-

gating mechanisms

1. INTRODUCTION

The demands of power-constrained mobile and embedded computing applica-
tions are increasing rapidly, which makes the reduction of power consumption
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a crucial challenge for software and hardware developers. The continuing size
reductions and increasing speeds of transistors increases the importance of
leakage-power dissipation in the absence of any switching activities. Recent
theoretical analyses have attempted to characterize engineering equations and
cost models for analyzing static powers [Thompson et al. 1998; De and Borkar
1999; Doyle et al. 2002]. One such analysis produced the following relation-
ship: Pstatic = VCC · N · kdesign · Î leak, where VCC is the supply voltage, N is the
number of transistors in the design, kdesign is the characteristic of an average de-
vice, and Î leak is a technology parameter describing the per-device subthreshold
leakage [Butts and Sohi 2000].

In this article, we discuss compiler analysis techniques used to reduce the
number of devices, N , in the static power equation above to ease the problem of
leakage power. The architecture model in our design is a system with an instruc-
tion set that supports the control of power gating at the component level. We
attempt to reduce the number of devices by turning devices off when they not
being used. Our work provides compiler solutions for the analysis and schedul-
ing of the power-gating control at the component level. A data-flow analysis
framework is given that estimates the component activities at fixed points in
programs whilst considering pipeline architectures. We also provide equations
that can be used by the compiler to determine whether employing power-gating
instructions in given program blocks will reduce the total energy requirements.
As the duration of power gating on components in given program routines is
related to the number and complexity of program branches, we propose a set of
scheduling policies (Basic Blk Sched, MIN Path Sched, and AVG Path Sched)
and evaluate their effectiveness. Our proposed framework are effective for ma-
chines with in-order executions. Additional cares have to be taken when one
deals with out-of-order issues. For out-of-order issues, we suggest power-gating
operations on a function unit should be considered dependent to normal op-
erations on this unit. Our experiments are performed by incorporating our
compiler analysis and scheduling policy into SUIF compiler tools [Smith 1998;
Stanford Compiler Group 1995] and by simulating the energy consumptions
on Wattch [Brooks et al. 2000] toolkits. We also revise Wattch/SimpleScalar to
adopt our proposed schemes to deal with out-of-order issues. The experimental
results demonstrate that our mechanisms are very effective in reducing leak-
age power in microprocessors. In summary, the key contributions of our work
include the presentations of data flow analysis framework for component activ-
ities, the scheduling policies for power-gating instructions going beyond basic
blocks, and the suggestions of hardware refinements for out-of-order issues to
work with our proposed methods.

The remainder of this article is organized as follows: Section 2 presents
our machine architectures with power-gating controls. Section 3 presents
our data-flow analysis framework for component activities. Next, Section 4
provides scheduling policies for leakage power reductions by utilizing gath-
ered component information. Experimental results will then be presented in
Section 5. Finally, Section 6 describes related work and Section 7 concludes this
article.
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Fig. 1. Machine architecture model with power-gating control.

2. MACHINE ARCHITECTURE

The architecture model in our design is a system with an instruction set that
supports the control of power gating at the component level. Figure 1 shows an
example of our target machine architecture on which our optimization is based.
We focus on the reduction of the power consumption of the certain function units
by invoking the “power-gating” technology. Power gating is analogous to clock
gating—power gating turns off devices by switching off their supply voltage
rather than switching off the clock. This can be achieved by forcing transistors
to turn off or using multithreshold voltage CMOS technology (MTCMOS) to
increase the threshold voltage [Butts and Sohi 2000; Kao and Chandrakasan
2000; Roy 1998].

We built the experimental architecture within the Wattch simulation envi-
ronment [Brooks et al. 2000]. In this simulation environment we can measure
the power consumption of every microprocessor component throughout the ex-
perimental program. This architecture is essentially compatible with the DEC
Alpha 21264 processor [Compaq Computer Corporation 1999]; the major differ-
ence between these two architectures is the additional power-gating design and
the static pipeline scheduling in our experimental architecture. The compiler
approach proposed in this article is basically for in-order issue processors, but
we also propose a solution to make our methodology feasible for out-of-order is-
sue processors shown later in Section 5.3. We implemented the proposed mech-
anism into SimpleScalar and evaluated our approach with out-of-order issue
processors.

The power-gated function units in our experimental architecture are Inte-
ger Multiplier, Floating-Point Adder, Floating-Point Multiplier, and Floating-
Point Divider. The power gating of each function unit can be controlled by the
“power-gating control register” (PGCR). The PGCR is a 64-bit integer register.
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In this case, only the lowest four bits of this register can affect the power-
gating status. The 0th bit of the lowest four bits of the PGCR controls the
power gating of the Integer Multiplier: setting this bit will cause the Integer
Multiplier on, and clearing it will turn off the corresponding function unit in
the next clock cycle. The 1st, 2nd, 3rd bits of these four bits are used for the
Floating-Point Adder, Floating-Point Multiplier, and Floating-Point Divider, re-
spectively. It is worth mentioning that the integer ALU unit within the archi-
tecture is also involved in general program execution, since it also performs
data movements to the PGCR. This means that the integer ALU is always re-
quired, and so this function unit is always on. In addition, we invoke a new
instruction in the simulation environment to specify the access direction of
PGCR. This instruction can operate those four power-gated function units at
once by moving the appropriate value from a general-purpose register to the
PGCR.

3. COMPONENT-ACTIVITY DATA-FLOW ANALYSIS

In this section, we investigate the compiler analysis techniques used to reduce
the leakage power. We present a data-flow analysis framework for a compiler
to analyze the state of components in a microprocessor. The process collects the
information of the utilization of components at various points in a program. We
first construct basic blocks and control flow graphs of given programs, and then
develop a data-flow equation for the summary of component usages at given
program points. To gather the data-flow information, we define comp gen[B],
comp kill[B], comp in[B], and comp out[B] for each block B.

We say that a component-activity c is generated at a block B if a component
is required for this execution, symbolized as comp gen[B], and that it is killed
if the component is released by the last request, symbolized as comp kill[B].
We then create the two groups of equations shown below. The first group of
equations follows from the observation that comp in[B] is the union of activities
arriving from all the predecessors of B. The second group is the activities at the
end of a block that are either generated within the block, or those entering at
the beginning but not killed as control flows through the block. The data-flow
equation for these two groups is as follows:

comp in[B] =
⋃

P a predessor
of B

comp out[P ]

comp out[B] = comp gen[B] ∪ (comp in[B] − comp kill[B]).

We use an iterative approach to compute the desired results of comp in and
comp out after comp gen has been computed for each block. The algorithm
is sketched in Figure 2. This is an iterative algorithm for data-flow equa-
tions [Aho et al. 1986] with the addition of resource management structures. A
two-dimension array, called RemainingCycle, is used to maintain the number of
cycles that are required to fulfill requests for each component and block. In ad-
dition, a resource-utilization table is adopted to give the resource requirement
for each instruction of the given microprocessor. The resource-utilization table
can be used to give the initial values of RemainingCycle. The remaining cycles
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Fig. 2. Data-flow analysis algorithm for component activities.

of a component decrease by one for each propagation. Initially, both comp in
and com kill are set to be empty. The iteration continues until comp in (and
hence comp out) converges. As comp out[B] never decreases in size for any B,
the algorithm will eventually halt when all comp out are in the steady state.
Intuitively, the algorithm propagates activities of components as far as they will
go by simulating all possible execution paths of the program. This algorithm
provides the state of utilization of components for each point of a program.

4. LEAKAGE-POWER REDUCTION

In this section, we present a cost model for the compiler to determine whether
power-gating control should be applied, and a set of scheduling policies to place
power-gating instructions within given programs.

4.1 Cost Model

With the utilization of components obtained from Section 3, we can insert power-
gating instructions into programs at the appropriate points (i.e., the beginning
and of an inactive block) to turn off and on unused components so as to re-
duce the leakage power. However, both shut-down and wake-up procedures are
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associated with an additional penalty, especially the latter due to peak voltage
requirements. The following equation represents our cost model for deciding
if the insertion of power-gating instructions will provide energy-consumptions
benefits:

Eturn off (C) + Eturn on(C) ≤ BreakEvenC × Pleak saving(C),

where Eturn off (C) is the energy penalty for shutting down component C, Eturn on

is the energy penalty for waking up component C, BreakEvenC is the break-
even cycle for component C, and Pleak saving(C) is the leakage-power saving of
component C per cycle when power-gating controls are employed. The left-hand
side of the equation shows the energy consumed by shut-down and wake-up
procedures, and the right-hand side equals the leakage energy consumed over
a certain number of cycles. Power-gating control will only save power if the
amount of power required to shut down and wake up is less than the leakage
energy consumed during the same intervening period in the absence of these
procedures.

The latency associated with turning a component on should also be consid-
ered when employing power gating. Due to the high capacitance of micropro-
cessor circuits, a component will typically need several clock cycles to reach its
normal operating state. Butts and Sohi [2000] also illustrated that at 1 GHz it
takes about 7.5 cycles to charge 5 nF to 1.5 V with 1 A (which are typical values
in microprocessor circuits). With this consideration, we enforce power gating
on a component only when the size of its inactive block (i.e., the idle region)
is larger than its break-even cycle and its latency to recovery. Our cost model
after incorporating latency becomes the following:

ThresholdC = MAX(BreakEvenC, LatencyC),

where LatencyC is the power-gating latency of component C. In addition, we
attempt to insert the wake-up operations of power-gating control ahead of the
time at which the corresponding components are required, in order to avoid
program stalling whilst waiting for the wake-up latency.

4.2 Scheduling Policies for Power Gating

The component activity information gathered and the cost model for deciding
if the power-gating instructions should be employed now allow us to consider
the scheduling mechanisms when inserting the power-gating instructions into
given programs. As the duration of power-gating control on components is in-
fluenced to conditional branches in programs, we propose a set of scheduling
policies (Basic Blk Sched, MIN Path Sched, and AVG Path Sched) with power-
gating instructions. The details are given below.

A naive mechanism to control the power-gating instructions will set the
on and off instructions at each basic block according to the component ac-
tivities gathered by the data-flow equation in Section 3. We call this scheme
Basic Blk Sched.

An additional complication is that the inactive period of a component may
span more than two adjacent basic blocks. We therefore use a depth-first-
traveling algorithm to traverse all possible execution paths. In general, an
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inactive block will be turned off when the criteria discussed in Section 4.1 are
reached. Another case to consider in power gating is that of an inactive block
containing conditional branches, since the length of the two inactive blocks—
which follow the branch targets—may be different. For example, only one of the
branchings may benefit from power gating, in which case taking power-gating
control in that branch when the other branch is instead taken may not reduce
the power requirements. In other words, the path lengths of the taken and not-
taken paths of a branch may not be equal and therefore one path may satisfy
the cost model in Section 4.1 and the other path may not. Hence, we propose
a MIN Path Sched policy to ensure that power-gating control is activated only
when the inactive lengths of both branching paths exceed the power-gating
threshold; that is, the minimum length of those paths reaches the criteria for
power gating.

Figure 3 presents the details for the MIN Path Sched algorithm proposed.
The algorithm is adopted from depth-first-traveling algorithm, where recursion
is incorporated in order to guarantee that all paths of the inputted control flow
graph (CFG)—which is annotated with component utilization—are traversed.
The arguments (C, B, Branched, Edge, and Count) represent the type of the
component in analysis for power-gating control, the node ID of the CFG, a
Boolean variable that shows whether the current traverse comes through a
branch, the type of the outgoing edge, and the accumulated inactive length so
far, respectively. The algorithm starts traversing from the root of the CFG with
a Count of zero, schedules power-gating instructions at the beginning and end
of inactive blocks if necessary, and halts when all execution paths are traversed.
The algorithm is divided into four parts to handle conditions when encountering
or not encountering a conditional branch while the analyzing component is
active or inactive, respectively:

(1) A conditional branch is reached and the component is inactive. Under
this condition, the algorithm increases the Count and makes two recur-
sive calls that returns the inactive length of its right and left branch, re-
spectively. A judgment on power gating is then made, and it returns the
minimum inactive length of two branchings. Note that comp out[B] repre-
sents the set of the component activities of block B; therefore, the condition
C /∈ comp out[B] indicates that component C is not in the active set of
comp out[B].

(2) A conditional branch is reached and the component is active. Under this con-
dition, the algorithm takes control of power gating if necessary, starts two
recursive calls for both branches, and finally returns the current inactive
length.

(3) Any statement except for a conditional branch is reached and the component
is inactive. Under this condition, the algorithm continues the traverse; that
is, it only increases Count and then returns.

(4) Any statement except for a conditional branch is reached and the component
is active. Like condition 2, the algorithm takes control of power gating if
necessary and starts a new traveling for its successor. And finally, it returns
Count.
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Fig. 3. MIN Path Sched algorithm based on depth-first-traveling for power gating.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.



Compilers for Leakage Power Reduction • 155

Note that care must be taken for recursive boundaries to reach the backward
edges for a loop. As a depth-first search algorithm can find the loop, cycling can
occur in our algorithm. In a cyclic situation, if none of the instructions used in
the cycle of a program fragment use the component in the search, we will assume
the loop cycle is executed once with the minimum-path scheduling policy. If some
instructions in the backward edge of a program fragment do use the component
in the search, the backward edge extending to that instruction will be accounted
for in the program path. In addition, since our proposed algorithm is based on
depth-first-traveling, the complexity of our approach is O(N ) where N is the
number of nodes in a control flow graph.

Next, since the behavior of program branches depends on the structure
and the input data of programs, some branches may be followed rarely
or even never. To accommodate this, we propose an eclectic policy, called
AVG Path Sched, to schedule power-gating instructions. The only difference
between AVG Path Sched and MIN Path Sched is the judgments made in con-
dition 1 above: AVG Path Sched returns the average length of two branchings
instead of the minimum. This scheme will take advantage of power reduction
if an infrequently taken branch returns a small value of Count which causes
inactivation of power-gating mechanism. The AVG Path Sched mechanism can
be approximately implemented by assuming the probabilities of all branches
are 50%, by assigning branch probabilities at compilation time by program-
mers or compilers, or by incorporating path-profiling schemes to examine the
probabilities of all branches.

5. EXPERIMENTS AND DISCUSSIONS

5.1 Platform

We use a DEC-Alpha-compatible architecture with power-gating control and
instruction sets described in Figure 1 as the target architecture for our exper-
iments. The proposed data-flow analysis and scheduling policies are incorpo-
rated into the compiler tool with SUIF [Stanford Compiler Group 1995] and
MachSUIF [Smith 1998], and evaluated by the Wattch simulator [Brooks et al.
2000]. Table I summaries the baseline configuration of the simulator in our
experiment. By default the simulator performs out-of-order execution. We use
“-issue:inorder” option in the configuration so that instructions would be exe-
cuted in order for ensuring the correctness of execution; our approach might
be harmed in an out-of-order architecture if no additional support is provided.
We discuss the problem and propose solutions with hardware supports to the
limitation in Section 5.3. Furthermore, several assumptions are made for com-
pleteness as follows: (1) As Wattch does not model leakage at the component
level per se, we assume that leakage power contributes 10% of total power
consumption. Though ten percent might be underestimated according to De
and Borkar [1999] and Thompson et al. [1998], larger percentage of leakage
power result in more power reduction for our approach. (2) We assume that
wake-up operations of power-gating control take 20-cycle latency, although 7.5
cycles are introduced in Butts and Sohi [2000]. We show our scheme is still
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Table I. Baseline Processor Configuration

Parameter Configuration

Clock 600 MHz

Process parameters 0.10 μm, 1.9 V

Issue In-order

Decode width 4

Issue width 4

Commit width 4

RUU size 8

LSQ size 8

Function units 4 integer ALU

1 integer multiply/divide unit

4 FP ALU

1 FP multiply/divide unit

Register file 32 64-bit integer registers

32 64-bit FP registers

1 power-gating control register

Fig. 4. (a) Results of Floating-Point Adder for nsieve (b) Results of Floating-Point Multiplier for

nsieve.

with good benefits despite of overestimated latency. (3) To let the power-gating
instructions—which are generated by the optimized compiler—be recognized
by the Alpha assembler and linker, power-gating instructions are replaced by
a set of instructions “stl $24, negative offset($31)”, where negative offset is a
negative integer and is used for indicating which function unit to be powered
on or off. The instruction stores the value of register $24 into the memory ad-
dress below zero, which is an invalid memory address—$31 is a constant zero
register—and should never be generated by standard compilers. To avoid pro-
cessors from accessing the invalid memory addresses, we made a small modifi-
cation in SimpleScalar: when the instruction decoder decodes such instructions,
it extracts the power-gating information and converts it to a NOP instruction.
The test suites used in our experiment are benchmarks listed in AbuFAQ of
comp.benchmarks [Aburto et al. 1997].

5.2 Simulation Results

Figure 4(a) and 4(b) illustrate the power-consumption results for the simu-
lations of power-gating control over Floating-Point Adder and Floating-Point
Multiplier for the nsieve application, respectively. In these figures, the X -axis
represents the break-even cycle for our scheduling criteria, and the Y -axis
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Fig. 5. Power gating on (a) Floating-Point Adder and (b) Floating-Point Multiplier for miscella-

neous benchmarks (BreakEvenC = 32).

represents the power consumption. The leftmost bar shows the power dissi-
pated by function units when no power-gating control is employed, which rep-
resents the result of standard clock-gating mechanism provided by the Wattch
power estimator. We use this as the baseline version for comparison. The clock-
gating mechanism gates the clocks of those unused resources in multiported
hardware to reduce the dynamic power. However, static power is still leaked.
The remaining bars in the figures show the power-gating results for the pro-
posed scheduling policies with different break-even cycles. The results show
that the power-gating mechanism reduces the leakage power by a large amount
even when the penalty of power-gating control is high (i.e., a large break-even
cycle). Note that we have incorporated the energy penalty associated with in-
serting power-gating instructions into the Wattch power simulator. Our ex-
perimental data also indicate that the MIN Path Sched and AVG Path Sched
scheduling algorithms always provide better results than the Basic Blk Sched
algorithm. This is because the Basic Blk Sched algorithm schedules power-
gating instructions within basic blocks while the other two schedule those be-
yond branches. The possible inactive durations of components are extended
when MIN Path Sched or AVG Path Sched is employed. A more accurate
model for the AVG Path Sched mechanism would incorporate path profiling
schemes (replacing our assumption of 50% probabilities in all branches), which
would further improve the results. The power consumed by the Floating-
Point Adder is reduced from 0% to 50.3%, from 27.5% to 65.5%, and from
27.5% to 70.2% for the Basic Blk Sched, MIN Path Sched and AVG Path Sched
policies, respectively. The corresponding reductions for the Floating-Point
Multiplier are from 0% to 39.8%, 30.3% to 55.4%, and 30.3% to 62.0%,
respectively.

Figure 5(a) and Figure 5(b) give the power consumption of the Floating-
Point Adder and the Floating-Point Multiplier for various benchmarks while
employing the power-gating mechanism with a break-even cycle of 32. It is
again evident that the AVG Path Sched policy provides the greatest power re-
duction, with the MIN Path Sched and Basic Blk Sched coming second and
third, respectively. However, all three produce better results than the one with-
out power gating (i.e., which only employs clock gating). Figure 5(a) shows that
the Basic Blk Sched, MIN Path Sched, and AVG Path Sched policies produce
average reductions of 16.77%, 70.41%, 70.43% for the Floating-Point Adder in
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Fig. 6. Simulation results when using the power-gating control for integer and floating-point units

(BreakEvenC = 32).

all benchmarks, respectively. In the case of the hanoi benchmark, which is an
integer program, the reduction is 96.7% of power for Basic Blk Sched and 99.5%
for MIN Path Sched and AVG Path Sched. Similar results are summarized in
Figure 5(b).

Our experiments demonstrate a clear reduction in the energy consumption
of each component, but it is also of interests to determine the reduction in
energy as a percentage of the total energy consumption. The information from
our experimental data is given in Figure 6(a). For a break-even cycle set to be
32, using the power-gating control for integer and floating-point units with the
Basic Blk Sched, MIN Path Sched, and AVG Path Sched policies reduces the
total power by average 1.98%, 8.78%, and 8.89%, respectively. With regard to
the impact on performance, the cycle counts of execution provided by the Wattch
(i.e., SimpleScalar) show that our approach has a light impact (less than 2%)
on performance. Figure 6(b) shows the performance degradation in terms of
different scheduling policies. Note that, as mentioned earlier, the latency of
power-on operations is assumed to be 20 cycles, which is overestimated for
strict evaluation. Note that the performance degradation numbers of hanoi,
heapsort, nsieve, and eqntott-test1 program are too small (less than 0.01%) to
be illustrated in the figure. The reason why the numbers are small is that the
execution time of these programs is so large that it amortizes the performance
impact caused by power-gating operations.

We also compiled the experiment statistics and found that the ratios of
power-gating instructions to total instructions in the program code and sim-
ulated code are small. Figure 7 illustrates the details. Figure 7(a) shows the
ratios of power-gating instructions in the program code when Integer ALU,
Floating-Point Adder, and Floating-Point Multiplier are considered for power
gating, and Figure 7(b) shows those in the simulated code (code ratio in run-
time execution) when Integer ALU, Floating-Point Adder, and Floating-Point
Multiplier are considered for power gating. It is found that the ratios in tfftdp
and eqntott-test4 program are much higher. This is because the lengths of
these programs are small so that the proportion of power-gating instructions
looks much larger. However, it is also found that power-gating instructions,
in fact, are issued with a very small number of counts, which turns out
that the inserted power-gating instructions would barely affect the program
execution.
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Fig. 7. Ratio of power-gating instructions to total instructions when using the power-gating control

for integer and floating-point units (BreakEvenC = 32).

Finally, in the issue to increase the off-times of the units by scheduling in-
structions, it’s certainly important to be able to do that. As compiler technolo-
gies nowadays are now done one phase after another phase. We consider the
increase of the off-time phase can be done as a separate phase before our in-
struction issue phase. Our work can work with the increase off-time phase if
available.

5.3 Simulation Results for Out-of-Order Issue Processors

The proposed framework is applicable to general superscalar machines that
execute instructions in order. Our approach can be applied to out-of-order
issue machines as well if additional hardware supports are employed. We
present a solution below. Superscalar machines use dynamic pipeline schedul-
ing, which dynamically reorder instructions to avoid hazards (such as struc-
ture and data hazards), to utilize the resources and then result in out-of-order
execution. To ensure that power-gating instructions are executed at the cor-
rect timing with respect to instructions, called consumer instructions, that
use the power-gated function units, power-gating instructions on a function
unit are considered dependent to consumer instructions on this unit. That
is, consumer instructions cannot be advanced before power-on operations and
postponed after power-off operations during the dynamic pipeline scheduling;
moreover, power-on and power-off operations are not interchangeable. In this
regard, the situation that an instruction finds its function unit turned off can
be avoided, which turns out that our approach can be applied to out-of-order
machines.

We implemented the above idea into SimpleScalar by checking the status
of reservation stations to maintain the dependencies between power-gating in-
structions and consumer instructions. (Remember that, in this article, we had
proposed a compiler technique to insert power-gating instructions at appropri-
ate positions, i.e., the compiler automatically inserts a power-on instruction
before consumer instructions and a power-off instruction after the consumer
instruction.) These dependencies can be categorized into two types: the depen-
dencies between power-on instructions and consumer instructions that use the
unit to be powered on and the dependencies between power-off instructions and
consumer instructions that use the unit to be powered off. In fact, the former
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Fig. 8. Simulation results (out-of-order issue) when using the power-gating control for integer and

floating-point units (BreakEvenC = 32).

type of dependencies is unnecessary and needs no adaptation in SimpleScalar
since a power-on instruction should be issued in advance of consumer instruc-
tions due to the in-order fetch model in SimpleScalar, and thus a unit will
be powered on before it is used. However, the dependencies between a power-
off instruction and consumer instructions are required—power-off instructions
might be issued in advanced of consumer instructions—in order to avoid execut-
ing instructions on a unit that is turned off. We modified SimpleScalar to ensure
that a power-off instruction is stalled until the reservation station of the unit to
be powered off is empty, that is, the power-off instruction is issued after all of the
consumer instructions are executed. Moreover, to ensure the execution order
of power-on and power-off instructions, we enforce a power-gating instruction
be stalled until an another power-gating instruction prior to the power-gating
instruction are issued. In fact, if this happens, these two power-gating instruc-
tions, a power-on instruction and a power-off instruction, can be flushed since
a successive execution of the power-on and power-off operation is unnecessary.
It would be meaningless if we power on a unit right after powering off the unit
and vice-versa. With the above adaptation, the proposed compiler framework
for power-gating control can be applied to out-of-order issue processors.

Admittedly, the above mechanism will have performance impacts—a power-
off instruction is stalled and occupied a slot in the instruction window until the
dependencies between the power-off instruction and consumer instructions are
resolved, but along with the results of Figure 7(b), the occurrence of issuing a
power-gating instruction is so rare that the performance impact would be neg-
ligible. In fact, the performance impacts can even be eliminated with a minor
modification in the implementation: adding a power management controller
to handle power-gating instructions. Once the instruction decoder decodes a
power-gating instruction, the instruction dispatcher dispatches the instruction
to the power management controller and removes the instruction from the in-
struction window and the power management controller performs power-gating
control based on the behavior described in the last paragraph. In this case, the
performance impact is eliminated.

We used the same processor configuration in Table I, but the instruction issue
is changed to be out-of-order to evaluate the effect on out-of-order processors.
Figure 8(a) shows the total energy reduction in terms of the entire micropro-
cessor when only integer and floating-point units are under the power-gating
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control. The results are quite similar to Figure 6(a) which is configured with
in-order issue. The major differences in simulation result between in-order and
out-of-order processors are the number of the simulation cycle and the total
energy consumption. Out-of-order processors are in average 29.3% faster and
consume less 17.5% of power than in-order processors. The performance degra-
dation due to power-gating instructions is shown in Figure 8(b) and is almost
the same as those shown in Figure 6(b).

6. RELATED WORK

Minimization of power dissipation can be considered at algorithmic, architec-
tural, logic, and circuit levels [Chandrakasan et al. 1992]. Studies on low-power
design are abundant in the literature [Alidina et al. 1994; Benini and Micheli
1995; Hachtel et al. 1994; Hong et al. 1999; Prasad and Roy 1993; Roy and
Prasad 1992; Tsui et al. 1993], and these have proposed various techniques for
synthesizing designs with low transitional activities. Static power dissipation
(or the leakage current in the absence of any switching activities) has increased
in importance as transistors have become smaller and faster.

The reduction in power consumption has been addressed by architecture de-
signs and software arrangements at the instruction level [Bellas et al. 2000;
Chang and Pedram 1995; Horowitz et al. 1994; Lee et al. 2003, 1997; Su and
Despain 1995; Tiwari et al. 1997, 1998]. The efforts to reduce dynamic power in-
clude software rearrangements to optimize the value locality of registers [Chang
and Pedram 1995], the swapping of operands for the Booth multiplier [Lee
et al. 1997], the scheduling of VLIW instructions to reduce the power con-
sumption on the instruction bus [Lee et al. 2003], gating the clock to reduce
workloads [Horowitz et al. 1994; Tiwari et al. 1997, 1998], cache subbanking
mechanism [Su and Despain 1995], and the utilization of the instruction cache
[Bellas et al. 2000].

Several research groups have recently proposed and developed hardware
techniques to reduce dynamic and static power dissipation. The work of
Powell et al. [2000] combines circuit and architectural techniques to reduce
the power consumption in a processor’s cache. The cache miss rate is used to
determine the working-set size of the application relative to that of the cache.
Power is then removed from the unused portions of the cache using Vdd-gated
transistors. Kaxiras et al. [2001] also addressed static power dissipation in the
cache, by considering policies and implementations for reducing cache leakage
by turning off cache lines when they hold data that is unlikely to be reused.
Our approach considers compiler optimizations for static power reduction, and
forms a part of our efforts in the Design Technology Center of our university
to develop compiler toolkits [Lee et al. 2003; You et al. 2001, 2002; Chen et al.
2004; Hwang et al. 1998, 2003; Chang et al. 1998, 2001] for reducing the power
consumption of advanced microprocessors. The work done by Rele et al. [2002]
is a concurrent work to ours by using compiler technique and microarchitecture
support to guide power-gating controls. We brought up the idea quite early
as well as the essential mechanism of this work was applied for a patent in
Taiwan, June 2001 (with the issue number 172459). Rele’s work is based on
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profiling approach to identify hot blocks and cold blocks with the execution fre-
quencies of those blocks. Our work provides data-flow analysis framework for
component activities. In addition, we present schemes to schedule power-gating
instructions go beyond basic blocks when branches are encountered.

7. CONCLUSIONS

In the study described in this article, we investigated compiler analysis tech-
niques aimed at reducing microprocessor leakage power. The architecture
model in our design is a system with an instruction set that supports the control
of power gating at the component level. Here we presented a data-flow analysis
framework for estimating the component activities at fixed points of programs
whilst considering pipeline architectures. A set of scheduling policies compris-
ing Basic Blk Sched, MIN Path Sched, and AVG Path Sched mechanisms was
proposed and evaluated. The experimental results demonstrate that our mech-
anisms are effective in reducing leakage power in microprocessors. Future re-
search directions include investigating the effects of using AVG Path Sched
mechanism with path profiling and edge profiling schemes in experiments.
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