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Abstract. We present a techmque for the compilation of bottom-up and m~xed logic derlvatmns into 

PROLOG-programs It is obtained as an extension of a program transformation technique called Compd#1g 

Control. We illustrate its applications m three different domains: solving numerical problems, integrity 

checking in deductive databases and theorem proving The aim is to obtain efficient PROLOG programs 

for problems in which a non-top-down control is most appropriate. 

Key words. Control rules, transformation, logic programming. 

I. Introduction 

Compiling Control is a program transformation technique for pure logic programs 

proposed in [1]. It was designed for compilation of non-standard computation 

rules. More specifically, given a logic program, a query pattern of interest and 

an (ideal) computation rule for the program and query pattern, a new logic pro- 

gram is derived, such that, if it is executed under the standard computation rule 

of PROLOG, then the computation obtained is a precise imitation of the behaviour 

of the original program under the ideal computation rule. Typically, such a trans- 

formation can compile a coroutining rule for any given generate-and-test program, 

without the use of a delay predicate. It can also compile more complex control regimes 

suitable for solving constraints problems, such as forward check#Tg o r  looking ahead 
(see [2, 3]). 

The technique consists of two separate steps. First, it constructs a finite fragment 

of an abstract computation trace obtained by executing an abstract query (the given 

query pattern) under the new (top-down) computation rule. In a second step, it 

synthesizes a new logic program which behaves as described in the trace fragment if 

it is executed under the standard computation rule. 

*Work partly supported by E S P R I T  BRA C O M P U L O G  (project 3012). 
++Supported by the Belgian I W.O.N.L.-I R.S.I.A under contract number 5203. Author for correspond- 

ence. 

~Supported by the Belgian National Fund for Scientific Research. 
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The starting point for this paper is the observation that we may omit the condition 

that the trace fragment must be obtained from a top-down execution. This provides 

the possibility of compiling bottom-up and mixed computation strategies. 

The range of potential applications for such a transformation technique seems large. 

First, there are applications in solving numerical problems. Ref. 4 describes a different 

program transformation method aiming at the elimination of redundant computations. 

In all the examples we have studied so far, programs which give rise to redundant 

computations under a top-down execution strategy (e.g., computing the Fibonacci 

numbers) are more naturally and more efficiently executed with a bottom-up strategy. 

We use an example (Fibonacci) from this class of problems to introduce our technique. 

We also illustrate how another transformation technique, namely the transform- 

ation of ahnost-tail-recursive procedures into logically equivalent tail-recursive ones 

(see [5]), can be imitated by compiling a bottom-up control rule, to obtain equally 

efficient tail-recursive procedures. 

A quite different class of applications is the compilation of integrity checking in 

deductive databases. Refs. 6 and 7 present a technique based on theorem proving, 

using mixed inference strategies to check the integrity constraints. In [8] an imple- 

mentation based on a meta-interpreter is described. In this paper, we will briefly 

illustrate how our technique can be used to enable a compiled approach. 

Finally, there are applications in theorem proving. If a (resolution based) theorem 

prover can produce a successful derivation path for a given type of problem, expressed 

in (not necessarily Horn-) clausal formulas, then our technique can compile the 

derivation path into an efficient logic program. In a learning environment, this could 

provide a practial tool for deriving operational rules, similar to what is achieved by 

Explanation-based Learning [9, 10] but for problem domains which are specified in 

full, non-Horn, clausal form. 

Before going in more detail, we want to emphasize that what we are presenting is 

a technique for control compilation. Given a clausal theory, a query of interest and 

an ideal control rule for this theory and query, we derive a PROLOG program that 

compiles the triplet. The problem of how to obtain the ideal (or even a good) control 

rule is not addressed. We will assume that it is either provided by the user or that it 

is obtained from a general theorem prover. For some of the specific applications we 

discuss (e.g., integrity checking), we refer to some known principles for obtaining a 

useful strategy. 

2. Compiling Control Rules 

In this section we introduce our technique using two simple examples. The first one 

describes the compilation of a non-standard top-down computation rule. In the 

context of this example, we recall a subset of the control compilation of[l]. Moreover, 

we slightly reformulate the compilation procedure, so that we can easily extend it do 

deal with non-top-down computations. The second example describes the compil- 

ation of a bottom-up control rule. 
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Our notational conventions are variables, function- and predicate names start with 

a lowercase character. Upper case is used for constants. With the infix dot-notation, 

x.y, we represent a list with head x and tail 3'- 

The first example is the transformation of the permutation-sort program. The 

original clauses are 

SI: sort(x, y) *- perm(x, y), ord(y). 

PI: perm(Nil, Nil)*--. 

P2: perm(x.y, u.v) ~ del(u, x.y ,  w), perm(w, v). 

D1 : del(x, x .y ,  y)  ~ .  

D2: del(u, x .y ,  x .v )  ,-- del(u, y, v). 

O1: ord(Nil) +--. 

02: ord(x.Nil) ~ .  

03: ord(x.y.:) +- x ~< y, ord(y.:). 

The query pattern of interest is ~ sort(x, y). The new computation rule is expressed 

by building (a finite part of) the computation trace which is obtained by executing the 

query ~ sort(x, y) under the new computation rule. For permutation-sort, the com- 

putation trace is drawn in Figure 1. 

The trace has the shape of an OR-tree. Its nodes contain an identifier for the node 

and a resolvent obtained during the derivation under the new computation rule. In 

each resolvent, the subgoal selected by the rule is denoted in bold-italic. This subgoal 

is expanded for one derivation step using every applicable clause from the program. 

Fig. 1 

6 
ord(ul.Nil) 

o2 I 
8 

[] 

1 
~- sort(x,y) 

2 

~ perm(x,y), ord(y) 

~ x:= xl .yl  

y:= ul.vl 
del(ul, xl.yl,  wl)  

3 4 
~- ord(Nil )  -~ perm(wl,vl), ord(ul.vl) 

Ol1 ~ wl:=x2.y2 
5_] vl:= u2.v2 

del(u2, x2.y2, w2) 

7 
-~ perm(w2,v2), ord(ul.u2.v2) 

03 ] ul_<u2 

9 
perm(w2 ,v2 ) ,  ord(u2.v2) 

Fragment  of  the computat ion trace tree for permutation-sort  under a coroutming rule. 
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Arcs connecting the nodes are drawn to represent such derivation steps. An arc is 

labeled with an identifier of the clause which was used in the derivation step (left of  

the arc) and with the effect of the resulting most general unifier (mgu) on the variables 

in the father node (right of the arc). 

As can be observed from Figure 1, not all consecutive resolvents are represented as 

nodes (e.g., ~de l (u l ,  xl.yl, wl), perm(wl, vl) ,  ord(ul .vl)  is the resolvent obtained 

by applying clause P2 to the node-2-resolvent ~ perm(x, y), ord(y),  and has not 

been represented. The reason is that some selected subgoals are dealt with in a 

different way. Some subgoals occurring during the computation are not in need of a 

non-standard control. They can be efficiently executed under the standard compu- 

tation rule. All resolvents containing such subgoals have been omitted from the trace. 

Instead, these subgoals are represented as extra labels on the arcs of the derivation 

steps that created them (e.g. del(ul, x l .y l ,  wl) in the derivation from node 2 to 

node 4). The interpretation of this feature of the trace tree is that such subgoals are 

immediately and completely solved using the standard computation rule. The successor 

node(s) in the trace represent(s) the next resolvent(s) in the derivation, which is (are) 

obtained after the subgoal has been completely solved. 

Observe that node 4, ~perm(wl ,  vl), ord(ul.vl), actually represents a collection 

of resolvents. The goal *-del(ul, x l .yl ,  w l) can succeed a number of times. For each 

success, a different mgu is produced (the effect of these mgu's is not represented in the 

trace). Node 4 represents all the resulting resolvents. This means that within the trace, 

the backtracking behavior is not solely expressed by the different OR-branching- 

points. The computation may backtrack up to the latest del/3-call, generate a new 

success-substitution, and redescend down the same branch, using this substitution. 

In addition to predicate calls that behave efficiently under the standard compu- 

tation rule, this special feature of the computation traces will also be used to deal with 

built-in predicates (e.g., ul ~< u2 in Figure 1) and calls to database predicates (see 

Section 3). 

Here, we must point out that we do not provide a general decision procedure to 

determine whether a goal should be expanded or completely solved. The only auto- 

mated rule is that calls to built-ins and database facts are always solved. The absence 

of such a decision procedure may seem worrying at first sight. However, it is import- 

ant to realize that the only purpose of the 'solve' feature (in the case of non-built-ins) 

is to reduce the size of the trace tree and the complexity of the transformation. If we 

would simply have expanded the goal ~de l (u l ,  x l .y l ,  wl), and its descendants with 

the depth-first, left-to-right computation rule, then, with a larger trace tree, we would 

have obtained an equivalent transformed program. 

This does not mean that the feature is redundant. Its purpose is threefold: (l) calls 

to built-ins cannot be unfolded, (2) expansion of database calls would produce a very 

high number of branchings in the trace tree, (3) starting from a large knowledge base, 

it is essential from a practical point of view that the transformation can be focused 

on certain predicates of this knowledge base, which are in need of a non-standard 

control, leaving all others untouched. 
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We now turn our attention towards the compilation of the computation rule. 

Figure 1 represents only a finite fragment of the infinite computation trace obtainable 

for *--sort(x, y) since we cannot use the entire, infinite trace as input to the compil- 

ation procedure. However, we do want the new program to be a compilation for the 

entire trace. Therefore, we have to impose some condition on the relation between the 

trace fragment and the infinite trace. 

Recall that we have associated a unique identifier with each node in the compu- 

tation trace. We will assume that these identifiers are integers and that they increase 

from top to bot tom in the trace and from left to right. We say that a resolvent R I is 

previous to a resolvent R2 if the node-identification of R1 is smaller than the one of 

R2. Furthermore, the set o f  labels on an arc starting from a resolvent R in the trace 

is called an action prescribed by the computation rule in R. As an example, in 

Figure 1, the actions prescribed in the resolvent *--perm(x, y), ord(y)  are [P1, x : -  

Nil, 3" := Nill and IP2, x := x l . y l ,  y := u l .v l ,  del(ul, x l ,v l ,  wl) I 

D E F I N I T I O N  2.1. A computat ion rule r is consistent if for any resolvent RI which 

is a renaming of the previous resolvent R2, the actions prescribed by r in R1 are the 

(same) renaming of the actions it prescribed in R2. 

In the example, the resolvent in node 9, e-perm(w2, v2), ord(u2, v2), is a renaming 

of the one in node 4, ~ perm(wl, v 1), ord(ul.vl).  If  our computation rule is consistent, 

then the renamed actions ~P1, wl := Nil, v2:Nil~ and {P2, w2 := x3.y3, v2 := u3.v3, 

del(u3, x3.y3, w3) I are taken in node 9, Therefore, the resolvents in node 10 and 

node 11 will be renamings of the ones in node 6 and node 7. By induction, every 

following resolvent and action is a renaming of a corresponding resolvent and action 

which belongs to the finite fragment. The entire infinite computation trace then folds 

into a finite graph. We call it the compilation graph. For permutation-sort  it is shown 

in Figure 2. 

The compilation graph is very similar to the trace fragment. It can be obtained from 

it by 

�9 Omitting every (non-empty) resolvent RI which is a renaming of a previous 

resolvent R2, together with all its descendants. 

�9 Redirecting the arc leading to RI in the trace fragment towards R2. The renaming 

substitution is added as an additional label to this arc. 

Nodes such as R2 will be referred to as loop-nodes. 

Finally, we generate a set of  new Horn clauses which synthesize the compilation 

graph. To this purpose, we start by focusing on three particular types of  nodes in the 

graph: the root, the nodes containing the empty clause and loop-nodes. These nodes 

are called principal nodes. We then synthesize one new clause for each path in the 

graph which connects two consecutive principal nodes. 

A first such path leads from node 1 to node 5. We obtain the clause: NI: 

sort(Nil, Nil) ~ .  

The three remaining paths all include the loop-node. To synthesize them, we intro- 

duce a new predicate p/2. This predicate is used to build a canonical meta-representation 
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1 
sort(x~v) 

2 
~- pcrm(x,y), ord(y) 

~ x:= x l .y l  
y:= ul.vl 

del(ul, xl .yl ,  wl) 

3 4 
oral(Nil) ~- perm(wl,vl) ,  ord(ul.vl) 

O1 ~ ~ wl := x2.y2 

P1 ._....-"~S.- m;1 P2 1 v l :=  u2.v2 
1"5-1 ~ := l~i~ "-~ '~ ~,del(u2, x2.y2, w2) 

6 7 
~- ord(ul.Nil) ~- perm(w2,v2), ord(ul.u2.v2) 

0 2  ~ 031 ul<u2 

8 
[] 

wl:--w2[ 
vl:--v2 [ 
ul:=u2 [ 

Fig. 2. The compilation graph for permutahon-sort. 

for the resolvent, *--perm(wl, v l), ord(ul.vl) in the loop-node. The meta-representation 

is ~p(perm)wl ,  vl),  ord(ul, vl)). With this new predicate and using the synthesis 

algorithm [11], we obtain 

- for the path from node 1 to node 4: 

N2: sort(xl .yl ,  ul.vl)  ~ del(ul, x l . y l ,  wl), p(perm(wl, vl), ord(ul.vl)). 

- for the path from node 4 to node 8: 

N3: p(perm(Nil, Nil), ord(ul.Nil)) ~ .  

- for the path from node 4 to node 4: 

N4: p(perm(x2.y2, u2.v2), ord(ul.u2.v2)) ~ del(u2, x2.y2, w2), ul ~< u2, 

p(perm(w2, v2), ord(u2, v2)). 

In this last clause, the renaming substitution has been applied to the meta- 

representation of the loop-node's resolvent to obtain the recursive call. 

We only briefly discuss the correctness and completeness of the transformation. The 

reader is referred to [11] for a detailed treatment. 

Both the trace tree and the compilation graph represent a set of OR trees. For any 

given query which unifies with ~ sort(x, y), a corresponding OR tree can be obtained 
from the computation trace by further instantiating the variables in the trace, remov- 

ing the branches for which the unifications expressed in the labels fail and expanding 

the derivations for the subgoals solved under the standard computation rule. In the 

same way we obtain an OR tree from the compilation graph, by, in addition, 



COMPILING BOTTOM-UP AND MIXED DERIVATIONS 343 

performing unfoldings of the loops. Clearly, for each such query, there is a one-to-one 

correspondence respecting branching points and sequences of  unifications between 

the two OR trees. Thus, the compilation graph correctly and completely represents 

the computation trace. 

Next, each of the clauses N1 to N4 is precise synthesis for the corresponding path 

in the compilation graph. Moreover, because of the meta-predicate, the sequences 

(and alternatives) of  clauses from N1 to N4 that are applicable for a query of the type 

,--sort(x, y) and under the standard computation rule, correspond to those in the OR 

tree obtained from the graph. Therefore, N1 to N4 (together with the clauses for del/3) 

are a correct and complete compilation of the original program under the new 

computation rule. 

Generalizing the example, we can now formalize the compilability of a computation 

rule as follows. 

DEFINITION 2.2. A triplet (P, q, r) consisting of a program P, a query q and a 

computation rule r is compilable, if r is consistent and if there exists a finite fragment 

F o f t h e  computation trace of (P ,  q) under 1", such that for each resolvent RI in a leaf 

of F, there exists a previous R2 in F which is renaming of RI. 

We now turn our attention towards the compilation of bottom-up or mixed 

computations. Intuitively, the reason why this seems feasible is that fl'om a procedural 

point of  view any resolution based refutation is a sequence of unifications. If the 

different sequences of unifications occurring in a given bottom-up or mixed compu- 

tation strategy can be expressed and organized within a computation trace tree, then 

there seems to be no objection against the application of the synthesis procedure of 

the previous example. 

Our second example is the classical problem of  computing the Fibonacci numbers. 

The original clauses are 

FI: fib(0, 0 ) ~ .  

F2: fib(l, 1)~ .  

F3: fib(n, [') +-- n >~ 2, plus(nl, 1, n), plus(n2, t, n i l  fib(nl, /'1), fib(n2, /2), 

plus( ['1, t'2, / ). 

Again, we express the desired computation strategy by means of a computation 

trace fragment. It is displayed in Figure 3. The fragment has three roots: the query 

~fib(n,  13 and the facts fib(0, 0) +- (FI )  and fib(l, 1) ~ (F2). We refer to the set of 

all the roots of a trace as the Otk laver of the trace. 

From these roots, we can either resolve on *--fib(n, [') and fib(0, 0)~- to derive the 

empty clause, or we can resolve on +--fib(n, f )  and fib(l, 1)+--, again obtaining the 

empty clause, or we can perform a bottom-up inference step, applying the rule F3 to 

the facts fib(0, 0),-- and fib( 1, 1 ),-- and solving all the remaining calls in the body of F3 

(plus(0, 1, l),plus(1, l, n l ) , n l  ~> 2 and plus( l , 0, /'l )) to deduce the fact fib(n l , /1) *-- . 

Each inference step may include a multiple number of operations (including more 

than one resolution). The three inference steps above are referred to as the/Srst layer 
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l 2 3 
a- fib(n,f) fib(O,O) ~- fib(l,1) ~- 

~ ~ / plus(O,l,1)~ 
�9 ~ / p l u s ( 1 , 1 , n l )  \ 

n:~3_, / ~  / n l  > 2 
.... ~61~F3 plus( 1,0 , f l f l ) / )  

[ ]  f ib (n l ' f l )<-  ~ I 

i plus(1,1,nl) 
I plus(nl, l ,n2) f ~  

F3 n 2 > 2  

fib(n.2,f2) ~ ] 

1 1  plus(nl,  1,n2) / 

F I p lus (n2 ,1 ,n3) /  
31 n 3 > 2 /  

n:=O n'=] 

n:---nl 

1 D fib( 

f:=f2 

9 10 
[] fib(n3,f3) ~- 

Fig. 3. Trace fragment for a mixed computation strategy for the Flbonacci numbers. 

inferences of the trace. The clauses: D, [] and fib(nl, f l ) ~  are the first layer clauses. 

In general, we have the following: 

D E F I N I T I O N  2.3. The Oth layer clauses of a computation trace are the roots of  the 

trace. 

An ith layer blference step is a sequence of resolutions consuming one or more 

(i - k)th layer clauses, k > 0, and zero or more clauses from the program. At least 

one of the consumed clauses is of  layer i - 1. Each ith layer inference step produces 

one ith layer clause as its resolvent. 

In Figure 3, each inference step is represented by a number of descending arcs (one 

arc for each clause consumed), all ending in a same node (that of  the produced 

clause). Each node contains an identification and a clause. Clauses belonging to a 

same layer of  the trace have been positioned on a same horizontal line. If  a clause C! 

is connected to a clause C2 by a path of  descending arcs, we say that C2 is a descendent 

of CI. 

As in Figure 1, an identifier of  the clause from the program that was applied (if any) 

and the effect of  the mgu on the variables in the parent nodes, are represented as labels 

on the arcs. Also, calls solved using the standard top-down control (in this example 

the built-ins) are labeled on the arcs. 

The main difference between this trace segment and the one in Figure l is that this 

one does not have the shape of a tree. Every inference step combines information from 
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1 
fib(n,f), fib(O,O) <-, fib(l,1) "~ 

~ plus(O,l,1) 
n:--O plus(1,1,nl) 
f:=O / nl  > 2 

~ ~  plus(1,O,fl) 

2 3 4 
[]  [ ]  -~ fib(n,f), fib(l,1) ~ ,  fib(nl,fl) <- 

~ ~ g 3  plus( l ' l 'n l )  
n:--nl ~ plus(nl,l,n2) 

n2 >2  
t plus(fl,l,f2) 
6 

5 [ ]  ~- fib(n,f), fib(nl,fl) <-, fib(n2,f2) <- 

~ plus(nl,l,n2) 

n:--n2 ~ F3 ~.~u~(2n2' 1'n3 ) 

plus(f2,fl,f3) / -  
7 8 

[ ]  ~- fib(n,f), fib(n2,f2) -~, fib(n3,t3) ~- 

Fig. 4. Syntactical reorgamzatlon of the trace fragment for the Fibonacc~ numbers 

different nodes in lower layers to infer the produced clause. However, the tree- 

structure is essential if we want to mimic the computation by means of top-down 

derivations. 

This problem is solved by performing a syntactical reorganization on the trace 

fragment. A number of nodes from the initial graph are merged into one node of the 

new graph. The new node contains the conjunction of their clauses. This conjunction 

represents a computation state which exists at a given time (what is the pending query 

and what are the relevant facts that are available at that time). As an example, the 

query ~fib(n, [ )  and the two facts fib(0, 0),-- and fib( I, 1 )*-- form the initial compu- 

tation state of Figure 4. They are merged as a conjunction into a single root of the 

reorganized graph, shown in Figure 4. 

The following procedure computes a reorganized trace (RT) from a given compu- 

tation trace (CT): 

Initialization 

The 0th layer of the RT consists of a single state. It is the conjunction of all 0th layer 

clauses of CT. 

Constructblg the ith layer o[' R T  

1. The state at the ith layer: 

First we partition the ith layer clauses of CT into states. Two such clauses are 

conjuncts of a same ith layer state in RT if they have a common descendant at layer 
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i + k, k >~ 1, in CT. Let S by any ith layer state of RT obtained in this way. We 

add to S all the kth layer clauses R ofCT,  k < i, such that there exists a descendant 

D of a conjunct of Sin CT and R is consumed in the inference step of CT producing 

D. 

2. The inferences at the ith layer: 

For every ith layer state S, of RT, there is exactly one (i - 1)th layer state S, j, 

such that there is at least one inference step of layer i in CT which consumes only 

conjuncts of S, 1 and produces a conjunct of  S,. Draw an arc from S, ~ to S,. Take 

the union of all labels on all arc representing ith layer inferences in CT of the type 

described above. Add this union as a label on the arc from 5', ~ to S, in RT. 

The main difference between a trace segment such as that of  Figure 1 and the 

tree in Figure 4 is that the nodes of Figure 4 do not contain the resolvents of an 

SLD derivation. For instance, no SLD inference step can produce the effect of 

the transition from node 1, ~-fib(n, f ) ,  fib(0, 0), fib(l, 1 )~ ,  to the empty clause. 

As we will illustrate, this is not an objection to the application of the compilation 

procedure. 

The notions of a previous state and of an action prescribed by a control rule in a 

state are completely similar to the corresponding notions for non-standard, top-down 

computation rules. 

DEFINITION 2.4. A control rule r is consistent if for any computation state St, 

which is a renaming of a previous state $2, the actions prescribed by r in St are the 

(same) renaming of the actions it prescribed in $2. 

In the Fibonacci example, the computation state in node 8, ~fib(n, f) ,  fib(n2, f 2 ) ~ ,  

fib(n3, f 3 ) ~ ,  is a renaming of the previous state in node 6. Again, if the control rule 

is consistent, the reorganized trace folds into a compilation graph. The graph is drawn 

in Figure 5. 

l 

-~ fib(n,f), fib(O,O) "~, fib(l,1) ~ 
~ plus(O,l,1) 

n:=O plus(l,l,nl) 
f:_~_~..........~ nl > 2 

. , . . . ~  plus(1,0,fl) 
2 3 4 

[] [] ~ fib(n,f), fib(l,1) ~, fib(nl,fl)~ 

F3 plus(l'l'nl) 
n:=nl ~ ~  plus(nl, 1,n2) 
f:_~l~.....-- --~ n2 > 2 

. ~ . ~ . ~  plus(fl,l,f2) 
5 6 

[] ~ fib(n,f),fib(nl,fl) ~, fib(n2,f2)~- ,c 
~ plus(nl,l,n2) 

n:=n2 ~ ~  plus(n2,1,n3) 
n3 >2 

- f ~  plus(f2,fl,f3) 

7 
[] 

Fig. 5. Compilation graph for the Flbonacci numbers. 
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The synthesis of the new clauses involves only one element which is different from 

the synthesis for permutation-sort. Since we want to obtain a new procedure for the 

predicate fib/2, we add the node (0,*- fib(n, f ) )  as a new root on top of the compila- 

tion graph. We connect it to node 1 with an arc without labels. 

Following the synthesis procedure of  the previous example, we introduce a new 

predicate p/3 and we replace the loop-node, ~fib(n,  ! ), fib(nl, ill)*--, fib(n2, / '2 )~  

by its canonical meta-representation p(fib(n, f ) ,  fib(n l, /'1), fib(n2, f2)) .  We synthe- 

size clauses for paths connecting principal nodes. Three such paths connect node 0 to 

[:::1. The clauses are 

NI: fib(0, 0)*-. (state 0 to state 2) 

N2: fib(l, 1),--. (state 0 to state 3) 

N3: fib(nl, /'1) +- plus(0, 1, 1), plus(l, 1, nl), nl >~ 2, plus(0, 1, f i l l  

(state 0 to state 5) 

The paths including the loop-node are synthesized by 

N4: fib(n, 1') *-- plus(0, 1, 1), plus(l, 1, hi), nl >~ 2, plus(l, 0, f l ) .  

plus(l, 1, nl), plus(nl, 1, n2), n2 ~> 2, plus(/ ' l ,  1, 12),p(fib(n, f),  
fib(nl, 11), fib(n2, 12)). (state 0 to state 6) 

N5: p(fib(n2, ['2), fib(nl, /"1), fib(n2, J 2 ) ) ~ .  (state 6 to state 7) 

N6: p(fib(n,/'), fib(nl,/ '1), fib(n2, /'2) ~ plus(M, 1, n2), plus022, 1, tt3), n3 >~ 2, 

plus( 12, ['1, /'3), p(fib02, f), fib(n2, f2), fib(n3, ./"3)). (state 6 to state 6) 

The new program still contains some inefficiencies. The calls to ~>/2 which were 

1.:eded in the original top-down formulation of the problem in order to ensure 

termination are of no use in the bottom-up compilation. 

Also, every first call to plus/3 in the clauses N3, N4 an N6 is redundant. A simple 

theorem prover could detect these redundancies. However, we will not rely on such 

capabilities here. 

Another problem is that the program doesn't terminate. For queries of the type 

*-fib(ground, any), we have one successful derivation path, after which the compu- 

tation goes on indefnitely. This can easily be repaired by introducing a "cut" at the 

end of each clause. However, in general it would require a determinacy analysis 

of the original program (see [12, 13]) or additional information from the user of 

the transformation system to make an appropriate decision on the insertion of 

'cuts'. 

Apart from these technical problems and after elimination of redundant functions 

in p/3, our transformation results m the most efficient implementation for the com- 

putation of Fibonacci numbers. The program strongly resembles the program which 

was obtained in [4] by eliminating redundant calls to fib/2. The main difference is that 

our program is tail-recursive. 

Finally, we return to the issue of  correctness and completeness of the transform- 

ation. The arguments are the same for the compilation of computation rules. The 
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compilation graph correctly and completely represents the computation expressed 

in the initial (infinite) computation trace. The new clauses are a correct and com- 

plete synthesis for the compilation graph. As for compilability, we now have the 

following. 

DEFINITION 2.5. A triplet (P, q, r) consisting of program P, a query q and a 

control rule r is compilable, if r is consistent and if there exists a finite fragment F of 

the reorganized computation trace of (P, q) under r, such that for each state SI in a 

leaf of F, there exists a previous node of F, with a state $2, and such that S1 is a 

renaming of $2. 

3. Applications of the Technique 

The compilation can be used in a wide range of applications. In this section we 

illustrate its applicability in three quite different domains: solving numerical prob- 

lems, integrity checking in deductive databases, and theorem proving. 

3.1. SOLVING NUMERICAL PROBLEMS 

When numerical problems are specified declaratively in terms of logic programs, 

this often results in programs which are inefficient under the standard top-down 

execution mechanism of PROLOG. One type of inefficiency is due to the occurrence 

of redundant computations (duplicate calls within a same execution). The Fibonacci 

problem is a typical example. In [14] several other examples of the same type are 

studied. 

The logical specifications used by Clocksin for these problems construct a term 

which represents the operations needed to compute the result of the problem (e.g., 

(0 + 1) + i represents the operations needed for the computation of the third 

Fibonacci number). In Clocksin's method, common subterms of such a term are 

detected and then the term is folded into a graph-structure, where each subcompu- 

tation is only represented once. 

Inspired by this technique Ref. 4 introduces an automatable source level trans- 

formation method, based on unfold/fold [15] and factoring. It produces new, logically 

equivalent logic programs, from which all redundant computations have been 

eliminated. 

A more natural way to eliminate the redundancies is to execute the programs with 

a bottom-up strategy. As shown in the previous section, our compilation technique 

can transform fragments of such executions into top-down executable logic programs. 

We successfully applied the technique to all the examples discussed in [4] and [14]. 

These include: the approximation of the exponential function by finite series expansions, 

solving matrix equations, and computing an n-point discrete Fourier-transform. In 

general, the efficiency of our compiled programs was slightly better than in [4], 

because they are always tail-recursive. 
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We do not give an addit ional  example  o f  such a t ransformat ion  here. Instead,  we 

illustrate how b o t t o m - u p  compi la t ion  can be used to t ransform almost-tai l-recursive 

p rog rams  into logically equivalent  tail-recursive ones. 

Since logic p r o g r a m m i n g  languages have no constructs  for iterative loops, such as 

/or  and while, p rog ram loops are always expressed with recursion. I n terms of  efficient 

implementa t ion ,  tail-recursive procedures  are a good approx imat ion  of  iterative 

loops. However ,  many  natural  logical formula t ions  of  numerical  (and other)  prob-  

lems are non-tail-recursive.  Ref. 5 presents a t rans format ion  technique based on 

unfold/fold which t ransforms a class of  recursive p rograms  (called a lmost  tail- 

recursive) into logically equivalent  tail-recursive ones. The  most  complex example  

Debray  deals with is the non-determinist ic  compu ta t ion  described by 

i i f x  = 0 

r(x) = *r (x  l ) i f x ( > 0 ) i s e v e n  

* r (x  1) - 1 o r 2 * r ( x  - 1) + 1 i f ( x  > 0 )  i s o d d  

In clausal form, the p rog ram is 

RI:  r(0, 1)-*-. 

R2: r(n, l )  +-- n > 0, even(n), plus(hi ,  1, hi, r(nl, ['1), twotimes( f l ,  1"). 

R3: r (n , / ' )  ~ n > 0, odd(n), plus(nl ,  1, n), r ( n l , f l ) ,  twotimes ( / ' l , l ) .  

R4: r(n, t ') +-- n > 0, odd(n), plus(M, 1, n), r (nl ,  f l ) ,  twotimes + (./1, / ). 

TI :  t w o t i m e s ( / ' l ,  f )  ~ / i s  1 1 , 2 .  

Y2: twotimes ( / ' 1 , /3  +-- / i s ( f l * 2 )  - 1. 

Y3: t w o t i m e s + ( l ' l ,  f )  +-- / ' i s  ( f l , 2 )  + 1. 

Ref. 16 gives the details o f  the t ransformat ion .  Here  we show how a similar 

tail-recursive p rog ram can be obta ined by compil ing a completely  b o t t o m - u p  control  

1 2 
-~ r(n,f) r(O,1) + 

1 us(O,t,~3) 
/ / / / n l > o  \-n2 > 0 ~ n ~ > o  

. /  ~ D, / /even(hi)  R2\odd(n2) . . . . .  D~.~dd(n3) . • 
, . ~  twotimes(1,fl) " '-  \twotimes-(1,f2) v,a " ' - , , ~ lme  s"-( 1, f3 ) 

3 / 4 5 6 
[] / r(nl,fl) ~ r(n2,f2) + r(n3,f3) ~- 

f:---fl 
plus(nl,l,n6) 

n4 > 0 > n6 > / / ~ ( O n 4 )  . . . . .  ~ 5  >d~(n5) - " ~ ' ~ , ( n 6 )  . + 

7 8 9 10 
[] r(n4,f4) ~ r(n5,f5) ~ r(n6,f6) 

lqg. 6, Fragment of thc computation trace for the botlom-up computauon of the r/2-predmate. 
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2 
[] ~ r(n,f 

n:= nl / 

6 
[] 

1 
"~ r(n,f), r(0,1)"~ 

fT-~ O / ~ ~ p I ~ u s  (0,1 ,n 1 ) ~ ~ p l u s ( O ,  1,n23 ) 
7 / nl-> 0 -" \v~':~-b ...... "q--...n3 ~; .0 / R,/even(nl) _.. R~X(b-dd(~2) . . . . .  ~"~.~ld(n3) . + 

Utwotimes(1,fl ) ~x,~ ~tw~times-(1,f2) R3 " - - ~ u n e s  (1,f3) 
3 4 5 

I, r(nl,fl)~- "~ r(n,f), r(n2,f2)~ ~ r(n,f), r(n3,f3)-'- 

P 4 ~ ~ p l u s ( n  1,1,n6) 
>0 >0 6> 

1 ' ~ ~  1 R twotimes(ft,f4) R2 "X~lmes-( f l , f5)  ~ f6 ) 

8 9 

r(n,f), r(n4,f4)-~ ~ r(n,f), r(n5,f5) ~ "~ r(n,f), r(n6,f6)~- 

Fig. 7. Reorganized computation tree fragment for r/2. 

rule. The computation trace fragment is drawn in Figure 6. The control rule is such 

that at each stage it either unifies the query ~ r(n, f )  with a newly derived fact, or it 

uses the fact as input to one of the three recursive rules to derive new facts. The 

reorganized graph is shown in Figure 7. Each computational state is obtained by 

merging a fact in a node of Figure 6 with the query ~r(n, f ) .  The states in the nodes 

4, 5, 7, 8 and 9 are renamings of the state ,--r(n,f), r ( n i , f l ) ~  in node 3. Thus, by 

folding on them, we obtain the compilation graph of  Figure 8. 

By adding the additional node (0, ~ r(n, f))  and using the meta-prcdicate p/2 to 

represent loop-node 3, we synthesize the clauses: 

1 
r(n,f), r(0,1) "~ 

/ / n l ' >  0 "-'~ln~ > u \n3  > R. 
/ RLd/eve__n_(_nl) ]odd(n2) . . . . . . .  ~ oaot.n,) + . . . .  

2 3 
[] - ~ r ( n f ) , r ( n l , f l )  ~- fl= 2 I I 

fn::_---f7///[ 1 ;;:'(: :,1 ,n4, I ~a~;ilnl, 1,n5, X~plus(nl,l,n6) 
I I I I  RlJh4 >0..-- R2I n~_>_~. X n 6 > 0  

even(n4) oaatn.9) n / 1[ ~ - - ~ f l , f 4 ) - - )  ~v~~ R3/~dn(~76)~+,fl f6~ / \\JJ . . . .  

Fig. 8 Compilation graph for r/2. 
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NI: 

N2: 

N3: 

N4: 

N5: 

N6: 

N7; 

N8: 

r(0, 1 )~ .  (state 0 to state 2) 

r ( n , f )  ~ plus(0, 1, nl),  nl > 0, even(hi), twotimes(1,f l ) ,  p(r (n , f ) ,  

r (n l , /1 ) ) .  (state 0 to state 3, using R1) 

r(nf)  ~ plus(0, 1, n2), n2 > 0, odd(n2), twotimes (1 , /2) ,  p(r(n, f ) ,  

r(n2, 1"2)). (state 0 to state 3, using R2) 

r ( n , f )  +-- plus(0, 1, n3), n3 > 0, odd(n3), twotimes+(I,/ '3),  p(r(n, it'), 

r(n3, f3) ) ,  (state 0 to state 3, using R3) 

p(r (n l , /1 ) ,  r(nl, f l ) ) ~ .  (state 3 to state 4) 

p(r(n , f ) ,  r(nl, f l ) )  , -  plus(nl, 1, n4), n4 > 0, even(n4), twotimes( l ' l , / 4 ) ,  

p(r(n, f ) ,  

p( r( n, ,it'), 

p(r(n, l ), 

p(r(n, it'), 

p(r(n, f ) ,  

r(n4, it'4)). (state 3 to state 3, using R1) 

r(nl, ,r ~ plus(nl, l, n5), n > 0, odd(n5), twotimes ( / ' l , f 5 ) ,  

r(n5,/~ (state 3 to state 3, using R2) 

r ( n l , f l ) )  +-- plus(nl, 1, n6), n > 0, odd(n6), twotimes+( it'l, f6), 

r(n6, f6)) .  (state 3 to state 3, using R3) 

The efficiency of the resulting program is of the same order as that of the trans- 

formed tail-recursive program in [16]. Clearly, it can be still further improved by 

trivial transformations such as the elimination of the calls to >/2,  the introduction 

of 'cuts' and the removal of redundant functions in the p/2-predicate. 

It is not surprising that the bottom-up compilation produces programs comparable 

to the tail-recursive programs of [5]. The technique of producing tail-recursive pro- 

cedures involves the introduction of accumulating parameters. The typical function 

of  an accumulating parameter is to simulate a bottom-up-like computation in a top- 

down execution. 

The reader may wonder why we restrict our attention to the bottom-up compilation 

of numerical problems. The reason is that all recursive programs depend on an input 

which is either numerical or a recursively defined data-structure (or a number of 

database facts: a case which we discuss in the next subsection). Programs consuming 

input from a recursively defined data-structure are hard to execute with a bottom-up 

strategy. As an example, consider the program: 

SI: scalar(x, y, r) ~ product(x, )', z), sum(z, 0, r). 

PI: product(Nil, Nil, N i l )~  

P2: product(x.xt ,  y.yt,  z.-_t) ~ is x*  y, product(xt, yt, zt). 

SUI: sum(Nil, r, r ) ~ .  

SU2: sum(x.xt ,  ac, r) ~- u is x + ac, sum(xt,  a, r). 

The program computes the scalar product of two vectors, which are represented as 

lists. It is inefficient under a top-down execution, because the same data structure is 

traversed twice. A transformation merging the two program loops is given in [17]. If 

we want to execute this program with a bottom-up strategy, then, at each step in the 

recursion, we need access to the last element in the input lists (representing the two 

vectors to be multiplied). Therefore, in order to deal with this type of problem, we 
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would need to extend our compilation technique with an initial phase in which every 

recursively defined input-data-structure is reversed. Although this seems feasible, we 

will not elaborate on it in this paper. 

3.2. INTEGRITY CHECKING IN DEDUCTIVE DATABASES 

In [6 and 7] an approach for checking integrity constraints in deductive databases, 

based on theorem proving, is presented. Under the assumption that the databases is 

consistent prior to an update (which can be the insertion or the deletion of a fact, a 

rule or an integrity constraint), a derivation is built with a mixed computation strategy 

and using the update as a generalized goal-statement. If the empty clause can be 

derived, then the update is clearly inconsistent with the database. 

In the special case that no implicit deletions are involved in the refutation, Ref. 6 

proposes a compilation scheme which compiles the computation strategy into a 

top-down executable program. We give a simple example to illustrate how our tech- 

nique can be used to produce similar results. The initial database is 

FI: finished(Project2)*--. 

SI: subproject (Projectl 1, Project2) *--. 

$2: subproject (Project21, Project2)~.  

WI: works-on(Carl, Projectl)+--. 

W2: works-on(Lou, Projectll)+--, 

W3: works-on(x, y) ~ subproject(z, y), works-on(x, z). 

I1 : *--works-on(x, y), finished(y). 

We aim to produce a logic program that checks the integrity of the database 

whenever a new fact of the type works-on(x, y) +-- is inserted. In Figure 9 a fragment 

of the computation trace is shown. 

We chose to represent the trace in a less compact form than what we did in the 

previous examples (resolvents containing a subgoal which is solved completely by the 

standard computation rule have not been omitted) to show that the resolvents 

occurring in the traces are in general not restricted to facts or goals. 

The trace already has the shape of a tree (this is always the case in this type 

of application). Therefore, no reorganization is needed. We have one loop-node, 

I 
works_ on(x,y) ~- 

2 3 
f'mished(y) works__on(x,yl) ~- subproject(y,yl) 

f'mished(y) subproject(y,y 1) 

4 5 
[ ]  works_on(x,y 1) "~ 

F% 9, Fragment of the computation trace for the works-on problem. 
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2 
[] 

1 

works_on(x,y) ~- 

I ~ ~ s h e d ( y )  
~ W 3 ~  subproject(y ,y 1 ) 

Fig. I0 Compilation graph for the works-on problem. 
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works-on(x, y)+--. We fold on it to obtain the compilation graph of Figure 10. 

With the meta-predicate p/l to represent the loop-node, we obtain the clauses: 

NI: p(works-on(x, y)) +-- finished(y). (state 1 to state 2) 

N2: p(works-on(x, y)) ~ subproject( y, yl) ,  p(works-on(x, yl I). 

(state 1 to state 1) 

Several comments need to be made regarding this application. First, it is not 

sensible to compile an integrity-checking program if updates of the given type do not 

occur frequently. Thus, in general, we do not compile a program that checks for 

possible integrity violations caused by inserting or deleting a rule or an integrity 

constraint. As an example, consider updates such as insertions of the type 

parent(x, y)*--, with x and v ground. They may occur frequently in a database. On 

the other hand, the insertion of a new rule, such as father(x, t) ~ parent(x, 3"), 

male(x), will only occur once. 

A second comment in the same spirit is that whenever the integrity checking 

involves a call to a predicate which is frequently updated, then this call should not 

be expanded in the trace, but represented - and solved - as a label on an arc (e.g., 

finished / 1 and subproject/2 in the example). By doing so, we do not have to recompile 

the program after each update for this predicate, In fact, in our example, a recompil- 

ation is only needed whenever a rule or an integrity constraint which includes a call 

to works-on/2 in its body is inserted or deleted. 

In [6] recursive rules are not explicitly considered. However, the application of the 

compilation method described in that paper to our simple example, produces (among 

other ones) essentially the same clauses. The main advantage of our method, is that 

the clauses we synthesize are a precise compilation of the control which was expressed 

by a user (or oracle). In more complication situations than described in the example, 

sophisticated additional control might be necessary. In such circumstances, our 

method provides a way to impose this control. (See also the remark below.) In general, 

the method of [6] produces many more clauses, independent of any underlying control 

strategy. 

Finally, there is the problem of finding an efficient search-strategy. In the presence 

of recursive rules and using a mixed computation strategy, integrity checking can 

easily produce infinite loops. General principles for obtaining useful strategies have 

been proposed in [18-20]. In our example, we have followed [18], by continuously 
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generating new facts derivable from the update and then consuming them to check 

whether the integrity constraints have not been violated. Furthermore, in order to 

avoid computing the same fact a number of times, we can keep a record of the 

information that has been derived so far. Finally, we can safely introduce a 'cut' at 

the end of every clause synthesized by the compilation procedure, since one refutation 

is sufficient to establish the fact that the integrity is violated. If we assume that in our 

example a user will specify his intended update with a query ~ add(works-on(A, B)), 

then these observations result in the following clauses: 

A 1: add(works-on(x, y)) ~ assert(addition(works-on(x, y))), p(works-on(x, y)), !, 

write("integrity violated"), retractall(addition(-)), 

A2: add(works-on(x, y)) ~ retractall(addition(-)), assert(works-on(x, y)). 

PI: p(works-on(x, y)) ~ finished(),),!. 

P2: p(works-on(x, y)) *-- subproject(y, z), not(addition(works-on(x, :))), 

assert(addition(works-on(x, z))), p(works-on(x, z)). 

Here, we have assumed that a user will specify his intended update with a query 

add(works-on(A, B)). Clearly, in a database environment, these clauses should not be 

executed using the tuple-at-a-time mechanism of PROLOG. 

3 3. THEOREM PROVING 

With the mixed computation rule of the previous example, we already introduced 

an element of theorem proving. However, the program contained only Horn clauses. 

In our next example, we illustrate that we can just as well start off with a logical 

problem specification in full (non-Horn) clausal form, apply a theorem proving 

strategy to it and compile the computation into a top-down executable (PROLOG) 

program. 

The example is inspired by Moore's three blocks problem. Given is a pile of blocks 

of infinite height. Every even block is red and at least one out of every three 

connecting blocks is blue. The problem is to find the blue blocks. In clausal form, we 

have 

CI: col(0, Red)~ .  

C2: col(n, Red) ~ n > 1, plus(n2, 2, n), col(n2, Red). 

C3: col(n, Blue), col(nl, Blue), col(n2, Blue) ~- plus(nl, 1, n), plus(n2, I, nl). 

C4: ~col(n, Red), col(n, Blue). 

The desired mixed control rule for the query ~ col(m, Blue) is expressed in the 

trace fragment of Figure 11. 

The reorganized graph is drawn in Figure 12. The leaf, node 7, is a renaming 

of the previous node 5. It is the only loop-node. By folding on it, we obtain the 

compilation graph. Its shape should be clear from the previous examples, so we omit 

it. 
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1 2 

~-col re,Blue) col(0,Red) "~ 

C4 ~ plus(0,Z,n2) 

3 4 
12 ~- col(0,Blue) col(n2,Red) "~ 

/ (2 . "  ~ C 4 ~ / ~  I plus(n2,2,n4) 

/ ~plus(0,1_r ~ ~""~1 n4 > 1 
[ / plfis(m,l,n2) 5 6 

C3 [ / ~ col(n2,Blue) col(n4,Red) "~ 

| \ ~ ~ plu~nl4'2'n6' 

/plus(n2,1.m) _ / 
\ 7  / pl-us(m,l,n4) 8 9 
\ 1 " ]  / - "~ col(n4,Blue) col(n6,Red) ~- 

\ / ~  C 4 ~ - / ~  plus(n6,2,n8) 
N ~  ~ IZZ[ n8 > 1 

10 11 12 
[] ~col(n6,Blue) col(n8,Red) "~ 

Fig. 11. Fragment of the trace for the pile-of-blocks problem. 

1 
~-eol(m,Blue), col(0,Red)~- 

c4C2 I plus(0,2,n2)n2 > 1 

2 
~- col(m,Blue),-~ col(0,Blue), col(n2,Red)-~ 

C2 plus(n2,2,n4) 
C4 n4 > 1 

3 
~-col(m,Blue), ~col(0,Blue), ~- col(n2,Blue), col(n4,Red) ~- 

" ~ C 2  plus(n4,2,n6) 
C4 ] n6 > 1 

4 5 
[] ~ col(m,Blue), ~ col(n2,Blue), ~ col(n4,Blue), col(n6,Red) 

~ plus(n6,2 ,n8 ) 
n8> 1 

/ 
6 7 
[] ~col(m,Blue), ~col(n4,Blue), ~-col(n6,Blue), col(n8,Red) 

Fig. 12. Reorganized trace tree for the pile-of-blocks problem 
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By adding a new root node, (0, ~col(m, Blue) - as in the Fibonacci example - 

and with the meta-predicate p/4 representing the loop-node, we obtain the (Horn 

clauses): 

NI: 

N2: 

N3: 

N4: 

col(m, Blue) *- plus(0, 2, n2), n2 > 1, plus(n2, 2, n4), n4 > 1, plus(0, 1, m), 
plus(m, 1, n2). (state 0 to state 4) 

col(m, Blue) *-- plus(0, 2, n2), n2 > 1, plus(n2, 2, n4), n4 > 1, plus(n4, 2, n6), 
n6 > 1, p(col(m, Blue), col(n2, Blue), col(n4, Blue), col(n6, Red)). 

(state 0 to state 5) 

p(col(m, Blue), col(n2, Blue), col(n4, Blue), col(n6, Red)) ~ plus(n2, 1, m), 

plus(m, 1, n4). (state 5 to state 6) 

p(colOn, Blue), col(n2, Blue), col(n4, Blue), col(n6, Red)) *-- plus(n6, 2, n8), 

n8 > 1, p(col(m, Blue), col(n4, Blue), col(n6, Blue), cot(nS, Red)). 

(state 5 to state 5) 

As in the previous examples, the calls to >/2  and the functors (and constructs) in 

p/3 are redundant. However, the logic program is an efficiently executable compil- 

ation of the desired proof-strategy. 

Again, the problem of how to obtain an efficient strategy for solving the problem 

at hand is non-trivial. We do not claim any contribution to this issue, and we refer 

to [21] for a good overview of the achievements in the field. The benefit of our 

technique is that we can use a general theorem prover to detect a good inference 

strategy for a given problem and then compile the successful derivation paths into 

efficiently executable programs. Clearly, this poses a problem of completeness. 

Therefore, the application domain we are mostly aiming at is that of machine 

learning. In this field, one of the important issues is to find techniques which can 

derive efficient new rules for relevant problems concerning a given knowledge base. 

This is precisely what the combination of a general-purpose theorem prover and our 

compilation technique will achieve for this type of problems. 

4. Discussion 

Our main achievement in this paper is that we have shown that the transformation 

technique called 'Compiling Control', which was designed to compile coroutining, 

can also be used to compile bottom-up and mixed computations. We have illustrated 

how this can be applied to solve several state-of-the-art problems in different domains: 

eliminating redundant computations, transformation almost-tail-recursive pro- 

cedures into tail-recursive ones, compiling integrity checking and learning new, 

efficiently executable rules to solve given problems concerning a problem domain 

(expressed in (non-Horn) clausal logic). 

We deliberately started off from the very restricted Definition 2.2 for the com- 

pilability of triplets (P, q, r). Most of the examples studied in [1 and 11] do not satisfy 

this condition. In these examples, there does not exist a finite fragment F of the 
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computat ion trace, such that every leaf of  F is a renaming of a previous state. Also, 

the notion of consisten O' in [1 l] is a more general than that of  Definition 2.1. Still, 

these more general triplets can be compiled. The reason why we restricted our 

attention to the subset of  triplets (P, q, r) of Definition 2.2 (and Definition 2.5) is that 

we wanted to focus on the new applications of  the technique. Generalizing the 

entire framework of [I 1] to cover non-top-down computations would have forced 

us to go into many more technical details. Also, such an approach - in addition to 

presenting all the applications - would not have been possible within reasonable 

space-constraints. 

A typical example of how this decision limits the general applicability of the 

technique (as it was presented here), is the pile-of-blocks problem. If  we choose 

to represent the integers in the first argument of  col/2 with a successor-function, 

s/l,  then, with the same control rule r as in 3.3, we obtain a triplet (P', q', r) which 

is not compilable. The reason is that the (new representations for the) states in 

node 5: 

+-col(n, Blue), ~ col(s(s(0)), Blue), ~col(s(s(s(s(O)))), Blue), 

col(s(s(s(s(s(s(O)))))), Red) 

and node 7: 

col(n, Blue), +--col(s(s(s(s(0)))), Blue), ~col(s(s(s(s(s(s(0)))))), Blue), 

col(s(s(s(s(s(s(s(s(O)))))))), Red) +-- 

are no longer renamings. In fact, no two states will ever be renanaings. However, it 

is clear that both states are instances of  a same more general pattern: 

col(n, blue), +-col(s(s(x)), Blue), ~col(s(s(s(s(x)))), Blue), 

col(s(s(s(s(s(s(x)))))), Red)+--. 

A more general framework for the compilability of control rules can be sketched 

as follows: let (P, q, r) be a triplet consisting of a program, query, and control rule 

and T a fixed, finite set of  states (again, conjunctions of clauses), such that 

- r is a consistent control rule, in the sense that for every state S, which is an instance 

of a state S ~. with S '  in T, the actions prescribed by r in S are a corresponding 

instance of the set of  fixed actions prescribed by r in S'. Here, we allow exceptions 

for these states S that belong to a well-identified initial part  of  the computation 

trace, describing an initialization phase, 

- starting from any general pattern, SI in T, and performing the actions prescribed 

by r, we obtain, after a finite number of  inference steps, an instance $2' of  a state 

S2 in T. 

- there exists a finite fragment F of the computat ion trace (strictly exceeding the 

initialization phase) such that every leaf S of F is an instance of a state S '  in 7", 

then (P, q, r) is compilable. 
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