
 Open access Journal Article DOI:10.1007/BF00249018

Compiling bottom-up and mixed derivations into top-down executable logic
programs — Source link

Danny De Schreye, Bern Martens, Gunther Sablon, Maurice Bruynooghe

Institutions: Katholieke Universiteit Leuven

Published on: 01 Sep 1991 - Journal of Automated Reasoning (Springer-Verlag New York, Inc.)

Topics: Logic programming, Automated theorem proving, Prolog, Program transformation and Executable

Related papers:

 The derivation of an algorithm for program specialisation

 Foundations of logic programming

 Unfold/fold transformation of stratified programs

 A Transformation System for Developing Recursive Programs

 Partial evaluation in logic programming

Share this paper:

View more about this paper here: https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-
11vgwko0gw

https://typeset.io/
https://www.doi.org/10.1007/BF00249018
https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-11vgwko0gw
https://typeset.io/authors/danny-de-schreye-1a110e3o48
https://typeset.io/authors/bern-martens-11xqpt6bnx
https://typeset.io/authors/gunther-sablon-4sxandip9z
https://typeset.io/authors/maurice-bruynooghe-1onwffy7nr
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/journal-of-automated-reasoning-p7aqqv75
https://typeset.io/topics/logic-programming-2ptphjjz
https://typeset.io/topics/automated-theorem-proving-2xdfktay
https://typeset.io/topics/prolog-3ei6yi6n
https://typeset.io/topics/program-transformation-1r3ueirt
https://typeset.io/topics/executable-28d6uhle
https://typeset.io/papers/the-derivation-of-an-algorithm-for-program-specialisation-fu4rchnlmq
https://typeset.io/papers/foundations-of-logic-programming-441z7987l8
https://typeset.io/papers/unfold-fold-transformation-of-stratified-programs-72v79gnqqv
https://typeset.io/papers/a-transformation-system-for-developing-recursive-programs-986ype2vuf
https://typeset.io/papers/partial-evaluation-in-logic-programming-w98hxygufi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-11vgwko0gw
https://twitter.com/intent/tweet?text=Compiling%20bottom-up%20and%20mixed%20derivations%20into%20top-down%20executable%20logic%20programs&url=https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-11vgwko0gw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-11vgwko0gw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-11vgwko0gw
https://typeset.io/papers/compiling-bottom-up-and-mixed-derivations-into-top-down-11vgwko0gw

Journal of Automated Reasoning 7: 337-358, 1991. 337
{' 1991 Kluwer Academic Publishers. Printed in the Netherlands.

Compiling Bottom-up and Mixed Derivations into

Top-down Executable Logic Programs*

D A N N Y DE S C H R E Y E ;, BERN M A R T E N S ~, G U N T H E R S A B L O N , and

M A U R I C E B R U Y N O O G H E ~

Department of Computer Science, Katholieke Univer,sttett Leuven, Cele~tilnenlaan 200.4, B-3030

Heverlee, Belgmm

(Received: 3 October 1989; accepted 5 December 1989)

Abstract. We present a techmque for the compilation of bottom-up and m~xed logic derlvatmns into

PROLOG-programs It is obtained as an extension of a program transformation technique called Compd#1g

Control. We illustrate its applications m three different domains: solving numerical problems, integrity

checking in deductive databases and theorem proving The aim is to obtain efficient PROLOG programs

for problems in which a non-top-down control is most appropriate.

Key words. Control rules, transformation, logic programming.

I. Introduction

Compiling Control is a program transformation technique for pure logic programs

proposed in [1]. It was designed for compilation of non-standard computation

rules. More specifically, given a logic program, a query pattern of interest and

an (ideal) computation rule for the program and query pattern, a new logic pro-

gram is derived, such that, if it is executed under the standard computation rule

of PROLOG, then the computation obtained is a precise imitation of the behaviour

of the original program under the ideal computation rule. Typically, such a trans-

formation can compile a coroutining rule for any given generate-and-test program,

without the use of a delay predicate. It can also compile more complex control regimes

suitable for solving constraints problems, such as forward check#Tg o r looking ahead
(see [2, 3]).

The technique consists of two separate steps. First, it constructs a finite fragment

of an abstract computation trace obtained by executing an abstract query (the given

query pattern) under the new (top-down) computation rule. In a second step, it

synthesizes a new logic program which behaves as described in the trace fragment if

it is executed under the standard computation rule.

*Work partly supported by E S P R I T BRA C O M P U L O G (project 3012).
++Supported by the Belgian I W.O.N.L.-I R.S.I.A under contract number 5203. Author for correspond-

ence.

~Supported by the Belgian National Fund for Scientific Research.

338 DANNY DE SCHREYE ET AL.

The starting point for this paper is the observation that we may omit the condition

that the trace fragment must be obtained from a top-down execution. This provides

the possibility of compiling bottom-up and mixed computation strategies.

The range of potential applications for such a transformation technique seems large.

First, there are applications in solving numerical problems. Ref. 4 describes a different

program transformation method aiming at the elimination of redundant computations.

In all the examples we have studied so far, programs which give rise to redundant

computations under a top-down execution strategy (e.g., computing the Fibonacci

numbers) are more naturally and more efficiently executed with a bottom-up strategy.

We use an example (Fibonacci) from this class of problems to introduce our technique.

We also illustrate how another transformation technique, namely the transform-

ation of ahnost-tail-recursive procedures into logically equivalent tail-recursive ones

(see [5]), can be imitated by compiling a bottom-up control rule, to obtain equally

efficient tail-recursive procedures.

A quite different class of applications is the compilation of integrity checking in

deductive databases. Refs. 6 and 7 present a technique based on theorem proving,

using mixed inference strategies to check the integrity constraints. In [8] an imple-

mentation based on a meta-interpreter is described. In this paper, we will briefly

illustrate how our technique can be used to enable a compiled approach.

Finally, there are applications in theorem proving. If a (resolution based) theorem

prover can produce a successful derivation path for a given type of problem, expressed

in (not necessarily Horn-) clausal formulas, then our technique can compile the

derivation path into an efficient logic program. In a learning environment, this could

provide a practial tool for deriving operational rules, similar to what is achieved by

Explanation-based Learning [9, 10] but for problem domains which are specified in

full, non-Horn, clausal form.

Before going in more detail, we want to emphasize that what we are presenting is

a technique for control compilation. Given a clausal theory, a query of interest and

an ideal control rule for this theory and query, we derive a PROLOG program that

compiles the triplet. The problem of how to obtain the ideal (or even a good) control

rule is not addressed. We will assume that it is either provided by the user or that it

is obtained from a general theorem prover. For some of the specific applications we

discuss (e.g., integrity checking), we refer to some known principles for obtaining a

useful strategy.

2. Compiling Control Rules

In this section we introduce our technique using two simple examples. The first one

describes the compilation of a non-standard top-down computation rule. In the

context of this example, we recall a subset of the control compilation of[l]. Moreover,

we slightly reformulate the compilation procedure, so that we can easily extend it do

deal with non-top-down computations. The second example describes the compil-

ation of a bottom-up control rule.

C O M P I L I N G BOTTOM -UP A N D MIXED DERIVATIONS 339

Our notational conventions are variables, function- and predicate names start with

a lowercase character. Upper case is used for constants. With the infix dot-notation,

x.y, we represent a list with head x and tail 3'-

The first example is the transformation of the permutation-sort program. The

original clauses are

SI: sort(x, y) *- perm(x, y), ord(y).

PI: perm(Nil, Nil)*--.

P2: perm(x.y, u.v) ~ del(u, x.y , w), perm(w, v).

D1 : del(x, x .y , y) ~ .

D2: del(u, x .y , x .v) ,-- del(u, y, v).

O1: ord(Nil) +--.

02: ord(x.Nil) ~ .

03: ord(x.y.:) +- x ~< y, ord(y.:).

The query pattern of interest is ~ sort(x, y). The new computation rule is expressed

by building (a finite part of) the computation trace which is obtained by executing the

query ~ sort(x, y) under the new computation rule. For permutation-sort, the com-

putation trace is drawn in Figure 1.

The trace has the shape of an OR-tree. Its nodes contain an identifier for the node

and a resolvent obtained during the derivation under the new computation rule. In

each resolvent, the subgoal selected by the rule is denoted in bold-italic. This subgoal

is expanded for one derivation step using every applicable clause from the program.

Fig. 1

6
ord(ul.Nil)

o2 I
8

[]

1
~- sort(x,y)

2

~ perm(x,y), ord(y)

~ x:= xl .yl

y:= ul.vl
del(ul, xl.yl, wl)

3 4
~- ord(Nil) -~ perm(wl,vl), ord(ul.vl)

Ol1 ~ wl:=x2.y2
5_] vl:= u2.v2

del(u2, x2.y2, w2)

7
-~ perm(w2,v2), ord(ul.u2.v2)

03] ul_<u2

9
perm(w2 ,v2) , ord(u2.v2)

Fragment of the computat ion trace tree for permutation-sort under a coroutming rule.

340 DANNY DE SCHREYE ET AL.

Arcs connecting the nodes are drawn to represent such derivation steps. An arc is

labeled with an identifier of the clause which was used in the derivation step (left of

the arc) and with the effect of the resulting most general unifier (mgu) on the variables

in the father node (right of the arc).

As can be observed from Figure 1, not all consecutive resolvents are represented as

nodes (e.g., ~de l (u l , xl.yl, wl), perm(wl, vl) , ord(ul .vl) is the resolvent obtained

by applying clause P2 to the node-2-resolvent ~ perm(x, y), ord(y), and has not

been represented. The reason is that some selected subgoals are dealt with in a

different way. Some subgoals occurring during the computation are not in need of a

non-standard control. They can be efficiently executed under the standard compu-

tation rule. All resolvents containing such subgoals have been omitted from the trace.

Instead, these subgoals are represented as extra labels on the arcs of the derivation

steps that created them (e.g. del(ul, x l .y l , wl) in the derivation from node 2 to

node 4). The interpretation of this feature of the trace tree is that such subgoals are

immediately and completely solved using the standard computation rule. The successor

node(s) in the trace represent(s) the next resolvent(s) in the derivation, which is (are)

obtained after the subgoal has been completely solved.

Observe that node 4, ~perm(wl , vl), ord(ul.vl), actually represents a collection

of resolvents. The goal *-del(ul, x l .yl , w l) can succeed a number of times. For each

success, a different mgu is produced (the effect of these mgu's is not represented in the

trace). Node 4 represents all the resulting resolvents. This means that within the trace,

the backtracking behavior is not solely expressed by the different OR-branching-

points. The computation may backtrack up to the latest del/3-call, generate a new

success-substitution, and redescend down the same branch, using this substitution.

In addition to predicate calls that behave efficiently under the standard compu-

tation rule, this special feature of the computation traces will also be used to deal with

built-in predicates (e.g., ul ~< u2 in Figure 1) and calls to database predicates (see

Section 3).

Here, we must point out that we do not provide a general decision procedure to

determine whether a goal should be expanded or completely solved. The only auto-

mated rule is that calls to built-ins and database facts are always solved. The absence

of such a decision procedure may seem worrying at first sight. However, it is import-

ant to realize that the only purpose of the 'solve' feature (in the case of non-built-ins)

is to reduce the size of the trace tree and the complexity of the transformation. If we

would simply have expanded the goal ~de l (u l , x l .y l , wl), and its descendants with

the depth-first, left-to-right computation rule, then, with a larger trace tree, we would

have obtained an equivalent transformed program.

This does not mean that the feature is redundant. Its purpose is threefold: (l) calls

to built-ins cannot be unfolded, (2) expansion of database calls would produce a very

high number of branchings in the trace tree, (3) starting from a large knowledge base,

it is essential from a practical point of view that the transformation can be focused

on certain predicates of this knowledge base, which are in need of a non-standard

control, leaving all others untouched.

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 341

We now turn our attention towards the compilation of the computation rule.

Figure 1 represents only a finite fragment of the infinite computation trace obtainable

for *--sort(x, y) since we cannot use the entire, infinite trace as input to the compil-

ation procedure. However, we do want the new program to be a compilation for the

entire trace. Therefore, we have to impose some condition on the relation between the

trace fragment and the infinite trace.

Recall that we have associated a unique identifier with each node in the compu-

tation trace. We will assume that these identifiers are integers and that they increase

from top to bot tom in the trace and from left to right. We say that a resolvent R I is

previous to a resolvent R2 if the node-identification of R1 is smaller than the one of

R2. Furthermore, the set o f labels on an arc starting from a resolvent R in the trace

is called an action prescribed by the computation rule in R. As an example, in

Figure 1, the actions prescribed in the resolvent *--perm(x, y), ord(y) are [P1, x : -

Nil, 3" := Nill and IP2, x := x l . y l , y := u l .v l , del(ul, x l ,v l , wl) I

D E F I N I T I O N 2.1. A computat ion rule r is consistent if for any resolvent RI which

is a renaming of the previous resolvent R2, the actions prescribed by r in R1 are the

(same) renaming of the actions it prescribed in R2.

In the example, the resolvent in node 9, e-perm(w2, v2), ord(u2, v2), is a renaming

of the one in node 4, ~ perm(wl, v 1), ord(ul.vl). If our computation rule is consistent,

then the renamed actions ~P1, wl := Nil, v2:Nil~ and {P2, w2 := x3.y3, v2 := u3.v3,

del(u3, x3.y3, w3) I are taken in node 9, Therefore, the resolvents in node 10 and

node 11 will be renamings of the ones in node 6 and node 7. By induction, every

following resolvent and action is a renaming of a corresponding resolvent and action

which belongs to the finite fragment. The entire infinite computation trace then folds

into a finite graph. We call it the compilation graph. For permutation-sort it is shown

in Figure 2.

The compilation graph is very similar to the trace fragment. It can be obtained from

it by

�9 Omitting every (non-empty) resolvent RI which is a renaming of a previous

resolvent R2, together with all its descendants.

�9 Redirecting the arc leading to RI in the trace fragment towards R2. The renaming

substitution is added as an additional label to this arc.

Nodes such as R2 will be referred to as loop-nodes.

Finally, we generate a set of new Horn clauses which synthesize the compilation

graph. To this purpose, we start by focusing on three particular types of nodes in the

graph: the root, the nodes containing the empty clause and loop-nodes. These nodes

are called principal nodes. We then synthesize one new clause for each path in the

graph which connects two consecutive principal nodes.

A first such path leads from node 1 to node 5. We obtain the clause: NI:

sort(Nil, Nil) ~ .

The three remaining paths all include the loop-node. To synthesize them, we intro-

duce a new predicate p/2. This predicate is used to build a canonical meta-representation

342 DANNY DE SCHREYE ET AL

1
sort(x~v)

2
~- pcrm(x,y), ord(y)

~ x:= x l .y l
y:= ul.vl

del(ul, xl .yl , wl)

3 4
oral(Nil) ~- perm(wl,vl) , ord(ul.vl)

O1 ~ ~ wl := x2.y2

P1 ._....-"~S.- m;1 P2 1 v l := u2.v2
1"5-1 ~ := l~i~ "-~ '~ ~,del(u2, x2.y2, w2)

6 7
~- ord(ul.Nil) ~- perm(w2,v2), ord(ul.u2.v2)

0 2 ~ 031 ul<u2

8
[]

wl:--w2[
vl:--v2 [
ul:=u2 [

Fig. 2. The compilation graph for permutahon-sort.

for the resolvent, *--perm(wl, v l), ord(ul.vl) in the loop-node. The meta-representation

is ~p(perm)wl , vl), ord(ul, vl)). With this new predicate and using the synthesis

algorithm [11], we obtain

- for the path from node 1 to node 4:

N2: sort(xl .yl , ul.vl) ~ del(ul, x l . y l , wl), p(perm(wl, vl), ord(ul.vl)).

- for the path from node 4 to node 8:

N3: p(perm(Nil, Nil), ord(ul.Nil)) ~ .

- for the path from node 4 to node 4:

N4: p(perm(x2.y2, u2.v2), ord(ul.u2.v2)) ~ del(u2, x2.y2, w2), ul ~< u2,

p(perm(w2, v2), ord(u2, v2)).

In this last clause, the renaming substitution has been applied to the meta-

representation of the loop-node's resolvent to obtain the recursive call.

We only briefly discuss the correctness and completeness of the transformation. The

reader is referred to [11] for a detailed treatment.

Both the trace tree and the compilation graph represent a set of OR trees. For any

given query which unifies with ~ sort(x, y), a corresponding OR tree can be obtained
from the computation trace by further instantiating the variables in the trace, remov-

ing the branches for which the unifications expressed in the labels fail and expanding

the derivations for the subgoals solved under the standard computation rule. In the

same way we obtain an OR tree from the compilation graph, by, in addition,

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 343

performing unfoldings of the loops. Clearly, for each such query, there is a one-to-one

correspondence respecting branching points and sequences of unifications between

the two OR trees. Thus, the compilation graph correctly and completely represents

the computation trace.

Next, each of the clauses N1 to N4 is precise synthesis for the corresponding path

in the compilation graph. Moreover, because of the meta-predicate, the sequences

(and alternatives) of clauses from N1 to N4 that are applicable for a query of the type

,--sort(x, y) and under the standard computation rule, correspond to those in the OR

tree obtained from the graph. Therefore, N1 to N4 (together with the clauses for del/3)

are a correct and complete compilation of the original program under the new

computation rule.

Generalizing the example, we can now formalize the compilability of a computation

rule as follows.

DEFINITION 2.2. A triplet (P, q, r) consisting of a program P, a query q and a

computation rule r is compilable, if r is consistent and if there exists a finite fragment

F o f t h e computation trace of (P , q) under 1", such that for each resolvent RI in a leaf

of F, there exists a previous R2 in F which is renaming of RI.

We now turn our attention towards the compilation of bottom-up or mixed

computations. Intuitively, the reason why this seems feasible is that fl'om a procedural

point of view any resolution based refutation is a sequence of unifications. If the

different sequences of unifications occurring in a given bottom-up or mixed compu-

tation strategy can be expressed and organized within a computation trace tree, then

there seems to be no objection against the application of the synthesis procedure of

the previous example.

Our second example is the classical problem of computing the Fibonacci numbers.

The original clauses are

FI: fib(0, 0) ~ .

F2: fib(l, 1)~ .

F3: fib(n, [') +-- n >~ 2, plus(nl, 1, n), plus(n2, t, n i l fib(nl, /'1), fib(n2, /2),

plus(['1, t'2, /).

Again, we express the desired computation strategy by means of a computation

trace fragment. It is displayed in Figure 3. The fragment has three roots: the query

~fib(n, 13 and the facts fib(0, 0) +- (FI) and fib(l, 1) ~ (F2). We refer to the set of

all the roots of a trace as the Otk laver of the trace.

From these roots, we can either resolve on *--fib(n, [') and fib(0, 0)~- to derive the

empty clause, or we can resolve on +--fib(n, f) and fib(l, 1)+--, again obtaining the

empty clause, or we can perform a bottom-up inference step, applying the rule F3 to

the facts fib(0, 0),-- and fib(1, 1),-- and solving all the remaining calls in the body of F3

(plus(0, 1, l),plus(1, l, n l) , n l ~> 2 and plus(l , 0, /'l)) to deduce the fact fib(n l , /1) *-- .

Each inference step may include a multiple number of operations (including more

than one resolution). The three inference steps above are referred to as the/Srst layer

344 DANNY DE SCHREYE ET Al-

l 2 3
a- fib(n,f) fib(O,O) ~- fib(l,1) ~-

~ ~ / plus(O,l,1)~
�9 ~ / p l u s (1 , 1 , n l) \

n:~3_, / ~ / n l > 2
.... ~61~F3 plus(1,0 , f l f l) /)

[] f ib (n l ' f l)<- ~ I

i plus(1,1,nl)
I plus(nl, l ,n2) f ~

F3 n 2 > 2

fib(n.2,f2) ~]

1 1 plus(nl, 1,n2) /

F I p lus (n2 ,1 ,n3) /
31 n 3 > 2 /

n:=O n'=]

n:---nl

1 D fib(

f:=f2

9 10
[] fib(n3,f3) ~-

Fig. 3. Trace fragment for a mixed computation strategy for the Flbonacci numbers.

inferences of the trace. The clauses: D, [] and fib(nl, f l) ~ are the first layer clauses.

In general, we have the following:

D E F I N I T I O N 2.3. The Oth layer clauses of a computation trace are the roots of the

trace.

An ith layer blference step is a sequence of resolutions consuming one or more

(i - k)th layer clauses, k > 0, and zero or more clauses from the program. At least

one of the consumed clauses is of layer i - 1. Each ith layer inference step produces

one ith layer clause as its resolvent.

In Figure 3, each inference step is represented by a number of descending arcs (one

arc for each clause consumed), all ending in a same node (that of the produced

clause). Each node contains an identification and a clause. Clauses belonging to a

same layer of the trace have been positioned on a same horizontal line. If a clause C!

is connected to a clause C2 by a path of descending arcs, we say that C2 is a descendent

of CI.

As in Figure 1, an identifier of the clause from the program that was applied (if any)

and the effect of the mgu on the variables in the parent nodes, are represented as labels

on the arcs. Also, calls solved using the standard top-down control (in this example

the built-ins) are labeled on the arcs.

The main difference between this trace segment and the one in Figure l is that this

one does not have the shape of a tree. Every inference step combines information from

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 345

1
fib(n,f), fib(O,O) <-, fib(l,1) "~

~ plus(O,l,1)
n:--O plus(1,1,nl)
f:=O / nl > 2

~ ~ plus(1,O,fl)

2 3 4
[] [] -~ fib(n,f), fib(l,1) ~ , fib(nl,fl) <-

~ ~ g 3 plus(l ' l 'n l)
n:--nl ~ plus(nl,l,n2)

n2 >2
t plus(fl,l,f2)
6

5 [] ~- fib(n,f), fib(nl,fl) <-, fib(n2,f2) <-

~ plus(nl,l,n2)

n:--n2 ~ F3 ~.~u~(2n2' 1'n3)

plus(f2,fl,f3) / -
7 8

[] ~- fib(n,f), fib(n2,f2) -~, fib(n3,t3) ~-

Fig. 4. Syntactical reorgamzatlon of the trace fragment for the Fibonacc~ numbers

different nodes in lower layers to infer the produced clause. However, the tree-

structure is essential if we want to mimic the computation by means of top-down

derivations.

This problem is solved by performing a syntactical reorganization on the trace

fragment. A number of nodes from the initial graph are merged into one node of the

new graph. The new node contains the conjunction of their clauses. This conjunction

represents a computation state which exists at a given time (what is the pending query

and what are the relevant facts that are available at that time). As an example, the

query ~fib(n, [) and the two facts fib(0, 0),-- and fib(I, 1)*-- form the initial compu-

tation state of Figure 4. They are merged as a conjunction into a single root of the

reorganized graph, shown in Figure 4.

The following procedure computes a reorganized trace (RT) from a given compu-

tation trace (CT):

Initialization

The 0th layer of the RT consists of a single state. It is the conjunction of all 0th layer

clauses of CT.

Constructblg the ith layer o[' R T

1. The state at the ith layer:

First we partition the ith layer clauses of CT into states. Two such clauses are

conjuncts of a same ith layer state in RT if they have a common descendant at layer

346 DANNY DE SCHREYE ET AL.

i + k, k >~ 1, in CT. Let S by any ith layer state of RT obtained in this way. We

add to S all the kth layer clauses R ofCT, k < i, such that there exists a descendant

D of a conjunct of Sin CT and R is consumed in the inference step of CT producing

D.

2. The inferences at the ith layer:

For every ith layer state S, of RT, there is exactly one (i - 1)th layer state S, j,

such that there is at least one inference step of layer i in CT which consumes only

conjuncts of S, 1 and produces a conjunct of S,. Draw an arc from S, ~ to S,. Take

the union of all labels on all arc representing ith layer inferences in CT of the type

described above. Add this union as a label on the arc from 5', ~ to S, in RT.

The main difference between a trace segment such as that of Figure 1 and the

tree in Figure 4 is that the nodes of Figure 4 do not contain the resolvents of an

SLD derivation. For instance, no SLD inference step can produce the effect of

the transition from node 1, ~-fib(n, f) , fib(0, 0), fib(l, 1)~ , to the empty clause.

As we will illustrate, this is not an objection to the application of the compilation

procedure.

The notions of a previous state and of an action prescribed by a control rule in a

state are completely similar to the corresponding notions for non-standard, top-down

computation rules.

DEFINITION 2.4. A control rule r is consistent if for any computation state St,

which is a renaming of a previous state $2, the actions prescribed by r in St are the

(same) renaming of the actions it prescribed in $2.

In the Fibonacci example, the computation state in node 8, ~fib(n, f) , fib(n2, f 2) ~ ,

fib(n3, f 3) ~ , is a renaming of the previous state in node 6. Again, if the control rule

is consistent, the reorganized trace folds into a compilation graph. The graph is drawn

in Figure 5.

l

-~ fib(n,f), fib(O,O) "~, fib(l,1) ~
~ plus(O,l,1)

n:=O plus(l,l,nl)
f:_~_~..........~ nl > 2

. , . . . ~ plus(1,0,fl)
2 3 4

[] [] ~ fib(n,f), fib(l,1) ~, fib(nl,fl)~

F3 plus(l'l'nl)
n:=nl ~ ~ plus(nl, 1,n2)
f:_~l~.....-- --~ n2 > 2

. ~ . ~ . ~ plus(fl,l,f2)
5 6

[] ~ fib(n,f),fib(nl,fl) ~, fib(n2,f2)~- ,c
~ plus(nl,l,n2)

n:=n2 ~ ~ plus(n2,1,n3)
n3 >2

- f ~ plus(f2,fl,f3)

7
[]

Fig. 5. Compilation graph for the Flbonacci numbers.

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 347

The synthesis of the new clauses involves only one element which is different from

the synthesis for permutation-sort. Since we want to obtain a new procedure for the

predicate fib/2, we add the node (0,*- fib(n, f)) as a new root on top of the compila-

tion graph. We connect it to node 1 with an arc without labels.

Following the synthesis procedure of the previous example, we introduce a new

predicate p/3 and we replace the loop-node, ~fib(n, !), fib(nl, ill)*--, fib(n2, / '2)~

by its canonical meta-representation p(fib(n, f) , fib(n l, /'1), fib(n2, f2)) . We synthe-

size clauses for paths connecting principal nodes. Three such paths connect node 0 to

[:::1. The clauses are

NI: fib(0, 0)*-. (state 0 to state 2)

N2: fib(l, 1),--. (state 0 to state 3)

N3: fib(nl, /'1) +- plus(0, 1, 1), plus(l, 1, nl), nl >~ 2, plus(0, 1, f i l l

(state 0 to state 5)

The paths including the loop-node are synthesized by

N4: fib(n, 1') *-- plus(0, 1, 1), plus(l, 1, hi), nl >~ 2, plus(l, 0, f l) .

plus(l, 1, nl), plus(nl, 1, n2), n2 ~> 2, plus(/ ' l , 1, 12),p(fib(n, f),
fib(nl, 11), fib(n2, 12)). (state 0 to state 6)

N5: p(fib(n2, ['2), fib(nl, /"1), fib(n2, J 2)) ~ . (state 6 to state 7)

N6: p(fib(n,/'), fib(nl,/ '1), fib(n2, /'2) ~ plus(M, 1, n2), plus022, 1, tt3), n3 >~ 2,

plus(12, ['1, /'3), p(fib02, f), fib(n2, f2), fib(n3, ./"3)). (state 6 to state 6)

The new program still contains some inefficiencies. The calls to ~>/2 which were

1.:eded in the original top-down formulation of the problem in order to ensure

termination are of no use in the bottom-up compilation.

Also, every first call to plus/3 in the clauses N3, N4 an N6 is redundant. A simple

theorem prover could detect these redundancies. However, we will not rely on such

capabilities here.

Another problem is that the program doesn't terminate. For queries of the type

*-fib(ground, any), we have one successful derivation path, after which the compu-

tation goes on indefnitely. This can easily be repaired by introducing a "cut" at the

end of each clause. However, in general it would require a determinacy analysis

of the original program (see [12, 13]) or additional information from the user of

the transformation system to make an appropriate decision on the insertion of

'cuts'.

Apart from these technical problems and after elimination of redundant functions

in p/3, our transformation results m the most efficient implementation for the com-

putation of Fibonacci numbers. The program strongly resembles the program which

was obtained in [4] by eliminating redundant calls to fib/2. The main difference is that

our program is tail-recursive.

Finally, we return to the issue of correctness and completeness of the transform-

ation. The arguments are the same for the compilation of computation rules. The

348 DANNY DE SCHREYE ET AL.

compilation graph correctly and completely represents the computation expressed

in the initial (infinite) computation trace. The new clauses are a correct and com-

plete synthesis for the compilation graph. As for compilability, we now have the

following.

DEFINITION 2.5. A triplet (P, q, r) consisting of program P, a query q and a

control rule r is compilable, if r is consistent and if there exists a finite fragment F of

the reorganized computation trace of (P, q) under r, such that for each state SI in a

leaf of F, there exists a previous node of F, with a state $2, and such that S1 is a

renaming of $2.

3. Applications of the Technique

The compilation can be used in a wide range of applications. In this section we

illustrate its applicability in three quite different domains: solving numerical prob-

lems, integrity checking in deductive databases, and theorem proving.

3.1. SOLVING NUMERICAL PROBLEMS

When numerical problems are specified declaratively in terms of logic programs,

this often results in programs which are inefficient under the standard top-down

execution mechanism of PROLOG. One type of inefficiency is due to the occurrence

of redundant computations (duplicate calls within a same execution). The Fibonacci

problem is a typical example. In [14] several other examples of the same type are

studied.

The logical specifications used by Clocksin for these problems construct a term

which represents the operations needed to compute the result of the problem (e.g.,

(0 + 1) + i represents the operations needed for the computation of the third

Fibonacci number). In Clocksin's method, common subterms of such a term are

detected and then the term is folded into a graph-structure, where each subcompu-

tation is only represented once.

Inspired by this technique Ref. 4 introduces an automatable source level trans-

formation method, based on unfold/fold [15] and factoring. It produces new, logically

equivalent logic programs, from which all redundant computations have been

eliminated.

A more natural way to eliminate the redundancies is to execute the programs with

a bottom-up strategy. As shown in the previous section, our compilation technique

can transform fragments of such executions into top-down executable logic programs.

We successfully applied the technique to all the examples discussed in [4] and [14].

These include: the approximation of the exponential function by finite series expansions,

solving matrix equations, and computing an n-point discrete Fourier-transform. In

general, the efficiency of our compiled programs was slightly better than in [4],

because they are always tail-recursive.

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 349

We do not give an addit ional example o f such a t ransformat ion here. Instead, we

illustrate how b o t t o m - u p compi la t ion can be used to t ransform almost-tai l-recursive

p rog rams into logically equivalent tail-recursive ones.

Since logic p r o g r a m m i n g languages have no constructs for iterative loops, such as

/or and while, p rog ram loops are always expressed with recursion. I n terms of efficient

implementa t ion , tail-recursive procedures are a good approx imat ion of iterative

loops. However , many natural logical formula t ions of numerical (and other) prob-

lems are non-tail-recursive. Ref. 5 presents a t rans format ion technique based on

unfold/fold which t ransforms a class of recursive p rograms (called a lmost tail-

recursive) into logically equivalent tail-recursive ones. The most complex example

Debray deals with is the non-determinist ic compu ta t ion described by

i i f x = 0

r(x) = *r (x l) i f x (> 0) i s e v e n

* r (x 1) - 1 o r 2 * r (x - 1) + 1 i f (x > 0) i s o d d

In clausal form, the p rog ram is

RI: r(0, 1)-*-.

R2: r(n, l) +-- n > 0, even(n), plus(hi , 1, hi, r(nl, ['1), twotimes(f l , 1").

R3: r (n , / ') ~ n > 0, odd(n), plus(nl , 1, n), r (n l , f l) , twotimes (/ ' l , l) .

R4: r(n, t ') +-- n > 0, odd(n), plus(M, 1, n), r (nl , f l) , twotimes + (./1, /).

TI : t w o t i m e s (/ ' l , f) ~ / i s 1 1 , 2 .

Y2: twotimes (/ ' 1 , /3 +-- / i s (f l * 2) - 1.

Y3: t w o t i m e s + (l ' l , f) +-- / ' i s (f l , 2) + 1.

Ref. 16 gives the details o f the t ransformat ion . Here we show how a similar

tail-recursive p rog ram can be obta ined by compil ing a completely b o t t o m - u p control

1 2
-~ r(n,f) r(O,1) +

1 us(O,t,~3)
/ / / / n l > o \-n2 > 0 ~ n ~ > o

. / ~ D, / /even(hi) R2\odd(n2) D~.~dd(n3) . •
, . ~ twotimes(1,fl) " '- \twotimes-(1,f2) v,a " ' - , , ~ lme s"-(1, f3)

3 / 4 5 6
[] / r(nl,fl) ~ r(n2,f2) + r(n3,f3) ~-

f:---fl
plus(nl,l,n6)

n4 > 0 > n6 > / / ~ (O n 4) ~ 5 >d~(n5) - " ~ ' ~ , (n 6) . +

7 8 9 10
[] r(n4,f4) ~ r(n5,f5) ~ r(n6,f6)

lqg. 6, Fragment of thc computation trace for the botlom-up computauon of the r/2-predmate.

350 DANNY DE SCHREYE ET AL.

2
[] ~ r(n,f

n:= nl /

6
[]

1
"~ r(n,f), r(0,1)"~

fT-~ O / ~ ~ p I ~ u s (0,1 ,n 1) ~ ~ p l u s (O , 1,n23)
7 / nl-> 0 -" \v~':~-b "q--...n3 ~; .0 / R,/even(nl) _.. R~X(b-dd(~2) ~"~.~ld(n3) . +

Utwotimes(1,fl) ~x,~ ~tw~times-(1,f2) R3 " - - ~ u n e s (1,f3)
3 4 5

I, r(nl,fl)~- "~ r(n,f), r(n2,f2)~ ~ r(n,f), r(n3,f3)-'-

P 4 ~ ~ p l u s (n 1,1,n6)
>0 >0 6>

1 ' ~ ~ 1 R twotimes(ft,f4) R2 "X~lmes-(f l , f5) ~ f6)

8 9

r(n,f), r(n4,f4)-~ ~ r(n,f), r(n5,f5) ~ "~ r(n,f), r(n6,f6)~-

Fig. 7. Reorganized computation tree fragment for r/2.

rule. The computation trace fragment is drawn in Figure 6. The control rule is such

that at each stage it either unifies the query ~ r(n, f) with a newly derived fact, or it

uses the fact as input to one of the three recursive rules to derive new facts. The

reorganized graph is shown in Figure 7. Each computational state is obtained by

merging a fact in a node of Figure 6 with the query ~r(n, f) . The states in the nodes

4, 5, 7, 8 and 9 are renamings of the state ,--r(n,f), r (n i , f l) ~ in node 3. Thus, by

folding on them, we obtain the compilation graph of Figure 8.

By adding the additional node (0, ~ r(n, f)) and using the meta-prcdicate p/2 to

represent loop-node 3, we synthesize the clauses:

1
r(n,f), r(0,1) "~

/ / n l ' > 0 "-'~ln~ > u \n3 > R.
/ RLd/eve__n_(_nl)]odd(n2) ~ oaot.n,) +

2 3
[] - ~ r (n f) , r (n l , f l) ~- fl= 2 I I

fn::_---f7///[1 ;;:'(: :,1 ,n4, I ~a~;ilnl, 1,n5, X~plus(nl,l,n6)
I I I I RlJh4 >0..-- R2I n~_>_~. X n 6 > 0

even(n4) oaatn.9) n / 1[~ - - ~ f l , f 4) - -) ~v~~ R3/~dn(~76)~+,fl f6~ / \\JJ

Fig. 8 Compilation graph for r/2.

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 351

NI:

N2:

N3:

N4:

N5:

N6:

N7;

N8:

r(0, 1)~ . (state 0 to state 2)

r (n , f) ~ plus(0, 1, nl), nl > 0, even(hi), twotimes(1,f l) , p(r (n , f) ,

r (n l , /1)) . (state 0 to state 3, using R1)

r(nf) ~ plus(0, 1, n2), n2 > 0, odd(n2), twotimes (1 , /2) , p(r(n, f) ,

r(n2, 1"2)). (state 0 to state 3, using R2)

r (n , f) +-- plus(0, 1, n3), n3 > 0, odd(n3), twotimes+(I,/ '3), p(r(n, it'),

r(n3, f3)) , (state 0 to state 3, using R3)

p(r (n l , /1) , r(nl, f l)) ~ . (state 3 to state 4)

p(r(n , f) , r(nl, f l)) , - plus(nl, 1, n4), n4 > 0, even(n4), twotimes(l ' l , / 4) ,

p(r(n, f) ,

p(r(n, ,it'),

p(r(n, l),

p(r(n, it'),

p(r(n, f) ,

r(n4, it'4)). (state 3 to state 3, using R1)

r(nl, ,r ~ plus(nl, l, n5), n > 0, odd(n5), twotimes (/ ' l , f 5) ,

r(n5,/~ (state 3 to state 3, using R2)

r (n l , f l)) +-- plus(nl, 1, n6), n > 0, odd(n6), twotimes+(it'l, f6),

r(n6, f6)) . (state 3 to state 3, using R3)

The efficiency of the resulting program is of the same order as that of the trans-

formed tail-recursive program in [16]. Clearly, it can be still further improved by

trivial transformations such as the elimination of the calls to >/2, the introduction

of 'cuts' and the removal of redundant functions in the p/2-predicate.

It is not surprising that the bottom-up compilation produces programs comparable

to the tail-recursive programs of [5]. The technique of producing tail-recursive pro-

cedures involves the introduction of accumulating parameters. The typical function

of an accumulating parameter is to simulate a bottom-up-like computation in a top-

down execution.

The reader may wonder why we restrict our attention to the bottom-up compilation

of numerical problems. The reason is that all recursive programs depend on an input

which is either numerical or a recursively defined data-structure (or a number of

database facts: a case which we discuss in the next subsection). Programs consuming

input from a recursively defined data-structure are hard to execute with a bottom-up

strategy. As an example, consider the program:

SI: scalar(x, y, r) ~ product(x,)', z), sum(z, 0, r).

PI: product(Nil, Nil, N i l)~

P2: product(x.xt , y.yt, z.-_t) ~ is x* y, product(xt, yt, zt).

SUI: sum(Nil, r, r) ~ .

SU2: sum(x.xt , ac, r) ~- u is x + ac, sum(xt, a, r).

The program computes the scalar product of two vectors, which are represented as

lists. It is inefficient under a top-down execution, because the same data structure is

traversed twice. A transformation merging the two program loops is given in [17]. If

we want to execute this program with a bottom-up strategy, then, at each step in the

recursion, we need access to the last element in the input lists (representing the two

vectors to be multiplied). Therefore, in order to deal with this type of problem, we

352 DANNY DE SCHREYE ET AL.

would need to extend our compilation technique with an initial phase in which every

recursively defined input-data-structure is reversed. Although this seems feasible, we

will not elaborate on it in this paper.

3.2. INTEGRITY CHECKING IN DEDUCTIVE DATABASES

In [6 and 7] an approach for checking integrity constraints in deductive databases,

based on theorem proving, is presented. Under the assumption that the databases is

consistent prior to an update (which can be the insertion or the deletion of a fact, a

rule or an integrity constraint), a derivation is built with a mixed computation strategy

and using the update as a generalized goal-statement. If the empty clause can be

derived, then the update is clearly inconsistent with the database.

In the special case that no implicit deletions are involved in the refutation, Ref. 6

proposes a compilation scheme which compiles the computation strategy into a

top-down executable program. We give a simple example to illustrate how our tech-

nique can be used to produce similar results. The initial database is

FI: finished(Project2)*--.

SI: subproject (Projectl 1, Project2) *--.

$2: subproject (Project21, Project2)~.

WI: works-on(Carl, Projectl)+--.

W2: works-on(Lou, Projectll)+--,

W3: works-on(x, y) ~ subproject(z, y), works-on(x, z).

I1 : *--works-on(x, y), finished(y).

We aim to produce a logic program that checks the integrity of the database

whenever a new fact of the type works-on(x, y) +-- is inserted. In Figure 9 a fragment

of the computation trace is shown.

We chose to represent the trace in a less compact form than what we did in the

previous examples (resolvents containing a subgoal which is solved completely by the

standard computation rule have not been omitted) to show that the resolvents

occurring in the traces are in general not restricted to facts or goals.

The trace already has the shape of a tree (this is always the case in this type

of application). Therefore, no reorganization is needed. We have one loop-node,

I
works_ on(x,y) ~-

2 3
f'mished(y) works__on(x,yl) ~- subproject(y,yl)

f'mished(y) subproject(y,y 1)

4 5
[] works_on(x,y 1) "~

F% 9, Fragment of the computation trace for the works-on problem.

COMPILING BOTTOM-UP AND MIXED DERIVATIONS

2
[]

1

works_on(x,y) ~-

I ~ ~ s h e d (y)
~ W 3 ~ subproject(y ,y 1)

Fig. I0 Compilation graph for the works-on problem.

353

works-on(x, y)+--. We fold on it to obtain the compilation graph of Figure 10.

With the meta-predicate p/l to represent the loop-node, we obtain the clauses:

NI: p(works-on(x, y)) +-- finished(y). (state 1 to state 2)

N2: p(works-on(x, y)) ~ subproject(y, yl) , p(works-on(x, yl I).

(state 1 to state 1)

Several comments need to be made regarding this application. First, it is not

sensible to compile an integrity-checking program if updates of the given type do not

occur frequently. Thus, in general, we do not compile a program that checks for

possible integrity violations caused by inserting or deleting a rule or an integrity

constraint. As an example, consider updates such as insertions of the type

parent(x, y)*--, with x and v ground. They may occur frequently in a database. On

the other hand, the insertion of a new rule, such as father(x, t) ~ parent(x, 3"),

male(x), will only occur once.

A second comment in the same spirit is that whenever the integrity checking

involves a call to a predicate which is frequently updated, then this call should not

be expanded in the trace, but represented - and solved - as a label on an arc (e.g.,

finished / 1 and subproject/2 in the example). By doing so, we do not have to recompile

the program after each update for this predicate, In fact, in our example, a recompil-

ation is only needed whenever a rule or an integrity constraint which includes a call

to works-on/2 in its body is inserted or deleted.

In [6] recursive rules are not explicitly considered. However, the application of the

compilation method described in that paper to our simple example, produces (among

other ones) essentially the same clauses. The main advantage of our method, is that

the clauses we synthesize are a precise compilation of the control which was expressed

by a user (or oracle). In more complication situations than described in the example,

sophisticated additional control might be necessary. In such circumstances, our

method provides a way to impose this control. (See also the remark below.) In general,

the method of [6] produces many more clauses, independent of any underlying control

strategy.

Finally, there is the problem of finding an efficient search-strategy. In the presence

of recursive rules and using a mixed computation strategy, integrity checking can

easily produce infinite loops. General principles for obtaining useful strategies have

been proposed in [18-20]. In our example, we have followed [18], by continuously

354 DANNY DE SCHREYE ET AL.

generating new facts derivable from the update and then consuming them to check

whether the integrity constraints have not been violated. Furthermore, in order to

avoid computing the same fact a number of times, we can keep a record of the

information that has been derived so far. Finally, we can safely introduce a 'cut' at

the end of every clause synthesized by the compilation procedure, since one refutation

is sufficient to establish the fact that the integrity is violated. If we assume that in our

example a user will specify his intended update with a query ~ add(works-on(A, B)),

then these observations result in the following clauses:

A 1: add(works-on(x, y)) ~ assert(addition(works-on(x, y))), p(works-on(x, y)), !,

write("integrity violated"), retractall(addition(-)),

A2: add(works-on(x, y)) ~ retractall(addition(-)), assert(works-on(x, y)).

PI: p(works-on(x, y)) ~ finished(),),!.

P2: p(works-on(x, y)) *-- subproject(y, z), not(addition(works-on(x, :))),

assert(addition(works-on(x, z))), p(works-on(x, z)).

Here, we have assumed that a user will specify his intended update with a query

add(works-on(A, B)). Clearly, in a database environment, these clauses should not be

executed using the tuple-at-a-time mechanism of PROLOG.

3 3. THEOREM PROVING

With the mixed computation rule of the previous example, we already introduced

an element of theorem proving. However, the program contained only Horn clauses.

In our next example, we illustrate that we can just as well start off with a logical

problem specification in full (non-Horn) clausal form, apply a theorem proving

strategy to it and compile the computation into a top-down executable (PROLOG)

program.

The example is inspired by Moore's three blocks problem. Given is a pile of blocks

of infinite height. Every even block is red and at least one out of every three

connecting blocks is blue. The problem is to find the blue blocks. In clausal form, we

have

CI: col(0, Red)~ .

C2: col(n, Red) ~ n > 1, plus(n2, 2, n), col(n2, Red).

C3: col(n, Blue), col(nl, Blue), col(n2, Blue) ~- plus(nl, 1, n), plus(n2, I, nl).

C4: ~col(n, Red), col(n, Blue).

The desired mixed control rule for the query ~ col(m, Blue) is expressed in the

trace fragment of Figure 11.

The reorganized graph is drawn in Figure 12. The leaf, node 7, is a renaming

of the previous node 5. It is the only loop-node. By folding on it, we obtain the

compilation graph. Its shape should be clear from the previous examples, so we omit

it.

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 355

1 2

~-col re,Blue) col(0,Red) "~

C4 ~ plus(0,Z,n2)

3 4
12 ~- col(0,Blue) col(n2,Red) "~

/ (2 . " ~ C 4 ~ / ~ I plus(n2,2,n4)

/ ~plus(0,1_r ~ ~""~1 n4 > 1
[/ plfis(m,l,n2) 5 6

C3 [/ ~ col(n2,Blue) col(n4,Red) "~

| \ ~ ~ plu~nl4'2'n6'

/plus(n2,1.m) _ /
\ 7 / pl-us(m,l,n4) 8 9
\ 1 "] / - "~ col(n4,Blue) col(n6,Red) ~-

\ / ~ C 4 ~ - / ~ plus(n6,2,n8)
N ~ ~ IZZ[n8 > 1

10 11 12
[] ~col(n6,Blue) col(n8,Red) "~

Fig. 11. Fragment of the trace for the pile-of-blocks problem.

1
~-eol(m,Blue), col(0,Red)~-

c4C2 I plus(0,2,n2)n2 > 1

2
~- col(m,Blue),-~ col(0,Blue), col(n2,Red)-~

C2 plus(n2,2,n4)
C4 n4 > 1

3
~-col(m,Blue), ~col(0,Blue), ~- col(n2,Blue), col(n4,Red) ~-

" ~ C 2 plus(n4,2,n6)
C4] n6 > 1

4 5
[] ~ col(m,Blue), ~ col(n2,Blue), ~ col(n4,Blue), col(n6,Red)

~ plus(n6,2 ,n8)
n8> 1

/
6 7
[] ~col(m,Blue), ~col(n4,Blue), ~-col(n6,Blue), col(n8,Red)

Fig. 12. Reorganized trace tree for the pile-of-blocks problem

356 DANNY DE SCHREYE ET AL.

By adding a new root node, (0, ~col(m, Blue) - as in the Fibonacci example -

and with the meta-predicate p/4 representing the loop-node, we obtain the (Horn

clauses):

NI:

N2:

N3:

N4:

col(m, Blue) *- plus(0, 2, n2), n2 > 1, plus(n2, 2, n4), n4 > 1, plus(0, 1, m),
plus(m, 1, n2). (state 0 to state 4)

col(m, Blue) *-- plus(0, 2, n2), n2 > 1, plus(n2, 2, n4), n4 > 1, plus(n4, 2, n6),
n6 > 1, p(col(m, Blue), col(n2, Blue), col(n4, Blue), col(n6, Red)).

(state 0 to state 5)

p(col(m, Blue), col(n2, Blue), col(n4, Blue), col(n6, Red)) ~ plus(n2, 1, m),

plus(m, 1, n4). (state 5 to state 6)

p(colOn, Blue), col(n2, Blue), col(n4, Blue), col(n6, Red)) *-- plus(n6, 2, n8),

n8 > 1, p(col(m, Blue), col(n4, Blue), col(n6, Blue), cot(nS, Red)).

(state 5 to state 5)

As in the previous examples, the calls to >/2 and the functors (and constructs) in

p/3 are redundant. However, the logic program is an efficiently executable compil-

ation of the desired proof-strategy.

Again, the problem of how to obtain an efficient strategy for solving the problem

at hand is non-trivial. We do not claim any contribution to this issue, and we refer

to [21] for a good overview of the achievements in the field. The benefit of our

technique is that we can use a general theorem prover to detect a good inference

strategy for a given problem and then compile the successful derivation paths into

efficiently executable programs. Clearly, this poses a problem of completeness.

Therefore, the application domain we are mostly aiming at is that of machine

learning. In this field, one of the important issues is to find techniques which can

derive efficient new rules for relevant problems concerning a given knowledge base.

This is precisely what the combination of a general-purpose theorem prover and our

compilation technique will achieve for this type of problems.

4. Discussion

Our main achievement in this paper is that we have shown that the transformation

technique called 'Compiling Control', which was designed to compile coroutining,

can also be used to compile bottom-up and mixed computations. We have illustrated

how this can be applied to solve several state-of-the-art problems in different domains:

eliminating redundant computations, transformation almost-tail-recursive pro-

cedures into tail-recursive ones, compiling integrity checking and learning new,

efficiently executable rules to solve given problems concerning a problem domain

(expressed in (non-Horn) clausal logic).

We deliberately started off from the very restricted Definition 2.2 for the com-

pilability of triplets (P, q, r). Most of the examples studied in [1 and 11] do not satisfy

this condition. In these examples, there does not exist a finite fragment F of the

COMPILING BOTTOM-UP AND MIXED DERIVATIONS 357

computat ion trace, such that every leaf of F is a renaming of a previous state. Also,

the notion of consisten O' in [1 l] is a more general than that of Definition 2.1. Still,

these more general triplets can be compiled. The reason why we restricted our

attention to the subset of triplets (P, q, r) of Definition 2.2 (and Definition 2.5) is that

we wanted to focus on the new applications of the technique. Generalizing the

entire framework of [I 1] to cover non-top-down computations would have forced

us to go into many more technical details. Also, such an approach - in addition to

presenting all the applications - would not have been possible within reasonable

space-constraints.

A typical example of how this decision limits the general applicability of the

technique (as it was presented here), is the pile-of-blocks problem. If we choose

to represent the integers in the first argument of col/2 with a successor-function,

s/l, then, with the same control rule r as in 3.3, we obtain a triplet (P', q', r) which

is not compilable. The reason is that the (new representations for the) states in

node 5:

+-col(n, Blue), ~ col(s(s(0)), Blue), ~col(s(s(s(s(O)))), Blue),

col(s(s(s(s(s(s(O)))))), Red)

and node 7:

col(n, Blue), +--col(s(s(s(s(0)))), Blue), ~col(s(s(s(s(s(s(0)))))), Blue),

col(s(s(s(s(s(s(s(s(O)))))))), Red) +--

are no longer renamings. In fact, no two states will ever be renanaings. However, it

is clear that both states are instances of a same more general pattern:

col(n, blue), +-col(s(s(x)), Blue), ~col(s(s(s(s(x)))), Blue),

col(s(s(s(s(s(s(x)))))), Red)+--.

A more general framework for the compilability of control rules can be sketched

as follows: let (P, q, r) be a triplet consisting of a program, query, and control rule

and T a fixed, finite set of states (again, conjunctions of clauses), such that

- r is a consistent control rule, in the sense that for every state S, which is an instance

of a state S ~. with S ' in T, the actions prescribed by r in S are a corresponding

instance of the set of fixed actions prescribed by r in S'. Here, we allow exceptions

for these states S that belong to a well-identified initial part of the computation

trace, describing an initialization phase,

- starting from any general pattern, SI in T, and performing the actions prescribed

by r, we obtain, after a finite number of inference steps, an instance $2' of a state

S2 in T.

- there exists a finite fragment F of the computat ion trace (strictly exceeding the

initialization phase) such that every leaf S of F is an instance of a state S ' in 7",

then (P, q, r) is compilable.

358 DANNY DE SCHREYE ET AL.

References

I. Bruynooghe, M., De Schreye, D., and Krekels, B., 'Compiling control', J. Logic Programmmg, 6

135-162 (1989).
2. Van Hentenryck, P., Constraint Satisfaction in Logic Programming, Logic Programming Series, MIT

Press, Cambridge, 1989.
3. De Schreye, D. and Bruynooghe, M., "The compilation of forward checking regimes through meta-

interprehon and transformation', in Meta-programming in Logic Programming, H. Abramson and
M. H. Rogers (Eds) MIT Press, 1989, pp. 217-231.

4. Bruynooghe, M., De Raedt, L., and De Schreye, D., 'Explanation based program transformation', in
Proc. IJCAI'89, 1989, Detroit, pp. 407-412.

5. Debray, S K, "Unfold/fold transformations and loop optimization of logic programs', in Proc.

S1GPLAN'88 Conf. on Programming Language Design and Implementation, SIGPLAN Notices,
Vol. 23, No. 7, July 1988, pp. 297-307.

6. Kowalskl, R., Sadrl, F., and Soper, P., "Integrity checking in deductwe databases', in Proc. 13th VLDB,

Brighton, England, 1987.
7. Sadri, F. and Kowalski, R., 'A theorem-proving approach to database integrity', in Foundauons of

Deductive Databases and Logic Programming, J. Minker, Morgan Kaufmann Publishers, 1988,

pp. 313-362.
8. Soper, P. J. R., Integri O' Checking zn Deductive Databases, M.Sc. Thesis, Department of Computing,

Imperial College, London, 1986.
9. Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T., 'Explanation-based generalization: a unifying

view', Machine Learning, 1, 47-80 (1986).
10. DeJong, G. and Mooney, R., "Explanation-based learning: an alternative view', Machine Learning, 1,

145-176 (1986).
11. De Schreye, D. and Bruynooghe, M., 'On the transformation of logic programs with lnstantiation

based computation rules', J. Symbolic Computation, 7, 125-154 (1989).
12. Debray, S. K. and Warren, D. S., 'Detection and optimization of functional computations' in Prolog,

Proceedmgs Third Internauonal Logic Programming Conference, LNCS, 225, Springer-Verlag, 1988,
pp. 490-504.

I3. Kanamori, T., Horluchl, K , and Kawamura, T., "Detecting functionality of logic programs based on
abstract hybrid interpretation', ICOT Technkal Report, TR 331, 1988.

14. Clocksin, W. F., "A technique for translating clausal specifications of numerical methods into efficient
programs', J. Logic Programming, 5 (3), 231-242 (1988).

15. Burstall, R M. and Darlington, J. 'A transformation system for developing recursive programs',

JACM, 24, 44-67 (1977).
16. Debray, S. K., Global Optimization of Logic Programs, Ph.D. dissertation, Stony Brook, 1986.
17. Bruynooghe, M. and De Schreye, D., "Some thoughts on the role of examples in program transform-

atlon and its relevance for explanation based learning', in Proc. International Workshop on Analogical

and Inductive Inference, (AII89), LNCS, 397, Sprlnger-Verlag, 1989, pp. 60-78.
18. Decker, H. "Integrity enforcement on deductive databases', in Proc. First International Conference on

Expert Database Systems, Charleston, South Carolina, USA, 1986.
19. Lloyd, J. W., Sonenberg, E. A., and Topor, R. W., 'Integrity checking in stratified databases', J. Logic

Programming, 4, 331-343 (1987).
20. Bry, F., Decker, H., and Manthey, R., "A uniform approach to constraint satisfaction and constraint

satisfiability in deduchve databases', in Proc. EDBT'88, Venice, Italy, 1988.
21. Ramsay, A., Formal Methods m Art~ctal Intelligence, Cambridge University Press, 1988.

