
Compiling Contextual Restrictions on Strings into
Finite-State Automata

Anssi Yli-Jyrä and Kimmo Koskenniemi
Department of General Linguistics

P.O. Box 9, FIN-00014 University of Helsinki, Finland
firstname.lastname@helsinki.fi

Abstract

The paper discusses a language operation that we callcontext restriction.
This operation is closely associated withcontext restriction rules(Kosken-
niemi, 1983; Kiraz, 2000),right-arrow rulesor implication rules(Kosken-
niemi et al., 1992; Voutilainen, 1997) and therestriction operator(Beesley
and Karttunen, 2003). The operation has been used in finite-state phonology
and morphology in certain limited ways. A more general setting involves re-
stricting overlapping occurrences of a center language under context condi-
tions. Recently, star-free regular languages (and all regular languages) have
been shown to be closed under context restrictions with such“overlapping
centers” (Yli-Jyrä, 2003), but the construction involvedis overly complex
and becomes impractical when the number of operands grows.

In this paper, we improve this recent result by presenting a more practi-
cal construction. This construction is not only simpler butit also leads to a
generalization where contexts and centers may appear as conditions at both
sides of the implication arrow (⇒): licensing conditions on the right-hand
side specify the restriction and triggering conditions on the left-hand side
regulate activation of the restriction. One application ofthe generalization
is to facilitate splitting certain context restriction rules in grammars into a
conjunction of separate rules.

1 Introduction

There are different definitions for context restriction operations and rules, but they
share a common idea that substrings that belong to a so-called center languageX
are eitheracceptedor rejectedaccording to thecontextwhere they occur.1 A set

1In context restriction rules that are used in morphology, the alphabet of the strings consists of
same-length correspondences. However, we avoid this complication in the current paper.

1

of licensing context conditions(C1,C2, · · · ,Cn) is specified, and each of the con-
ditions is a pair of aleft-hand context languageand aright-hand context language.
The context of an occurrence of the centerX satisfiesa context conditionCi if its
left-hand and right-hand contexts belong, respectively, to the left-hand and right-
hand context languages. An occurrence is accepted if its context satisfies at least
one of the context conditions.

The strings where different occurrences ofX overlap each other are problem-
atic. To treat such a string, the occurrences of the center are divided into those that
arefocused2 and those that areunfocused. The string is included to the language
described by context restriction operations and rules if and only if it all the focused
occurrences are accepted. However, the existing definitions for context restrictions
choose the focused occurrences in different ways. Some definitions for context
restrictions focus all the occurrences (Yli-Jyrä, 2003).Some other definitions (re-
lated to Karttunen, 1997; Kempe and Karttunen, 1996; Karttunen, 1996) focus,
non-deterministically or deterministically, a set of non-overlapping occurrences in
such a way that the unfocused occurrences that remain in the string would over-
lap with the focused ones. There are further definitions thatare partition-based
(Grimley-Evans et al., 1996; Kiraz, 2000) or do not really work for long occur-
rences (Kaplan and Kay, 1994), which means that the occurrences cannot overlap
each other at all.

Context restriction is a widely useful operation, and it is closely connected to
several formalisms:

• In the classical rule formalism for thetwo-level morphology, the centers of
context restriction rules are restricted to single character correspondences
(Koskenniemi, 1983). Two-level context restriction rulescan be compiled
into finite-state transducers (FST) according to a suggestion by Ron Kaplan
who solved the problem of multiple contexts in 1980’s by means of context
markers (Karttunen et al., 1987; Kaplan and Kay, 1994).

• Alternative two-level and multi-tiered formalisms have also been proposed
(Ritchie et al., 1992; Grimley-Evans et al., 1996; Kiraz, 2000). In these
formalisms, the occurrences of the center cannot overlap atall.

• In the framework of Finite State Intersection Grammar (FSIG) (a flavor of
finite-state syntax) (Koskenniemi et al., 1992; Yli-Jyrä,2003), overlapping
occurrences can be focused simultaneously because the centers are not nec-
essarily sets of unary strings as it is the case in the classical two-level mor-
phology. In the literature, there are also cases where context restrictions

2A focused occurrence corresponds – as a notion – to the occurrence ofX on a particularappli-
cationof the context restriction rule (Karttunen et al., 1987).

2

could have been used as a shorthand notation for combinations of other op-
erations (Wrathall, 1977; Grimley-Evans, 1997) and to cover If-Then func-
tions of (Kaplan and Kay, 1994, p.370), if the operation onlyhad been avail-
able as a pre-defined primitive. In these cases, context restriction can be
viewed as a general purpose language operation whose arguments can be
e.g. context-free languages (Wrathall, 1977; Yli-Jyrä, 2004 (in print)).

• The replace(ment) operators(e.g. (Karttunen, 1997; Kempe and Karttunen,
1996; Beesley and Karttunen, 2003) and thecontext-dependent rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996) are also related to context
restrictions, but multiple applications of the replacement / rewriting rules
motivate defining restrictions in such a way that simultaneous foci do not
overlap each other.

Various flavors of context restrictions differ from each other mainly due to different
conceptions on possible foci in the accepted strings. We will now restrict ourselves
to the definition where each string is associated with only one set of focused occur-
rences of the center substrings. In this set, all occurrences of the center language
are focused simultaneously and each occurrence must, thus,be accepted. Accord-
ing to this definition, each string of lengthn has in the worst caseO(n2) focused
occurrences, and it is, therefore, not immediately obviousthat regular languages
are closed under the operation that has this property.

We will now give an exact definition for the flavor of context restriction (con-
text restriction with “overlapping centers”) we are concerned with. LetΣ to be
the alphabet for building strings. Acontext restriction of a centerX in contexts
C1,C2, · · · ,Cn is a operation whereX is a subset ofΣ∗ and each contextCi,
1 ≤ i ≤ n, is of the formVi Yi, whereVi,Yi ⊆ Σ∗. The operation is ex-
pressed using a notation

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn (1)

and it defines the set of all stringsw ∈ Σ∗ such that, for every possiblev, y ∈ Σ∗

andx ∈ X for which w = vxy, there exists some contextVi Yi, 1 ≤ i ≤ n,
where bothv ∈ Σ∗Vi andy ∈ YiΣ

∗. If all these setsX , Vi andYi are regular (typo)
v ∈ Vi

y ∈ Yi

(or star-free regular) then the result will also be regular (resp. star-free regular)
(Yli-Jyrä, 2003).

The reader should note that, in the current paper, we define context languages
Vi andYi, 1 ≤ i ≤ n, directly astotal contexts. 3

3In the literature (e.g. in Beesley and Karttunen, 2003), it is most often assumed that left-hand
context languagesVi of the formΣ

∗
L and right-hand context languagesYi of the formLΣ

∗ can be

3

In this paper, we present a previously unpublished construction for the lan-
guage denoted by context restrictions with “overlapping centers”. The construction
is based on a combination of usual regular operations that are easy to implement in
practice. In contrast to various previous compilation methods, our new construc-
tion restricts all overlapping occurrences (vs. Kaplan andKay, 1994; Grimley-
Evans et al., 1996), and avoids exponential growth in the size of the expanded
formula (vs. Yli-Jyrä, 2003). Our construction resemblesthe compilation method
by Grimley-Evans et al. (1996) and Kiraz (2000). However, our method deals with
overlapping occurrences, while theirs assumes a partitioning where the occurrences
corresponds to disjoint blocks in the strings. The new method has been communi-
cated to the Xerox group and it has already been adopted – due to its generality and
speed – in XFST (Beesley and Karttunen, 2003)4, a proprietary finite-state com-
piler, since XFST version 8.3.3. The new construction also generalizes so that it
involves triggering conditionsand licensing conditions. Thegeneralized restric-
tion has a lot of applications. A part of this paper is devoted to illustration of a
possible application that allows fordecomposed context restrictions.

The paper is structured as follows. The new construction is presented in Section
2 and generalized in Section 3. In Section 4, we describe a special problematic
setting where the context restriction has bad state complexity, and then show that
the generalized context restriction can be used to split context restrictions into sub-
constraints that are recognized with smaller automata. We list some areas of further
work in Section 5, and conclude in Section 6. The appendix presents a summary of
the previous solutions, being of interests only to a portionof the intended audience.

2 New Construction

2.1 Notation

We use the following usual language operations: concatenation (L1L2), exponenti-
ation (Ln), concatenation closure (L∗), union (L1∪L2), intersection (L1∩L2) and
asymmetric difference (L1 −L2). We use parenthesis(,) for grouping. WhenL is
a regular language, we denote by|L| the size of a minimal deterministic automaton
that recognizesL – this is what we mean by thestate complexityof L.

The default alphabet for building strings isΣ. Let ⋄ /∈ Σ. We use⋄ as a
special marker symbol, called adiamond, that is not present in the final result. For

simplified by replacing them withL in the notation. This would require prepending and appending
Σ

∗ respectively toVi andYi when the meaning of the operation is concerned. We avoid such
expansions for the sake of clarity. By doing so, we do not sacrifice generality.

4The original XFST version attached to the book by Beesley andKarttunen (2003) would inter-
prete simple and multi-context restrictions under different, mutually inconsistent definitions.

4

all alphabetsM such thatM ∩ Σ = ∅ we denote the unionΣ ∪ M by ΣM . By
hM : Σ∗

M → Σ∗ we denote a homomorphism w.r.t. string concatenation such that it
just deletes marker symbolsM from the strings. The inverse homomorphismh−1

M

obviously inserts symbolsM freely in any string position. Bysα/L : Σ∗
{α} → Σ∗

we denote the substitution that replaces in strings ofΣ∗
{α} the symbolα /∈ Σ with

the languageL ⊆ Σ∗.

2.2 Compiling Basic Restrictions

The semantics of a context restriction is formulated in fourstages:
(I) We take all possible stringsw ∈ Σ∗ where there is some focused occurrence

of any substringx ⊆ X and insert a pair of diamonds⋄ into these strings in such a
way that the occurrence ofx is marked by a preceding diamond⋄ and a following
diamond⋄. The obtained set is obviously

Σ∗ ⋄ X ⋄ Σ∗. (2)

Now h{⋄}(Σ
∗ ⋄ X ⋄ Σ∗) can be interpreted as the set

{w ∈ Σ∗ | ∃vxy : w = vxy∧x ∈ X}.

(II) We describe all stringsw = vxy where the string pairv y satisfies
some licensing contextVi Yi, and we insert a pair of diamonds⋄ into these
strings in such a way thatx is marked by a preceding and a following diamond.
The obtained set is obviously

∪n
i=1Vi ⋄ Σ∗ ⋄ Yi (3)

Now h{⋄}(∪
n
i=1

Vi ⋄ Σ∗ ⋄ Yi) can be interpreted as the set

{w ∈ Σ∗ | ∃vxy : w = vxy∧∃ i :1≤ i≤n ∧v ∈ Vi∧y ∈ Yi}.

(III) A string w ∈ Σ∗ is obviously rejected by the context restriction if and
only if it contains some focused occurrence of anyx ∈ X such that the occurrence
does not have a licensing context. If we take all rejected string and add diamonds
around an arbitraryx that fails to have a licensing context, we obtain the set:

Σ∗ ⋄ X ⋄ Σ∗ − ∪n
i=1Vi ⋄ Σ∗ ⋄ Yi. (4)

Now h{⋄}(Σ
∗ ⋄ X ⋄ Σ∗ − ∪n

i=1
Vi ⋄ Σ∗ ⋄ Yi) can be interpreted as the set

{w ∈ Σ∗ | ∃vxy : w = vxy∧x ∈ X∧¬∃ i :1≤ i≤ n ∧v ∈ Vi∧y ∈ Yi}.

5

(IV) The set (4) consists of all possible rejected strings, with the extra dia-
monds included. The desired interpretation of the restriction is therefore achieved
by deleting the diamonds and taking the complement:

Σ∗− h{⋄}(Σ
∗⋄X ⋄Σ∗ − ∪n

i=1Vi⋄Σ∗⋄Yi). (5)

This can be interpreted as the set:

{w ∈ Σ∗ | ¬(∃vxy : w = vxy∧x ∈ X∧¬∃ i :1≤ i ≤n ∧v ∈ Vi∧y ∈ Yi)}

= {w ∈ Σ∗ | ∀vxy : w = vxy∧x ∈ X → ∃ i :1≤ i≤ n ∧v ∈ Vi∧y ∈ Yi)}.

The language defined by expression 5 is the language denoted by expression 1.
Given this equivalence, we are now able to construct a finite automaton corre-
sponding to expression 1 via usual algorithms on automata, if the argument lan-
guages (X , V1, Y1, V2, Y2, etc.) are regular and given as finite automata.

Those readers who are interested to relate our new construction with previous
solutions are directed to the appendix where some earlier solutions are discussed.

3 Generalized Restriction

3.1 Definition

Now we define a new operator
g⋄
⇒, called thegeneralized restriction operator, as

follows. Recall thatW is a Fraktur capital for ’w’ and that we used variable ’w’ for
complete strings. LetW1, . . . ,Wm,W′

1, . . . ,W
′
n be subsets ofΣ∗(⋄Σ∗)g, where

g ∈ N. The expression

W1,W2, . . . ,Wm
g⋄
⇒ W

′
1,W

′
2, . . . ,W

′
n,

denotes the language

Σ∗− h{⋄}(∪
m
i=1Wi − ∪n

i=1W
′
i). (6)

3.2 Basic Applications

The generalized restriction operation has a potential to express many different
kinds of restrictions in ways that are very similar to each other. This flexibility
is illustrated by the following examples.

Context restriction Context restriction defined in (1) can be expressed as a gen-
eralized restriction as follows:

Σ∗ ⋄ X ⋄ Σ∗ 2⋄
⇒ V1 ⋄ Σ∗ ⋄ Y1, V2 ⋄ Σ∗ ⋄ Y2, . . . , Vn ⋄ Σ∗ ⋄ Yn. (7)

6

Coercion In analogy to the surface coercion rule in the two-level morphology
(Koskenniemi, 1983; Kaplan and Kay, 1994; Grimley-Evans etal., 1996), we can
define a coercion operation where satisfaction of anytriggering context condition
implies that the focused substrings are drawn from thelicensing center language.
This operation can be defined easily as follows. The expression

X ′ ⇐ V ′
1 Y ′

1,V
′
2 Y ′

2, . . . , V ′
m Y ′

m,

where the backward arrow indicates that the roles of the sides are exchanged, de-
notes the language

V ′
1 ⋄ Σ∗ ⋄ Y ′

1, V ′
2 ⋄ Σ∗ ⋄ Y ′

2, · · · , V ′
m ⋄ Σ∗ ⋄ Y ′

m
2⋄
⇒ Σ∗ ⋄ X ′ ⋄ Σ∗.

If-Then Kaplan and Kay (1994) defined the following functions:

If-P-then-S(L1, L2)
def
= Σ∗ − L1(Σ

∗ − L2)

If-S-then-P(L1, L2)
def
= Σ∗ − (Σ∗ − L1)L2.

These functions can also be defined very intuitively using generalized restrictions
with one diamond:

If-P-then-S(L1, L2)
def
= L1 ⋄ Σ∗ 1⋄

⇒ Σ∗ ⋄ L2

If-S-then-P(L1, L2)
def
= Σ∗ ⋄ L2

1⋄
⇒ L1 ⋄ Σ∗.

Nowhere Often we want to say that strings belonging toX do not occur any-
where in the accepted strings as substrings. This can be expressed as a context

restrictionX ⇒ ∅ ∅ or as a generalized restrictionΣ∗XΣ∗ 0⋄
⇒ ∅.

More than Two Diamonds The numberg of diamonds involved in the general-
ized restriction operation

g⋄
⇒ can also be greater than two. Such extensions can be

used to express restrictions on discontinuous parts of the strings, but these possi-
bilities are not discussed in this paper.

3.3 Adding Preconditions

The most appealing property of generalized restrictions isthat they contain simulta-
neously centers and contexts of two different kinds: (i) licensing and (ii) triggering.
This allows expressing more complicated rules in a simple and elegant manner:

7

Context Restriction with Preconditions When we reduce context restrictions
into generalized restrictions, the left hand-hand side of the generalized restriction
is of the form

W = V ′ ⋄ X ⋄ Y ′ whereV ′,Y ′ = Σ∗.

The languagesV ′ andY ′ form a triggering context condition. If we makeV ′ or
Y ′ more restrictive, the context restriction focuses only those occurrences whose
contexts satisfy the triggering context condition. When the triggering context con-
dition V ′ Y ′ is not satisfied by the context of an occurrence, the occurrence is
not focused at all and the acceptance of the whole string doesnot depend on it.

Coercion with Preconditions When we reduce coercions to generalized restric-
tions, the left hand-hand side of the generalized restriction is of the form

V ′
1 ⋄X1⋄Y

′
1, V ′

2⋄X2 ⋄Y
′
2, · · · , V ′

m⋄Xm⋄Y ′
m, whereXi = Σ∗ for all 1 ≤ i ≤ m.

Now the setsXi, where1 ≤ i ≤ m, could also differ fromΣ∗. If we make aXi

more restrictive, an actual contextv y, wherev ∈ V ′
i andy ∈ Y ′

i, triggers the
coercion on the substring if only if it the focused substringx in the contextv y
belongs to setXi.

Bracketing Restriction Coercion with preconditions can be used to express the
meaning of constraints calledbracketing restrictions(Yli-Jyrä, 2003 (in print)). A
bracketing restriction constraint is expressed through the notation

#V ′ Y ′# ⇒ X ′,

whereV ′,Y ′,X ′ ⊆ Σ{∆} denote regular languages. The constraint denotes the
language

{w∈Σ∗ | w∈ ∆′ ∧ ∀vxy :w = vxy ∧ x∈ ∆′ ∧

v ∈(s∆/∆′(V ′)) ∧ y∈(s∆/∆′(Y ′)) −→ x∈(s∆/∆′(X ′))},

where∆′ ⊆ Σ∗ is a bracketedlanguagethat is substituted forsymbol∆. This
language can be expressed using a coercion with preconditions as follows:

∆′ ∩
(

(s∆/∆′(V ′)) ⋄ ∆′ ⋄ (s∆/∆′(Y ′))
2⋄
⇒ Σ∗ ⋄ (s∆/∆′(X ′)) ⋄ Σ∗

)

.

When the languageD is a regular language, such as∆d in Section 4.1, every brack-
eting restriction denotes a regular language. Yli-Jyrä (2003 (in print)) discusses its
state complexity and suggests decomposing each restriction into sub-constraints.

8

Decomposed Context Restriction Context restrictions with preconditions allow
us to decompose a context restriction into a set of generalized restrictions whose
intersection represents the accepted language. The context restriction

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn,

can now be expressed as an intersection of generalized restrictions

V ′
1⋄X ⋄Y ′

1

2⋄
⇒ V1 ⋄Σ∗⋄Y1, . . . , Vn ⋄Σ∗⋄Yn
...

V ′
m⋄X ⋄Y ′

m
2⋄
⇒ V1 ⋄Σ∗⋄Y1, . . . , Vn ⋄Σ∗⋄Yn (8)

such that∪m
i=1

V ′
i⋄X ⋄Y ′

i = Σ∗⋄X ⋄Σ∗.

4 A Blow-Up Problem with Context Restrictions

In some practical applications, the languages described bycontext restrictions have
bad state complexity. In the sequel, we will present the background of this problem
and then show how it could be solved using decomposed contextrestrictions. The
solution represents each context restriction by means of anintersection of simpler
languages. Such an intersection corresponds to a direct product of small automata,
where the direct product can be computed lazily, on demand. The improved repre-
sentation is more compact and better organized, which facilitates efficient applica-
tion of context restrictions.

4.1 The Background

Bracketed Finite-State Intersection Grammars An approach for natural lan-
guage parsing and disambiguation based on regular languages as constraints was
proposed in (Koskenniemi et al., 1992). It formed the theoretical basis for a Finite-
State Intersection Grammar (FSIG) for English (Voutilainen, 1997). This particu-
lar FSIG has, however, suffered from parsing difficulties (Tapanainen, 1997). Re-
cently, the parsing approach has been developed into new kinds of FSIG grammars
that could be called Bracketed FSIGs (Yli-Jyrä, 2003; 2003(in print); 2004 (in
print); 2004a). In these FSIGs, a great deal of the state complexity of the grammar
derives from balanced bracketing that is to be validated by means of finite-state
constraints.

9

Marking the Sentence Structure In the FSIG approach, the parses for natural
language sentences are represented as annotated sentences. An annotated sentence
might be a sequence of multi-character symbols, including word tokens and cor-
rectly inserted part-of-speech tags and brackets, as in thefollowing:

the DET man N [who PRON walked V PAST on PREP the DET
street N] was V happy A

or
this PRON is V the DET dog N [that PRON chased V the
DET cat N] [that PRON killed V the DET mouse] .

In these examples, the brackets are used to mark a part of the clause structure.
In some Bracketed FSIGs, the brackets mark very detailed constituency (Yli-Jyrä,
2003 (in print)) or dependency structures (Yli-Jyrä, 2004(in print)). Nevertheless,
brackets can be used economically (cf. Koskenniemi et al., 1992; Yli-Jyrä, 2003
(in print), 2004a) so that the depth of nested brackets remains small in practice.

The Language with Balanced Brackets In all the annotated sentences of FSIG,
the brackets belonging to a class of left “super” brackets isbalanced with the brack-
ets belonging to the corresponding class of right “super” brackets. This property
can be expressed as follows: LetBL andBR be respectively a class of left and
right “super” brackets in the grammar. There may be other, non-”super” brackets
that are not balanced, but are closed (or opened) with a “super” bracket. The set
∆d ⊆ Σ∗ contains all bracketed strings whose “super” brackets are balanced w.r.t.
these bracket classes, and where the “super” brackets have at mostd nested levels
(level 0 = no brackets). This language is derived inductively as follows:

∆d =

{

(Σ − BL − BR)∗ if d = 0

(∆d−1 ∪ (BL ∆d−1 BR))∗ if d > 0

Voutilainen (1997) uses in his FSIG for English a special pre-defined language
dots ’ ...’ (equivalent to ··· d in Yli-Jyrä, 2003) to refer to arbitrary strings with
balanced bracketing, where the bracketing marks boundaries of center embedded
clauses. It is obtained as the language∆1 − Σ∗ @@Σ∗ if we let BL = {@<} and
BR = {@>}.

Typical Context Restriction Rules Typical FSIG rules express contextual re-
strictions on features within clauses by requiring the presence of other syntactic
functions and structures to the left and/or to the right. Normally only features
within the same clause will be used as a context, but in case ofrelative pronouns

10

and conjunctions the required features might be after or before the clause boundary
(cf. e.g. Voutilainen, 1997).

Most FSIG rules are written in such a way that they apply to deeper clauses
as well as to top-level clauses. This is made possible by means of a language of
balanced bracketings – denoted by ’...’, ··· d, or ∆d – that is pre-defined in all
FSIG frameworks. For example, the rule

@SUBJ ⇒ Σ∗ VFIN ·· d Σ∗, Σ∗ ·· d VFIN Σ∗

requires that a subject feature (@SUBJ) is allowed only in clauses where one can
also find a feature indicating a finite verb (VFIN). Thedotdot ·· d denotes the
set of strings that are in the same clause. It is defined by the formula ·· d =
··· d − ·· d @/ ·· d, where@/ is a multi-character symbol that is used in

bracketed strings to separate adjacent clauses at the same bracketing level.

4.2 Large Compilation Results

The size of the automata obtained from context restriction rules has turned out to
be an obstacle for large-scale grammar development (Voutilainen, 1997). Usually
we are not able to combine many context restriction rules into a single automa-
ton. Therefore, the compiled grammar must be represented asa lazily evaluated
combination (intersection) of individual context restriction rules.

Unfortunately, even separate context restriction rules can be too complex to be
compiled into automata. When the centerX or a contextCi is defined using the
··· d or ∆d language, the automaton obtained from a context restriction seems

to grow in the worst case exponentially according to the parameterd. This effect
can be perhaps most easily understood as follows: If the automaton that enforces a
context restriction on unbracketed strings hask states, the automaton that enforces
the restriction on one-level bracketings needs, on one hand, O(k) states for keeping
track of the restriction on the top level and, on the other hand, O(k) states for
keeping track of the restriction inside bracketed embeddings at eachO(k) possible
states of the the top level automaton. In practice, this means that the worst-case
state complexity of this automaton is inO(k2). Furthermore, it seems that the state
complexity will grow exponentially according tod.

Due to these observations on the state complexity of contextrestriction rules,
the second author of this paper proposed that we should try tosplit the rules into
sub-rules each of which takes care of a different bracketinglevel5.

5The idea of splitting FSIG rules into separate levels is due to the second author (Koskenniemi)
who communicated it privately to the first author several years before we learned to do it construc-
tively.

11

4.3 Decomposition w.r.t. Bracketing Level

We will now present a new compilation method that decomposesan arbitrary con-
text restriction involving∆d into a set of generalized restrictions. Each of these
generalized restrictions can then be compiled separately into finite automata.

One of the underlying assumptions in FSIGs is that the accepted strings belong
to the set∆d (or ··· d). For this reason, we can replace each context restriction

X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn

with

∆d ∩ (X ⇒ V1 Y1,V2 Y2, . . . ,Vn Yn). (9)

Observe that the prefixes of balanced bracketings∆d belong to the languageP =
∪d

i=0
∆d(BL∆d)

i. All the other prefixes inΣ∗ are in the setΣ∗ − P , but they are
not possible prefixes for the strings in∆d. Accordingly, we can replace Formula
(9) with an intersection of generalized restrictions as follows:

∩d
i=0Li, (10)

where the languagesLi are defined by the formula

Li =∆d ∩ ((∆d(BL∆d)
i) ⋄ X ⋄ Σ∗ 2⋄

⇒ W
′), whereW

′ = ∪n
j (Vj ⋄ Σ∗ ⋄ Yj).

The languageLi, 0 ≤ i ≤ d, restricts occurrences ofX that start at the bracketing
level i. EachLi can be compiled into a separate constraint automaton and the
intersection of the languages of these automata will be computed lazily during
FSIG parsing.

Our hypothesis is that the obtained new lazy representation(sometimes such
representations are calledvirtual networks) for the decomposed context restriction
(10) will be substantially smaller than the single automaton that results from For-
mula (9). This hypothesis motivates the following experiment.

4.4 An Experiment

We carried out a small experiment with different representations of context restric-
tion rules in FSIG. In the experiment we investigated the following possibilities:

• each rule corresponds to a separate constraint languageR,S, . . .,

• the rules are combined into a single, big constraint language R ∩ S ∩ · · · ,

12

• each rule is decomposed intod + 1 separate languagesR0, R1, . . . , Rd as
proposed in Section 4.3,

• languagesRi, Si, . . . for each bracketing leveli, 0 ≤ i ≤ d, are combined
into a big constraint languageRi ∩ Si ∩ · · · .

The Set of Rules Interesting rules (Voutilainen, 1997) taken from a full-scale
grammar would have been too complicated to be investigated here. The following
context restriction rules, expressing simple generalizations about the presence of
syntactic categories, were used in the experiment:

∆d∩(IOBJ ⇒ Σ∗ OBJ ∆d Σ∗, Σ∗ ∆d OBJ Σ∗) (R)

∆d∩(OBJ ⇒ Σ∗ SUBJ ∆d Σ∗, Σ∗ ∆d SUBJ Σ∗) (S)

∆d∩(SUBJ ⇒ Σ∗ VFIN ∆d Σ∗, Σ∗ ∆d VFIN Σ∗) (T)

These rules correspond to automata that are similar to each other up to relabeling
of certain transitions. One should note, however, that rules R andS (and rulesS
andT) have more features in common than rulesR andT .

The Size of Automata The state complexity of the rulesR, S, andT grows
exponentially according tod, the bound for nested brackets. This is shown in Table
1. For comparison, the languageR′ is defined as (IOBJ ⇒ Σ∗ OBJ ∆d

Σ∗, Σ∗ ∆d OBJ Σ∗). The
last
column
should
read:
3d12,
12,
36,
108,
324,
972

d |∆d| |R′| |R| 3|R| + 3 3d

0 1 3 3 12 9
1 2 9 12 39 36
2 3 27 39 120 108
3 4 81 120 363 324
4 5 243 363 1092 972

Table 1: The state complexity of languageR grows exponentially according tod.

Assuming thatd = 2, we constructed automata for each of the languagesR, S
andT and splitted them for each bracketing level in order to obtain languagesRi,
Si andTi for all i, 0 ≤ i ≤ d. These automata were then combined in different
ways in order to see how the sizes of automata differ in the four theoretical possi-
bilities. The results are shown in Table 2. It shows that combinations of full rules
grow substantially faster than combinations of rules decomposed with respect to
the bracketing level. When we decompose the languageR w.r.t. the bracketing

13

L |L| |L0| |L1| |L2| sum

R 39 9 7 5 21
S 39 9 7 5 21
T 39 9 7 5 21

R ∩ S 258 18 13 8 39
R ∩ T 819 27 19 11 57

R ∩ S ∩ T 1884 36 25 14 75

Table 2: State complexity: the rules without decompositioncompared to rules that
have been decomposed w.r.t. bracketing levels.

depth using the formula (10), we see in Table 3 that the state complexity of the
top-most component (R0) grows linearly tod and|∆d|.

d=0 d=1 d=2 d=3 d

|∆d| 1 2 3 4 (d + 1)
|R0| 3 6 9 12 3(d + 1)

Table 3: The state complexity ofR0 grows linearly to the parameterd.

Application Relevance For purposes of FSIG parsing, it would be nice if we
could compute a minimal deterministic automaton that recognizes the intersection
of all rules in the grammar. Because this cannot be done in practice, a parsing
algorithm based on backtracking search has been used earlier (Tapanainen, 1997)
in addition to automata construction algorithms. The search algorithm operated
mostly in a left-to-right fashion.

We observe thatRi ∩ Si ∩ Ti have substantially smaller state complexity than
R ∩ S ∩ T . This is an important finding, having applications in FSIG parsing. So
far, it has not been feasible to apply all the rule automata one by one with a kind of
word lattice called asentence automaton(Tapanainen, 1997) by computing succes-
sive direct products of automata and minimizing the results. This might become
feasible when rules have been decomposed with the current method. Decompo-
sition of constraint restrictions w.r.t. bracketing levels apparently facilitates new
techniques (Yli-Jyrä, 2004b) where the parsing proceeds partly in a bottom-up or
top-down fashion rather than only in a left-right fashion.

14

5 Further Work

The definition of context restriction used in this paper is not the only possibility.
Further research in this area is still needed due to the following reasons:

• It is not obvious whether the current flavor for the context restriction is prac-
tical if we extend context restrictions by attaching weights to contexts and
centers.

• It is our experience that, for real context restrictions rules, different defini-
tions for the operation may result in equivalent languages.Understanding
when the results coincide might have practical relevance.

• It is an open question whether the proposed or the other definitions for con-
text restrictions have a more natural interpretation when they are not inter-
changeable but yield different results.

While the current results on decomposed context restrictions significantly improve
our possibilities to combine large portions of the originalFSIG grammars into
singe automata, there is still place for further research that is related to methods
that organize the computation of the lazy intersection in anefficient manner.

Generalized restriction with multiple diamonds has many useful applications
that remain to be studied later.

6 Conclusion

This paper discussed the definition and the representation of the context restriction
operation. In particular, an alternative compilation method for generalized context
restriction operation was given, with immediate applications to arrangement of
constraint automata in finite-state parsers that apply multiple automata to the input.

The main result of this paper is that context restrictions can itself be restricted
to be applied only in certain contexts, which means that there are two kinds of
contexts that can occur in one rule: those that trigger the restriction and those that
license the restricted occurrences. This observation can be used, on one hand, in
defining different kinds of operations and, on the other hand, to split large context
restrictions into components that can be compiled separately.

The applicability of these results are not restricted to theformalisms where so-
called context restriction rules are used. The general context restriction is a useful
operation that is derived from the relative complement of languages, and it allows
expressing complex situations in an intuitive manner.

15

Acknowledgments

We are grateful to L. Karttunen, L. Carlson, A. Kempe, S. Wintner and Y. Cohen-
Sygal for useful discussions, and anonymous ACL and COLING referees for crit-
ical comments. The new constructions, the experiments and the comparisons are
due to the first author, whose work was funded by NorFA under his personal Ph.D.
scholarship (ref.nr. 010529).

Appendix: Some Previous Solutions

An Approach that Does not Use Transducers

A Well Known Special Case There is a well known formula (Koskenniemi,
1983, p.106; Kaplan and Kay, 1994, p.371)6 that compiles simple context restric-
tions with “overlapping centers”:

Σ∗ − ((Σ∗ − V1)XΣ∗ ∪ Σ∗X (Σ∗ − Y1)) . (11)

Compound Restriction Operations with Two Contexts The following compi-
lation method7 covers all 2-context cases:

Σ∗−(Σ∗X ((Σ∗ − Y1) ∩ (Σ∗ − Y2)) “at leastY1 andY2 fail”

∪ (Σ∗ − V1)X (Y1 − Y2) “at leastV1 andY2 fail”

∪ (Σ∗ − V2)X (Y2 − Y1) “at leastV2 andY1 fail”

∪ ((Σ∗ − V1) ∩ (Σ∗ − V2))X (Y1 ∩ Y2)) “only V1 andV2 fail” (12)

It is possible to show that the last line of (12) can be simplified without changing
the meaning of the whole formula:

Σ∗−(. . . ∪ ((Σ∗ − V1) ∩ (Σ∗ − V2))XΣ∗) “at leastV1 andV2 fail” (13)

This modified formula is a special case of (14):

6Grimley-Evans et al., 1996, p.458, quote Kaplan and Kay imprecisely, suggesting that this for-
mula for simple context restrictions does not work when context language portions overlap with
portions of the center language.

7This formula is given in a slightly different form (withIf-Then functions) on the web
page “Operators in XFST, FSA Utilities and FSM – A synopsis. Explanation of oper-
ators for FSA Utilities.”. This page has been available since year 2003 at the location
http://cs.haifa.ac.il/˜shuly/teaching/03/lab/fst.ht ml . In addition to Ja-
son Eisner who made the first version, many anonymous scholars have worked on this page and it is
not obvious who contributed the additional sections. In 2003, Yli-Jyrä discussed with Shuly Wintner
about the author of the context restriction section. That section can probably be attributed to Dale
Gerdemann in Tübingen.

16

The General Case Yli-Jyrä (2003) generalized the latter formula (13) indepen-
dently to arbitrary number of contexts. The language denoted by the context re-
striction with “overlapping centers” is obtained with the formula8

Σ∗ −
⋃

t1

· · ·
⋃

tn

(

n
⋂

i=1

φ(ti,Vi)

)

X

(

n
⋂

i=1

φ(ti,Yi)

)

, (14)

where t1, t2, . . . , tn are Boolean variables and the functionφ : {true, false} ×
2Σ∗

→ 2Σ∗

is defined in such a way thatφ(q,Q) returnsΣ∗− Q if q is true,
and Σ∗ otherwise. In practice, whenn is small, Formula (14) is very efficient.
However, whenn grows, the expansion of the formula results in an exponentially
growing regular expression.

To derive (14), consider the situation where a contextv y does not satisfy
any licensing context condition. It equals to

∧n
i=1

v /∈ Vi∨y /∈ Yi. The disjunction
v /∈ Vi ∨ y /∈ Yi is true if and only if the formulati → v /∈Vi ∧ ti → y /∈Yi is
satisfiable (i.e. true for some value ofti). Thus, the formula

∧n
i=1

v /∈ Vi ∨ y /∈ Yi

can rewritten as the following formula:

∃t1...tn :

(

n
∧

i=1

ti→v /∈Vi∧ ti→y /∈Yi

)

⇔
∨

t1

· · ·
∨

tn

(

n
∧

i=1

ti→v /∈Vi ∧ ti→y /∈Yi

)

⇔
∨

t1

· · ·
∨

tn

(

v ∈
n
⋂

i=1

φ(ti,Vi)

)

∧

(

y∈
n
⋂

i=1

φ(ti,Yi)

)

.

When the failure condition is in this form, it is easy to see how it has been used to
obtain Formula (14).

Kaplan and Kay’s Approach

In the two-level model of morphology (Koskenniemi, 1983, p.106), centers of con-
text restrictions are normally of length of one symbol (of a symbol pair alphabet).
Compilation of this special case with arbitrary number of contexts has been solved
with aid of marker symbols (Karttunen et al., 1987; Kaplan and Kay, 1994). This
solution was originally presented using a pair symbol alphabet and rational rela-
tions and it defined such same-length relations that were used in two-level mor-
phology.

In the following, we will reformulate Kaplan and Kay’s method in the domain
of regular languages (rather than in the domain of same-length relations). The one-
context restrictionXΣM

⇒ΣM
VΣM

YΣM
for argumentsXΣM

,VΣM
,YΣM

⊆

8To make the current presentation more coherent, the original formula of Yli-Jyrä (2003) is turned
here “up-side down” by an application of DeMorgan’s law.

17

Σ∗
M is used as a primitive operation, which is interpreted as thelanguageΣ∗

M −
((Σ∗

M − VΣM
)XΣM

Σ∗
M ∪ Σ∗

MXΣM
(Σ∗

M − YΣM
)).

The Original Method Kaplan and Kay’s method allocates2 marker symbols for
each contextCi. These marker symbols form the setM = {〈i|1 ≤ i ≤ n} ∪
{〉i|1 ≤ i ≤ n}. A context restriction withn contexts is compiled as

hM ((∪n
i=1 (X ⇒ΣM

Σ∗
M 〈i 〉iΣ

∗
M))∗

∩ ∩n
i=1(〈i ⇒ΣM

h−1

M (Vi) Σ∗
M) ∩ (〉i ⇒ΣM

Σ∗
M h−1

M (Yi))). (15)

This method works, indeed9, only if X ⊆ Σ. For example, ifX = {aa} ⊆ Σ∗,
the language described by the sub-formula(X ⇒ΣM

Σ∗
M 〈i 〉iΣ

∗
M) contains all

unary stringsΣ, and thus (15) yields the universal languageΣ∗ regardless of the
licensing context conditions.10

An Improved Method A slightly more general solution, whereX has the limi-
tationX ⊆ Σ∗Σ, is

hM ((Σ∗ − Σ∗XΣ∗)((∪n
i=1 〈iX 〉i) (Σ∗ − Σ∗XΣ∗))∗

∩ ∩n
i=1(〈i ⇒ΣM

h−1

M (Vi) Σ∗
M) ∩ (〉i ⇒ΣM

Σ∗
M h−1

M (Yi))). (16)

This improvement is closely related to the replace operator(Karttunen, 1997;
Kempe and Karttunen, 1996)11. It handles all context restrictions with “non-over-
lapping centers”, but works with “overlapping centers” in away that differs from
our definition (1).

Crucial difference There are examples of context restrictions that can be used
to test different definitions and differentiate them from each other. For example,

aΣ∗b ⇒ Σ∗c Σ∗,Σ∗ dΣ∗

9From Kaplan and Kay, 1994, p.369, one might be able to read that the limitationX ⊆ Σ is
inessential.

10This resembles an XFST regular expression[[a => b c]|[a => d e]] * by Beesley and
Karttunen (2003, p. 65). That cannot be seen as a compilationapproach for a context restriction
of the form[a => b c, d e] , because it is similarly defective ifa,b,c ,d ande are constants
denoting arbitrary regular languages.

11This method was also related although not precisely identifiable with the obso-
lete implementation of the restriction operator in some earlier XFST versions (before
v.8.3.0). According to Kempe (2004, priv.comm.), e.g. an XFST regular expres-
sion [? - %@] * & [X => L1 R2, ...,Ln Rn] , where %@is a special symbol not occur-
ring in X,L1 ,R1,...,Ln ,Rn, would have been compiled in such a way that it corresponds to
[[? - %@] * .o.[X -> %@ || L1 R2, ...,Ln Rn].o. ˜[? * X ?*]].u . This is roughly the
method that was used in earlier XFST versions.

18

demonstrates that the improved method is not equivalent to our definition (1): the
result of Formula (16) accepts e.g. stringscaab, abdb, abbd, acab while the result
of Formula (5) rejects them. Here, the improved method (16) produced a bigger
result (7 states) than our method (4 states). In the FSIG framework (Koskenniemi
et al., 1992), one can easily find more restrictions rules with “overlapping centers”.
Some of them would produce different results if compiled using these alternative
methods (cf. Yli-Jyrä, 2003).12

A Partition-Based Approach

The Original Method Grimley-Evans et al. (1996) implemented a morphologi-
cal grammar system that involved context restriction rules. This grammar system
is partition-based, which means that possible strings (or lexical/surface correspon-
dences) inside the system are sequences of element substrings E ⊆ Σ∗ (or lexi-
cal/surface correspondences) that are separated with a separatorσ /∈ Σ. The set
of all possible sequences that are filtered with context restriction rules is, thus,
σ(Eσ)∗. The center languageX is a subset ofE. Each context restriction fo-
cuses only occurrences that are complete elements substrings. When we restrict
ourselves to strings instead of correspondences, this compilation method can be
formulated as

σ(Eσ)∗ − s⋄/σXσ(h−1

{σ}(Σ
∗ ⋄ Σ∗ −

n
⋃

i=1

Vi ⋄ Yi)). (17)

A Non-Partition-Based Variant Formula (17) is closely related to our construc-
tion (5). However, sequences of element substrings in the partition-based system
is an unnecessary complication when the restriction operates with languages rather
than regular relations. We can simplify Formula (17) by eliminating this feature.
The simplification is formulated as follows:

Σ∗ − s⋄/X (Σ∗ ⋄ Σ∗ −
n
⋃

i=1

Vi ⋄ Yi). (18)

Formula (18) captures the definition (1) and it can be seen, therefore, asan opti-
mization for Formula (5).

12The rule compiler used by Voutilainen (1997) was implemented by Pasi Tapanainen in Helsinki,
and it produced in 1998 results that seem to coincide with ourdefinition (1). The method used in the
compiler has not been published, but according to Tapanainen (1992) he has used a transducer-based
method for compiling implication rules.

19

References

Beesley, Kenneth R. and Lauri Karttunen. 2003.Finite State Morphology. CSLI
Studies in Computational Linguistics. Stanford, CA, USA: CSLI Publications.

Grimley-Evans, Edmund. 1997. Approximating context-freegrammars with a
finite-state calculus. InProc. ACL 1997, pages 452–459. Madrid, Spain.

Grimley-Evans, Edmund, George Anton Kiraz, and Stephen G. Pulman. 1996.
Compiling a partition-based two-level formalism. InProc. COLING 1996,
vol. 1, pages 454–59.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological rule
systems.Computational Linguistics20(3):331–378.

Karttunen, Lauri. 1996. Directed replacement. InProc. ACL 1996, pages 108–115.
Santa Cruz, CA, USA.

Karttunen, Lauri. 1997. The replace operator. In E. Roche and Y. Schabes, eds.,
Finite-State Language Processing, chap. 4, pages 117–147. Cambridge, MA,
USA: A Bradford Book, the MIT Press.

Karttunen, Lauri, Kimmo Koskenniemi, and Ronald M. Kaplan.1987. A com-
piler for two-level phonological rules. Report CSLI-87-108, Center for Study of
Language and Information, Stanford University, CA, USA.

Kempe, André and Lauri Karttunen. 1996. Parallel replacement in finite state cal-
culus. InProc. COLING 1997, vol. 2, pages 622–627. Copenhagen Denmark.

Kiraz, George Anton. 2000. Multitiered nonlinear morphology using multitape
finite automata: A case study on Syriac and Arabic.Computational Linguistics
26(1):77–105.

Koskenniemi, Kimmo. 1983.Two-level morphology: a general computational
model for word-form recognition and production. No. 11 in Publ. of the Depart-
ment of General Linguistics, University of Helsinki. Helsinki: Yliopistopaino.

Koskenniemi, Kimmo, Pasi Tapanainen, and Atro Voutilainen. 1992. Compiling
and using finite-state syntactic rules. InProc. COLING 1992, vol. 1, pages 156–
162. Nantes, France.

Mohri, Mehryar and Richard Sproat. 1996. An efficient compiler for weighted
rewrite rules. InProc. ACL 1996, pages 231–238. Santa Cruz, CA, USA.

20

Ritchie, Graeme D., Graham J. Russel, and Alan W. Black. 1992. Computational
Morphology: Practical Mechanisms for the English Lexicon. Cambridge, MA,
USA: A Bradford Book, the MIT Press.

Tapanainen, Pasi. 1992.̈Aärellisiin automaatteihin perustuva luonnollisen kielen
jäsennin. Licentiate thesis C-1993-07, Department of Computer Science, Uni-
versity of Helsinki, Helsinki, Finland.

Tapanainen, Pasi. 1997. Applying a finite-state intersection grammar. In E. Roche
and Y. Schabes, eds.,Finite-State Language Processing, chap. 10, pages 311–
327. Cambridge, MA, USA: A Bradford Book, the MIT Press.

Voutilainen, Atro. 1997. Designing a (finite-state) parsing grammar. In E. Roche
and Y. Schabes, eds.,Finite-State Language Processing, chap. 9, pages 283–310.
Cambridge, MA, USA: A Bradford Book, the MIT Press.

Wrathall, Celia. 1977. Characterizations of the Dyck sets.RAIRO – Informatique
Théorique11(1):53–62.

Yli-Jyrä, Anssi. 2003. Describing syntax with star-free regular expressions. In
Proc. EACL 2003, pages 379–386. Agro Hotel, Budapest, Hungary.

Yli-Jyrä, Anssi. 2003 (in print). Regular approximationsthrough labeled bracket-
ing (revised version). In G. Jäger, P. Monachesi, G. Penn, and S. Wintner, eds.,
Proc. FGVienna, The 8th conference on Formal Grammar, Vienna, Austria 16–
17 August, 2003, CSLI Publications Online Proceedings. Stanford, CA, USA:
CSLI Publications.

Yli-Jyrä, Anssi. 2004a. Axiomatization of restricted non-projective dependency
trees through finite-state constraints that analyse crossing bracketings. In G.-
J. M. Kruijff and D. Duchier, eds.,Proc. Workshop of Recent Advances in De-
pendency Grammar, pages 33–40. Geneva, Switzerland.

Yli-Jyrä, Anssi. 2004b. Simplification of intermediate results during intersection
of multiple weighted automata. In M. Droste and H. Vogler, eds., Weighted
Automata: Theory and Applications, Dresden, Germany, no. TUD-FI04-05 —
May 2004, ISSN-1430-211X in Technische Berichte der Fakultät Informatik,
pages 46–48. D-01062 Dresden, Germany: Techniche Universität Dresden.

Yli-Jyrä, Anssi. 2004 (in print). Approximating dependency grammars through
regular string languages. InProc. CIAA 2004. Ninth International Conference
on Implementation and Application of Automata. Queen’s University, Kingston,
Canada, Lecture Notes in Computer Science. Springer-Verlag.

[Corrections added by Anssi Yli-Jyrä in June 2005]

21

