Compiling Contextual Restrictions on Strings into
Finite-State Automata

Anssi Yli-Jyra and Kimmo Koskenniemi
Department of General Linguistics
P.O. Box 9, FIN-00014 University of Helsinki, Finland
firstname.lasthname@helsinki.fi

Abstract

The paper discusses a language operation that wearatixt restriction
This operation is closely associated withntext restriction rulegkosken-
niemi, 1983; Kiraz, 2000);ight-arrow rulesor implication rules(Kosken-
niemi et al., 1992; Voutilainen, 1997) and thestriction operator(Beesley
and Karttunen, 2003). The operation has been used in fitsiteqgshonology
and morphology in certain limited ways. A more general sgtihvolves re-
stricting overlapping occurrences of a center languageuoontext condi-
tions. Recently, star-free regular languages (and alllaedganguages) have
been shown to be closed under context restrictions with Soxérlapping
centers” (Yli-Jyra, 2003), but the construction involvisdoverly complex
and becomes impractical when the number of operands grows.

In this paper, we improve this recent result by presentingoeerpracti-
cal construction. This construction is not only simpler ibatlso leads to a
generalization where contexts and centers may appear dgioas at both
sides of the implication arrow=£): licensing conditions on the right-hand
side specify the restriction and triggering conditions ba teft-hand side
regulate activation of the restriction. One applicatiortta# generalization
is to facilitate splitting certain context restriction eglin grammars into a
conjunction of separate rules.

1 Introduction

There are different definitions for context restriction gimns and rules, but they
share a common idea that substrings that belong to a satcalider languaget
are eitheracceptedor rejectedaccording to thesontextwhere they occut. A set

In context restriction rules that are used in morphologg, alphabet of the strings consists of
same-length correspondences. However, we avoid this écatiph in the current paper.

of licensing context condition&,, €,, - - - , &,) is specified, and each of the con-
ditions is a pair of deft-hand context languagend aright-hand context language
The context of an occurrence of the centésatisfiesa context conditiore; if its
left-hand and right-hand contexts belong, respectivelyhe left-hand and right-
hand context languages. An occurrence is accepted if itexbsatisfies at least
one of the context conditions.

The strings where different occurrencesfoverlap each other are problem-
atic. To treat such a string, the occurrences of the centedliaided into those that
arefocused and those that arenfocused The string is included to the language
described by context restriction operations and rulesdfanly if it all the focused
occurrences are accepted. However, the existing definifmrcontext restrictions
choose the focused occurrences in different ways. Someitaefs for context
restrictions focus all the occurrences (Yli-Jyra, 2008pme other definitions (re-
lated to Karttunen, 1997; Kempe and Karttunen, 1996; Kaetty 1996) focus,
non-deterministically or deterministically, a set of noverlapping occurrences in
such a way that the unfocused occurrences that remain irtrihg svould over-
lap with the focused ones. There are further definitions #natpartition-based
(Grimley-Evans et al., 1996; Kiraz, 2000) or do not reallyrkvéor long occur-
rences (Kaplan and Kay, 1994), which means that the ocagsecannot overlap
each other at all.

Context restriction is a widely useful operation, and itlssely connected to
several formalisms:

e In the classical rule formalism for thevo-level morphologythe centers of
context restriction rules are restricted to single characbrrespondences
(Koskenniemi, 1983). Two-level context restriction rulemn be compiled
into finite-state transducers (FST) according to a suggedty Ron Kaplan
who solved the problem of multiple contexts in 1980’s by ngeahcontext
markers (Karttunen et al., 1987; Kaplan and Kay, 1994).

e Alternative two-level and multi-tiered formalisms have@been proposed
(Ritchie et al., 1992; Grimley-Evans et al., 1996; Kiraz0@Q In these
formalisms, the occurrences of the center cannot overlap. at

¢ In the framework of Finite State Intersection Grammar (FSkflavor of
finite-state syntax) (Koskenniemi et al., 1992; YIi-Jy2803), overlapping
occurrences can be focused simultaneously because tleescant not nec-
essarily sets of unary strings as it is the case in the clEgsiD-level mor-
phology. In the literature, there are also cases where xorgstrictions

2A focused occurrence corresponds — as a notion — to the ecmarofX’ on a particulaappli-
cationof the context restriction rule (Karttunen et al., 1987).

could have been used as a shorthand notation for combisatioother op-
erations (Wrathall, 1977; Grimley-Evans, 1997) and to cdf*&@hen func-
tions of (Kaplan and Kay, 1994, p.370), if the operation dmdyl been avail-
able as a pre-defined primitive. In these cases, contexictemt can be
viewed as a general purpose language operation whose antgican be
e.g. context-free languages (Wrathall, 1977; Yli-Jy@0Q42 (in print)).

e Thereplace(ment) operatorge.g. (Karttunen, 1997; Kempe and Karttunen,
1996; Beesley and Karttunen, 2003) and¢batext-dependent rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996) are alsoedl&d context
restrictions, but multiple applications of the replacemérewriting rules
motivate defining restrictions in such a way that simultarsefoci do not
overlap each other.

Various flavors of context restrictions differ from eachatmainly due to different
conceptions on possible foci in the accepted strings. Wenawil restrict ourselves
to the definition where each string is associated with ony et of focused occur-
rences of the center substrings. In this set, all occureentéhe center language
are focused simultaneously and each occurrence must e cepted. Accord-
ing to this definition, each string of lengthhas in the worst cas@(n?) focused
occurrences, and it is, therefore, not immediately obvitnas regular languages
are closed under the operation that has this property.

We will now give an exact definition for the flavor of contexsnéction (con-
text restriction with “overlapping centers”) we are comusd with. LetY to be
the alphabet for building strings. @ontext restriction of a centet’ in contexts
¢1,&,---,C, is a operation whereX’ is a subset ob2* and each context;,

1 < i < n, is of the formV; Y;, whereV;,); C X*. The operation is ex-
pressed using a notation

X=>Vi_ Vi, Vo Vo,....Vn_ Yy (1)

and it defines the set of all strings € >* such that, for every possibte y € >*

andx € X for whichw = vxy, there exists some conte}f);, 1 < i < n,

where bothw € ¥*V; andy € Y;X*. If all these setsY, V; and)); are regular (typo)

(or star-free regular) then the result will also be regutasy. star-free regular)? €

(Yli-Jyra, 2003). vex
The reader should note that, in the current paper, we defimexidanguages

V; and);, 1 < i < n, directly astotal contexts3

%In the literature (e.g. in Beesley and Karttunen, 2003)s ihost often assumed that left-hand
context language¥,; of the formX* L and right-hand context languag¥s of the form LX* can be

In this paper, we present a previously unpublished consprudor the lan-
guage denoted by context restrictions with “overlappingtees”. The construction
is based on a combination of usual regular operations teatasy to implement in
practice. In contrast to various previous compilation rod#) our new construc-
tion restricts all overlapping occurrences (vs. Kaplan Kag, 1994; Grimley-
Evans et al., 1996), and avoids exponential growth in the sizthe expanded
formula (vs. Yli-Jyra, 2003). Our construction resembtes compilation method
by Grimley-Evans et al. (1996) and Kiraz (2000). However,method deals with
overlapping occurrences, while theirs assumes a paititjomhere the occurrences
corresponds to disjoint blocks in the strings. The new neties been communi-
cated to the Xerox group and it has already been adopted -odtsayenerality and
speed — in XFST (Beesley and Karttunen, 2603) proprietary finite-state com-
piler, since XFST version 8.3.3. The new construction alsoegalizes so that it
involves triggering conditionsandlicensing conditions The generalized restric-
tion has a lot of applications. A part of this paper is devoted ltesitation of a
possible application that allows fdecomposed context restrictions

The paper is structured as follows. The new constructioreisgmted in Section
2 and generalized in Section 3. In Section 4, we describe ciapg@oblematic
setting where the context restriction has bad state contyplexd then show that
the generalized context restriction can be used to spliesbnestrictions into sub-
constraints that are recognized with smaller automata.idedme areas of further
work in Section 5, and conclude in Section 6. The appendigents a summary of
the previous solutions, being of interests only to a portibiie intended audience.

2 New Construction

2.1 Notation

We use the following usual language operations: concatenéi, L-), exponenti-
ation (L™), concatenation closuré.{), union (L; U L), intersection [.; N L») and
asymmetric differencel(; — Ls). We use parenthesis) for grouping. Wher. is
aregular language, we denote|ly the size of a minimal deterministic automaton
that recognized. — this is what we mean by thetate complexityf L.

The default alphabet for building strings ¥ Leto ¢ ¥. We usec as a
special marker symbol, calleddiamond that is not present in the final result. For

simplified by replacing them witfh in the notation. This would require prepending and appeandin
>* respectively toV; and); when the meaning of the operation is concerned. We avoid such
expansions for the sake of clarity. By doing so, we do notiaergenerality.

“The original XFST version attached to the book by Beesleykanttunen (2003) would inter-
prete simple and multi-context restrictions under difféeyenutually inconsistent definitions.

all alphabetsM such thatM N Y = () we denote the uniok U M by X,,. By

har = 33, — X* we denote a homomorphism w.r.t. string concatenation sathtt
just deletes marker symbald from the strings. The inverse homomorphiﬁrp[1

obviously inserts symbols/ freely in any string position. By, : E?a} — *

we denote the substitution that replaces in stringﬁpaf} the symbolx ¢ ¥ with

the languagd. C X*.

2.2 Compiling Basic Restrictions

The semantics of a context restriction is formulated in fetages:

(I) We take all possible strings € ¥* where there is some focused occurrence
of any substringe C X and insert a pair of diamondsinto these strings in such a
way that the occurrence afis marked by a preceding diamondnd a following
diamonde. The obtained set is obviously

YroXoX . 2)
NOw /ey (X* © X o X*) can be interpreted as the set
{w e ¥ | Jvzy : w =vayAx € X}.

(I We describe all stringey = vxy where the string paiv _ y satisfies
some licensing contexy; YV;, and we insert a pair of diamondsinto these
strings in such a way that is marked by a preceding and a following diamond.
The obtained set is obviously

U?zlvi oX o yZ (3)
Now h oy (Ui V; © 5% ¢);) can be interpreted as the set
{we X" | Jury : w=vayATi:1<i<n Av € V;Ay € V;}.

(1 A stringw € * is obviously rejected by the context restriction if and
only if it contains some focused occurrence of ang X such that the occurrence
does not have a licensing context. If we take all rejectadgtind add diamonds
around an arbitrary that fails to have a licensing context, we obtain the set:

YoXoX —UL VioX oV 4
NOW /oy (X 0 X o X* — UL, V; 0 ¥* ¢);) can be interpreted as the set

{w e ¥* | Juzy : w =vayAx € XA-Ti:1<i<nAv € V;Ay € V;}.

(IV) The set (4) consists of all possible rejected strings, whith éxtra dia-
monds included. The desired interpretation of the regtnds therefore achieved
by deleting the diamonds and taking the complement:

3 h{o} (E*OXOE* - U?zlvioz*oyi). (5)
This can be interpreted as the set:

{we ¥ | ~(Fuzy : w =veyAz € XA-Fi:1<i<nAv € V;Ay € Vi)}
={we X |Vozy:w=vzyAhz € X — Ji:1<i<nAv € V;Ay € Vi)}.
The language defined by expression 5 is the language dengtespbession 1.
Given this equivalence, we are now able to construct a finiteraaton corre-
sponding to expression 1 via usual algorithms on automhtheiargument lan-

guagesd’, Vi, V1, Vo, Vs, €tc.) are regular and given as finite automata.

Those readers who are interested to relate our new coristrueith previous
solutions are directed to the appendix where some earlieti@as are discussed.

3 Generalized Restriction

3.1 Definition

Now we define a new operaté%, called thegeneralized restriction operatpas
follows. Recall thaRy is a Fraktur capital for 'w’ and that we used variable 'w’ for
complete strings. Lely,...,20,,,20,...,20] be subsets oE*(¢X*)9, where

g € N. The expression

R / / !
W1, Ws, ..., Wy = 20,,0,,...,2,,
denotes the language

¥ hyoy (UL, 20; — Ui, 207). (6)

3.2 Basic Applications

The generalized restriction operation has a potential fwess many different
kinds of restrictions in ways that are very similar to eacheat This flexibility
is illustrated by the following examples.

Context restriction Context restriction defined in (1) can be expressed as a gen-
eralized restriction as follows:

Yo XoN R OVioeXr o, VaoX oy, ..., VpoX oV (7)

Coercion In analogy to the surface coercion rule in the two-level rhoipgy
(Koskenniemi, 1983; Kaplan and Kay, 1994; Grimley-Evanalgt1996), we can
define a coercion operation where satisfaction of @iggering context condition
implies that the focused substrings are drawn fromlitensing center language
This operation can be defined easily as follows. The expressi

! / / / / / /
X <:V1_ylav2_y27 R Vm— mo

where the backward arrow indicates that the roles of thessade exchanged, de-
notes the language

VieS oV, VhoS o), -, V, o 0d, B yroxoxr.

If-Then Kaplan and Kay (1994) defined the following functions:

If-P-then-§L1, L) “ ©* — L (" — L)
If-S-then-R Ly, Ly) @ =% — (5% — Ly) L.

These functions can also be defined very intuitively usinuegalized restrictions
with one diamond:

If-P-then-S L1, L) < L, 0 ¥* 2 ¥ 6 L,

If-S-then-R L1, Ly) < S o Ly B [, o 5.

Nowhere Often we want to say that strings belongingXodo not occur any-
where in the accepted strings as substrings. This can bessqu as a context

restrictionX’ = () () or as a generalized restrictiati X' >* % .

More than Two Diamonds The number of diamonds involved in the general-
ized restriction operatio?_f; can also be greater than two. Such extensions can be
used to express restrictions on discontinuous parts oftthmgys, but these possi-
bilities are not discussed in this paper.

3.3 Adding Preconditions

The most appealing property of generalized restrictiotisasthey contain simulta-
neously centers and contexts of two different kinds: (gising and (ii) triggering.
This allows expressing more complicated rules in a simpteed@gant manner:

Context Restriction with Preconditions When we reduce context restrictions
into generalized restrictions, the left hand-hand sidéhefgeneralized restriction
is of the form

W=V oXo) where),) =%*

The language$” and)’ form a triggering context condition. If we maké or
V' more restrictive, the context restriction focuses onlysthoccurrences whose
contexts satisfy the triggering context condition. Whemfttiiggering context con-
ditionV’____)’ is not satisfied by the context of an occurrence, the occoerén
not focused at all and the acceptance of the whole string moedepend on it.

Coercion with Preconditions When we reduce coercions to generalized restric-
tions, the left hand-hand side of the generalized restnas of the form

VioXoYy, VhoXaodh, - VI oX, o) whereX; = X*forall 1 <i<m.

Now the setsY;, wherel < i < m, could also differ from~*. If we make aX;
more restrictive, an actual context y, wherev € V! andy €)/, triggers the
coercion on the substring if only if it the focused substrinigp the contextv ___ y
belongs to sek;.

Bracketing Restriction Coercion with preconditions can be used to express the
meaning of constraints calldtacketing restrictiongYli-Jyra, 2003 (in print)). A
bracketing restriction constraint is expressed throughmtitation

#V'_ V'H# =X,
where)V’, ', X' C ¥4y denote regular languages. The constraint denotes the
language
{fweX* |we A AVvzy:w =vzy Aze A A
ve(san (V) Aye(saaY)) — ze(sa/a (X))},
where A’ C Y¥* is a bracketedanguagethat is substituted fosymbolA. This
language can be expressed using a coercion with precamslii® follows:

A ((saya (V) 0 & 0 (sa/5(V) B 5% 0 (sa/a/(X)) 0T7).

When the languag® is a regular language, suchAg in Section 4.1, every brack-
eting restriction denotes a regular language. Yli-Jy@D@(in print)) discusses its
state complexity and suggests decomposing each regtriatio sub-constraints.

Decomposed Context Restriction Context restrictions with preconditions allow
us to decompose a context restriction into a set of genedhligstrictions whose
intersection represents the accepted language. The toestiction

X=Vi_ Vo Vo,... .V Vn,

can now be expressed as an intersection of generalizetttiesis

VioX o) RV oYt oV, ..., VyoX o),

V. oXoY B Vi oT oM, ..., VyoXtod, (8)

such that)” , Vo X oY, = L*o X oX*.

4 A Blow-Up Problem with Context Restrictions

In some practical applications, the languages describediext restrictions have
bad state complexity. In the sequel, we will present the ¢amind of this problem
and then show how it could be solved using decomposed comstxictions. The
solution represents each context restriction by means oftarsection of simpler
languages. Such an intersection corresponds to a diredtigrof small automata,
where the direct product can be computed lazily, on demahd.ifproved repre-
sentation is more compact and better organized, whichtttes efficient applica-
tion of context restrictions.

4.1 The Background

Bracketed Finite-State Intersection Grammars An approach for natural lan-
guage parsing and disambiguation based on regular lang@sgeonstraints was
proposed in (Koskenniemi et al., 1992). It formed the thecakbasis for a Finite-
State Intersection Grammar (FSIG) for English (Voutilain&997). This particu-
lar FSIG has, however, suffered from parsing difficultieag@nainen, 1997). Re-
cently, the parsing approach has been developed into neis kinFSIG grammars
that could be called Bracketed FSIGs (Yli-Jyra, 2003; 2@0@3print); 2004 (in
print); 2004a). In these FSIGs, a great deal of the state ity of the grammar
derives from balanced bracketing that is to be validated lbpama of finite-state
constraints.

Marking the Sentence Structure In the FSIG approach, the parses for natural
language sentences are represented as annotated serkenaanotated sentence
might be a sequence of multi-character symbols, includingdwokens and cor-
rectly inserted part-of-speech tags and brackets, as ifollogving:

the DET man N [who PRON walked V PAST on PREP the DET
street N] was V happy A
or

this PRON is V the DET dog N [that PRON chased V the
DET cat N] [that PRON killed V the DET mouse]

In these examples, the brackets are used to mark a part ofahgecstructure.
In some Bracketed FSIGs, the brackets mark very detailestitoency (Yli-Jyra,
2003 (in print)) or dependency structures (Yli-Jyra, 20@4dprint)). Nevertheless,
brackets can be used economically (cf. Koskenniemi et 882;1YIi-Jyra, 2003
(in print), 2004a) so that the depth of nested brackets msrsmnall in practice.

The Language with Balanced Brackets In all the annotated sentences of FSIG,
the brackets belonging to a class of left “super” bracketsianced with the brack-
ets belonging to the corresponding class of right “supedtkets. This property
can be expressed as follows: LBf, and Bi be respectively a class of left and
right “super” brackets in the grammar. There may be othem;lsoper” brackets
that are not balanced, but are closed (or opened) with a t’sipacket. The set
Agq C X* contains all bracketed strings whose “super” brackets al@noed w.r.t.
these bracket classes, and where the “super” brackets henestd nested levels
(level 0 = no brackets). This language is derived induggies follows:

A, -)&= BL—Bg) if d=0
TV (Ado1 U(Br Ag_y Br))* ifd>0

Voutilainen (1997) uses in his FSIG for English a specialqeéned language
dots’..’ (equivalent to[~-1% in Yli-Jyra, 2003) to refer to arbitrary strings with
balanced bracketing, where the bracketing marks boursdafieenter embedded
clauses. Itis obtained as the language— >* @@:* if we let B, = {@< and

Br = {@3.

Typical Context Restriction Rules Typical FSIG rules express contextual re-
strictions on features within clauses by requiring the @nes of other syntactic
functions and structures to the left and/or to the right. rixalty only features
within the same clause will be used as a context, but in caselatfve pronouns

10

and conjunctions the required features might be after @rbeahe clause boundary
(cf. e.g. Voutilainen, 1997).

Most FSIG rules are written in such a way that they apply tgpdeelauses
as well as to top-level clauses. This is made possible by sneha language of
balanced bracketings — denoted by, 19, or A, — that is pre-defined in all
FSIG frameworks. For example, the rule

@SUBJ= X* VFIN ¢ ¥ ¥ =% VFIN ¥

requires that a subject featur@SUB)is allowed only in clauses where one can
also find a feature indicating a finite verdKIN). Thedotdot [-]¢ denotes the
set of strings that are in the same clause. It is defined byateula ¢ =
4 — 9 @/ 214, where@!/ is a multi-character symbol that is used in
bracketed strings to separate adjacent clauses at the sacketing level.

4.2 Large Compilation Results

The size of the automata obtained from context restrictidesrhas turned out to
be an obstacle for large-scale grammar development (dingih, 1997). Usually
we are not able to combine many context restriction rules ensingle automa-
ton. Therefore, the compiled grammar must be representedasly evaluated
combination (intersection) of individual context restion rules.

Unfortunately, even separate context restriction rulesbeEatoo complex to be
compiled into automata. When the cenféror a contexiC; is defined using the
1% or A4 language, the automaton obtained from a context restict@ems
to grow in the worst case exponentially according to the patard. This effect
can be perhaps most easily understood as follows: If thereattin that enforces a
context restriction on unbracketed strings hadates, the automaton that enforces
the restriction on one-level bracketings needs, on one,ltafig states for keeping
track of the restriction on the top level and, on the otherdhan(k) states for
keeping track of the restriction inside bracketed embeagidat eaclO (k) possible
states of the the top level automaton. In practice, this méaat the worst-case
state complexity of this automaton is@(k?). Furthermore, it seems that the state
complexity will grow exponentially according th

Due to these observations on the state complexity of coméstiction rules,
the second author of this paper proposed that we should spltiothe rules into
sub-rules each of which takes care of a different brackééneP.

5The idea of splitting FSIG rules into separate levels is dugh¢ second author (Koskenniemi)
who communicated it privately to the first author severakrgésefore we learned to do it construc-
tively.

11

4.3 Decomposition w.r.t. Bracketing Level

We will now present a new compilation method that decompasearbitrary con-
text restriction involvingA, into a set of generalized restrictions. Each of these
generalized restrictions can then be compiled separat&finite automata.

One of the underlying assumptions in FSIGs is that the aedegitings belong
to the setA\4 (or =—-1%). For this reason, we can replace each context restriction

X=2Vi_ VNV Vo,V Wn
with
Ag N (X=2Vi_ Ve VooV V).)

Observe that the prefixes of balanced bracketifigdbelong to the language =
U;?:OAd(BLAd)i. All the other prefixes ir* are in the seE* — P, but they are
not possible prefixes for the strings 4&y. Accordingly, we can replace Formula
(9) with an intersection of generalized restrictions akies:

NoLi, (10)
where the languagek; are defined by the formula
Li =04 N (Aa(BLA)) o X 0 £ B 217), where2d’ = U(V; 0 T* 0 V).

The languagd.;, 0 < i < d, restricts occurrences df that start at the bracketing
level i. EachL; can be compiled into a separate constraint automaton and the
intersection of the languages of these automata will be cteadplazily during
FSIG parsing.

Our hypothesis is that the obtained new lazy representésiometimes such
representations are callgdtual network$ for the decomposed context restriction
(10) will be substantially smaller than the single automatwat results from For-
mula (9). This hypothesis motivates the following experime

4.4 An Experiment

We carried out a small experiment with different repres@omna of context restric-
tion rules in FSIG. In the experiment we investigated thioWing possibilities:

e each rule corresponds to a separate constraint langaasie . .,

e the rules are combined into a single, big constraint languag SN -- -,

12

e each rule is decomposed intb+ 1 separate languagd®,, R1, ..., Ry as
proposed in Section 4.3,

e languagesk;, S;, ... for each bracketing level 0 < ¢ < d, are combined
into a big constraint language; N S; N -- - .

The Set of Rules Interesting rules (Voutilainen, 1997) taken from a fulkkee
grammar would have been too complicated to be investigatesl The following
context restriction rules, expressing simple generatinatabout the presence of
syntactic categories, were used in the experiment:

Agn(1I0B = ¥* OBJ A, ¥, ¥* A, OBJ ¥Y) (R)
Ayn(OB = X" SUBJ A, ¥ ¥ Az SUBJ YY) (S)
Agn(SUBJ = X" VFIN A, ¥* ¥ A4 VFIN ¥¥) (1)

These rules correspond to automata that are similar to eaeh ap to relabeling
of certain transitions. One should note, however, thatsrBleand S (and rulesS
andT’) have more features in common than ruleandT.

The Size of Automata The state complexity of the ruleB, S, andT grows
exponentially according t@, the bound for nested brackets. This is shown in Table
1. For comparison, the languagd# is defined as (IOBJ = X* OBJ Ay

_ ¥, ¥ A4 OBJ ¥ The
last
d_[Ad |R| IR 3|RI+3 3 Choud
0o 1 3 3 12 9 read:
3912
1 2 9 12 39 36 5=
2 3 27 39 120 108 36,
3 4 81 120 363 324 o
4 5 243 363 1092 972 972

Table 1: The state complexity of languagegrows exponentially according tb

Assuming that! = 2, we constructed automata for each of the langudgyes
andT and splitted them for each bracketing level in order to obkanguages?;,
S; andT; for all 7, 0 < 7 < d. These automata were then combined in different
ways in order to see how the sizes of automata differ in the theeoretical possi-
bilities. The results are shown in Table 2. It shows that domtipns of full rules
grow substantially faster than combinations of rules dgmmsed with respect to
the bracketing level. When we decompose the languager.t. the bracketing

13

L el [Zol |L1] |Lo| sum
R 39 9 7 5 21
S 39 9 7 5 21
T 39 9 7 5 21
RNS 258 18 13 8 39
RNT 819 27 19 11 57
RNSNT || 1884 | 36 25 14 75

Table 2: State complexity: the rules without decompositiompared to rules that
have been decomposed w.r.t. bracketing levels.

depth using the formula (10), we see in Table 3 that the stteplexity of the
top-most componentr) grows linearly tad and|A|.

|d=0 d=1 d=2 d=3| d
Ag T 1 2 3 4 | (d+1)
|Ro| | 3 6 9 12 | 3(d+1)

Table 3: The state complexity @ty grows linearly to the parameter

Application Relevance For purposes of FSIG parsing, it would be nice if we
could compute a minimal deterministic automaton that ratzsg the intersection
of all rules in the grammar. Because this cannot be done ictipea a parsing
algorithm based on backtracking search has been used éadpanainen, 1997)
in addition to automata construction algorithms. The dealgorithm operated
mostly in a left-to-right fashion.

We observe thak; N S; N T; have substantially smaller state complexity than
RN SNT. This is an important finding, having applications in FSIGsiag. So
far, it has not been feasible to apply all the rule automagalgnone with a kind of
word lattice called @entence automatditapanainen, 1997) by computing succes-
sive direct products of automata and minimizing the resultisis might become
feasible when rules have been decomposed with the currethibche Decompo-
sition of constraint restrictions w.r.t. bracketing lev@lpparently facilitates new
techniques (Yli-Jyra, 2004b) where the parsing proceeddypn a bottom-up or
top-down fashion rather than only in a left-right fashion.

14

5 Further Work

The definition of context restriction used in this paper i$ the only possibility.
Further research in this area is still needed due to thewalilp reasons:

e Itis not obvious whether the current flavor for the contestrietion is prac-
tical if we extend context restrictions by attaching weggtd contexts and
centers.

e It is our experience that, for real context restrictionesyldifferent defini-
tions for the operation may result in equivalent languadgasderstanding
when the results coincide might have practical relevance.

e Itis an open question whether the proposed or the other tlefisifor con-
text restrictions have a more natural interpretation winay tare not inter-
changeable but yield different results.

While the current results on decomposed context restnistaagnificantly improve
our possibilities to combine large portions of the origif@IG grammars into
singe automata, there is still place for further researet hrelated to methods
that organize the computation of the lazy intersection ieféinient manner.

Generalized restriction with multiple diamonds has mamgfulsapplications
that remain to be studied later.

6 Conclusion

This paper discussed the definition and the representatithe @ontext restriction
operation. In particular, an alternative compilation neekffior generalized context
restriction operation was given, with immediate applmasi to arrangement of
constraint automata in finite-state parsers that applyiptelhutomata to the input.

The main result of this paper is that context restrictions itself be restricted
to be applied only in certain contexts, which means thatettzge two kinds of
contexts that can occur in one rule: those that trigger thgicdon and those that
license the restricted occurrences. This observation eamsed, on one hand, in
defining different kinds of operations and, on the other hamdplit large context
restrictions into components that can be compiled sepgrate

The applicability of these results are not restricted toftinmalisms where so-
called context restriction rules are used. The generaksbnéstriction is a useful
operation that is derived from the relative complement n§laages, and it allows
expressing complex situations in an intuitive manner.

15

Acknowledgments

We are grateful to L. Karttunen, L. Carlson, A. Kempe, S. Wartand Y. Cohen-
Sygal for useful discussions, and anonymous ACL and COLIBIérees for crit-

ical comments. The new constructions, the experiments lemddmparisons are
due to the first author, whose work was funded by NorFA undepérsonal Ph.D.
scholarship (ref.nr. 010529).

Appendix: Some Previous Solutions

An Approach that Does not Use Transducers

A Well Known Special Case There is a well known formula (Koskenniemi,
1983, p.106; Kaplan and Kay, 1994, p.371hat compiles simple context restric-
tions with “overlapping centers”:

SF — ((SF = VXS USX (S —). (11)

Compound Restriction Operations with Two Contexts The following compi-
lation method covers all 2-context cases:

Y- ZX((ZF =) Nn(ZF =) “at least); and));, fail”
U =V)XOh —Ie) “at leasty; and)), fail”
U (X = V)X (2 — 1) “at leastV, and)); fail”

U ((2* — Vl) N (E* — Vg))X(yl N yg)) “only V; and)s fail” (12)

It is possible to show that the last line of (12) can be singdifivithout changing
the meaning of the whole formula:

(.. U((ZF=V)N(EF=)y)XE") “atleasty; and)Vs fail” (13)

This modified formula is a special case of (14):

5Grimley-Evans et al., 1996, p.458, quote Kaplan and Kay éwigely, suggesting that this for-
mula for simple context restrictions does not work when egntanguage portions overlap with
portions of the center language.

"This formula is given in a slightly different form (withf-Then functions) on the web
page “Operators in XFST, FSA Utilities and FSM — A synopsis. xplEnation of oper-
ators for FSA Utilities.”. This page has been available sinear 2003 at the location
http://cs.haifa.ac.il/"shuly/teaching/03/lab/fst.ht ml. In addition to Ja-
son Eisner who made the first version, many anonymous schudae worked on this page and it is
not obvious who contributed the additional sections. In0Qi-Jyra discussed with Shuly Wintner
about the author of the context restriction section. Thetise can probably be attributed to Dale
Gerdemann in Tubingen.

16

The General Case Yli-Jyra (2003) generalized the latter formula (13) indep
dently to arbitrary number of contexts. The language dehbiethe context re-
striction with “overlapping centers” is obtained with thahuld

n n
> - (ﬂ <z><tz-,vi)> X (ﬂ (t, 34—)) : (14)
t1 tn \i=1 i=1
wherety, to, ..., t, are Boolean variables and the functign: {true,false} x
2%" — 2%" is defined in such a way that(q, Q) returnsx* — Q if ¢ is true,
and X* otherwise. In practice, when is small, Formula (14) is very efficient.
However, whem grows, the expansion of the formula results in an exponigntia
growing regular expression.

To derive (14), consider the situation where a context y does not satisfy
any licensing context condition. It equalspg’_, v ¢ V; Vy ¢ ;. The disjunction
v ¢ V;Vy ¢) is true if and only if the formula; — v ¢V; A t; — y &) is
satisfiable (i.e. true for some valuey. Thus, the formulg\;"_, v ¢ V; Vy ¢ Y
can rewritten as the following formula:

Eltl...tn:</\ti—>v§évi/\ angéy; s\ -\/(/\ti—>v¢% At—z—nu%)’;

1=1 t1 tn \1i=1

s V-V <v S qb(ti,Vi)) A (yeﬂ ¢(t7,yl-)>.
t1 tn i=1 i=1

When the failure condition is in this form, it is easy to seghbhas been used to
obtain Formula (14).

Kaplan and Kay’s Approach

In the two-level model of morphology (Koskenniemi, 1983,G6), centers of con-
text restrictions are normally of length of one symbol (ofyenbol pair alphabet).
Compilation of this special case with arbitrary number aftexts has been solved
with aid of marker symbols (Karttunen et al., 1987; Kaplad &ay, 1994). This
solution was originally presented using a pair symbol ahehand rational rela-
tions and it defined such same-length relations that were usevo-level mor-
phology.

In the following, we will reformulate Kaplan and Kay’s metha the domain
of regular languages (rather than in the domain of sameaHertations). The one-
context restrictioms,, =x,, Vs,, Vs, forargumentsty,,, Vs,,, Vs,, C

8To make the current presentation more coherent, the otigimaula of Yli-Jyra (2003) is turned
here “up-side down” by an application of DeMorgan’s law.

17

W Is used as a primitive operation, which is interpreted adadhguage>;, —
((E}k\/[- VEM)XEM E}k\/[U E}k\/[XEM (E*M - yEM))'

The Original Method Kaplan and Kay’s method allocatesnarker symbols for
each contexC;. These marker symbols form the det = {(;|1 < i < n} U
{);]1 <1i <n}. Acontext restriction withh contexts is compiled as

ha ((Ui (X =sy, Bl %)
N Oy (G =sy b (Vi) E0) 0 03 =5 Dby (). (15)

This method works, inde€donly if X C ¥. For example, it = {aa} C ¥,
the language described by the sub-formita=y,,, 3,);3},) contains all
unary strings>, and thus (15) yields the universal languageregardless of the
licensing context condition.

An Improved Method A slightly more general solution, wherg has the limi-
tation X C ¥*X,is

har (B = E7XE) (UL o)) (BF — ZFAET))”
N m?:l(@' =Yu h]_V[l (Vi)—E*M) N (>i =Yum 27\/[—}1]_%1 (yl))) (16)

This improvement is closely related to the replace operéf@rttunen, 1997;
Kempe and Karttunen, 1996) It handles all context restrictions with “non-over-
lapping centers”, but works with “overlapping centers” iway that differs from
our definition (1).

Crucial difference There are examples of context restrictions that can be used
to test different definitions and differentiate them froncleather. For example,

aX*b=YXc_ ¥ ¥* d¥*

°From Kaplan and Kay, 1994, p.369, one might be able to reathlealimitation ¥ C X is
inessential.

T his resembles an XFST regular expresgfan=>b _c][[a=>d _e]] * by Beesley and
Karttunen (2003, p. 65). That cannot be seen as a compilapproach for a context restriction
oftheform[a => b _c, d _e], because itis similarly defective é,b,c,d ande are constants
denoting arbitrary regular languages.

UThis method was also related although not precisely idebti#i with the obso-
lete implementation of the restriction operator in some li@arXFST versions (before
v.8.3.0). According to Kempe (2004, priv.comm.), e.g. an SAF regular expres-
sion [?-%@]* & [X=>L1 _R2,..,Ln _Rn], where %@is a special symbol not occur-
ring in X,L1,R1,...L.n,Rn, would have been compiled in such a way that it corresponds to
[?-%@] *.0.[X->%@ |[|[L1 _R2,..Ln _Rnlo.[? * X?*]l.u . This isroughlythe
method that was used in earlier XFST versions.

18

demonstrates that the improved method is not equivalenatalefinition (1): the

result of Formula (16) accepts e.g. stringsb, abdb, abbd, acab while the result

of Formula (5) rejects them. Here, the improved method (16§pced a bigger
result (7 states) than our method (4 states). In the FSIGeinark (Koskenniemi

et al., 1992), one can easily find more restrictions ruleh faverlapping centers”.
Some of them would produce different results if compilechgghese alternative
methods (cf. Yli-Jyra, 2003

A Partition-Based Approach

The Original Method Grimley-Evans et al. (1996) implemented a morphologi-
cal grammar system that involved context restriction rulEsis grammar system
is partition-based, which means that possible stringsefdacl/surface correspon-
dences) inside the system are sequences of element sgbgiric >* (or lexi-
cal/surface correspondences) that are separated withasasew ¢ . The set
of all possible sequences that are filtered with contextriogisin rules is, thus,
o(Eo)*. The center languag®’ is a subset of?. Each context restriction fo-
cuses only occurrences that are complete elements sugsstrithen we restrict
ourselves to strings instead of correspondences, this itatiop method can be
formulated as

o(Eo)" — SO/UXU(h{_Jl}(E* oX* — U VioVi)). (17)
i—1

A Non-Partition-Based Variant Formula (17) is closely related to our construc-
tion (5). However, sequences of element substrings in thipa-based system
is an unnecessary complication when the restriction opgsaith languages rather
than regular relations. We can simplify Formul& by eliminating this feature.
The simplification is formulated as follows:

n

5* = 5oy (B0t — [JVio). (18)
=1

Formula (8) captures the definition (1) and it can be seen, thereforanapti-
mization for Formula (5).

2The rule compiler used by Voutilainen (1997) was implemettg Pasi Tapanainen in Helsinki,
and it produced in 1998 results that seem to coincide withdetinition (1). The method used in the
compiler has not been published, but according to Tapangk#92) he has used a transducer-based
method for compiling implication rules.

19

References

Beesley, Kenneth R. and Lauri Karttunen. 20@&nite State Morphology CSLI
Studies in Computational Linguistics. Stanford, CA, USALT Publications.

Grimley-Evans, Edmund. 1997. Approximating context-fggammars with a
finite-state calculus. IRroc. ACL 1997 pages 452-459. Madrid, Spain.

Grimley-Evans, Edmund, George Anton Kiraz, and Stephen @nén. 1996.
Compiling a partition-based two-level formalism. Rroc. COLING 1996
vol. 1, pages 454-59.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models ofrhogical rule
systems.Computational Linguistic20(3):331-378.

Karttunen, Lauri. 1996. Directed replacementPhoc. ACL 1996 pages 108-115.
Santa Cruz, CA, USA.

Karttunen, Lauri. 1997. The replace operator. In E. RoclieMarSchabes, eds.,
Finite-State Language Processinchap. 4, pages 117-147. Cambridge, MA,
USA: A Bradford Book, the MIT Press.

Karttunen, Lauri, Kimmo Koskenniemi, and Ronald M. Kapla®87. A com-
piler for two-level phonological rules. Report CSLI-878L&enter for Study of
Language and Information, Stanford University, CA, USA.

Kempe, André and Lauri Karttunen. 1996. Parallel repleeanm finite state cal-
culus. InProc. COLING 1997vol. 2, pages 622—-627. Copenhagen Denmark.

Kiraz, George Anton. 2000. Multitiered nonlinear morplgytousing multitape
finite automata: A case study on Syriac and Aral@omputational Linguistics
26(1):77-105.

Koskenniemi, Kimmo. 1983.Two-level morphology: a general computational
model for word-form recognition and productioNo. 11 in Publ. of the Depart-
ment of General Linguistics, University of Helsinki. Helki: Yliopistopaino.

Koskenniemi, Kimmo, Pasi Tapanainen, and Atro Voutilaine®92. Compiling
and using finite-state syntactic rules.Rroc. COLING 1992vol. 1, pages 156—
162. Nantes, France.

Mohri, Mehryar and Richard Sproat. 1996. An efficient compfior weighted
rewrite rules. InProc. ACL 1996 pages 231-238. Santa Cruz, CA, USA.

20

Ritchie, Graeme D., Graham J. Russel, and Alan W. Black. 1@%#mputational
Morphology: Practical Mechanisms for the English Lexicdbambridge, MA,
USA: A Bradford Book, the MIT Press.

Tapanainen, Pasi. 1992\arellisiin automaatteihin perustuva luonnollisen kel
jasennin. Licentiate thesis C-1993-07, Department of @uer Science, Uni-
versity of Helsinki, Helsinki, Finland.

Tapanainen, Pasi. 1997. Applying a finite-state interseajrammar. In E. Roche
and Y. Schabes, edssinite-State Language Processinchap. 10, pages 311-
327. Cambridge, MA, USA: A Bradford Book, the MIT Press.

Voutilainen, Atro. 1997. Designing a (finite-state) pagsgrammar. In E. Roche
and Y. Schabes, ed§&inite-State Language Processjranap. 9, pages 283-310.
Cambridge, MA, USA: A Bradford Book, the MIT Press.

Wrathall, Celia. 1977. Characterizations of the Dyck s&8IRO — Informatique
Theoriquel1(1):53-62.

Yli-Jyra, Anssi. 2003. Describing syntax with star-fresgular expressions. In
Proc. EACL 2003pages 379—386. Agro Hotel, Budapest, Hungary.

Yli-Jyra, Anssi. 2003 (in print). Regular approximatioiimsough labeled bracket-
ing (revised version). In G. Jager, P. Monachesi, G. Pemh S Wintner, eds.,
Proc. FGVienna, The 8th conference on Formal Grammar, \Ae#ustria 16—
17 August, 2003CSLI Publications Online Proceedings. Stanford, CA, USA:
CSLI Publications.

Yli-Jyra, Anssi. 2004a. Axiomatization of restricted nprojective dependency
trees through finite-state constraints that analyse ergdsiacketings. In G.-
J. M. Kruijff and D. Duchier, eds.Proc. Workshop of Recent Advances in De-
pendency Grammapages 33—-40. Geneva, Switzerland.

Yli-Jyra, Anssi. 2004b. Simplification of intermediatesvdts during intersection
of multiple weighted automata. In M. Droste and H. Voglers.etlVeighted
Automata: Theory and Applications, Dresden, Germary; TUD-FI04-05 —
May 2004, ISSN-1430-211X in Technische Berichte der Fakuhformatik,
pages 46-48. D-01062 Dresden, Germany: Techniche UrtéeByiesden.

Yli-Jyra, Anssi. 2004 (in print). Approximating depenadgngrammars through
regular string languages. Froc. CIAA 2004. Ninth International Conference
on Implementation and Application of Automata. Queen’s/ersity, Kingston,
Canada Lecture Notes in Computer Science. Springer-Verlag.

[Corrections added by Anssi Yli-Jyra in June 2005]

21

