
UIUCDCS-R-80-1002

r - D I S C L A I M E R ■

This book was prepared BS an account of work sponsored by an agency of ihe t inned Stales Government
Neither the United States Government nor any agency thereof nor any of their employees makes any
warranty express or implied or assumes any legal liability or responsibility for the accuracy
completeness or usefulness of any informal ion apparatus product or process disclosed or
represents that its use v*u !d not infringe privately owned rights. Reference herein to any specific
commercial product process or service by trade name trademark manufacturer or otherwise does
not necessarily constitute or imply its endorsement recommendation or favoring by the United

States Government or any agency thereof The views and opinions of authors expressed herein do not
necessarily State or reflect those of the United States Government or any agency thereof

L

COMPILING FAST PARTIAL DERIVATIVES

OF FUNCTIONS GIVEN BY ALGORITHMS

by

Be r t Spe e l p e nn i n g

J a n u a r y 1980

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 61801

« . . » • „ n = r r hv t h e U S. Depar tmen t of Ene rgy , Gran t US ENERGY/
T Z - 0 2 - 2 3 3 L d ^ u t a i t t e d i n p a r t i a l f u i f i l l m e n t of t h e r e q u i r e - e n t s
5 t h e Gradua t e Co l l e g e f o r t h e d e g r e e of Doc to r of Ph i l o s o p h y .

DISTRIBUTION CF THIS DOCUMENT £ UHU&iTEC

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Ill

ACKNOWLEDGMENTS

It Is a pleasure to acknowledge the support and guidance of my

thesis supervisor, Professor C. William Gear. I am thankful for his

easygoing style of letting me pursue my research essentially as I

wanted. His research group has been an excellent place in which to

work. The students in this group have been a steady source of

stimulating discussions and friendship. The efforts of Al Whaley in

maintaining, improving and explaining our local UNIX system have been

greatly appreciated.

I also wish to thank the following professors for their guidance

during earlier stages of my stay as a graduate student at Illinois:

Professor Jurg Nievergelt (now at E.T.H. in Switzerland), Professor

Thomas R. Wilcox (now at Intel Corporation) and Professor Arthur

Sedgwick (now .at Dalhousie University). They have helped to broaden my

background considerably.

Barbara Armstrong has been of invaluable help in getting this

thesis in readable form.

The research was supported by Department of Energy Contract US

ENERGY /EY-76-S-02-2383.

iv

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1. Object of this Research 3

1.2. Major Results of this Research 4

1.3. Outline of this Thesis 4

2. SYMBOLIC DIFFERENTIATION OF ALGORITHMS: PREVIOUS WORK 5

2.1. Warner, 1975 5

2.2. Joss, 1976 6

2.3. Kedera, 1977 8

2.4. Extensions to Gradients and Jacobians 9

2.5. Time and Space Requirements for the

Algorithm Produced by Joss 10

2.6. Comparison of Joss with Numerical Differencing 10

3. ACCURACY CONSIDERATIONS 13

3.1. The Algorithm and the Function it Represents 14

3.2. Is Joss' Theorem Moot? 15

3.3. First Example: random search 16

3.4. Second Example: table lookup 17

3.5. Summary 18

4. COMPILATION OF EFFICIENT GRADIENTS 19

4.1. The Optimizing Compiler Approach to

Improving Joss' Method: its limits 19

4.2. Compilation of Efficient Gradients: an outline 22

4.3. Joss' Method Viewed as a Sequence of

Matrix Multiplications 22

4.4. On the Economics of Matrix Multipliction 26

4.5. The Problem of 'Factor Storage 29

4.6. An Interpretation of the Method not Based on Joss 31

V

5. COMPILATION OF FAST JACOBIANS 34

5.1. Finding Jacobians One Row at a Time 34

5.2. Comparison with Some Alternatives 36

5.3. Critical Analysis of One-Row-at-a-Time Jacobians 37

5.4. Optimal Multiplication of Factors for

Obtaining a Jacobian 38

5.5. Extension to Arbitrary Flow of Control:

run-time method 42

5.6. Extension to Arbitrary Flow of Control:

compile-time method 44

6. IMPLEMENTATION 47

6.1. A User Description 47

6.2. How Jake Works 60

7. CONCLUSIONS 68

7.1. Experience with Jake 69

7.2. Future Work 70

7.3. Summary 73

REFERENCES 74

VITA 75

1

1. INTRODUCTION

There is a very peculiar situation within Numerical Analysis that

has persisted for a long time. It concerns the problem of computing

derivatives of functions conveniently, reliably and cheaply. One might

have assumed that widely-used codes would exist that automate the

process of taking derivatives of a function of given description

yielding descriptions of the derivatives that execute fast when run on a

computer. After all, the process of taking derivatives is well-

understood mathematically, and the problem of computing derivatives is a

recurrent one in many methods requiring functional iteration.

The reality is different. Several excellent numerical methods find

very little use because they require knowledge of the partial

derivatives of the function they are operating on. Numerical analysts

in practice seem to avoid computing derivatives with a passion. Those

who write down derivatives of complicated formulas by hand are almost

universally driven to exasperation as the enterprise proves exceedingly

error-prone. Where the computation of derivatives cannot be avoided, by

far the most commonly used method is "numerical differencing." This

method approximates a derivative by sampling the function in nearby

points, computing the slope of a secant. By all conceivable standards,

this method must be considered crude and primitive. The convergence

rate of iteration schemes is often demonstrably lower if numerical

differencing approximations are substituted for the true derivatives.

Moreover, finding the gradient of a function f(xi,...,x) through

numerical differencing requires n+1 function evaluations. This might

seem reasonable, even unavoidable. But it is not. People who have had

the tenacity to write down formulas for gradients by hand have observed

that there is considerable redundancy between computations for the

different components of the gradient. It has been postulated that the

hand-coded computation of the gradient of a formula f need not cost more

than a small number of function evaluations independent of n. Such

observations might be of limited value because they apply only to cases

where the function f is given by a rather simple closed form formula.

2

All the same it seems obvious that one must be able to improve
substantially on numerical differencing. Numerical differencing regards
the function as a black box, as a monolithic entity and hence is blind
to the structure of the function. Surely, a method should be able to
derive some advantage from being given access to the entire text of the
function it is asked to differentiate.

How is it possible then that the situation outlined above has been
allowed to persist for so long? It is not that symbolic methods for
differentiation as such have been lacking; indeed, symbolic
differentiation of expressions has been around almost as long as
computers. Very sophisticated systems for symbolic algebraic
manipulation exist, such as MACSYMA and FORMAC, and all offer facilities
for differentiation of formulas as a matter of course. However,
numerical analysts on the whole have not viewed these systems as
adequate solutions to the problem. First, for most algebraic
manipulation systems, a hand-translation is still required to get the
output of these systems into a computer-executable form. Second, these
systems are not geared to optimize entire gradient computations; instead
they are geared to simplify individual derivatives; in other words, they
are geared to satisfy the mathematician user, not the programmer user.
Evaluation of the gradient will still take 0(n) function evaluations.
Third, and most importantly, algebraic manipulation systems deal with
formulas in closed form, and are not set up to deal with functions given
by arbitrary algorithms.

What is needed is a system as sketched in Figure 1.

X

-»■

y = = ?(x

\ 1
Af
FORTRAN

) ^ r

t e x t .
'

Figure 1. Use of Jake

Such a system will accept the text of an algorithm Af, embodying y=f(x)

3

and written in a suitable programming language, and construct from it

the text of an algorithm Af' that computes the Jacobian -ĝ . In fact,

such systems do exist, though none produce algorithms Af that can beat

numerical differencing in terms of convenience, speed or memory

requirements.

An explanation for the fact that no methods exist to automate the

process of taking derivatives in a way that can successfully compete

with numerical differencing may be found in the increasing

specialization occurring within Computer Science. The separation of

Numerical Analysis from Software is virtually complete and few people

care to bridge the gap between the areas. In Numerical Analysis, the

notion of programs that produce programs rather than numbers is largely

absent. For most numerical analysts the FORTRAN compiler is completely

transparent, as if Created on the same day as the computer. There is

little awareness of language processing as a software writing tool in

the sense of the products we have come to expect from places like Bell

Labs. Notable exceptions include user languages for physical modeling

and for statistical computations. Conversely, people involved in

writing software tools may have a tendency to write only such software

tools that aid in the writing of other software tools, and although this

opens fascinating avenues of auto-catalysis, the real usefulness of

these tools must ultimately come from application to outside areas.

Tools are means to an end, not ends in themselves. What seems required

is not merely cooperation between software people and numerical analysts

but efforts by people with a certain minimal understanding and interest

in both areas. The effort invested in such hetero-catalysis could pay

off very handsomely.

1.1. Object of this Research

We set out to design and implement a system as in fig. 1 that would

be general, convenient to use, and fast. Generality pertains to the

class of algorithms Af it accepts. Convenience of use depends, among

other things, on the number of changes the user needs to make in his

algorithm Af before it is acceptable to the system. Speed pertains to

4

the algorithm Af' produced by the system: Af' should produce partial

derivatives of f much faster than numerical differencing.

1.2. Major Results of this Research

A full solution to the problem of compiling fast gradients has been

obtained. For the problem of compiling fast Jacobians of arbitrary

shape a partial solution has been found. This thesis describes a method

and its implementation capable of producing algorithms Af that compute

the gradient of a function f(xj,...,x) in an amount of time equivalent

to a constant number of function evaluations independent of n. The space

requirements of the algorithm Af are modest.

1.3. Outline of this Thesis

Chapters 2 and 3 deal with the feasibility of algorithmic

differentiation. Sections 2.1 and 2.2 explain the method of Joss

[JOS76], who showed in his Ph.D. thesis how one can assign a consistent

and useful meaning to the notion of "derivative of an algorithm". Joss'

method cannot compete with numerical differencing, as is shown in a

detailed comparison of the performance of both methods in section 2.7.

However, Joss' method is a convenient point of departure for a

description of our own method.

The positive results of this thesis are detailed in Chapters 4,5

and 6. Chapter 4 presents a new method for constructing fast gradients.

Chapter 5 extends the method to the construction of fast Jacobians.

Chapter 6 describes an actual compiler, Jake, implementing the theory

presented. Conclusions, timing tests and suggestions for future work

are presented In Chapter 7.

5

2. SYMBOLIC DIFFERENTIATION OF ALGORITHMS: PREVIOUS WORK

An algorithm Af representing a mathematical function y=f(x) can be

transformed by mechanical means Into another algorithm A f that

represents the derivative y' = -ĝ .

2.1. Warner, 1975

For very restricted algorithms Af consisting merely of a sequence

of assignment statements without any flow of control, this was noted and

exploited by D.D. Warner in 1975 in a technical report from Bell Labs

[WAR75]. His Partial Derivative Generator accepts a straight-line code

program and compiles it into another that, when run, computes

derivatives of the function represented by the original program. His

generator rests on the use of the chain rule of differentiation. If the

values of u, -g":, v and -^— are known (for a given value of x) , then

3(u*v) * 3u . * 3v
5x = v * - 3 x + u*-3x

so that any assignment statement

w := u * v

in the original program may be replaced by

dwdx := v * dudx + u * dvdx;

w := u * v;

This applies, more generally, to any known operator op(u,v) such as "+",

"-", "/", "max":

w := u op v

is replaced by

dwdx := -|°^ * dudx + -|̂ £ * dvdx;

w := u op v

where -g°-£ , -g°^ are known expressions in u and v.

For unary operators a similar result holds. Any straight-line

computation can be easily broken down into unary and binary operations:

that is how compilers compile expressions anyway. Trivial rules, such

as dcojjatant . o and -|f ° 1 complete the picture and also constitute the

inductive base in a proof of the correctness of Warner's method, a proof

in which the chain rule provides the inductive step. But Warner doesn't

really prove the correctness of his approach. It is apparently obvious

to him that consistently replacing statements like

w := u op v

by

dwdx := -|ip * dudx + I T 2 * dvdx5

w := u op v

in a program without flow of control leads to the correct computation of

the derivative.

2.2. Joss, 1976

An important breakthrough was the doctor's thesis of Johann Joss at

ETH in Switzerland in 1976 [JOS76]. Joss is concerned with algorithms

(using Algol as a vehicle) that freely use if-then-else, goto and for-

statements. The basic idea is again quite intuitive: for any given

value of x, the program goes through a definite (and hopefully finite)

sequence of assignment statements. That sequence of assignment

statements, which might have been obtained from an execution trace,

defines a straight-line program. For the particular value of x, the

straight-line program would produce the same value for y as the original

program. Moreover, we may reasonably expect that both programs produce

the same value for y in some very small neighborhood of the point x. If

this turns out to be true, we may differentiate the straight-line

program. We know how to differentiate a straight-line program from

Warner's work, and we know that his method does not radically change the

structure of the original program; rather it is a mild expansion of it*

All the original values are still being computed, and.in the same

sequence as in the original program. Viewing any flow of control in a

program as a way to abbreviate the straight-line program (and also as a

way to lay down several different straight-line programs in one single

notation) suggests the following approach to symbolic differentiation of

algorithms:

1) leave all flow-of-control statements untouched

2) leave all assignments to integer variables untouched

3) replace all statements assigning to a real variable by a pair of

statements just as in straight-line programs.

For example:

A: w := 0;

for i := step 1 until n do

w := w * x + a[i];

y := exp(w):

will be replaced by (assuming array "a" contains constants):

B: dwdx := 0;

w := 0;

for i := 1 step 1 until n do

begin

dwdx := dwdx * x + w;

w := w * x + a[i]

end;

dydx := exp(w) * dwdx;

y := exp(w);

for a given value of n, let's say n = 2, both A and B are equivalent to

straight-line programs:

A = w := 0;

i := 1;

w := w * x + a [i] ;

1 := 2;

w := w * x + a [i] ;

y := exp(w);

B = dwdx := 0; w := 0;

i := 1;

dwdx := dwdx * x + w;

w := w * x + a[i];

i := 2;

dwdx := dwdx * x + w;

w := w * x + a [i] :

dydx := exp(w) * dwdx;

y := exp(w);

8

Here we see that Warner's method indeed underlies Joss' method, and the

same applies for other values of n.

In case the straight-line equivalent of a program not only depends

on the value of some unknown parameter n but also on the particular

value of x, a more sophisticated approach is needed to show the validity

of the method. Joss proves in his thesis that the method outlined does

indeed produce the correct results under quite general conditions. The

most limiting condition in practice is the condition that computer

arithmetic be exact. Real variables are assumed to hold real values of

infinite precision. Chapter 3, on numerical accuracy, discusses the

seriousness of the exact arithmetic assumption. What the assumption

allows Joss to prove is that the transformed algorithm computes the

correct derivative "for almost all" values of x. More precisely, there

can only be countably many real values of x for which the derivative

comes out wrong. Most of these values x are on the dividing line

created by an ̂ f, as the value 0 In

y := lĵ x < 0 then -x else x .

Such values very often correspond to points where the derivative 3y/3x

does not exist in the first place, so strange answers in such points are

generally wholly acceptable.

Joss' thesis is remarkable for its clarity and brevity. The fact

that it was written in German may have restricted its wider

dissemination.

2.3. Kedem, 1977

Gershon Kedem published a paper in the proceedings of the 1977 U.S.

Army Numerical Analysis and Computer Conference outlining ideas very

similar to those of Joss yet not developed as far [KED77],. Kedem's

paper appears to be the first publication in English showing the

feasibility of symbolic differentiation of full-fledged programs. The

implementation described by Kedem is not particularly impressive, and it

is obvious that Kedem was not aware of Joss' thesis. Deserving praise

for independently discovering differentiation of algorithms, and still

providing the only English source of its description, Kedem nevertheless

9

is not the originator of the idea. Joss came first.

2.4. Extensions to Gradients and Jacobians

It is immediately obvious that methods to produce derivatives of a

scalar function of a scalar variable can be extended to produce

gradients and Jacobians. The gradient of a function y = f(x,,...,x) is
3f 3 f

the row vector -g±r- »���, -ĝ —. The Jacobian of a set of functions
1 n

y i : f i (x r - - x n)

ym ' ^ r - ' V
3y.

is the m * n matrix J with J.. = g .

The extension of symbolic differentiation to a general function

y = J(x) described by a subroutine F(X,Y,N,M) with X,Y vectors of

arbitrary size N,M is important because most applications deal with

functions of many variables.

Warner, Joss and Kedem all considered such extensions: Warner, Joss

and Kedem are all able to produce gradients; Warner and Joss also

produce Jacobians; Kedem is able to produce first, second and higher

order derivatives.

Warner's system, though able to produce Jacobians, is not as

powerful as it may sound: all subscripts in array references are

restricted to constants so in essence they behave as ordinary scalars.

Kedem and Joss allow true array indexing (computable subscripts)

and hence need the additional differentiation rule:

Jffjf = "if 1 = j then 1 else 0" .

No theoretical problems arise from x being a vector. Joss does not

mention gradients in the theoretical part of his thesis at all;

gradients suddenly enter the description of his implementation. Instead

of pairing each real variable u in the original program with a new

scalar dudx representing the value -ĝ , he pairs each variable u with an

array dudx[l:n] whose elements dudxfj] represent the current value of

�gii—. Instead of replacing "w := u * v" by

dwdx := v * dudx + u * dvdx;

10

w := u * v
he replaces it by:

begin
for j := 1 step 1 until n do
begin

dwdxfj] := v * dudxfj] + u * dvdx[j];
end;
w := u * v

end

Clearly, this works. For Joss, who seems primarily interested in giving
a feasibility proof where no feasibility was known previously, such an
approach is sufficient. Whether the approach is optimal is not
immediately clear and this issue deserves investigation.

2.5. Time and Space Requirements for the Algorithm Produced by Joss

If the original algorithm Af(x,y), for a certain value of x , takes
T time to run to completion with space requirements S, then the program
Af (x,y,J) produced by Joss to compute the Jacobian J =■ 3y/3x will run
to completion in 0(nT) time and require 0(nS) space, where n is the size
of the vector of Independent variables x .

2.6. Comparison of Joss with Numerical Differencing

As mentioned in Chapter 1, numerical differencing is a widely-used
alternative to symbolic differentiation of algorithms. Numerical
differencing is based on sampling the original function in the
neighborhood of the point x" and therefore does not even need to see the
text of the algorithm Af(x,y), it merely needs to call it.

In comparing numerical differencing with Joss' method, the
following criteria are relevant:

a) ease

b) numerical accuracy

11

c) time requirements

d) space requirements

The comparison will be made for the computation of the gradient

|y_ ... -If- from

SUBROUTINE F(X,N,Y)

REAL X(N),Y

END

2.6.1. Comparison: ease

There can be no doubt that numerical differencing is easier:

SUBROUTINE GRADF(X,N,Y.GRAD)

REAL X(N),Y,GRAD(N)

DATA DELTA/ ... /

CALL F(X,N,Y)

DO 10 I = 1,N

X(I) = X(I) + DELTA

CALL F(X,N,YNEW)

GRAD(I) = (YNEW - Y) / DELTA

X(I) = X(I) - DELTA

10 CONTINUE

RETURN

END

Except for the complication of choosing DELTA, this is basically all

there Is to numerical differencing. Joss' method, or any form of

symbolic differentiation, cannot compete with that.

12

2.6.2. Comparison: accuracy

Chapter 3 is devoted to issues of accuracy. We will anticipate

here our main conclusion: in the presence of round-off it is very

difficult to predict whether symbolic differentiation will give more

accurate answers than numerical differencing (with DELTA chosen

optimally) for any given algorithm Af.

2.6.3. Comparison: time

If the original subroutine F(X,N,Y) requires T time for a

particular value of X, Joss requires O(nT) for the gradient, and so does

numerical differencing.

2.6.4. Comparison: space

Numerical differencing requires extra space only in the form of the

gradient itself: S + n. Joss requires O(nS), as all real scalars and

real arrays are accompanied by arrays and matrices to hold the n

derivatives with respect to x of all values computed.

13

3. ACCURACY CONSIDERATIONS

The thrust of this thesis is to present a method of producing

symbolic derivatives that represents an improvement over previous

methods in terms of speed and of space requirements. In developing the

new method (described in the following chapters of this thesis), no

explicit consideration was given to issues of accuracy in the presence

of round-off. After the method was developed, it was easily seen that

in terms of accuracy it mirrors the method of Joss from chapter 2 in

many relevant aspects. Joss, in his thesis, touches on accuracy

considerations for his method, but mostly by implication.

It is outside the scope of this thesis to develop a theory of the

numerical behavior of symbolic derivatives under round-off. This is not

intended to convey the impression that numerical behavior under round-

off is somehow not important. Numerical behavior is one of several

factors that affect the user's confidence in the answers produced by a

certain method. Fortunately, it is possible to address the issue of

user confidence in a meaningful way even without having a theory of

round-off. Other problems than round-off are associated with symbolic

differentiation and they may well be the bigger problem at this point in

the development and acceptance of symbolic methods.

To be used, a program must produce answers in which the user can

have some confidence. In the scientific and cultural climate of today,

people are quite ready, initially, to accept answers from a computer

program, but a small number of unpleasant surprises with the program

will turn the same people sharply against that program. One does not

make a method stronger by hiding its weaknesses.

Symbolic differentiation of algorithms does have some pitfalls in

the sense that it can be misapplied to produce outrageous results. As

these pitfalls can be avoided rather easily provided one is aware of

their existence, it is important to point out where these pitfalls lie.

These pitfalls affect accuracy of the results in a more dramatic way

even than round-off and therefore this issue belongs in this chapter.

14

3.1. The Algorithm and the Function it Represents

An algorithm Af ready to be differentiated does not arise in a
vacuum. Rather, the algorithm was written to represent or approximate
some mathematical function f. The algorithm is secondary to the
mathematical function and there may be discrepancies between the two for
a variety of technical reasons. For one, the mathematical function f
may be known only implicitly, e.g. as obeying a functional equation
G(f)=0. Such a function can often be represented by an algorithm only by
use of iteration. Second, the mathematical function f may be known
imperfectly, e.g. only on a subinterval or by its values in certain
points. The algorithm Af may be using some interpolation technique to
provide an approximation to f on the entire interval of interest.

A key assumption of symbolic differentiation of algorithms is that
not only Af approximates f, but (Af)' approximates f as well.

Symbolic differentiation uses the text of the algorithm Af as its
sole source of knowledge about the function f. So the best one can hope
to achieve with symbolic differentiation is to obtain the exact
derivative (Af)' of Af. In what respect is this different from any
other computer method such as numerical differencing? At first glance it
would appear that numerical differencing has an even bigger handicap, as
it merely samples the algorithm Af at some points but is never allowed
even to Inspect its text. Yet the following graph suggests that the
situation is not nearly as simple as that:

•»■ x

If Af approximates f through a step function, (Af)' will be zero
("almost everywhere") no matter how closely Af approximates f. In

15

contrast,
Af(x+6) - Af(x) o

may be fairly close to f provided 5 is large relative to the step size.
A large <S places a lower bound on the truncation error and hence will
not give a very accurate result, but most likely the numerical
derivative will be in the proper range, whereas symbolic differentiation
misses the true derivative of f altogether.

The prevalence of approximations that achieve quite small uniform
error bounds and that do so by "tacking" seems to confer a rather
"unfair" advantage to numerical differencing. Such advantage for
numerical differencing in terms of accuracy is by no means universal,
however. It is easy to give examples where numerical differencing is way
off the mark whereas symbolic differentiation is exact, e.g.:

JT

, , ., f ^

x x+6 -*■ x

In this example, Af and the numerical derivative are the same as before.
But now the step in the function Af is not merely a technical artifact,
the step is there because the function f itself happens to have just
such a step.

3.2. Is Joss' Theorem Moot?

Joss' main theorem deals with an algorithm Af, its symbolic
derivative (Af)' and a real Interval I for x on which both algorithms
are being considered. Under the assumption of infinite precision
arithmetic, the algorithm Af defines a function F. In contrast to the
previous section we are not considering the function f that Af was
intended to approximate, we are now considering the function F that is

16

defined by Af as is. Instead of somehow bounding the error in (Af)'

seen as an approximation of f, can we obtain at least a statement about

the accuracy of (Af)' seen as an approximation to F' ?

Joss' result is that indeed such a statement can be made, and in

particular, that the following can be proved:

F' = (Af)' "almost everywhere" on the interval I.

The phrase "almost everywhere" means that there are at most countably

many points where the equality does not obtain. Another formulation of

the same result is that F' and (Af)' are equal in the L£ norm.

The problem with Joss' theorem is not that its proof is Incorrect

or faulty but rather that it is not applicable to any real machine.

Real machines do not meet the requirement of infinite precision

arithmetic. The damaging fact here is not so much the presence of

round-off in real arithmetic per se, but rather that the representation

of real values in the memory of the machines must needs be finite. In

the interval I for x on the real axis, only a finite number of points

are representable within the machine. Those values comprise a set M of

measure zero. So Joss' theorem allows that symbolic differentiation

produces values that are correct (i.e. equal to those of F') for all x

in I except for those values of x that are representable in the machine!

In other words, Joss' theorem proves nothing about the accuracy of the

values of (Af)' evaluated (even without round-off) in the points x of M,

and it is only these values that are accessible at all and hence of any

practical significance.

The next two sections show example algorithms where indeed strange

(probably even counterintuitive) results are obtained. On closer

analysis, however, neither result provides a counterexample to Joss'

theorem and the algorithms are very contrived indeed. The examples

given are intended as a warning.

3.3. First Example: random search

In the procedure below, random() is assumed to be a perfect

pseudo-random generator, producing numbers between 0 and 1.

17

procedure slowid(x,y);

begin comment 0<x<1;

L: y:=random();

if(x̂ y) goto L;

end

It is not claimed that the procedure slowid is a practical way of

computing the function y=x : it may be rather slow. In fact, it is not

obvious that slowid will converge for all x in the interval from 0 to 1.

Convergence for all x would place a very stringent burden on the random

generator. Yet if convergence is only to be guaranteed for values of x

representable in the machine, it is not hard to show how the random

generator could be written to make slowid converge for all representable

x. Any process that would cycle through all representable values in the

interval would do instead of the random generator.

In any event, it is not entirely unreasonable to say that slowid

represents the function y=x. At the same time, (slowid)' = 0 , not 1,

for all x.

3.4. Second Example: table lookup

Assume that floating point numbers of the machine are represented

by a word of w bits. Assume that the memory of the machine has more than

2W words. The first 2W words of memory can be used as a table,

implementing any conceivable function y=F(x) as follows:

1) take x, examine its bit pattern (w bits).

2) use the bit pattern as an address into the memory.

3) retrieve a word of w bits from the memory at that address.

4) return the retrieved word as the result y.

The code for steps 1-4 is the algorithm Af and can be thought of as

stored above the table in the memory.

Symbolic differentiation again produces zero for every floating

point number x, regardless of what function was stored in the table.

18

3.5. Summary

A reader for whom the results obtained for the functions in the

previous sections seem intuitively incorrect is advised not to use

symbolic differentiation of algorithms. However, it is not particularly

hard to change one's perspective such that the results obtained for

those functions become intuitively correct. This is perhaps more a

reflection on Intuition than on symbolic differentiation as such.

19

4. COMPILATION OF EFFICIENT GRADIENTS

For reasons that will become clear soon, this chapter focuses on
gradients rather than Jacobians of general shape and size. Chapter 5
will generalize the results of this chapter to compilation of efficient
Jacobians.

In Chapter 1 it was argued that symbolic differentiation of
algorithms as developed by Joss could not compete with numerical
differencing and Chapter 2 showed this in more detail. To make symbolic
differentiation competitive one must improve significantly on the
programs produced by Joss' method. One approach which appears very
promising is to replace Joss' compiler, which is a one-pass non-
optimizing compiler, by an optimizing compiler Incorporating all the
latest program optimization techniques and more. In the early stages of
the research leading to this thesis, much time was devoted to pursuing
the optimizing compiler approach and it was found to be not ultimately
successful. The next section will outline this approach and suggest why
an optimizing compiler staying within the framework of the "Joss
interface" should not be expected to effect significant speed-ups for a
significant class of algorithms. After that, we will turn to positive
results.

4.1. The Optimizing Compiler Approach to Improving Joss' -Method: its
limits

First we show a example algorithm A that allows speedup by a factor
of 0(n) over Joss.

A: y := 1; B: g := 0; y := 1;
for i := 1 step 1 until n do for i := 1 step 1 until n do

y := y * x[i] ; f 8 '■= t * x[i]
< + y * un i t (i) ;
Ly := y * x[i] ;

20

C: y := 1; D: y :- 1;
for 1 :=■ 1 step 1 until n do for i := 1 step 1 until n do

y := y * x[i];
for 1 := 1 step 1 until n do

g[i] := y/xti]; rp := 1;

r i p [l] : - y;
\^y :» y * x[i] ;

for i :■ n step -1 un t i l 1 do

' g [i] : - l p [i] * rp ;
rp := rp * x [i] ; C

Algorithm A computes y ° n xt. Algorithm B computes g = 3y/3x
i°l according to Joss in 0(nz) time. The vector notation in algorithm B

abbreviates a loop over the n components of the vector. Algorithm C is
the first indication that an 0(n) algorithm might be found for g. It is
clear that -%£- = IT x4 so it is tempting to try -%£— = ̂ — . However,

dxi l̂fi J - xi xi
algorithm C will fail if any x^ is zero. Algorithm D avoids any
division and still realizes the 0(n) time bound of algorithm C.
Algorithm D is based on the identity

-x&— = l<*Ti where 1., = II x. and r., = II x... dxi 1 x 1 j<i J 1 j>i J

A question worth considering is whether D could have been obtained
from B by an automatic method. Indeed, B can be transformed into D by
steps leaving the semantics of the algorithm invariant. The steps can
be constrained to be those in the Irvine Catalogue [STA76], for
instance. However, the path of algorithms and transformations between B
and D is a very tortuous one, and it is very hard to see how an
automatic procedure would find that path even if it "knew" that it was
supposed to end up with algorithm D. Certainly, one would not want to
rely on theorem proving techniques for any real-life size problem. It
should also be remarked that D cannot be obtained from B by merely
exploiting sparsity in g or in unit[i]. That only serves to bring down

2 2 the operation count from n to n /2. Rather, D involves a rearrangement
of the entire loop structure. The next question is whether perhaps D
could have been obtained from A directly, by some automatic method. Or,
rather, whether such a method can be general enough to handle a large
class of program structures of interest. Here one thinks of a repertory

21

of special techniques for special loop structures, extended wih a set of

transformations that map more general loops into those special

structures. Typically, one has no hope of recognizing entire program

structures, but one may have the hope that it proves sufficient to focus

merely on innermost loops, the rationale being that speeding up

innermost loops by 0(n) will speed up the entire program by the same

order of magnitude. This approach has been used quite successfully by

Kuck and collaborators [KUC78] in the context of optimizing programs for

execution on parallel machines.

A theory for so-called "scalar recurrences" was developed as a

generalization of algorithm A, but there is no justification for

believing that local optimization such as optimization of innermost

loops will achieve much for general algorithms. Consider'algorithm F

below. It computes y = det(X) where X is a square matrix of size N.

Algorithm F itself requires 0(N), while computing the gradient

3y/3X[i,j] for 1 = 1, ..., N, j = 1, .., N according to Joss requires

0(N). Yet optimizing this by hand will give a method that is 0(N3),
2 2

hence we save a factor 0(N). As "n" equals N here, the savings are

0(n) as before. Nothing like an optimization of the innermost loop of F

would accomplish such savings. If any doubt as to this point remains,

we can add partial pivoting to F, and see how that destroys any

possibility of giving a closed form characterization of what the inner

loop does, let alone of how to optimize it.

F: y := 1;

for 1 := 1 step 1 until N do

(y := y * X[i,i];

for j := i+1 step 1 until N do

mult := X[j,i]/X[i,i];

v for k := j step 1 until N do

^ I X[j,k] := X[j,k] - mult * X[i,k];

To optimize 3y/3x by hand, we may use the easily derived formula

9 d f £ W = det(X) � X-1

/

22

Both det(X) and X"1 can be computed in 0(N3) and multiplied in 0(N2).

This results in an 0(NJ) algorithm. Note that algorithm A can be

regarded as a special case of algorithm F with X a diagonal matrix.

4.2. Compilation of Efficient Gradients: an outline

We now turn to the major positive results of this thesis. It is

indeed possible to achieve a speed-up of 0(n) for gradients over Joss'

approach with a method not intrinsically more complicated than his. To

show this we have to view his method from a much greater height and with

far less concern for local efficiency than the optimizing compiler of

the last section did. We have to abstract and focus on what all the

examples of the last section and indeed all programs from which to

produce gradients have in common, and that is that they take the

information contained in n numbers x[l],..., x[n] and from it produce a

single scalar value y. We will show that Joss' method is algebraically

equivalent to a sequence of matrix multiplications, the last one of

which does not involve a square matrix but a row vector. It is easy to

see that if those matrices were full, multiplying those same matrices in

a different sequence would lead to identical results but 0(n) faster.

It will be shown that the extreme sparsity of the matrices (i.e., the

matrices have mostly zero entries) can be exploited in a meaningful way,

and the resulting method is 0(n) faster than Joss without making

excessive demands on memory space.

4.3. Joss' Method Viewed as j| Sequence of Matrix Multiplications

The theory will be presented using an example algorithm. As usual,

x represents the independent variables, y is the dependent variable, and

3y/3x is to be constructed.

for 1 := 1 step 1 until n do

begin

t := 0;

for j := 1 step 1 un t i l n do

t := t + a [i , j] * x [j] ;

z[j] := t ;

end

23

y := l;

for i := 1 step 1 until n do

y := y * z[i] ;

The method of Joss attempts to keep the matrix J up to date at all

times:

J =

3xj

"35H

9 xn
"3x7

3t
3Xi

3x<

"3x1

9xr
"3x~

3t
"3x

n

9z,

"3x7

9 zn
"3x7

"3x7

3z,

~3x~

3z.
"3x

n

fe

The variables making up the rows of J: x, t, z, y comprise the "state

space" S. A point in the state space characterizes the values of all

real variables in the program. Any time during execution of the

program, the state of the memory is given by a point in the state space,

and J will contain its Jacobian. When an assignment statement such as

y := y * z[i] is executed, the point in the state space moves,

and the matrix J must be updated. Joss generates the extra statements

for jg := 1 step 1 until n do

ygtjg] s- yg[jg] * z[i] + y * zg[i,jg];

This can be abbreviated as:

yg := yg * z[i] + y * zgfij;

Due to the chain rule, the right hand side of this statement is linear

in yg and zg[i j, and therefore it is possible to describe the update to

24

J as a matrix product:

i i i i

l ly l l

" z t i] "

o ' \

l ly l l

o

z t i]

* " z [i]
M

l ly l l .

J' F

The matrix F, called a "factor", is determined by the partial

derivatives of the original expression y * z[i], which partial

derivatives are placed on the row corresponding to the left hand side

"y" in the state space, in the columns corresponding to the right hand

sides, "z[i]" and "y", in the state space.

It is important to observe that the factor F is a Jacobian matrix

in its own right. F is the Jacobian of the transformation S -> S that

moves points in the state space according to y := y * z[i]. We can see

this readily by introducing some abbreviations and consistently using

accent marks to distinguish new values from old values. J is

abbreviated as

\3j

3x"

3t

3z"

3y|_ J

, or even as 3(x, t, z, y)/3(x)

Similarly, J' is abbreviated as

\ 3x

3x'

3t'

3z"'

3y'

, or as 3(x', t', z', y')/3(x)

Now F i s seen to be

\ 3x 3t 3z 3y

3x"'

3 t '

3z"'

3y '

, or 3(£', t', ?', y')/3($, t, I, y)

25

The "deep truth" underlying the statement J' := F * J now shows up as

3(x',t',J',y')/3(^):-3($',t',z',y')/3($,t,J,y)*3(x,t,z,y)/3(x)

So far, we have looked at a single assignment statement, and the effect

it has on J. Now we must look at the effect of a whole sequence of

assignments on J. From Joss' work we know that it is sufficient to

consider straight-line code, the straight-line code being thought of as

deriving from an execution trace.

It should be clear that

Jfinal = Fs * Fs-1 *�*�* Fl * Jinitial '

where the factors Fj,..., F have been indexed by the order in which the

assignment statements that gave rise to them were executed.

In the equation given above, Jjnj_Mai I
s simply:

3x"

3£"l"

3t 0

3z 0

8y _0_

The final result ̂ is not Jfinai>
 D u t a single row extracted, from it:

3(y)/3(x) = g * Jflnal .where g - (0 0 0 0 ... 0 1).

Summing up we have

3(y)/3(x) = | * F8 * F s - 1 *...* F2 * Px * J i n i t i a l

In Joss' method, this matrix product is evaluated from right to left.

Though the factors Fi,..., F must of necessity become available in that

order, it is not necessary that they be used in the same order. Matrix

multiplication is associative, and it may turn out that a different

order of multiplication is faster. Indeed, we will show in the next

section that multiplication from left to right is an order of magnitude

faster:

3(y)/3(x-) := ((...(I * Fg) * F^)...) * Fj) * J l n l t l a l 5

26

Any order of multiplication different from the order of generation of

the factors raises the issue of storage space for the factors. For

every execution of any assignment statement a factor becomes -available

(not merely once for its presence in the program text), so at first

glance the storage problem appears truly overwhelming and this would

seem to rule out any change In the multiplication order. However, it

will be shown how the factor storage problem can be solved very neatly,

resulting in a method that typically requires far less memory space than

Joss' approach.

4.4. On the Economics of Matrix Multiplication

We showed that Joss' method is algebraically identical to a

sequence of matrix multiplications

8 * Fs * ��'* Fl * Jinitial

evaluated from right to left, where both g and ^initial a r e merely

slices of the unit matrix. All factors F, are square, m * m, where m is

the dimension of the state space. The matrix g is really a row vector,

1 * m; the matrix ^±n±t±ai Is m * m.

This section will show that evaluating the product from left to

right is 0(n) faster. First, the two ways of evaluating the product

will be compared using the assumption that all matrices F^ are full. We

know, of course, that the F., matrices are not full at all; we must then

verify that the comparison still holds true given the special structure

the factors possess. The reason we bother making the comparison for

full matrices at all is its great heuristic value.

Multiplying a full p * q matrix A with a full q * r matrix B

results in a p * r matrix C in p * q * r operations. This assumes that

the standard algorithm is used:

Cij = I hk Bkj

Clever algorithms for multiplying square matrices such as Strassen's

[STR69] are left undiscussed if only because we cannot subsequently

generalize the results to sparse systems.

27

The matrix product

m
m

T
m * * m

m n

* m

initial

if evaluated from the right, has intermediary results all of size m * m

and hence costs

s(m n) operations,

ignoring the last "multiplication" with g. Evaluating the same product

from left to right, all intermediary results have size 1 * m and hence

we chalk up

2
s(m) operations,

this time ignoring the last "multiplication" with Jinitial* Clearly,

left-to-right is 0(n) faster.

Now we turn to the analysis of the left-to-right multiplication

exploiting the very special structure of the factors F.

Consider the product

g0 " 8 *
 F

s **��*
 Fl

evaluated as

s- 8

g^, := gj * F. and focus on a particular product

g := g' * F

where F is a factor associated with an assignment statement. Take as a

typical assignment statement the following:

c := expr(d,e,f);

Here, "expr" is any expression using +, -, *, / and standard functions;

the left hand variable c and the right hand variables d, e, f may

actually be subscripted. "Expr" may involve additional variables, e.g.

integer variables, as long as they are not in the state space. What

does F look like? It differs from the unit matrix in at most four

28

places. These are all in the row corresponding to c. The column

positions of those changes are those corresponding to c, d, e and f.

V

Jacobian factor associated
with c:= expr(d,e,f).

9expr
9e

Now g = g' * F can be computed as follows:

for i := 1 s

gtU :-
t := g["c"];

tep 1 until

g'Ul;

if t t 0 then

begin

g["c"]

g["d"]

g["e"]

g["f"]

end

:= 0;

:= g["d"]

:= g["e"]

:= gt"f"]

+

+

+

n

t

t

t

do

* F["c",

* F["c",

* F["c",

"d"] ;

"e"];

"f"];

Here, "c", etc., has been used as a convenient notation for the row

number corresponding to variable c in the state space.

A further simplification is possible if g and g* are made to share

the same space in memory. Surely, once g is computed, g* is no longer

of interest. Surely, too, the above algorithm allows g and g* to share

space; indeed, it becomes faster.

g := g * F can be computed as follows:

t := g["c"];

If t / 0 then begin g["c"]

g["d"]

g["e"]

g["f"]

end;

= 0;

= g["d"] + t * F["c", "d"]

= g["e"] + t * F["c", "e"]

= g["f"] + t * F["c", "f"]

We have now arrived at the conclusion that the time required to

multiply a row vector with a factor matrix is independent of n. The

29

time required is easily bounded by a constant times the time required

for evaluating the right hand side from which the factor was derived. A

bound of the same form, again independent of n, can easily be obtained

for the time required to obtain the few nonidentity elements of the

factor matrix at the time the original statement is executed.

These bounds should be contrasted with Joss' own method, which

entails expanding every assignment

c := expr(d,e,f)

into an array assignment requiring 0(n) operations:

pcpd := 3expr/3d;

pcpe := 3expr/3e;

pcpf := 3expr/3f;

for jg := 1 step 1 until n ̂ o

cg[jg] := pcpd * dg[jg] + pcpe * eg[jg]

+ pcpf * fg[jg];

c := expr(d,e,f);

4.5. The Problem of Factor Storage

If the proposed technique of carrying out the multiplications from

left to right is to be viable, a solution must be found to the problem

of fast storage and retrieval of factors without requiring an excessive

amount of memory to do so.

First, it should be remarked that the factors have very few entries

worth storing explicitly. The factor associated with

c := expr(d,e,f)

can be easily reconstructed (but never needs to be; what counts Is that

it is determined by it) from the three values

3expr 3expr 3expr
3d ' 3e » 3f

plus the values of four integers giving the row corresponding to c, and

the columns corresponding to d, e, f. In fact,

\ 3d 3e 3f

: F 3c

is a convenient notation for the factor F, as the next section will

30

show.

Even after each factor is seen to involve only a small number of

items to be stored, it is still not possible to give an a priori bound

on the amount of storage required: the number of factors s depends on

the number of assignments (involving variables in the state space) that

is actually executed. In Joss' method, storage requirements are given

by m * n; in the new method storage requirements can only be bounded as

a constant times the running time T< of the program. The essential

difference between the two situations is that Joss' storage must be

random-access whereas large portions of the factor storage may be on

secondary store such as disk or "backspace-able" tape. The way the new

method accesses the factors is strictly like a stack: last in-first

out, with no factors going out before all factors are in. Hence a block

of central memory can be set aside as a buffer. Factors are put into

the buffer when they are generated; If the buffer threatens to overflow,

it is written out to disk. Conversely, on multiplying the factors, they

are read from the buffer; if the buffer becomes empty, the previous one

is read in from disk.

With this organization, the number of disk accesses D is related to

the total storage requirement S (linked linearly to the running time T

of the original program) and the buffer size B as follows:

D = 2S/B (disregarding rounding)

As the cost of disk access is largely dependent on D and only very

weakly dependent on S, it should always be possible to minimize disk

activity by Increasing the buffer size. Yet essentially there is no

minimum buffer size and so the minimum memory requirements of the method

are very low. There is full flexibility for achieving a suitable

trade-off between disk activity and memory use. In any event, the costs

are proportional to T, not nT as In Joss. It should be stressed that in

addition to the buffer of size B, the method only requires room for the

g vector, size m. It will be recalled that m was the dimension of the

state space and therefore bounded by the memory size required by the

original program. To sum up, the method requires about twice as much

space as the original program plus whatever you can spare for a buffer,

31

with the obvious trade-off between buffer size and disk activity. In

contrast, Joss uses (n+1) times the space of the original program.

4.6. An Interpretation of the Method not Based on Joss

Useful as it was to derive the new method from Joss' method because

it obviates proving that flow of control can be ignored to the extent

that it was ignored, it is also very convenient and instructive to have

an interpretation of the'method based directly on the chain rule. This

- interpretation involves the row vector g. The value of g["v"] for some

variable v, is the "current" value of

3y/3v.

Consider the straight-line code corresponding to. an execution trace of

the program and focus on the last part of it. As an example, let the

last three statements be:

s-2: w := 2 * z[j];

s-1: u := v + z[i] * w;

s: y := u * v;

We introduce the notation "=©" as in

y =§ u * v

to mean that the final value of y is a function of the values of the

variables of the right hand side u,v , as they were just before

statement s was executed.

The function ofj =fl u * v has a gradient:

3y/3x =§ fsu * 3u/3x + fsv * 3v/3x

As "/3x" is common to all terms, it may be left implied giving

3y =§ fsu * 3u + fsv * 3v

Here fsu, fsv are numbers from the factor matrix F , given by:

fsu =§ v

fsv =§ u
i

Statement s-1 is similarly characterized by

u §= £ ^ v + z[i] * w;

3u §= &-$ f s - lv * 3v + f s - l z [i] * 3z[i] + fs-lw * 3w

32

Consider now the joint effect of statements s-l,s. Together they define

y as a function of u, v, z[i],w as follows:

y =§ u * v = £ \ (v + z[i] * w) * v

This process of characterizing the semantics of assignment statements by

apropriate substitution is well-known [DIJ78]. A similar process of

substitution gives:

3y =§ fsu * 3u + fsv * 3v

' =(s^l) fsu * (fs-lv * 3v + fs-lzti] * 3z[i] + fs-lw * 3w) + fsv * 3v

= (s-l) (fsu * fs-lv + fsv) * 3v + fsu * fs-lz[i]) * 3z[i] + (fsv * fs-lw) * 3w

For the discerning eye, these substitution steps are seen to be

identical to the way the g vector changed when post multiplied by a

factor matrix!

conveniently abbreviated as:

\ 3u 3v
3y

The factor matrix F associated with statements can be

fsu fsv

The previous section mentioned this abbreviation in the context of a

concern for efficient storage of the factor. Now we see that the

notation is more than that.

We can define multiplication of two objects

\ 3u 3v \ 3v
3y fsu fsu and 3u

3z[i] 3w
fs-lv fs-lz[i] fs-lw

in two ways: one is by expanding both to full factor matrices,

multiplying and contracting again, and the second is by our newly

interpreted process of direct substitution:
3z[i] 3w 3v

\ 3n 3v \ 3v 3z[i] 3w
\ 3w

3y 1 fsnjfsv | * 3u | fs-lv|fs-lz[i]|fs-lw | = 3y
fsn*
fs-lv

fsn*
fs-lz[i]

fsn*
fs-lw

fsv

3v 3z[i] 3w
fsv+fsn*
fs-lv

fsn+
fs-lz[i]

fsn*
fs-lw

= 3y

To see whether the procedure has been really understood, it is helpful

to go one step further In backward direction to incorporate statement

s-2 into the description, too. Statement s-2 is characterized by

\ 3z[.11
3w | fs-2z[,j]

33

So we have

\ 3v 3 z [i] 3w

9y

\

a b c

3z [j] \ 3v z [i] 3zLf3

b |c*fs-2z[j] * 3w | fs-2z[j] | = 3y

The question may now arise as to what happens in case i and j have equal

values. The answer is: the procedure still works correctly. In the

gradient notation it is quite acceptable to have something like

\ 3z[i] 3z[i]

3y

It would in all respects be identical to

\ 3z[i]

E_j a

3y 1 P + q

The latter form saves some space and some arithmetic, but both are

correct, and hence in cases one doesn't know whether two expressions

z[i] and z[j] refer to the same variable, one assumes simply that they

don't. The algorithm to multiply the g vector with a factor

\ 3d 3e 3f
3c | fed|fee|fcf

as given previously and as adapted below, deals correctly with all

permutations of possible identity between c,d,e,f:

t := g[3c];

J^ (t?*0) then begin

g[3c]

g[3d]

g[3e]

g[3f]

end;

- 0;

= g[3d] + t * fed;

= g[3e] + t * fee;

= g[3f] + t * fcf;

-

34

5. COMPILATION OF FAST JACOBIANS

In Chapter 4 it was shown how the gradient of the function

y = f(xj x) can be constructed in a time proportional to T, where

T is the time required for evaluating the function f itself. This

chapter will attempt to generalize the results of Chapter 4 to find the

Jacobian of a system of functions

yl = fl(xl xn^

?k = V x i«- - - ' V

given as an algorithm Af(x, y). Let T again denote the time required

for execution of Af and let S be the amount of memory involved. The

method of Joss computes the Jacobian J = 3yj/3xj in O(nT) time and O(nS)

space. The next section shows that a straightforward extension of the

method of Chapter 4 can compute Jacobians in O(kT) time and 0(S) space

(not counting space for the final Jacobian itself). So even the

straightforward extension is superior to Joss in terms of space

requirements. A comparison of these methods with regard to time will

depend on k and n. If k << n, Joss' method loses out; if k > n, Joss'

method is superior. In practice, however, the case k > n is very rare

and may safely be ignored. If k - n, a comparison is more difficult and

depends on the overhead associated with either method. In particular,

for the important case k = n, Joss' method will usually be faster, but

at most by a small factor independent of n.

5.1. Finding Jacobians One Row at a Time

Jacobians consist of rows, each row being a gradient. Row i is the

gradient of y^ = f^(xj,..., x). For a given i, therefore, we could

choose to regard ŷ as the output variable and compute its gradient.

Or, to stay closer to the formalism developed in Chapter 4, we could

35

precede the procedure exit of Af with the statement

z := y[i];

and regard z as the output variable. What it boils down to is that

<T5J ^ - 1 " ' - » n > - 8± * F8 * . . . * FX * J ± n l t l a l

where g^ is a unit vector in the state space with the one in the

position corresponding to y..

In passing, we point out that if one's real object is to compute

aj for some row vector a; one never need construct the Jacobian

J explicitly; instead one may compute

« ' J = k * Fs *�'�* Fl * initial

where g-£ is a vector with values a. on the positions corresponding

to the y^, and with zeros everywhere else. This corresponds to finding

the gradient of z with these statements inserted just before exit of Af:

z := 0;

for 1 := 1 step 1 until k Jo

z := z + a[i] * y[i];

Computing the full k * m Jacobian of the vector y would comprise

the following steps:

1) do the computation of y according to the Af, and emit factors along

the way;

2) for each i, 1 < 1 < k, do:

a) set the g vector to the unit vector corresponding to y^;

b) multiply factors into g:

g := g * F±, j = s, s-1,..., 1;

c) extract the gradient of y. from g. This produces the i-th row

of the Jacobian.

36

This description shows clearly that the method requires O(kT) time; it

also shows the time required to be far less than k times as much as that

for a single gradient: factor emission need not be repeated.

5.2. Comparison with Some Alternatives

The following is an alternative to the one-row-at-a-time approach

from the previous section:

1) Emit all factors;

2) Initialize the k * m matrix g so that the i-th row of g is the unit

vector corresponding to y^,

3) Multiply g, from the right, by factors:

g := g * Fj, j = s, s-1 1;

4) Extract the columns of g that belong In the Jacobian and throw away

the rest.

This variant also requires O(kT), though this is not as easy to see as

in the previous section. The space requirements, however, have gone up

to O(kS). What we gain is that we need not read in the factors more

than once. Still, a memory requirement of O(kS) seems an exceptionally

severe penalty to pay. For large k,S the space will simply not be

available, whereas for smaller k a more powerful and flexible way to

keep down the overhead in reading factors is to increase the size of the

factor space buffer.

The main reason we introduced the variant above is that it is the

most direct right-to-left counterpart of Joss' method. Joss also

requires a lot of storage: O(nS). The close correspondence between the

method of the previous section and its variant in this section suggests

that Joss' method can be easily modified to reduce storage requirements

to 0(S). In fact, this can be done:

Joss (modified):

1) For each variable u, allocate a new variable dudxj;

37

2) For each x., 1 < j < n, do:

a) initialize all dudxj to zero, except for dx[j]xj, which is to

be set to one;

b) add to each assignment statement v := expr(u>,U2) the

statement

dvdxj:=9|x£r. * dUldxj + -
9-§x|^ * du2dxj;

c) put all variables dy[l]dxj...dy[k]dxj In the j-th column of

the Jacobian.

There is no need to compute gXPr, etc., each time: they could be

emitted to a factor space (organized here as a queue) and read

repeatedly. This allows for the same space-time tradeoffs by

manipulating the factor storage buffer size.

This modification of Joss is so straightforward and so obviously

advantageous in terms of storage that it is perhaps surprising that Joss

never mentions it in his thesis. It constitutes strong evidence that

Joss was only interested in feasibility of differentiation of

algorithms, not its cost.

5.3. Critical Analysis of One-Row-at-a-Time Jacobians

The method of producing Jacobians described in section 5.1 is

general, convenient and economical on space while being reasonably fast.

For k « n, the method may well be perfectly adequate; clearly, it is

for k = 1. The implementation described in Chapter 6 does, in fact,

employ this method.

In the remainder of Chapter 5 several ideas will be introduced that

may eventually lead to a compiler producing Jacobians that run

significantly faster than those of Joss for all k < n. As these ideas

are necessarily more tentative than those described in Chapter 4, the

treatment is less detailed. Certainly one can skip reading the

remainder of Chapter 5 and proceed to Chapter 6 without loss of

continuity.

38

The reason that the one-row-at-a-time approach is not necessarily

optimal is quite simple. The method for finding gradients in Chapter 4

was successful precisely because it exploited the fact that the g vector

in

3y/3x- = ! * Fa * F ^ ...* ^ * J±nitlal

had only one row, so that left-to-right multiplication is 0(n) faster.

As soon as a Jacobian 3y/3x is desired, for y a vector of more than one

element, g becomes a matrix, and for k - n, the matrices g and ^initial

will have similar shape, removing the advantage of one multiplication

direction over the other. Yet there is no a priori reason to assume

that only pure left-to-right multiplication or pure right-to-left

multiplication can be performed. Associativity of matrix multiplication

allows many other multiplication orders. Perhaps it is possible to find

an optimal or near-optimal order of multiplication that is compatible

with the results of Chapter 4 in the special case that g is a row

vector. In the next section we will explore optimal multiplication of

factors and the problems associated with it.

5.4. Optimal Multiplication of Factors for Obtaining a Jacobian

In this section we will look at various multiplication orders for

the product

8 * Fs * Fs-1 *'��* Fl * initial

for a given string of factors Fj,..., Fg.

To find the optimal order for one such particular product of

factors should prove interesting even if there is at present no

guarantee that such an optimal order could be found for an algorithm

with arbitrary flow of control, as the algorithm encompasses a variety

of straight-line programs each emitting strings of factors differing in

value, number and configuration from one another.

Each factor F is a Jacobian matrix in its own right (cf. section

4.3) and so is a product of consecutive factors. Every Jacobian factor

has an out-set FQut and an in-set F. corresponding to the (single)

39

output variable and (any number of) input variables of the assignment
statement from which F originated. So the F . and F. of the factor F
emitted for

f := f * u + t
would be {f> and {f, u, t}, respectively. The factor matrix F will be
identity, except for the "f" row which is nonzero only in the "f", "u"
and "t" columns. The concepts FQ . and F. generalize to arbitrary
products of factors. The Jacobian F of a mapping from F. to FQUt will
be an identity matrix (m * m), except for the rows corresponding to F .
which can be nonzero only in the columns corresponding to F. . The
nontrivial entries of F are therefore those on the intersection of a row
from F

o u t and a column from F. . To simplify the analysis we will
regard all of these nontrivial entries as potentially nonzero and hence
ignore any finer structure a factor may possess. This way, without
actually performing the matrix muliplications we can keep track of the
resulting Fout and F. sets and express operation counts in terms of
these.

Before we carry this out, we note that the concepts Fout and F.
apply to products of factors, not necessarily to products involving g or
^initial" Multiplication by g or -l-i„■£♦■•»ai serves essentially to throw
out matrix terms that are now known to be irrelevant. We know from
Chapter 4 how crucial it is to anticipate what is going to be thrown out
eventually so as to avoid computing it in the first place. In a product

(g * F4 * F3) * (F2 * Fl * Jinitlal)

all effort that goes into computing a certain row of
(F2 * Fj * Jin£j-ial^ *s wasted if the corresponding column of
(8 * F4 * F3) Is all zero. Therefore, we introduce the concepts Yneeded
a n d dependent a s f o l l o w s :

^needed *"S t n e s e t °^ variables that correspond to a nonzero column in

g * Fg *...* F1+1

'dependent is the set of variables that correspond to a nonzero row in x(i)

Fi-1 * Fi-2 *•*•* Fl * Jinitial

40

Any factor F.̂ with out-set F£*£ and in-set F£*' that does not satisfy
Foit d e e d e d and F<n> £ x £ p e n d e n t may be simplified by throwing away

terms that are apparently ultimately irrelevant. The effect is to set

F(i) := Fd) n Y(D
.out out needed

p(i) .. p(i) n Y (D
Fin * rin dependent

and a similar simplification may be made everywhere along the way.

We are now ready to present recurrence formulas for FQut
 and

F { J * , J) of the product

FJ J W FJ * Fj — t * � � � * FJ

as well as for Y n e e d e d and X d e p e n d e n t.

Yneeded = <*M 7W>

Y(±) a Y (i + 1) i f Y(1 + 1> n F^> - 6
needed needed' needed out v

' deeded N ' & > U ' f i } . otherwise.

dependent " <*™ x ^ >

x(i) = x^
1"1) \ F^> if xC1"1) n F(1> dependent dependent out» dependent in

[i-D U Fnnl.(i), otherwise. dependent out

Fout Fout

F(i..i) = F(i) Fin Fin

F(i:.j) - (F(i;-J+D u p(J)) n y d) . out v out out7 needed

F(i..j) . F(i..j+l) n x(j) if F(j) n F(i..j+l) . 0
in in dependent* out in v

-((F! i , , j + 1)\F (J!)UF. (1))nxi J) . „, otherwise. in outr in dependent

An estimate for the operation count for a product

Fi..j * Fj-l..p

is

41

|rout ' |rin rout ' |J?in '
where |#| denotes the number of variables in a set.

The optimization problem has now been formulated' in a manner that
can be attacked by dynamic programming [BEL]. Unfortunately, dynamic
programming requires time 0(s) whereas multiplication in any order is
never worse than O(nT), where of course T=0(s). So it seems evident
that we must lower our goals and recognize that a heuristic approach to
finding an approximately optimal solution is called for.

An example may serve to make the problem more palatable. The
algorithm:

for i := 1 step 1 until k do
begin w := ln(x[i]);

for j := 1 s t ep 1 u n t i l n d£

w := w + a t i . j] * x [j] ;

y [i] := w;
end;

when run with n = 3 and k = 2 will lead to the following sequence of
factors:

w w x„ w x„ w x w
g * y9 □ ; w ; w ; w

10

1 2
; w IZU •> y± □ ; w

w x„

w x„ w x„
w ; w ; w * J

initial

where g = diag(0,0,0,0,1,1) and Jlnltlal - diagd, 1,1, 0, 0, 0) if the
state space is ordered as (x̂ x2, X3 w, y^, y 2).

W X X X
So F. „ = w 4. .2 ; F w

w x x
7..4 y.

In this example, the optimal ordering is easily seen to be:

F10..6 " (•••(F10 * F9> '•• F6>'

Fr 1 "■ (• • • \Fc *A' •••* F<)>

3(?)/3(J) -8* Fio..6 *F5..1 * Jinitiar
The logic behind this is the same as we encountered in Chapter 4.

Left-to-right multiplication is advantageous for a product of factors
that has a single-element Fout« A string of consecutive factors such as
F^Q,•.., Fg that has a product with a single-element FQut will be called
a funnel. Replacing all funnels by their products will result in a
substantial reduction over the one-row-at-a-time approach. When all
funnels have been replaced by their products, we might then search for
long strings with a product having a two-element Fout» and so on.
However, in anticipation of the implementation issues of the next
sections we should remark that there is a certain cost associated with
changing multiplication sequence midstream. The savings due to
multiplying funnels first are the most sweeping; it is the most easily
recognized and the most easily implemented. The remaining
multiplications can then probably be performed best with the one-row-
at-a-time scheme.

5.5. Extension to Arbitrary Flow of Control: run-time method

The approach outlined in the previous section can be extended to
algorithms with arbitrary flow of control in two essentially different
ways.

The first way is to delay the determination of multiplication order
until run-time, after all factors have already been emitted; this will
be the subject of this section.

The second way is to determine the multiplication order at compile
time using flow graph analysis techniques; that will be the subject of
the next section.

When the multiplication order is not being determined until all
factors have been emitted, the situation is in every detail as sketched
in the previous section. Implementation of the funnel multiplication
involves setting up a separate factor storage space organized as a
first-in, first-out queue. This new factor storage space will house

43

original factors and products of funnels. Multiplication of the factors

in the new space can be done by any conceivable method such as one-row-

at-a-time. In order to be able to recognize funnels we will need an

array of flags of size m (the dimension of the state space). Initially,

only the flags for y[l]...y[k] are set. Without loss of generality we

may assume that the last factor emitted has an FQut consisting of the

single element y[i]. We now start the row vector g of size m as a unit

vector corresponding to y[i], we turn off the y[i]-flag and read in

factors as if to compute the gradient of y[i]. But before multiplying a
u v - -► factor w | | into g, we check the w-flag. If the w-flag is set it

will mean that another gradient computation (e.g. the gradients of y[l])
is interested in the gradient of w and has been suspended to await the
computation of the gradient of w. So on finding the w-flag set, the
algorithm would locate all nonzero terms of g, set the flag for all
nonzero entries found in g, shape the nonzero entries into a new factor
and emit it to the new factor storage space. Then it would clear the
w-flag and proceed to read and multiply factors into g (reinitialized
now to the unit vector corresponding to w), again until a factor is read
in with an output variable whose flag is set. This process Is repeated
until the entire factor storage space has been read and all intermediary
products stored in the new factor storage space. It will be clear that
compression and reinitialization of the row vector g will require 0(m)
operations unless special precautions are taken. A data structure that
is a hybrid between a row vector and a linked list structure may be
required to keep track of all the nonzero positions of g. A sketch of
such a data structure is presented below but without additional
commentary.

1
000 •^ 00 * 00000 ^ 0 & 0000 #

m
0000000

nonzero elements of g

track

44

5.6. Extension to Arbitrary Flow of Control: compile-time method

The main advantage of trying to determine a multiplication order at

compile-time is that various forms of overhead associated with

determining the multiplication order at run-time do not occur. As a

result, the Jacobian computation for the special case k=l need not be

slower than a gradient computation performed according to Chapter 4.

The disadvantage is that flow graph analysis lacks the degree of

resolution that can be achieved with a method having an entire execution

trace available. Hence certain strings of factors will not be

recognized as funnels even if they are. Flow graph analysis assumes

worst case behavior. For example, it cannot distinguish between u[i]

and u[j] because it knows nothing about subscripts; it will assume that

a certain derivative 3v/3x^ is nonzero as long as there is any path at

all to the point under consideration on which path a value is assigned

to v that can be traced back to x, whether or not that path will ever

actually be executed. The concepts Y n e e d e d and ^dependent can be

approximated using flow graph analysis; they are now sets associated

with points in the program, not sets associated with factors directly.

The relationship between the two is that the set Ynee<je<j associated with

a certain point in the program will contain as subsets all the sets

^needed associated with those factors that are emitted whenever flow of

control reaches that point in the program. The FQut, F^n sets can also

be approximated by flow graph analysis. For single assignment

statements

si: u := v * w;

s2: a[i] := b * w;

we have

Fout = <u>; Fin - <v>w>; ^ut - <a>5 Fin - <«.*.»>� ' '

We will list a set of conditions that guarantees that a certain block of

code represents a funnel. We also claim that flow graph analysis can

find such blocks, but neither claim will be proved. The conditions are

as follows. The block must have a single exit, though it may have

multiple entries. The last statement of the block should be an

45

assignment statement, e.g.

s: p := g * r;

such that

a) the left hand variable p is a scalar;

b> P is Yneeded'
(a) .

Let L be the set Ynee(je(j \ {p}. None of the statements in the block may

have a lefthand variable that is an element of L.

The power, as well as the limitations, of this type of flow graph

analysis can be illustrated by contrasting two algorithms:

A: for i := 1 step 1 until k do

begin y[i] := 0;

for j:= step 1 until n do

y [i] := y [i] + a [i , j] * x [j] ;

end;

B: for 1 := 1 step 1 until k do

begin v := 0;

for j := 1 step 1 until n Jo

v := v + a[i,j] * x[j];

y[i] := v;

end;

The method described in the previous section would handle both

algorithms equally well. The flow graph analysis described in this

section will recognize a funnel In algorithm B but none in algorithm A.

The funnel It recognizes in algorithm B is the block

v := 0;

for j := 1 s t ep 1 u n t i l n J o

v := v + a [i , j] * x [j] ;

What run-time organization corresponds to a compile-time determination

46

of the multiplication order? Basically, the factor storage space was

organized as a stack even in Chapter 4, but there the stack was never

popped until all factors had been pushed. Now the factor storage space

will be treated even more like a stack. Upon entering a funneling

block, a marker will be placed on the stack. Upon exit of the block,

factors are popped and multiplied into a g vector (initialized to a unit

vector corresponding to the funnel variable) until the marker is

reached. Then the g vector is compressed and pushed back on the stack.

Upon exit of the entire algorithm, the one-row-at-a-time approach can be

used to get the desired Jacobian.

47

6. IMPLEMENTATION

A compiler, called "Jake," has been written to implement the theory

described in Chapters 4 and 5. It will produce subroutines for

gradients or Jacobians from the text of the subroutine for the function

itself. It has been designed to provide a practical tool for numerical

analysts currently hesitant to use numerical methods requiring

derivatives.

This chapter describes Jake: its input, its output, what it does,

what to expect from it and what not to expect from it. The description

is aimed at the person who wants to use and understand Jake; it is

clearly not adequate for one who needs to make major changes to Jake.

Jake is a multi-pass compiler and hence rather large, so a detailed

description of it would unnecessarily clutter up this thesis.

Fortunately, the art of writing large compilers is more and more being

transformed into a real science, and the newly emerging precepts of that

science have been followed in the construction of Jake wherever

possible.

6.1. A User Description

Many of the design decisions regarding Jake were guided primarily

to suit the user in the situation characterized by the following

scenario:

The user is involved in a problem requiring some kind of

functional iteration such as optimization of a function

with respect to many variables. So far the user has

avoided iteration schemes requiring knowledge of

derivatives, such as Newton iteration or Fletcher &

Powell iteration. Instead, the user employs an iterative

scheme only requiring to sample the function, giving up

the better convergence characteristics of the former

methods. Then the user learns about a new method of

obtaining derivatives which might tip the balance in

favor of functional iteration with derivatives.

48

For such a user, Jake must be able to accept existing programs for the

function with minimal changes. Hand-translation of programs is very

error-prone and must be avoided if at all possible. Hence, the input

language of Jake should be FORTRAN.

Similarly, the scenario virtually dictates that the output of Jake

should be a subroutine written in FORTRAN, deviating from the ANSI 1966

standard only in trivial situations (e.g. where the input program

violates the standard in the same way). Having the output of Jake

appear in FORTRAN rather than in the machine code for a particular

machine enormously enhances the flexibility and portability of Jake

while simplifying its design. For example, it allows running Jake on a

different machine from the one that will run Jake's output.

If the input and output language of Jake are virtually determined

by considering the user for which it is intended, the language in which

Jake itself is written is not. Here the criteria are ease of

development and ease of distribution with emphasis on the first, due to

the restricted scope of the project leading to this thesis. It was

decided to develop Jake in the language C, running under a Unix

operating system. "C" is well suited as a compiler implementation

language. Unix is a very convenient and hospitable operating system.

Unix is a trademark of Bell Laboratories. In anticipation of later

distribution, Jake has been written in a subset of C and in a style that

should allow relatively easy (hand) translation into the Ratfor languge.

Ratfor, like C developed at Bell Labs, is a preprocessor for FORTRAN and

at least as portable as FORTRAN itself.

6.1.1. The Jake Input Language: how to prepare your program

The input for Jake consists of a single FORTRAN subroutine to which

a CONSTRUCT statement has been added, and which is subject to certain

restrictions. First, the CONSTRUCT statement will be discussed.

49

6.1.1.1. The CONSTRUCT Statement

Consider the following example:

SUBROUTINE FUNC(X,N,Y,COEF)

REAL X(N),Y,COEF

CONSTRUCT D(Y)/D(X) IN GRAD(N)

Y=COEF

DO 10 I=N

Y=Y*X(I)

10 CONTINUE

RETURN

END

Here Y is computed as a function of X, while N and COEF are merely

additional parameters. The gradient of Y as a function of X is desired,

and it is to be stored in the array GRAD, i.e.

GRAD(Y) = 3Y/3X(I).

Jake learns this from the CONSTRUCT statement. (Note that an ordinary

FORTRAN compiler will regard the CONSTRUCT as a comment, beginning as it

does with a "C" in column 1.) Without the CONSTRUCT, Jake would not

assume that X is the independent variable, nor that Y is the dependent

variable. By themselves, the variable names X, Y, N have no special

meaning. So the following subroutine produces the same result when

submitted to Jake:

SUBROUTINE FUNC(U,M,V,C)

CONSTRUCT D(V)/D(U) IN GRAD(M)

REAL U(M),V,C

V=C

DO 10 1=1,M

V=V*U(I)

10 CONTINUE

RETURN

END

In previous chapters it was convenient to always use "x" for the

independent variable, but there is no reason to burden Jake with that

convention.

50

As another example of what can be done with the CONSTRUCT

statement, consider

SUBROUTINE WHAT(P,Q,PI,R)

CONSTRUCT D(Q)/D(P,R) IN S(2)

REAL P,Q,PI,R,T

T=SIN(P*PI/4)

Q-C0S(R)/T*R

RETURN

END

This example suggests that neither the name of the function, the name of

the resulting gradient, the order of parameters in the subroutine nor

even the form of the independent variables is presupposed by Jake.

Based on the CONSTRUCT statement, Jake will cause to be computed:

S(l) - U and S(2) --|§.

PI is regarded as a constant.

The next example introduces Jacobians:

SUBROUTINE WH0(U,V,N,W)

REAL U(N), V(N), W(N)

CONSTRUCT D(W)/D(U,V) IN R(N,100)

DO 10 I=N

W(I)=U(I)*V(N-I+1)

10 CONTINUE

RETURN

END

This CONSTRUCT statement asks for the Jacobians 3W/3U and 3W/3V to be

computed and stored in R as follows:

R(i,j) = 3W(i)/3U(j) for i=l n and j=l,...,n

R(i,n+j) = 3W(i)/3V(j) for i=l,...,n and j=l,...,n

In contrast, the following produces a gradient:

51

SUBROUTINE HOW(V,N,W)

REAL V(N,N),W

CONSTRUCT D(W)/D(N) IN G(1000)

W-l.

DO 10 1=1,N

DO 10 J=1,N

10 W=W*V(I,J)

RETURN

END

The layout will be as follows:

G(I + (J-l) * N) = 3W/3V(I,J)

So a matrix such as V(N,N) is really treated as the one-dimensional
o

array of N contiguous storage locations it represents. It is the total

size of the dependent variable(s) that determines the number of rows in

the Jacobian (1 for a gradient); it is the total size of the independent

variables that determines the number of columns in the Jacobian. f So the

shape of the Jacobian is determined by dependent and independent

variables; the declared dimensions of the variable receiving the result

must be compatible with this.

To obtain interpretable results, the receiving variable must be a

matrix for a Jacobian or a gradient (but the whole gradient must then

fit in the first row), or the receiving variable may be a vector for a

gradient. A vector cannot receive a Jacobian.

These restrictions only apply to the resulting variable; as

indicated, independent and dependent variables may have arbitrary shapes

and sizes.

Finally, consider subroutine WHY, which demonstrates the use of

double precision.

SUBROUTINE WHY(U,V,W,N)

REAL U(N),V(N),W

CONSTRUCT D(W)/D(U) IN GRAD(N)

DOUBLE PRECISION GRAD

W=l.

DO 10 1=1,N

52

W-W*U(I)+V(I)

10 CONTINUE ' "

RETURN

END

By so indicating that the result vector GR is in double precision, one

asks Jake to emit all factors in double precision to perform

multiplication of factors in double precision and to extract the result

in double precision. At the same time, all variables that were single

precision in the original program remain single precision. Some

Intermediate values, such as "W*U(I)" are computed in single precision

in the original program but double precision when processed by Jake.

Here is a compromise between accuracy, speed and ease of handling by

Jake.

Conversely, it is possible to produce a single precision gradient

in an otherwise double precision computation.

6.1.1.2. Restrictions on the Input Language

Though the input language of Jake is FORTRAN, it will not handle

correctly all conceivable programs in all conceivable FORTRAN dialects.

The purpose of this section is to indicate the limitations Jake has with

regards to the input program. Eight such restrictions will be listed,

with comments and explanations where appropriate.

a) Jake will not recognize "statement functions."

b) Jake will not recognize variables, constants or functions of type

COMPLEX.

c) The input program must not contain any of the following subroutine

names, as they are reserved for Jake:

SPINIT EMITO EMIT1 EMIT2 SPGRAD SPCOPY

DPINIT DMITO DMIT1 DMIT2 DPGRAD DPCOPY.

The output of Jake will contain calls to these subroutines. They

comprise the "run-time support package" associated with Jake. The

first row lists the subroutines used for a single precision

53

Jacobian, the second row lists those for a double precision

Jacobian.

There are two rather severe restrictions that are difficult to

state precisely. The easiest formulation is completely safe, but it is

overly restrictive:

d') Jake cannot handle EQUIVALENCES correctly.

e') Jake cannot handle CALLs and function references correctly (except

standard built-in functions such as SIN, DLOG).

Actually, there are many EQUIVALENCES and CALLs that are harmless and

that will be processed correctly by Jake. However, Jake is not able to

detect which EQUIVALENCES or CALLs are harmful, and the user must assume

that burden. To perform this detection, the user will need to

understand the theory of Chapter 4.

A more correct statement of the restrictions follows:

d) Jake cannot handle correctly EQUIVALENCES that change the state

space.

e) Jake cannot handle correctly CALLs and function references that

affect the values of variables in the state space in such a way as

to require a nonzero factor to be emitted.

As an example of the difficulties arising with EQUIVALENCE, consider:

CONSTRUCT D(Y)/D(X) ...

EQUIVALENCE (U,V)

U=X

Y=V s

RETURN

END

Here the flow graph analysis used by Jake is not able to trace a path of

nonzero factors from X to Y and it will conclude that 3Y/3X = 0.

However, the following EQUIVALENCE is harmless:

/

54

Here the flow graph analysis used by Jake is not able to trace a path of

nonzero factors from X to Y and it will-conclude that 3Y/3X - 0.

However, the following EQUIVALENCE is harmless:

CONSTRUCT D(Y)/D(X) ...

EQUIVALENCE (A,B)

COMMON A

. Y - A * X

Y = B * Y

RETURN

END

where A and B are merely parameters and hence were never part of the

state space anyway. ,

To illustrate the situation for CALLs and functions, contrast

FUNCTION ARRMAX(U,N) FUNCTION INDMAX(U.N)

REAL U(N) REAL U(N)

ARRMAX=U(1) INDMAX=1

DO 10 1=2,N DO 10 1=2,N

IF(ARRMAX.LT.U(I))ARRMAX=U(I) IF(U(INDMAX).LT.U(I))INDMAX=I

10 CONTINUE 10 CONTINUE

RETURN RETURN

END END

Using the function INDMAX within a subroutine submitted to Jake is

harmless, whereas the use of ARRMAX could be harmful if any of the U(I)

had a nonzero derivative with respect to the independent variable.

Jake will issue a zero factor when ARRMAX is used, without ever

having seen the text of the function ARRMAX.

f) The same restrictions apply to a READ as for a CALL.

g) There are some restrictions involving standard (built-in)

functions. The following standard functions are recognized and and

55

The following standard functions are not recognized but handled

correctly nevertheless because either arguments or result are

integer:

FLOAT IFIX INT MAX1 MINI AMAXO ISIGN

DFLOAT IABS MOD MAXO MINO AMINO IDIM

The following standard functions are not recognized and not handled

correctly:

ABS SIGN AMAX1 AMIN1

DABS DSIGN DMAX1 DMIN1

Standard functions accepted by some FORTRAN compilers but not in

the above collection will probably not be handled correctly.

h) Jake cannot handle "out-of-bound" addressing.

Most FORTRAN dialects, in contrast to the ANSI 1966 standard, allow,

e.g.

U = A(101)

where

COMMON A(100), B(10)

and the effect will be as if

U = B(l)

had appeared in the program. Jake cannot handle this correctly for the

same reason that EQUIVALENCE presents problems.

6.1.2. Jake Output

The output of Jake is in FORTRAN, adhering to the ANSI 1966

standard at least as much as the input does. For instance, on input it

is acceptable to use REAL*8 as a synonym for DOUBLE PRECISION; only the

latter form will appear on output. On input it is acceptable to give

Hollerith strings in single quotes, e.g. 'HELLO'; on output it will

appear as 5HHELL0.

Except for such paraphrasing of the input program, the major

transformations to the input program occur at procedure entry, at

relevant assignment statements, and at procedure exit. The changes at

procedure entry include changes to the SUBROUTINE statement, additional

declarations of variables introduced by Jake, and a number of

56
relevant assignment statements, and at procedure exit. The changes at
procedure entry include changes to the SUBROUTINE statement, additional
declarations of variables introduced by Jake, and a number of
initializations.

Perhaps the best way to convey an idea of what Jake does to an
input program is to show some examples. The first example given has
been paraphrased in order to highlight certain important features at the
expense of others. The second and third examples are accurate in every
detail and have not been "retouched" in any way.

SUBROUTINE MULTJ(X,N,Y,GR,YGR,LYGR)
INTEGER N.I.LYGR
REALX(N),Y,GR(N),YGR(LYGR)
IX=1
CALL SPINIT(IX+N,LYGR)
CALL EMIT0«2))-
Y=l.
DO 10 1=1,N

CALL EMIT2(®,X(I)
Y=Y*X(I)

10 CONTINUE
CALL SPGRAD(YGR,LYGRi®)

ygr CALL SPCOPY(GR,YGR(<tX«)) ,N)
RETURN @ x (1)
END

The array containing the product of factors multiplying from the
left is YGR(LYGR). SPINIT checks whether the array is large enough and
initializes the factor storage space. EMITi writes a factor to the
factor storage space, where 1 = 0,1,2 indicates the number of right hand
side variables in the factor. SPGRAD performs the factor multiplication
starting from a unit vector with a one in the position for Y. SPCOPY
extracts the gradient requested from the array YGR. The resulting
subroutine has YGR, LYGR as parameters because FORTRAN does not allow
declaration of run-time array bounds in any other way; hence the program
calling MULTJ will have to allocate space for YGR.

Example 1: y - n X J , r e t o
i - l ■"■

subrout ine mul t (x , n , y)
r e a l x(n)

cons t ruc t d (y) / d (:

10

i x

1
Y

y=l .
do 10 i = l

y=y*x
r e t u r n
end

@x(i)=ix+i

I
X(N)

,y
K) in gr(n)

, n

(i)

ix+n l yg r

' '
y/////////

57

Example 2: y - Ax, unretouched.

subroutine matmul(a,n,x,y)
real a(n,n), x(n), y(n), jac

construct d(y)/d(x) in jac(n,n)
do 20 i=l,n

w=0
do 10 j=l,n

w=w+a(i,j)*x(j)
10 continue

y(i)=w
20 continue

return
end

■..Hi-:R0UT1ME l"IA I I'lLLK A, N, X, V. JAC , V'.JAC, LV.JAC)
I l-l i t-GFR M. I • .J. L V . J A L • i .JAL . R.JAC . L.JAC, J J AC , I Y , I X

PFAL ..' N H i, X« M i, v\ N i , .JAC'! N, W ; , W, V-JACC LVJAC i , TJAC

*-. I.JUL I . T . IAC^ . T.jr.C ::. T.JAC4. TJAC 'Z- TJP>Cb, TJAC 7- TJAC 8

1 V 1 >J

T ■'.- L V + l-l /
C AL I . SP1IMI T; I X + N, L V JAC)
p n , ,u(i L I - j . M

i " . i l I III I T TO - . 1 >

W i .
r i f i rtO'.C J 11 N

Cr.l I L M I T K I A + . J . Ai I . J). 2) '
TJAC A1' I . . I)->#(.J)
CALL EM 17 21 I . I . ?., 1 . 1 >

U U+TJAC

:-.("MJ2 f i.HM I I HUE

iViLL EMI r i< 1. 1 , IV+ I i
Vt J) l«l

= ■"""11 CONTINUE

:-,{-■(■•(■> C 0|.|1 TI-JUE

R l,'"ii" ."'
L J A i . |M

i 'U ;'< I'll? .JJi"iL I , L J.'VZ

C i il L SPGPALK V. IfiC . LV.JAC ■ 1 V+JJAC . RJAC ■ I JAC)
r ALL SPCOPV',' .JAC. U i ' i C , N. VJAC(T>: + 1 i , N)

t:i'«."•?: CiJhM LNUE

RETURN

f-Nn

\

58

In this example it can be seen how SPGRAD is called in a loop once

for every row of the Jacobian. SPGRAD and SPCOPY have some arguments,

suppressed in example 1, that jointly keep track of addressing in JAC:

RJAC" (maintaining a row count, updated in SPGRAD), IJAC (maintaining an

index.in JAC, updated in SPGRAD and SPCOPY), and N (indicating how far

apart in memory the consecutive elements of a row of JAC are). The name

of the subroutine is MATMUJ, formed from the original MATMUL by

appending a "J", then dropping the penultimate character to keep the

entire name within 6 characters.. Many compilers allow names of 7 or

more characters, but all accept 6-character names. Note also that Jake

has introduced temporary variables TJAC, TJAC1 TJAC8, of which only

the first one is actually used.

Another interesting feature exhibited by this example is that not

all REAL variables partake in the state space. So the matrix a(n,n) is

regarded as being outside the state space; hence no space for a(n,n) is

required in 'the array YJAC. The determination of what goes into the

state and what doesn't is made by Jake through flow graph analysis. A

variable v such that either- 3v/3x - 0 or 3y/3v = 0 can be proven through

flow graph analysis is called "irrelevant" and accorded no place in the

state space. Assignment statements updating such variables v need not

emit factors either.

59

Example 3 :

■£ u or- o u t i n e k 1 o o< x . v . 2)
r t . i l x(3)> ;■(2)
r 03.1*8 2, dd

' • ' . ' i i s t ruc 'L d(2 >/d(x , Y) i n dd(4 , 6)
£■■1. dO

do 10 i™ l , 3

10 i f< x< i). a t . 0.) 2-2-» .a lc9< x< i))
do 2 0 i = l.. 2

i f (Y< i). 11 . 0.) g o t o 20

2= '2*Y(i >

.":'•.' 2 - 'SUt'-^
r-'i t u r n

e n d

SUBROUTINE KLOOJ< X, V, Z, DD, YDD, LYDD)
IN'IEGER I , LYDD, IDD.. RDD, LDD, ODD, IY, IX

REAL X< 3)• Y< 2), ALOG

DOUBLE PRECIS ION Z. DD(4 , 6 >, YDD(LYDD >, TDD, TDD1, TDD

*2» TDD3, TDD4. TDDH5, TDD6. TDD7, TDD8

rv=-io
IX - IY+2

CALL DP I NIK IX+3, LYDD)
CALL DMITCK 1)
z=i. no
DO 8001 r-1. 3
IF(X(I >. LE. 0. I'GOTO 8002
CALL DMITK IX + I. 1. DO/X(I), 2)
TDD-AI. 0G(X(I))
CALL DMIT2< 1, TDD, 2, Z, 1)
Z-Z^TDD

3002 CONTINUE
8001 CONTINUE

DO 8003 I---1, 2
IF(Yi' I). LT. 0.)G0T0 20
CALL DMIT2(1- Y< I HO.. DO, IY+I. Z, 1)
Z-Z*-Y< I))

20 CONTINUE
CALI DMITK 1, Z+Z, 1)
Z~Z**2

SOC'3 CONTINUE
8000 CONTINUE

RDD-0
CALL DPGRAD< YDD,LYDD, 1,RDD, IDD)
CAL I. DPCOPYi DD, IDD, 4, YDD(IX + 1), 3)
CALL DPCOPY< DD, IDD, 1-, YDD(IY+1), 2)
RETURN
END '

http://rt.il

60

In this third example, note the types of all variables and

expressions. In particular, all arguments to DMIT are of consistent

type. It is also interesting to see how flow of control has been

reworked. This is necessary because FORTRAN allows only a single

statement following a "logical IF."

The generation of names and statement numbers by Jake deserves an

additional comment. Except for the subroutine names used by Jake, such

as "SPGRAD," no names or statement numbers used by Jake will ever

interfere with names and statement numbers in the original program. So

the name "IX" used by Jake in Example 3 would never have been generated

if KLOO itself had contained IX. Jake will try small perturbations of

"IX" until one is found that is not in KLOO.

6.2. How Jake Works

As mentioned earlier, the description of the innards of Jake will

be very brief. Jake consists of four passes:

1) the lexical preprocessor

2) the parser

3) the tree building and flow analysis pass

4) the differentiator and output constructing pass

To run the program produced by Jake, we need

5) the "run-time support" package

6.2.1. The Lexical Preprocessor of Jake

The lexical preprocessor of Jake takes the input program and

reworks it to give it a recognizable lexical structure. This is

necessary because FORTRAN attaches significance to the column a

character is in; FORTRAN does not reserve its keywords; FORTRAN does not

attach significance to spaces between variables or in the middle of

variables, or between keywords and variables; FORTRAN does not allow

parsing with limited look-ahead. In short, FORTRAN has nothing like the

lexical structure one takes for granted in more recent, more decent

languages. The lexical preprocessor, working on an entire FORTRAN

statement at a time, will:

61

a) eliminate comments (but it keeps the CONSTRUCT);

b) collect the statement fields of a statement and all (if any)

continuation statements following it into a single line of

arbitrary length;

c) separate all lexemes from each other by spaces or special operator

symbols;

d) translate keywords to lower case and variables to upper case;

e) rework statement numbers.

An example follows.

input

subroutine abc(d)
construct d(d)/d(e) in f(3)

C0MM0N/g/e(3)
c this is a comment

d=e(l)+e(2)*sqrt(
&e(3))
do 10 i=l,5
do 20 j=2

10 continue
end

af ter processing

s u b r o u t i n e ABC(D)

c o n s t r u c t <D X E)F< 3)
common /G/E(3)
D=E(1 HE< 2)*SQRT< E< 3))
do 10 1=1 ,3
D020J-3
: 10 c o n t i nue
e n d

The techniques used in the preprocessor are mostly ad-hoc, and not

particularly interesting. The only remarkable aspect of the

preprocessor is that it works, and works fast. The preprocessor should

prove useful in its own right.

6.2.2. Jake's Parser

In striking.contrast to the preprocessor, there is nothing ad-hoc

about the parser. The parser was generated by the YACC [J0H75] parser

generator system running under Unix. Given a BNF description of the

FORTRAN grammar, YACC produces an LALR parser for FORTRAN which will run

when supplied with a lexical scanner. The preprocessor leaves the input

program of Jake in a form that allows a lexical scanner and a BNF

grammar for FORTRAN to be written. The grammar is simplified by the

restriction that COMPLEX constants not occur and by the fact that

62

several statements (such as the FORMAT statement) need not be parsed

beyond the identifying keyword. Statements, like FORMAT, that are

simply to be carried along in Jake to be placed in the output without

change; statements, moreover, that do not affect the outcome of flow

analysis, are called "carryalongs." After reading the keyword, the

lexical scanner simply stores the rest of the statement, unanalyzed, in

a file for later retrieval. Hence, no BNF needs to be specified for

FORMATS, WRITE statements, DATA statements, etc Except for the

"carryalong" feature, the lexical scanner is fairly standard. It was

modeled after [COM78]. The result of parsing the (preprocessed) input

program is a string of tokens in a postfix representation of the program

tree. That tree is not actually built until the third pass. The tokens

in the postfix representation may represent arithmetic operations such

as +, -; they may represent variables (such tokens are parameterized by

an index into a nametable containing the name of the variable),

constants (likewise); they may represent statements, such as COMMON or

IF.

6.2.3. The Tree-building and Flowgraph Analysis Pass

Out of the postfix token string produced by the parser a program

tree is constructed. A symbol table is built at the same time. The

symbol table collects declarative information for variables: name, type,

dimensions, initialization. Declarations are not incorporated in the

tree. In essence, the program tree could be executed directly, at least

by some kind of abstract machine. All nodes in the tree are either

binary, unary, or null-ary. Each token has a fixed "arity" of 2, 1, or

0. The null-ary tokens comprise the leaves of the tree. Though the

leaves have no descendants, they may carry additional information such

as pointers to symbol table entries, pointers to name table entries or

pointers into the carryalong file.

From the program tree the flow graph is obtained, by breaking up

the tree in pieces corresponding to a single statement (an IF statement

will get broken into two statements) and associating each such statement

with a node in the flow graph. GOTOs, IFs, DOs and statement labels

define the edges in the flow graph. Each node lists the "left hand

63

side" variable that is affected by the statement (if any), as well as

the right hand side variables that may affect the left hand side

variable. The flow graph analysis performed is itself fairly standard

and straightforward. The literature on flow graph analysis is

extensive. See e.g. [KAM76]. The questions that Jake atempts to answer

through flow graph analysis are whether for a left hand side variable v

ih a certain node we can say for certain that 3y/3v = 0, and if not,

whether for the right hand side variables w in the same node we can say

for certain that 3w/3x = 0. The zero/possibly-nonzero character of

3w/3x is propagated through the program much in the same way as the

uninitialized/possibly-initialized character of a variable is

propagated. The latter is a standard example of a characteristic

determinable by flow graph analysis. The determination about 3y/3v

being zero is essentially similar and can be visualized as an

initialization problem for the program running backwards in time.

Statements having a left hand side that does not in any way

contribute to the final value of y or cannot be traced back to the

values of x are called "irrelevant." Variables that are given values in

"irrelevant" statements only are called irrelevant varibles. Real-

valued variables that are found to be irrelevant through flow graph

analysis need not be considered as part of the state space. No factors

need be emitted for irrelevant statements. The statement

v := w * p

even if relevant, need emit only 3v/3w and may omit 3v/3p if flow graph

analysis can prove that 3p/3x = 0. So flow graph analysis and the

detection of (possible) relevance allows a reduction in the state space,

the size of the row vector that needs to be supplied, the number of

factors to be emitted, and even the size of the factors that are

emitted. The tree, the symbol table, and relevancy information is

passed on to the last pass.

6.2.4. The Differentiator and Output Building Pass

This pass has to emit the factors and must therefore be able to

differentiate formulas. The approach to differentiation chosen in Jake

is similar to that in Warner [WAR75], Joss [JOS76] and Kedem [KED77].

64

It consists of splitting up more complicated formulas in simple ones,

using assignments to newly created temporary variables. This way a

simple differentiation scheme suffices to create expressions that have

common subexpressions of any complexity. The would-be common

subexpressions of the derivatives of the original expression show up as

exactly those temporary variables. The simple differentiation scheme

alluded to is one where we merely need to know the derivative of each

elementary mathematical operation with respect to each of its operands

and nothing more. If some of these operands are flagged as "irrelevant"

or "constant," so much the better. Because operations can be only

binary, unary or null-ary, it suffices to have three factor emission

routines, EMIT2, EMIT1, and EMITO. (Three more are needed for double

precision gradient8/Jacobians.) '

In addition to differentiation, the fourth pass has to be able to

generate addresses @v[i] for addressing in the state space. It has to

be able to generate declarations and initializations. All this

essentially depends on the information in the symbol table being

sufficient—and that is the responsibility of the previous pass. The

fourth pass must generate program text for performing factor

multiplication and extraction of the desired information, one row at a

time, from the row vector into the receiving variable. Generation of

this part of the output program is tremendously simplified by careful

design of the procedure interfaces (e.g. parameter lists) of SPGRAD and

SPCOPY.

As the differentiation of relevant assignment statements results in

a modified program tree, we still need as part of the fourth pass a set

of procedures that will print the tree in a form compatible with FORTRAN

rules. In addition, it is preferable to have the output appear in

human-readable form, avoiding names like U00001 in favor of the names

appearing in the input program or at least names reminiscent of those.

So most names created by Jake are derived from the name of the variable

receiving the gradient/Jacobian. Creation of statement numbers by Jake

is simpler and less sophisticated. Printing the program tree

65

/ \
g x

means avoiding the extremes of p + g(i) * r (which Is incorrect) and

((p) + (g(i)))) + (r) (which is unduly hard to read). Jake acually

produces

(p + g(i)) * r

but one can easily construct expressions where Jake prints redundant

parentheses.

_6..2._5. The Run-time Support

From a glance at the example outputs from Jake the impression may

have been gained that the real work is being performed in the

subroutines EMITl, SPGRAD, etc., and not in the subroutine produced by

Jake. In a certain sense this is true. Barring small details involving

the argument lists of SPINIT and SPGRAD, the ouput produced by Jake is

still compatible with Joss' method. That is, the subroutines EMITi, i =

0, 1, 2, can be written to perform right-to-left multiplication of

factors in the Joss way. If it is true, then, that much of the work is

done by the subroutines EMITl, SPGRAD, etc., it does not follow that

these subroutines are particularly hard to write or that they are

particularly long. Moreover, these subroutines can be written once and

for all; only minor changes will be required to convert from one

computer to another with different disk/10 conventions. For maximal

speed, subroutine SPGRAD can be written in machine code.

The text of two subroutines, EMIT2 and SPGRAD, will be presented

integrally on the next two pages. The other subroutines are either too

similar or too simple to merit discussion here.

66

1
1 1

y^ J. ' V.

1 1
1 1 1 1
11/

■ ■

—^v_.

fsp

v
-

/
J *

der
1
ind
1

fsp
L newfsp
1 der

2
der
var

ind
2 /

2000
r f s

i f s
emission

■~ u b r o u t I n e em i t2< i n d l . d e r l . i n d2. d e r 2 , d e p y a r)
j n t e s e r i n d l , i n d 2 , d e p y a r , f s p

r e a l d ^ r l . d e r 2

c ommo n / f a c t o r - / r f s (2000), i f s (2000 >, f s p , n f s

n >iw f s P -- f -J P + 3

j f (net.<if s r . I t . 2000 > so t o 10

i f i-(2000) - f sp

ca 11 F-u t f ac (n f s, r f s, 4000)
f s p~0

n em f s f • -3

10 i f s< f - : p + l)~" ind l
r f s(f S P + 1 >=de r l
i f •_-< f i-p+2)~i nd2

r f i:(f sp+2) ~de r2

i f s< n >iui f ■-: P) - f s p

r f ••;(neMif SP) : - depya r
f SP - f l L ' W f SP

r e t u r n

end

i

67

fsp fsp

oldsfp

|der
1

Bind
I 1

der
2
ind
2

, 2000
der
var

j

1
1
1
II

.. .;
/

r f s

r f s
mult ipl icat ion

*-'

10

s u b r o u t i n e s P s r a d(Y 3 r a d, 1 Y at-a d, i d . r s r a d, i s r a d >

i ntes>er r s - r a d , i a r a d , f s p , o l d f s p , f s p e n d , d e p u a r

r e a l Y a r a d i l r ^ r - a d), t

coiiiiii o n / f a c t o r / r f s (2 0 0 0 >, i f s(2 0 0 0), f s p e n d , n f send

d o 10 i - 1 , 1 Y s r a d

Y3r-ad< i) -0 .

v a r a d (i d)=1 .

r sir-a d= r s r a d+1

i 3 i - . i d= r - ' j r ad

f :;p~ f SF-end

n f s- -nf s e n d

2 0

3 0

4 0

f t f SP. ne 0) so t o 30

f< n f s. #H. 0) r e t u r n

a11 s e t f a c (n f s , r f s, 4 0 0 0)

s p = i f s< 2 0 0 0)

ei>..'ar--r f s(f S P >

l d f s p - f S P - 1

s p~- i f s(f s p)

~ Y 3 r a d (d e p u a r)

f (t . e<H. 0.) so t o 20

j r a d (d e p v a r)--0

f (o l d f s p . l e . f SP) so t o 20

nd- - i f s< o l d f SP)

s r a d (i n d) - Y s r a d (i n d H t # r f s (o l d f s p >

1 d f s p - o l d f S P - 1

o t o 4 0
r id

68

7. CONCLUSIONS

In this chapter we summarize the results presented in this thesis

and point to future work.

If given a subroutine Af(x, y) representing the function y = f(x)

with x = (xj,..., x n), the system Jake described in this thesis Is able

to produce a subroutine Af' representing the gradient of y, 3y/3x.

The table below shows how Af' produced by Jake compares with

numerical differencing and with Joss' method.

algorithm

y = f(x) : Af

3y/3x : num. diff.

8y/9x : Joss

9y/9x : Jake

time

T

O(nT)

O(nT)

0(T)

space

S

S

O(nS)

0(S)

Jake represents a significant improvement over the work of Joss. For

the first time a method for symbolic differentiation of algorithms has

been developed that constitutes a viable and competitive alternative to

numerical differencing. With a fast and reliable method of computing

gradients, optimization methods requiring gradients become more

attractive. Jake may serve to revive interest in this class of methods.

In addition to gradients, Jake can produce Jacobians as well. For

a Jacobian of size k * n with k substantially smaller than n, Jake is

significantly faster than Joss and numerical differencing. Some ideas

that may ultimately lead to faster Jacobians for k = n have been put

forward in Chapter 5.

Producing gradients through differentiation by hand is exceedingly

error-prone. Numerical differencing is quite robust, but a DELTA must

be chosen carefully, to balance truncation error, round-off error and

69

the type of error discussed in Chapter 3. Symbolic differentiation is

reliable. No hand-translation is involved. Symbolic differentiation is

also expected to be quite accurate, though not much theory is available

in support of this and some cautionary notes are sounded in Chapter 3.

7.1. Experience with Jake

Several tests have been run with Jake, though Jake has not yet been

applied to any real-life problems.

The outputs presented in chapter 6 stem from actual runs with Jake.

Many more programs representing functions with known gradients were

given to Jake and the output was found to be correct in all cases. In

most of these cases, correctness was judged directly from inspection of

the output subroutine. In the remaining cases, the output was actually

run and the results compared with the known gradients/Jacobians. These

include the example algorithms of section 7.1.1 and 7.1.2. The

subsections below give the results of timing tests performed on the

subroutines produced by Jake. All runs were made on a PDP11/35 with

software-emulated floating point arithmetic, the machine on which Jake

was developed. It should be very easy to repeat the timing tests on

different machines.

7.1.1. Timing Tests for a Gradient

The standard deviation of a set of numbers (x̂ >#> xn) was chosen

as an example. The standard deviation is defined by

y = ~f I (x.-x)2/n, where x = I x,/n.

A subroutine "stdev" implementing this function was given to Jake. The

speed of the subroutine produced by Jake was compared to the speed of

"stdev" iself, with the speed of a program simulating Joss' method for

obtaining the gradient, and with numerical differencing. The results

for various n are shown in the table below. Each column has been scaled

70

independently of all others to make the "stdev" time equal to one.

gradient n=20 n=50 n=100 n=150

stdev (reference) 1 1 1 1

numerical differencing 10.8 33.6 93.4

Joss 10.4 34. 91.7 132.3

Jake 8.6 22.2 18.2 17.9

7.1.2. Timing Tests for a Jacobian

A very simple algorithm is used as a timing test for Jacobians:

the algorithm matmul which computes y = Ax where A is an n * n matrix

with constant elements. All methods do indeed reproduce A as their

answer 3y/3x.

n=10 n=20

matmul (reference) 1 1

numerical differencing 3.3 14.4

Jake 8.6 30.8

7.2. Future Work

Several things could be done to make Jake a better tool; some

small, some larger, and most of them fairly obvious.

7.2.1. The +: = Operator

Assignments of the form u := u + a * v; are extremely common.

According to the theory of Chapter 4 they correspond to factors of the

form

\ 3 u 3v
3u 1.

When multiplying this factor to the g vector, we get in effect:

t := g[3 u];

lft ^ 0 then g[3 u] := 0;

g[3 u] := g[3 u] + t * 1;

g[3 v] := g[3 v] + t * a;

71

This could be written more ef f ic ient ly a s :

t := g[3 u] ;

if t j* 0 then g[3 v] := g[3 v] + t * a;

We can think of the latter as the factor multiplication operation

corresponding to a new type of factor, the factor emitted as a response

to a "+:=" operator (cf. Algol 68) in contrast to the usual operation

":=". So "u := u + a * v" is regarded as "u +:= a * v" and the factor

emitted is
+
\ 3v

3u

Incorporating this change into Jake would save many multiplications of a

number by one. Of course, such a change will not affect the 0(T) time

bound as such, but it may decrease the value of the coefficient of T in

0(T). For example, for the algorithm

for i :=1 step 1 until n jlo

y := y + x[ij;

the number of multiplications in the gradient would decrease from 2n to

n.

7.2.2. Longer Factors

Chapter 6 shows that the factor emitted for

u := u + a * v;

is not really

\ 3u 3v
3u 1

as the previous subsection suggests.

transformed into

temp := a * v;

u := u + temp;

with the corresponding factors

Instead, u u + a * v is

\ 3v \ 3u 3temp
3temp | a | ; 3u | 1. 1.

72

Here another multiplication by one is introduced. It would not be

trivial to change the differentiation scheme to allow it to deal

directly with larger chunks of the expression at the right hand side,

but it might eliminate local inefficiencies like the one shown. Not

only a multiplication by one is at stake, but also the overhead

associated with an additional procedure Invocation.

7.2.3. Subroutine Calls

It would be desirable to extend Jake to enable it to cope with

arbitrary calls to arbitrary subroutines as long as the text of these

subroutines is also supplied to Jake.

The problems associated with such an extension are varied, but all

seem technical rather than theoretical. COMMON blocks would become

important, posing problems much the same as EQUIVALENCE statements do in

the single subroutine case. Allowing recursive procedures would be

still more difficult.

7.2.4. Language Extensions

Jake could be extended to recognize" complex variables. It could be

extended to handle a larger set of library functions, including

functions not in the FORTRAN standard, such as tan(x) and Bessel

functions. The CONSTRUCT could be extended to allow the resulting

Jacobian to be stored in sparse form according to some user-supplied

store function; the syntax might be something like this:

CONSTRUCT D(Y)/D(X) USING STORE(ROW,COL,VALUE)

7 . 2 . 5 . Round-off Behavior

A better understanding of accumulation of round-off in symbolic

differentiation is desirable.

7.2.6. Faster Jacobians

Chapter 5 has already dealt with various ways in which the

construction of Jacobians might be speeded up. However, more work needs

to be done before symbolic construction of Jacobians will be faster than

73

numerical differencing by an order of magnitude.

7.3. Summary

Jake provides a useful, flexible and efficient tool for algorithmic

differentiation. It produces gradients that can be evaluated much

faster than those produced by previous methods.

A better tool can make a difference quantitatively, by allowing

people to do more conveniently and more cheaply what they were doing

already. A better tool can also make a difference qualitatively, by

affecting certain trade-offs. It is hoped that Jake may help shift the

balance in functional Iteration methods in favor of those that make use

of partial derivatives-*

\

74

REFERENCES

[BEL57] Bellman, Richard E., "Dynamic Programming", Princeton Univ.

Press, 1957.

[COM78] Comer, D., "M0USE4: An improved implementation of the RATFOR

preprocessor", Software-Practice and Experience, Vol. 8, 1978.

[DIJ76] Dijkstra, Edsger W., "A Discipline of Programming", Prentice-

Hall, 1976.

[JOH75] Johnson, S.C., "YACC - Yet Another Compiler-Compiler", C.S.

Tech. Report 32, Bell Laboratories, July 1975.

[JOS76] Joss, Johan, "Algorithmisches Differenzieren", Ph.D. Thesis,

ETH, Zurich, Switzerland, 1976.

[KAM76] Kam, J.B., Ullman, J., "Global Data Flow Analysis and Iterative

Algorithms", JACM, Vol. 23, No. 1, Jan. 1976.

[KED77] Kedem, Gershon, "Automatic Differentiation of Computer

Programs", Proc. 1977 Army Numerical Analysis and Computer

Conf., Madison, Wise. 1977.

[KUC78] Ruck, David J., "The Structure of Computers and Computations",

Vol. 1, John Wiley & Sons, 1978.

[STA76] Standish, T., Harriman, D., Kibler, D. and Neighbors, J., "The

Irvine Program Transformation Catalogue", C.S. Dept., U.C.

Irvine, Irvine, Cal., Jan. 1976.

[STR69] Strassen, Volker, "Gaussian Elimination is not optimal", Numer.

Math. 13, 1969.

[WAR75] Warner, D.D., "A Partial Derivative Generator", C.S. _\ Tech.

Report 28, Bell Laboratories, April 1975.

75

VITA

Born and raised in the Netherlands, Bert Speelpenning received his

Engineer's Degree in Applied Mathematics from the University of

Technology at Delft in 1974. His thesis project involved the design and

implementation of a system for the fast computer solution of structural

analysis problems according to the finite element method.

After emigrating to the United States he joined the Ph.D. program

in Computer Science at Illinois in 1975. His major professional

interests are language processing and the design of large software

systems.

BIBLIOGRAPHIC DATA
SHEET *

1. Report No. >

U I U C D C S - R - 8 0 - 1 0 0 2

2.

4. Title and Subtitle

COMPILING FAST PARTIAL DERIVATIVES

OF FUNCTIONS GIVEN BY ALGORITHMS

7. Author(s)

Bert Speelpenning
9. Performing Organization Name and Address

Department of Computer Science
University of I l l i n o i s U-C
Urbana, IL 61801

12. Sponsoring Organization Name and Address

US Department of Energy
Washington, DC

3. Recipient's Accession No.

5. Report Date

January 1980
6.

8* Performing Organization Rept.
N ° - U I U C D C S - R - 8 0 - 1 0 0 2

10. Project/Task/Work Unit No.

11. Contract /Grant No.

US ENERGY/

E Y - 7 6 T S - 0 2 - 2 3 8 3

13. Type of Report & Period^
Covered

Ph.D. Thesis
14.

15. Supplementary Notes

16. Abstracts

If the gradient of the function y = f(x , . . . , x) i s desired where f i s given by
an algorithm Af(x, n, y) , most numerical analysts wi l l use numerical differencing.
This i s a sampling scheme that approximates derivatives by the slope of secants
in closely spaced points . Symbolic methods that make ful l use o.f the program
text of Af should be able to come up with a be t te r way to evaluate the gradient
of f. The system "Jake" described in th i s thesis produces gradients s ignif icant ly
faster than numerical differencing. Jake can handle algorithms Af with arbi t rary
flow of control . Measurements performed on one par t i cu la r machine suggest that
Jake i s faster than numerical differencing for n > 8. Somewhat weaker resu l t s
have been obtained for the problem of computing Jacobians of arbi t rary shape.

17. Key Words and Document Analysis. 17o. Descriptors

p a r t i a l derivatives ,
Jacobians v

program dif ferent ia t ion

17b. Identiflers/Open-Ended Terms

V7c. COSATI Field/Group

Availability Statement

u i i i i m j - L t u

19. Security Class (This
Report)

UNCLASSIFIED
20. Security Class (This

Page
UNCLASSIFIED

21. No. of Pages

8?
22. Price

FORM NTIS-3B (10-70) USCOMM-DC 40329-P7 1

