VIUCDCS~R~80-1002

—_ —— ————

LIS LAPER =

T i 7 - B -k 4 vt o e P hrwrm] Tupa Goas
' i mpy o
mnhdhﬂmmﬂwhww-tﬂummnrl
e M::*IWI‘. T ey bt lHHE O Ak M |u..p...:
- al . wd i 4 Orovks chcessd
MR 1R 18 i U M s orety S -uud.
O
:’t—’ﬂiwﬂhﬂm-ﬂmhnﬁuﬂ el A h-:m"r a:
o wally HE Agring Frr
Jiptin Cerabmrrmms or aay ey JuFsnl Tha Déwreind Hmlf _hr-:
e
mumurﬂumduw:_ma:wm:;w -

COMPILING FAST PARTIAL DERIVATIVES
OF FUNCTIONS GIVEN BY ALGORITHMS

by

Bert Speelpenning

January 1280

DEPARTMENT OF COMPUTER S5CIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPALGN
URBAMA, ILLINOLS 61801

supported in part by the U. 5. Department of Energy, Grant US ENERGY/
EY-T6-8-02-2383 and submitted in partial fulfillment of the regquirements
of the Graduate College for the degree of Doctor of Philoscophy.

+¥

LISTRIBUTIOR OFf THIG BGLUMENT &5 UGLIXITER

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, aor
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thersof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

if1

ACKNOWT,EDGMENTS

It im a pleasure to acknowledge the support and guidance of my
theais supervisor, Professor C. Willism Gear. I am thankful for his
easygoing astyle of letting me pursue my research essentially as I
wanted. His research group has been an excellent place 1o which to
wortk. The atudents 1in this group have been & steady source of
stimlating discussions aand £riendship. The efforts of Al Whaley in
mdlntalning, improving and explaining our local TNIX pyatem have heen
greatly appreciated.

I alao wish to thank the following professora for thelr guldance
during earlier oatagex of my stay as a graduate student at Illinois:
Professor Jurg Nievergelt (now ar E.T.H. in Switzarland)}, Profeasor
Thomas R. Wilcox (now at Intel Carporation) and Professor Arthur
Sadgwdck {now at Dalhousie Univeraity). They have helped to broaden wy

backpround conesiderably.

Barbara Armatrong has been of {invaluable help in getting thin
theaia in readable form.

The ressarch was supportad dby Dapartment of PFnarpgy Contract US
ENERGY /EY-76-5-02-2383.

1-

3.

iv

TABLE OF COKTENTS

Page

IHTR&D“CTI“H!--vvvvt-vv-vvtttt----ttiv-vvttt-t--tttttt--t---l

1.1. ﬂhjﬂﬂt aof this Resgarchssscssnvssnnsnwnansvsrsasssarnann’d
l.zt Hﬂjﬂr Regults of thiﬂ Eﬂuaarﬂhillllll!lllli!li!lllllilii
1#3; Outliﬂe of thlﬂ Thesisiiiiiiiiliiiiiiiiiiiilliiiiiiiiiiﬁ

SYMROLIC DIFFERENTIATION OF ALGORITHMS: PREVIOUS WORK.-v.ss.5

2.1, Warner, 1975..suvencssnsssssanansssnnnnannonannnnnrinnal
2.2, Joma, 1976 wnnevvrmrnnnnnnnnnibrrrrmagbbibnnnisisinnyissnh
2:3s FErdem, 1977ensccccsnnrmucansonbdnnnnnbdnnans PR .
2.4, Extenmions to Gradients and JacoblanSssscsessvssssssssad
2.5. Time and Space Requirements for the

ATgorithm Produced by J0ASisessssssssssssssssssssssnsall
2.6. Comparisom of Joss with Humerical Differancingsssseer:l0

Accmﬁ ansIDmnﬂHs.'.""....-"...."“"‘.f--‘""".""la

3.1: The Algorithm and the Function it Bepresentf.ssersse+sdd
3.2. Ia Jage” Thearem MoOt7sssssssssnsnnnnnsnsnnrenssrnnrnnl’
3.3, Firat Fxample: random Bearchesssrssnsssssssnssnnnassnsll
J.é4. Second Example: table 1ooKUDessssssssnswsnsssnssnnnsvnl?

3.5. sm.lt}fnvtvv-r-rt&&vvvvrﬂwttﬂwrdﬂwwtd\v\vﬂw P 1 .|

COMPILATION OF EFFICIENT GRADIENTS....... P .|

4.1. The Optimizing Compiler Approach to

Improving Josm” Method: Its 1ImitS.sscrssvsnsecrsnnannll
4.2, Compilation of Efficient Gradientm: an outlin@eesesasss22
4,3, Joss”® Method Viewsd zm a Smquance of

Matrix Multiplications sessssncscsssssssssssannsnassnsi?
4ufis O the Fconomica of Matrix Multipliction....ssssssssesfi
4.5. The Problem of Factor StOTAQEssuscacsisasnnnssasasnsssld
4.6, An Interpratetion of the Merhod not Based on JoBs.....31

b4

5- CMIMTIW ﬂF F!.ST Jmu!lms-l--l-l-l-l-l-lllllliitiilli!iiiiiidvj'ﬂ

S5ela
5424
5.3,
Seda

545

Saba

Finding Jacchbians One Row at a Time . ssenonnnnrsrvessodb
Comparison with Some AlternativeSssiscisssvavriasansaa3b
fritical Analysds of One-Row-at-a-Time Jacoblanzs......37
Optimal Multiplicecion of PFactors for

Obtaining a JaceblansesassasssasssssonsnnrrnnnsnnsrnnsIB
Extenaion to Arbitrary Flow of Control:

run—time methodevicinaiiaisasrssrsrirarisnnenisnsanaaaéild
Extension te Arbitrary Flow of Conkrol:

complle~time mELhOdeunsumansnsssassanasddsbarsass4444aadd

ﬁ- IH:FLMHTATI'DH-s-s---ssa--a;s-aaas ----- p--iiiti;;t;t;;;----'ﬁ?

ﬁill A Taer mﬂctlptioniii.iiit.t‘-‘--‘qq‘iiiiiiii.iiiiiii.#?

5.2. Howr Jﬂkﬂ Hﬂrkﬂlliililaiaaaaitpttp¢tppi|iliiiiililaiatﬁﬁn

?1 Cu‘“clﬁ“slmg-lllll‘llllllllllIPl.'..II‘II‘l.l.l.l...l.l.l.l.iili‘i'#i'iiiiiiiiiiiiﬁa

?iI'l hpetiﬂ“cﬂ w.lth. Jakalll'l-lll-lIil-l-l-iiiiIIIii"iIiiilIiiiﬁg

?lZi F‘I.Il:l.ll:e HntkllllII|IIIIIiIiiIil-iiiiIIIIIIll-i-l-lllllllllllllllllllllllllllllllllllll?ﬂ

7+3a

smr}"-&i-tiiii-ti-tiii-iiiiii-ir!il-lnlrl-l!ﬁtttt!!ﬁii-&!i-ivv?s

EE.FEREHEES. -------- FEEEFEERE "’”"’.’“l.l.l.iiiii“".""'i"i""?ﬁ

HT-&"*."-“.‘."-'-'-'-'-'-'.'-'.'-'.'.-'.'.'.--'.--'.---'II'I---'I-I"'.'."'.'.'.'.'.'I'I'.----'I?s

1. INTRODUCTTON

There 18 a vary paculiar aituation wichin Numerical Anslyeis that
has peraisted for a long fime. It concerng the problem of computing
derivativea of functione convenlently, reliably and cheaply. Ome wight
havae aasgumed that widely=used codes wswould exlst that automate the
proceas of takinﬁ derivatives of a function of gilven deacription
vlelding demcripcions of the derivativea that execute fazt when rum on a
compueter, After all, the proceas of raking derivatives 13 well=-
mnderscood mathematfically, and the problem of computing derivativea ia a
racurrent one iln many methads requiring functional iteration.

The reality is different. Several excellent numerical methods find
very little use because they require knowledge of the partial
derivatives of the function they are operating on. Humerical analysta
in practice aeem to avold computing derivativea with a paasion. Those
wvho write down derivatives of complicated formulas by hand are almost
universally driven to exaspetatlon aa the enterprise provea exceedingly
error-prooe. Where cthe computation of devivacives cannct he avoided, by
far the woat commonly used method 15 "numerical differencing.” This
method approximates a dertvative by sampling the function 1in aearky
pointe, computing cthe alope of a secant. By all conceivable atandarda,
thie method muat be considered crude and primitive. The convergence
rate of 1iteration schemes 18 ofren demonatrably lower 1f numerical
differencing aporoximations are aubatituted for the true derivatives.
Moreover, finding the pgradient of a function ft:l””'xn) through
nueerical differencing requires n+l function evaluationsa. This might
seem reasonable, evean unaveoldakle. But 1ic 13 not. FeoPle who have had
the tenacity to write down formulas for gradienta by hand have observed
that there 1 consilderable redundancy between computations for the
different compenents of the gradient. It has been postulated that the
hand—coded compucaclon of the gradieat of a formuwla f need not cest more
than a small number of function evaluations independent of n. Such
obasrvations might be of limited value bacauvae they apply only to casea
where the function [1a given by a rather simple cloaed form formmla.

2

All the pame it pseems aobvious that one muet bs able to improve
substantially on oumerical differencing. Wumerical differencing regarde
the function as a black box, as a monolithic entity and hence 1is blind
to the struccure of the function. Surely, a method shauld be able to
derive aome advantage from being given access to the entire text of the
function it is asked to differentiace.

How is it possible then chat the situation outlined above hag hean
allowed to parsist for so long? It is not that eymbalic wathods far
differantiation ae eueh have been lacking: 1ndead, symbolies
diffarsentiation of expressions has been around almoat sz long as
computara. Very asophisticated sayatema for aymbolic alpgebraie
manipulation axist, such as MACSYMA and FORMAC, and all offer facilities
for diffarvantiation of formulas as a watter of gourae. However,
numerical analyata om cthe whoele have not viewed these syseemo as
adequate aclutiona to tha problem. Plrae, for woeat algebraic
manipulacion ayatems, a hand-translacion iz atil) required to get the
output of thesa aysteme into a computer—sxecotable fors. Second, theas
gystama are not geared to optimize entire gradient computacions; inatead
they are geatred to oimplify individual derivatives; in sther worde, they
are gearad to satiefy the mathematiczian user, not the progrinmer uger.
Braluation of the gradient will atill take O{n) function evaluationsa.
Third, and wost importantly, algebralc manipulation systems deal with
formmlaa in cloaad form, and are nat ser up to deal with Functione given
by arbitrary algorichma.

What 1a neseded 18 a system as sketched in Figure 1.

=y -
b 4 X
i'
text | Af!
JAKE | o | poRTRAN
-
; = ?(?J ¥]

oF
Figure 1. Use of Jake

Such a ayatem will accept the text of an alpgorithm Af, embodying y=f(x)

3

and wriktten in a suitable programming langusge, and conatruct £from 1t
the text aof an algorithm AE” that cowputes the Jacoblan %%. 1n faer,
asuch eyatems do exfet, though none produze algorithms AL that 2an baat
mmerical dJdifferencing 1in terma af convenience, opeed or memory
tequirementsa.

&n explanation for the fact that no methcds exisr to sutomste the
procems opf taking derivatives 1in a way that can successfully compete
with rmmerical JdMfferencing may be found in the inereasing
specialization occurring within Computer Seience. The separation of
Mumerical Analyais from Software 13 vivtually complete and few people
care to bridge the pap batwean the areas. In Humerical Analysis, the
notion of programe that produce programs rather than numbers is largely
abeent. For moet numerical snalyets the FORTRAN compiler im complecely
rranaparent, as ff Created on the aame day as rhe compuerer. There 18
lictle awareness of lanpuapge processing as a software writing tool in
the aense of the products we have come to expect from placea 1ike Ball
Labe. Rotable exceptions include user langunages for ﬁhysical modeling
and for statistical computationa. Converaely, peopla Involved in
writing software rtools may have a rtendency Lo write only such moftware
conla thar ald in the weleting of other apftware toola, amd although thie
opana Ffageclnating avenuea of auvtp~catalysis, the real usefulnams of
there toolm must ultimately come from applicacion to outside areas.
Tools are m=ans to an =nd, not =nde in themselves. What seems required
is not merely cooperation between eoftware people and numerical analysts
but efforts by people with a certain minimal understanding and interest
in both areas. The effort inveeted in eurh hetero-catalysia could pay
off very handsomely.

1.1. (hiject of this Research

We sat out to deaign and implement a cystem as in Fig. ! that would
be general, convealent to wume, and fast. Generality pertaine to the
clasa of algorithma Af it accepta. Convenlence of oasa depends, among
othar thinga, o the number of changea the nger nesda to maka in hia
algorithm Af before it 1a acceptable te the ayatem. Speed pertaima to

&

the algorithm Af* produced by the eystem: Af" whould produce partial

derivatives of £ much faster than numerical diffarencing.

1.2, Major Regults of this Repsarch

A full solution to the problem of compiling fast gradi=nte has been
obtained. For the problem of complling fast Jacobilans of arbitrary
ghape a partial molution has been found. This thesis describes a method
and ites implementation capable of producing algorithme Af’ that computs
the gradient of a function ff:l...-.xu} in an amovnt of time equivalent
to & conatant nuwber of functiom evaluvations independent of n. The space
tequirements of the algorithm Af’ are modest.

1.3. Outline of this Thesis

Chapters 2 and 3 deal with the feasibility of algorithmic
differentiation. Sections 2.1 and 2.2 explain the mecthod of Joss
{J0576]1, who showed in his Ph.D. thesism how one can assign a consiatent
and useful meaning to the notion of "derivative of ar 2lgorithe". Jose”’
method cannot compete with numerical differencing, as 1a shown iIin a
decailed comparison of the performance of both methods in mectiom 2.7.
Rowever, Joss’ method is a convenient point of departure for a

description of our own method.

The poaitive results of this thesis are detailed in Chapters 4,5
and 6. Chapter 4 pragsents s new method for conatruceing fast gradients.
Chapter 5 extends the method to the construction of fast Jacobianws.
Chapter & dapcribes an actual compiler, Jake, implementing the theory
presented. Coneclusiona, timing teats and suggestions for future work

are presented in Chapter 7.

2. SYMEOLIC DIFFEEENTIATION OF ALGORITHMS: PREVIOUS WORK

An zlgorithe Af representing o mathamatfcal functilon yef{x) can be
transformed by mechanical wmeana 1ints enother algorithm Af" that

represenrs the derivative y” --%%.

2.1+ Yarmer, 1975

For wvery restricted algorithms Af coneieting merely of a sequence
of assignment etatemente without any flow of control, this waa noted and
exploited by D.D. Watner in 1975 in a techmical report from Bell Labs
[WARTS]. Fis Partial Derivative Generatotr accepta a atrvalght-1ipe code
program amd compiles 1t into another that, when run, computes
derivatives of the £function representad by the original program. His
generator rests on the vse of the chain rule of differentiation. Tf the

velues of u, %%, v and %% are knowm (for & given value of x}, then

dury) _ du A4
N R R
80 that any assignment statement
winu ¥y

in the criginal program may be replaced by

dedx = v ® Judx + u * Jdvdx;

W oi= g * oy;

Thia applies, more generally, to any knesm operator op(u,v) such as "+",
Mt MM, "max":

ot ouoop v
1z replaced by

dudx 1= 9B # dudy + JOB # avdys

W = g op v
where %%E , %%E are knovm expresaicona in u and Vs

For veary operators a simllar vesult holds. 4Any atraight-line
computation can be eesaily broken down inte unary and binary cperations!

that 1s how compilers complle expressions anyway- Trivial rtules, such

b

as EEE%%EEEE = 0 and %% = 1 pomplate the picture snd also constitute the
industive hage in a proof of the corractnsss of Warnars sethod, a proof
in which the chain rule provides the induetive step. But Warnar doesn’t
really prave the correctness of his approsch. It 1s apparsntly obvioua
to hin that consietently replacing statesents like

wouop vy
by

dudz t=2B % quax + 3B * gvax;

W iz dop Vv
in a program without flow of control laads to the correct computation of
the derivative.

2.2« Joms, 1976

An important breakthraugh was the doctor’s theais of Johann Jowz at
ETH 1in Switzerland in 1976 [JOS76). Joss 1= :a&:e:ned with algorithme
{(uaing Algol as a vehicle) that freely use tf-then-elae, goto and for-
statements. The basic idea {is again quite intuitive: £or any glven
value of x, the program goea through a definice {(and hopefully finice)
gequence of asalgnment statementa. That saquence of asaipgrnment
statements, which might have bheen obtained £rom an execution traca,
defines a straight-line program. For the particular valoa of x, the
atrafght=1ine progtam would produce the aawe valuoe for ¥ as the original
pragramn. Moreover, we may reasmmably axpect that boath programa produce
the aana value for y in some very small neiphborhood of the poinc x. If
this turns out to ba true, we mnay differentiate the stradghit-line
progran. We know how to differentiste a straight-line program from
Warner‘s work, and we know that his methad does not radically change the
structure of the original program; rather it is s wild expanslon of it.
All the original wvaluea are otill being computed, and in the same
dequence az ian the original program. WViewlng aay Elow of control in a
pragram as a way to abbreviaste the atraight-line proagram {and also as a
way to lay dowm aeveral different straight-line programs in one aingle
natation) suggests the following approach to symbolis differentiation of
algorithpa:

7
1) leave all flow-of-control atatementa untouched
2) laave all asatgnments to integer variables untouched

1 replace all statements assigning to a real varlable by a pair

statements Jusat as in strafight-line programsa.
For example:

A w o= {;
for i := step 1 until o de
wimw* x4+ alll:

¥ i= axpi{w):
will be replaced by {(assuming array "a" containa constants):

B: dwdx =
w =
for 1 := 1 atep 1 until n do
begin
dwdx 1> dwdx * x + wy
w i w kx + afi)
&nd;
dydx = exp{w) * dwdx:
Y = exp(w);

for a given value of n, let”s say n = ?, both A and B are equivalant

straight-line programs:

A Ew o= 0 B = dwdx := 0; w ;= 03
i =1 i = 1;
dwdx = dudx * x + w;
wi=w * x + afll; wisw % x4+ afi]
1 1= 23 1 > 23
dwdx := dwdx * x + w;
woirswd x4+ oafil; wi=wkx+ afl]:
dydx = exp(w) * dwdx;
¥ = exp{w); ¥ = explw);

B

Rere we see that Warner's method indeed underlies Joss® method, and the
same applies for other values of n.

In case the straight-line equivalent of a progtam not only dJdepends
on the wvalue of eome unknown parameter n but also on the particular
value of x, a more sophiaticated approach i1s needed to show the validity
of the method. Joss proves in him thesis that the method cutlined does
indeed produce the covrect reaules under quite general condicions. The
most limiting condition in practice 1as the condition that computer
arithmetic be #xact. Real vartables are assumed ta hold real values of
infinite precision. Chapter 3, on numerical accuracy, discusses the
sericuancas of the exact arithmetic assumption. What the assumption
allows Josa to prove i1ia that the transformed algorithe computes the
correct derivative "for almost all" valuea of x. More precisely, there
can only be countably many real values of x for wvhich the derivative
comes out wrong, Host of these wvalueg x are on che dividisg line
creaced by an if, as the value ¢ In

¥ i= 1f x < 0 then =-x eloe x
Such valuea very often corvespond to polnte where the derivative 3y/ix
doea not exiat in the Filrst place, B0 strange answers in such points are
generally wholly acceptable,

Joxs® thesia im remarkable for ita claricy and bhrevity. The fast
that it wag written in German wmay have restricted 1tg wider

disgsemination.
2.3 FRedem, L%377

Garghon Kedem pnblighed a papar in the proceedings of the 1977 U.8.
Arey Nuomeeical Analysis and Computer Conference outlining idess very
eimilar to those of Joaa yet not developed as far [EED?7]. Eeden’s
papar appeare to be the firer publication in English showing the
Feapibility of sywbolic differsntiation of full=-fledged programs. The
implemantation described by Kedam is not particularly impressive, and it
is obvious that Fedem waa not aware of Jees” thesls. Deparving praise
for independently dJdiscovering differantiation of algorithma, and aeill
providing the only English scurce of ita deacription, Eadem neverthaless

is nat the originator of the ideaz. Josa came firat.

2.4, Extensions to Gradients and Jacobians

e e i e —

It i3 immediately obvious that methada to produoce derivatives of a
acalar functfon of a ecalar variable can be extended to produce

gradienta and Jacrobiane. The pradfant of a function y = f{xl,---,zn} i3

the Tow vectur-%%f by %%—1 The Jacabdan of a eet af functionam

¥, - fl{xl...xn}

Yu - f“{xl---xn}

Eyi
1?] -

i3 the m * n macrix J with Jij

The extaneion of symbolie differentiation to a pgenaral Functisn
y = E(x) deacribed by a subroutfne F(X,YT,N,M) with X,Y vectors of
arbitrary eslze N,M {2z important because woat applicationa deal with
functiona cf wany varlablea.

Warner, Joss and Kedem zll conaldered such extensioms: Warner, Jossa
and Fedem are all ahle to prodece gradiente; Warner and Joas also
produce Jacaobians: Kedem 1a able to produce firat, aecond and higher

ordar darivatives.

Warner’s system, though able toa preduce Jacoblans, 18 not as
powerful as i1t may sound! all subscripte 1in array referances are

restricted to conastants 80 in essence chey behave aa ordinary acalare.

Fadem and Joss allow true array iIndexing (computable subscripts)

and hence need the additional differentiation rule:
EZHL - "1 1 = 1 then 1 elee 0" .
Ho theorecical problema arige frvom x being & wvector. Josa does nat
mentfion pradienta in the theoretical part of his thesis at all;
gradienca suddenly enter the description of his implementation. Instead
of palring each real wvariable uw 1in the original program with a new
scalar dudx representing the valus %%, he paira each variable u with an
array dudx[l:n] whosa elements dudx(j] represent the current value af
%:—¢ Tastaad of resplacing "v = u & " hy
dwdx = v * dudx + u * dydx;

10

Wiy ¥y

he replaces it by:

begin
for | := I step 1 until n do
begin
dwdx[3] i= v * Judx(]] + u * dvdx[1];
end;

W oiw gy &k oy

end

Clearly, thie works. TFar Joes, vwho seems primarily interested in giving
a feapibility proof where no feasibilicy was konowmn previously, such an
approach 1a suffielent. Whethatr the appreach 1s optisal i1z sot

fmrediately clear and thie ispue deserves investigstiom.

2.5, Time aud Space Regquiremente for the Algorithw Produced by Joes

If the original algorithm Af(*,}]. for a certain value of ¥ , takes
T time to run to completion with space requiremente 5, then the program
Af°(%,¥,7) produced by Joss to compute the Jacobian J = 9%/3x will run
to completion in O(nT) time and require O(nS) apace, where n 1s the size

of the vector of independent variasblea ¥ .
2.6, Comparison of Joap with Numerical Differencing

An mentioned in Thapter 1, numerical differencing is &8 widely-used
alternative to saynbolfc dJdifferentiation of algorithma. Humerical
differencing 1z based on gasmpling the original function 1in the
neighborhood of the point X and therefore does not even need to see the

text of the algorithm Af{f,f], it merely needs to call it.

In comparing numerical differencing with .Joes’ wéthod, the
following criteria are relevant:

a) caae

b) nmerical accurscy

11
=} time requirements
d} gpace raquirements

The comparfaon will be made for the cowputation of
) i
Ly from
R
SUBROUTINE F{X,N.Y)
REAL X(N},Y

END

2+6.1. Comparison: ease

the gradient

There can be no doubd rhat numerical diffarencing fa eaajer:

SUBROUTINE GRADF(X,N,Y,GRAD}

REAL X(N),Y,GRAD{N)

DATA DELTAS ... [

CALL F{X,N,¥}

Do 10 I = 1M
X(I)} = X(I) + DELTA
CALL F(X,N,YNEW)
GRAD(I} = {YNEW — ¥) / DELTA
X(I} = X{I} - DELTA

10 CONTIRUE
RETURN
END

Bxcept for the complicatfeon of cheesing DELTA, this i
there 13 to numerical dJdifferencing. Joss’ methed,
ayobolic differentiatilon, cannot coonpete with that.

bagically all

or any form of

12

2.6.2. Comparison: accuracy

Chepter 3 ig devoted to lesues of accuracy. UWe will antizipate
hare our wain conclusion: 4n the presence of round-off it 1s very
difficult to predict whether symbolic differeptiatrfon will give nore
accurate answers than numerical differencing (with DELTA chosen

optimally) for any given algorithm Af.

2.6.3. Cosmparicon: rima

If the originel suvbroutine F{X,K,¥Y) requires T time for a
particular value of X, Joss requires Q{nT} for the gradient, and so doea

numerical differencing.

2.6.4. Conparigon: space

Kunerical differencing requires extra epace only in the ferm of the
gradtent 1tself: 5 + n. Joss requires 0{nS), as all real scalars and
real arrays are accomwpanied by arrays and matricea to hold the n

derivatives with respect to X of all values computed.

13

3. ACCUBACY CONSIDERATIONS

The thrust cof this thesis is to present s method of producing
symbolie derivatives that representa an Iismprovement over previous
methods in terms of gpeed and of space requirements. In developing the
new method (deseribed 1in the following chapters of this thesis), nuo
explicit conaideration was given teo immues of acruracy in the pressnce
of round-off. Afcer the merhod was developed, ir was easily seen that
in terms of accuracy it wirrors the wmethod of Joas from chapter 2 inm
many relevant aAgpects. Joas, 1n his thesgis, touche&s on accuracy
conelderations for his method, but mostly by implication.

It im outaide the scope of this thesism to develop a theory of cthe
numerical behavicr of synbolic derivatives under round-cff. This {8 aot
intendad toc convey the impreiaiun thar numerical behavior under round-
off fa sacmehcw not important. Humerical hehavior is one of several
factora that affect the waer’s confidence in the anawera produced by a
certain wmethod, Fortunaetely, it is possible to addrass the issue of
vaer comfidence in a neaningful way even without heving a theory of
round-off . Other problema thae round-off are asscciated with symbolic
differentiation and they may well be the bigger problem at this point in

the development and acceptance of symbolic methods.

Toc be used, a program ouat produce answers in which the user can
have =ome confidence. In the seclentific and cultural climace of Eoday,
people are quite ready, initially, to accept answers from a computer
progrsm, but 2 sSmall owwber of unpleszsant surprises with the program
will turn the same people sharply againat that progrem. Une does not

mzke a method stronger by hidipg ita weaknesses.

Svaobolic differentiation of algerithms does have aome pitfalle in
the sense that it can be olsapplied to produce outrageous results. As
these pitfalls can be aveided rather sasily provided one 15 aware of
their existence, it la isportant to point our where theae picfalls lie.
Theae pitfalls affect accuracy of the results in a more dramatic way

even than round=-off and therefore thie 1ssue belongs 1in this chaptet.

14

3.1, The Algorithm and the Funetion it Represents

An algorithm Af ready to be differentiated does not arise in a
vatuum. BRather, the algorithm wee written to represent or approximate
some mathematical function £. The algorithm 1s secondary to the
mathematical fupctien and thers may be diecrepancies between the two for
a varlety of technical reasons. Por one, the wmathematical function £
may be known only implicitly, e.g+ as obeying a functional equation
G{f)=0. Such a function can often be reapresented by an algorithm only by
uge of iteration. Second, the mathenacical funceiom £ may be known
loperfectly, e.g. only on a subinterval ot by i1ita values in certaln
pointa. The algorithw Af may be wsing aome interpolation technique to
provide an approximation to f on the entirve interval of intereat.

A key assumption of aymbolic differentiation of algorithms im that
not only Af approximatas £, but (Af)° approximatas £” as well,

Symbolic differentiation uases the text of the algorithm Af as 1ita
sele source of knowledge about the function £. S0 the best one can hope
te achigve with aymbolic differventiation 1s to ohtain the aexact
derivative {Af)" of Af. In what respect is this different from any
other computer method such a8 numerical differencing? At first glance it
wiruld appear that numerical differencing has an even bigger handicap, as
it wersly samples the algorithm Af at some polnts but ls never allowed
evegn fo inmpect 1itm text. Yet the followlng graph suggests Lhat the
sltuation is not nearly as simple an that:

Af

+ x

If Af approeximates £ throwgh a step function, {Af)° will be zero

("almost everywhere"} no matter how closely Af approximates f. In

contrast,

Af (wdb £ — AF(%)
[]

may be fairly close to f° provided § 1a large relative to the step size.
A large ¢ places a lower bound on the truncation error amd hence will
not give a very accurate result, but wost likely the numerical
derivative will be in the proper range, whereas symbelic differentiation
missea the true derdvative of f altogether.

The prevalence of approximatisns that achieve quite small unifeorm
error bounds and that do 390 by “tacking" eeems ta confer a rather
"unfeir” edventage to numerical differencing. Such advantape for
numerical differencing in teros of accuracy is by na means universal,
howaver. Tt is =asy to glve exanples where numerical differencing 1s way
off the mark whereas sywbolic differentiation is exact, e.g.!

In thiz example, Af and the numerical derivetive are the same as bafore.
But now the step in the function Af ia not merely a technical artifactk,
the atep ia there because the function f itmelf happens to have just
auch 3 step.

3.2, Iz Joss” Theorem Moot?

Josa” main theorem deals with an algorithm AFf, 1ita saymbalic
derivative (Af)’ and a real interval T for x on which both algarithms
are being considered. Under the assumption of i1nfinite precision
arithmetic, the alporithm Af defines a function F. In contrast to the
previous gection we are not congidering the function £ that Af waw

intended to approximate, we are now considering the function F that i=s

15

defined by Af ams 1a. Instead of somehow bounding the error {ia (Af}’
saan as an approximation of £, can we obtain at least a statement about
the accuracy of (Af)}’ seen ae an approximation to F* ¥

Josa" result is that indead such a atatemsnt can be wmade, and 1in
particular, that the fellowing can be proved:
F' = (Af)" "plmoat sveryvhare'" on the interval I.
The phrase "almost everywhare" means that there are &t most ¢ountably
many points where the equality does not obtain. Another formlation of
the same result i that F* and {Af)° are equal {n the L, norm.

The problem with Josa™ theorem is notc that its proof 1a incorrect
or fanlty hat rather that It ia not applicahle to any real machina.
Real wmachines do not meet the requirement aof infinite precision
aricthmetic. The damaging fact hare 1a wnot ao much the presence of
round=off in real arithmetic per se, but rather that the rTepresentation
of real wvaluea in the memory of the machin=s must needs be finite., In
the Ipterval I for x on the Teal axis, only a finite npnumber of points
are raprasentable within the machine. Those valuesa compriee a set M of
pmeaaure zeto. So Joss” theorem allows that symboalic differentiation
produces values that are correct (i.e. equal to those of F*) for all x
in I =xcept for those valuwesm of x thet are representable in the machinel
In other worda, Joae’ theoram proves nothing about the accuracy of the
values of {Af}" evaluated (aven without round—off) in the points x of M,
and it is only thess values that are acceamible at all and hence of any

practical significance.

The next two sections show example algorithmes where indeed astrange
{ptobably even counterintuitive) resulis are obtained. On closer
analysis, however, nelther result provides a counterexample to Joea”
thaorem and the algorithme are very coatrived fndeed. The examplen
glven are iotended as a warning.

3:3, Firgt Exanple: random search

In the procedure below, random{) 1s assumed to be =2 perfect
pseudo~-random generator, produvcing numbere between 0 and 1.

17

procedure slowld(x,y);
begin comment O<x<l;
L: yi=random():

1E{ xfy) goto L;

end

It 12 not claimed chac the procedure alowid ie a practical way of
computing the function y=x : it may be rather slow. In fact, it is not
obvious that slowid will converge for all x in the interval from D ta 1.
Convergence for all x would place a very stringent burden on the random
generatar. Yet 1f coanvergence ie only to be guaranteed for walues of =x
repreeentable in the machine, 1t 18 not hatd to show how the random
generator could be written to make glowid converge for all representable
X. Any proceas that would cyecle chrough all representable values in the

interval would 4o instead of the random generator.

In any event, it is not entirely unreascnable to say that saleowid
represents the function y=x. At the same time, (alowid)” = 0 , not 1,

for all x.
3.4. Second Example: table lookup

Assume that floating point numbers of the machime are represented
by a2 word of w blts. Assume that the memory of the machine has more than
™ words., The firat 2¥ words of memory canm be used as a table,
implementing 2ny concelvable function y=Fi{x} as follows:

1) take x, examine its bit pattern (v bica).

2} use the bit pattern as an address into the memory.

n retrieve a2 word of w bits from the memory at that addreas.
4) return the retrieved word as the result y.

The code for steps l=4 ig the algorithm Af and c¢an be thought of ag
stored above the table in the oemory.

S3ymbolic differentiation again produces zere for every floating
point number x, regatrdleas of what function was stored in the table.

18

3.5, Summary

A reader for whom the results obtgined for the functione in the
previcus gectiona eseem intuitively incorrect 18 advised not to use
symbolic differentiation of algorithms. BHowever, it ia nat particularly
hard to change one’s perspéctive such that the results cobtained for
thoae functions become intuitively correct. This 1s perhaps more a
reflection on intultion than on symbolic differentiation as auch.

19

4, COMPILATION OF EFFICIENT GRADIENTS

For reasons that #1l1l become clear soom, thia chapter focuses on
gradienta rtather than Jacobilana of genera! shape and size, Chapter 5
will peneralize the results of this chapter to compilation of efficient

Jacohiana,

In Chapter 1 it waa argued that saymbolic differentiatfon of
algorithns a8 developed by Joss could not compete with numsrical
differencing and Chapter 2 ahowed this in more detail. To make symbolic
differentiation competitive one must d1mprove slgnificantly on the
programs produced by Joss' method. One approach which appears very
promising 1e to replace Josa” comptler, which fs a one-pase non-
aptimizing compiler, %y an optimizing compiler inmcorporating all the
latest progran optimization techniquea and more. In the early stages of
the research leading te thia theals, much time was devoted to pursuing
the optinizing compiler approach and it wae found to be not ultimately
auccesdful. The next aection will coutline thils approach and supgestc why
an optimizing compller staying within the framework of the "Jgas
interface” should not be expected to effect significant apeed=-ups for a
significant c¢lass of algorithms. After that, we will turn to positive

raaulcas.

G.1. The Optimizing Compller Approach to Improving Joss™ «Mathod: 1ts
limitn

Firet we show a exaople alporithem A that allowe speedup by a factor

of 0{n) over Joams.

Ay o= §; B: g :=0; 7 := 1
for 1 = 1 step 1 until n do for 1 = 1 step 1 until n do
¥ i=y * x[i;) £ 1= & % xi1]

—_—
+ ¥y % upit{i);

y :=y % x[1);

20

C: y = I3 D: oy = 1
for 1 = 1 step 1 wntdl n do for 1 := | step 1 umedl » do
y =y % x[1); 1pl1] = y;
for 1 := 1 step 1 until n do [r"r*z[i];'

glfil = v/x[1]; tp = 13
for 1 := m gtep -1 untal 1do
gl1] := 1p[1] * =ep;
{rp = rp * x[1];

Algorithm A computes ¥ = El Xs- Algorithm B computes E - ﬂy!ﬂi
according to Jome 1in O(nc} time. The vector notatiom in algorithm B
abbreviates a loop over the n components of the vecter. Algoricthm C 1a
the first ipdication that an O(n} algorithm might be found for E. It is
clear that %%I - g
algorithn C wili 1
divigfon and gcill raalizes cthe O(n) time bound of algorithm C.

Algorithm I 1a based ou the fdentity

a
x4 50 it {s tewpting to try i %;- . However,

fail if any x=;, 18 2ero. Algorithm D avolds any

)
gﬁ; = Ii*ri where 1, = jEin and ¥, = jgixj.

A question worth considering is whether D could have been obtalned
from EF by an autowmatic method. Indeed, B can be trapeforoed into D by
steps leaving the semantics of the algorithm invariant. The steps can
be constrained to be those 4dn the Irvine Catalogue [STATH), for
instapce. However, the path of algorithma and traneformations batwesn B
and [1is a wery tortuous one, and it 1is wvery hard to eee how an
automatic procedure would find chat path even if it "knew" that 1¢ was
supposed to end up with algorithm D. Certzinly., one would not want Lo
rely on theorem proving techniques for any real-life size problea. It
ghould aleo be remarked that P cannot be obtained from B by merely
exploiting sparsity in g or in unic[1). That only serves to bring down

2 to nzfﬂ. Rather, D iovolves a rearcangexent

the operation couot from n
of the entire loop structure. The next question 1a whether perhaps D
could have been obtained from A diractly, by some automatic method. Or,
rather, whether such s method can be genaral emough te handle a large

clags of program struectures of interest. Hare ona thinks of a repertory

21

of special cechniques for apecial loop scructures, extended wih a aet of
transformations that map 1mure general loops into those special
structur=s. Typically, one has no hope of recognizing entire program
structures, but one may have the hope that it proves sufficlent to focus
merely on Llnnermost loops, the rationale being thac speeding up
inonermoet loops by O(n) will speed up the entire program by the same
order of magnitude. This approach has been ueed quite successfully by
Knek and collaberators [EUC7T8) in the context of optimizing programe for
execution on parallel machines.

A theary for sc-called "scalar recurrsnces" was developed as a
generalization of algorithm A, but there 15 no justification for
believing that Llocal optimization auch aa optimization of Iinnermost
loope will achieve wuch for general algorithma. Conaider algerithm F
below. It computea y = det(X) where X is a square matrix of size WN.
Algoricthm F itaelf requires G{Hs}, while computing the gradient
dyfaX[1,§) for 1 = 1,..., W, J = 1!,-.., N according to Joss requires
UIHE}. Yot optimizing chis by hand will give a method that 1s GIHSJ,
hence we aave a factor D{Hz}. Aa "n" equals N2 here, the aavingas are
O{n} aa before. Nothing like an optimization of the innermost loop of F
would accomplish auwch savings. If any doubt aa to this point remaina,
we oan add partial piveting te F, and see how that destroya any
poeeibility of giving a cloged form characterization of what the inner

loop deesz, let alone of how to optimize 1it.

F: ¥y 1= 1;
for i := 1 =2tep 1 until N de

(y 1=y * X[4,1];

for | = 1+1 gtap 1 until N do
wult := X[J,4]/X[1,1];
for k := § step 1 until N do

\ X[3,k] = X[3,k] - wult * X[1,k];

— Tt

To optimize Byfaf by hand, we msy use the easily derived formnla

Bdetﬂ[! = dﬂt{x} . I-l

22

Both det{(X) and X! can be computed in O(R7) snd multiplisd in O(NZ).
Thiz resulrs 1in an D{H3} algorirhm. MNota that slgorithm A an be
regarded as a apecial case of alpgorithm F with X a diagonal matrix.

4.2. GCompilation of Efficlent Gradients: an cutline

Wa now turn to tha major poaitive resulte of thie theafa. 1Te 1=
indeed possibla to achisve a spead-up of 0{n) For gradients over Joga”
approach with a method not intrinsically more complicated tham his. To
show this we have to view his method from a much greater height and with
far less concern for local efficiency than the optimizing compiler of
the Iast oasction did. We have to abstract and fozus on what all the
axamples of the laat esetion and fndeed all programs from which to
produce pradients have 1in common, and rthat i1z rthat they take the
informacion contained in n numbers x[1],..., %xin] and frow it produce a
eingle acalar value y. Wa will shew thar Joss”™ method 18 algebrafeally
equivalent to & sequence of matrix wmultiplicationa, the 1ast one of
which doess not involve s square matrix but & row vector. It 1a easy to
gae that if those matrices were full, wultiplying those same matrices in
a different »sequence would l=ad to identical rasults but O{n)} faster.
It will be shown that the extreme sparsity of the matrices ({i.e., the
matrices have mostly zaro entries) can be axploited in 8 meaningful way,
and the resulting method fa O(n)} faster than Joas without making

axcegaive demands on mémory Space.

4.3+, Joss® Method Viewed as a Sequence of Matrix Multiplications

The theory will be presented uaing an =xample algorithm. As veual,
x repraganta the independent variahlea, y f8 the dependent variable, and
3y/dx 1ia to be constructed.

for 1 := 1 step 1 uatil n do

begin

£ o= 0
for § e 1 gtep 1 ontil n do
E =t + 2[1.3) * x[{];

z{}l o E;

LL)

¥ o= L

for 1 := 1 gtep 1 until n do
y =y * 2(1);

The nethod of Jess attempts to keep the matrix J up to date at all

times;:
il:lrl 3::1
?ET " ?E;
Ix aiu
n
) L
3t 2t
Ex1 Hxn
J =
le 3:1
Exl Exn
dz, ﬂzn
*] an
3]

The varizsbles making up the vrows of J: X, t, Z, ¥ comprise the “state
space” 8, 4 poior in the atate epace characterizes the values of all
real variablea in the program. Any time during execution of the
program, the state of the memary is gfven by a point In the atare space,
and J will contain its Jecobian. When an asgignment statement such as
¥ i= y * z[i] im executed, the point in the state space moves,
and the matrix J must be updated. Jomss penerates the extra statements
for jg 1= 1 step 1 until n do
ve (gl = ygligl * z[1] + ¥ * 2g(1,3g);
This can be sbbreviaced as:
YE = yg * zlil +y * Iglil;
Due to the chain rula, the right hand side of this statement 1is linesr
in §§ and iETTT, and therefore it is poaaiﬁle to describe the update Eo

24

J an a matrix product:
"z [i] " l‘lyli

am '1 * Ilz[ill'l

ytt o b4 z[i) Yy
J' F J
The matrix F, called a "factor™, 1is determined by the partial
derivatives of the original expression ¥ * z[1], which partial
derivatives are placed on the row corresponding to the left hand eide
"$" 1n the state space, in the columms corresponding to the right hand
sides, "z[1]" and "y", in the state space.

It ip importamt to obacrve that the faztor F 18 a Jacoblan wmatrix
in 1ite own right. F 18 the Jacobian of the transformation § -> § that
moves pointe 1n tha atate apace according to y e vy % 2[i]. We can mee
this resdily by introducing some abbreviaticns and consistently using
accent marks to distinguish mew valves from old values. J 1is
abbreviated as

\ 3%
a%
£1S , or even as 3(X, t, Z, ¥)/3(X)
az

Iy

Similarly, J° is abbreviated as
\ 3%
st]
ar” . OT as 3{%", t*, Z°, ¥°)}/3(%}

-+
1z’

-,

H‘j‘ _J
Kewt F I8 geen ta be
\ 3% 3t 3z 3y
ax’
i’ , 0F 3(%X", ¢°, 3, yHaEk, ¢, £, 9
¥ 3

o,

25
The "deep treth" underlying the statement J° := P *# J now shows up as
B(XT L7 LE Y) AE) e (X, 7,2,y AR, £, 8,) 0(E, 2, 7 /3(R)

3¢ far, we have looked at a mingle ammignment statement, and the effect
it has on L Wow we must look at the effect of a whole aequence aof
asslignments on J. From Jozsa® work we know thae it 1z gufficisant ta
congider stratghc=1ine code, the atraight=line code helng rthouwght of as
deriving from an execution trace.

Tt shonld be clear that

®

Teinal = s * Fawp Teee® Fy * Jiuitial °

vhere the factors Pl...-, FI have been indexed by the order in which the

assignment satatements that gave rise to them were execuvted.

In the equation given above, Jinitial iw gimply:

A
1|
ae |
3z | O
ay | 0

The final reault . is not Trynal? but 3 eingle row sxtracted. from it:
3(FYIO(XY = § * gy, svhere § = (B 0 00 ..y O 1),

Summing wp we have

+

B(FIAX) =~ § * Fp * Fp_| %% Fy ¥ Fp % 3y 00001

In Joss' method, this matrix product is evaluated from right to left.
Though the factors Fy,..., P, must of necessity become available in that
order, it is not necessary that theay be used in the same order. Macrix
tultiplication i1s assectative, and 1t may turn out that s different
order of multiplication is faster. Ind=ed, we will show 1in the next
gection that multiplication from left to right ia an order of magnitude
fagtar:

MUPI/AE) 1= (oo F 2 B 2 P _Deua) M FY % Jyp0piay 6

26

iny order of multiplication different from the ordar of generation of
the factors rvaiges the issue of storage space for the factors. For
every axecution of any asmignment etatement a factor becomes -svailable
{not merely once for i1ita pressnce in the program texc}, o at first
glance the storage problem sppaare truly overvhalming and chis sould
ssem to rule out amy change in the multiplication crder. Bowever, it
will be shown how the factor storage problem ¢an be solved very asaatly,
resulting in a method that typically tequires far less memory space than
Jasg’ approach.

4. On the Fronomics of Matrix Multiplication

We shoved that Josa® method i1ie algebraically identicsl eo a
sequence of metrix multiplications

-
g*F, * e P Y Jinietal

avaluated from right to left, where both § and Jinte1at ATe meTely
8lices of the unit matrix. All factora ¥, are square, o * n, where o is
the dimenaion of the atate apace. The matrix § ie really a row vector,

1 * m; the matrix Jy j,45; 12 n * m,

This section will ahow that evalusting the product from left ©to
right 1s O{n) faster. Firet, the twe waya of evaluating the product
will he compared using the asawmption that all matrices F; are full. We
know, of course, that the !1 natrices are not full at all; we musat chen
verify thet the compariscn still holds tree given the special structure
the factors poRSess. The reason we bother meking the comparison for

ful! matricea at all ix its great henristic valune.

Multiplying a full p * q matrix A with & full q * ¢ matrix &
tésults in ap * r wattix C in p * q * ¢ operationa. This asewmwes that
the standard algorithm i3 wsed:

Cty = ; A By

Clever algorithms for multiplying square matrices such as Strassen’s
[STR69] are left wundiscussed 1f only because we cannot subsequently
geéneralize the reaults to sparss syatema.

27

The matrix product

Y i ‘a

Fs Fl Jinitial

1f evaluated from the right, has intermediary resnlts all of size m * nm

and hence coata
#fllzl'l} operations,

ignoring the last "multiplication™ with g. Evaluating the same product
from lefr cto right, all intermediary resulte have gize 1 * m 2and henca

we chalk up
s{nZJ operatione,

this time fgnoring the last "multiplication” with Iy .,...9+ Clearly,
left-to-right is O(n) faster.

Mow we turn to the analvysia of rhe lefr-to-right multiplication
exploiting the wvery apecial acracture of tha factors F.

Conaider the product

svaloatad a=s

BEg '™ &

By.) = 8¢ * F; and focus on a particular product

g =g *F
where ¥ ia a factor assoclated with an assignme=nt etatement. Take as a
typical asaignment statement the Following:

c i= expr(d,e,£);
RAere, "expr" ia any expresaton ueing +, -, *, / and atandard functiona;
the left hand wvarlable ¢ and the right hand wvariables ¢, &, f may
actually be avbscripted. '"BExpr" may Involve additional variables, =.g.
integ=r variables, ams 1long as they are nat in the atate epace. What
doesa F look like? It differs from the unit matrix in at most four

28

places. These atre all in the row corresponding to c.

The column

poaictions cf thome changes arse thome corrvesponding to e, d, = and £,

F Ildll l‘lell l'l'cl‘l l‘lfl‘l

I
I
i C) Jacobilan factor asscciated
(:} ' \ with ci= expr{d,a,f).
Tlc" .-r". ° . \\ a.ExE-r
1, de

Mow g = g" * F can ba computed as followas:

for i := 1 atep ! until o do
gl{i]l = g"{1);

c i~ g("c";

1f £ # 0 then

begin
SI“':“] ™ D;
!{I!d'll] T E['Il‘d'l!] + c * F[Ilc'll’ l'ldl!];
,![“ﬁ“r e !["&I!] + t * FI“C“’ "ﬁ“];
E[“f"] I g[llf"] +t * FI“Q“’ Ilfl‘l];

end

Hepa, "¢", ste., has beon usad 2 o convenient notation for cthe row

numbaer corrasponding ta variable ¢ in the state space.

& Further simplification is poaszible 1if § and g* are nade to share

the same eopace io memory. Surely, once E is» computed, g* 1s no longer

of interest. Surealy, too, the above algorithm sllows E and g* to share

ppace; indeed, it becomes faster.

E tm £ * F can be computed az followa:

t ‘m g["cil]=
4f t ¥ D then begin gl"e"] := D3

!I'lldll] = sllld“] + t = F[“E‘“,
![HE'“] T EIIIE'II] + t * F[IIEH.
gI"E"] = g["E"] + ¢ * F["c",

end :

'lld‘l] ;
m E"l ;

“‘fll] H

We have now arrived at the conclusion that the time required to

multiply & row vector with a facter matrix is independant of n. The

29

time required is easily bounded by a constant times the time requirved
fcr gvalugeing the right hand aide from which the Fzecor wee derived. A
boued of the same form, sgaln independent of n, can easily be obtained
for the time required co obtain the few nonldentity elements of the
factor matrix at the time the ariginal statement iz executed.

These bowunds ahould be contrasted with Josa®™ owm method, which
entails expanding every asaignment
¢ = exprid,e,f)

inty an array assignment tequiring Q{n)} operatiomns:

pepd := Jexpr/ad;

pepe = dexpr/ie ’

pepf := Bexpr/af;

for jg = 1 gtep 1 unti) n do

cgligl := pcpd * dglig)l + pepe * aglig)
+ pepf * fg[ig);

c = expri{d,e, f);
4.5, The Percblem of Factor Storage

If the proposed technique of carrying out the multiplicstions from
left to right 1s ta be viakle, a asolution must be found eo the problem
of fest storage and retrieval of factore without reguivieg an excessive
amount of memory t4 do go.

-

First, it should be remarked that the factors have very few entries
worth storing explicitly. The factor assoclated with
c i= exprid,e.f} b
can be easily reconstructed (but never needs to be; what courts 1s chat

it is determfned by ft) from the three values

Eeggr) Eeeggr , Ee#r
plua the values of four integers giving the row corresponding to c, and

the colvons corresponding to d, e, £« In fack,

Voad de af
e || L _|:F

1s a convenient notation for the factor F, as the next section will

show.

Bren after each factor 1s seen to invoalve only &8 small nmnﬁnr of
items to be stored, ie is eti{ll not poseibla to give an a priori bownd
on the amount of storage ragquired: the mmber of factors s dependa on
the number of apsiguments {(Involving vardsbles in the state space) that
is actually executed. In Joas”™ method, storage éequireuents are given
by m * n; in the new method stocrage requirements can enly be bhounded as
a comstant times the ruoning time T. of the program. The essential
difference batwees the two situations ie that Joss" storage must be
randon-accaee vhereans laxpe portions of the factor storage mey be on
gecondary store auch as disk or "backapace-able" tape. The way the new
method dceesses the factors 1s satrictly ldke & setack: last in-firet
out, with no factors going out befors all factors are in. Henca s block
of central memory can bte set aalde a=m a buffer. PFactors are put 1into
the buffer when they are generated; if the buffer threatenms to overflow,
it 1a written out te diask. Conversely, on multiplying the factors, they
ate read from the buffer; if the buffer becomes empty, the previcus oue
is read in from disk. '

¥With this organization, the mmber of disk accesmea D ia related to
the total storage requirement 5 (1inked Yinearly to the running time T
of the originel program) and the buffer size B as follows:

D= 25/B (disregarding rounding)

An the coet of disk access 1s largely dependent on D and only very
weskly dependent on £, 1t ghould alwaya be possible to minimize disk
activicy by increasing the buffer sire. Tet essentially there 1s no
minimmm buffer gize a2nd ao rhe minimwm memory requirements of the method
are very low. There fa full {flexibility for achieving a auitable
trade-off between disk activity and memory uee. In any event, the costs
are preopertional e T, mor nT a8 in Joss. It should be Atreased thar in
addition o the buffer of efze B, the wethod only requires romm for the
E vector, size m. 1k will ke reealled that m was the dimenaion of che
stete mpace and therefore bounded by the memory =ize required by the
origtnal program. To Aum wp, the method requires abour twice am much
space 23 the original program plus wvhatever you can spare for a buffer,

31

with the obviouwa ctrade-off between buffer size and disk activity. 1In
contrast, Joaa usea {n+l) times the apace of the original program.

4.6. An Interpretation of the Method not Based on Joss

Useful as it was to derive the new method from Josas” method because
it cbviates proving that flow of control can be ignored to the extent
thac 1t waa tgnored, it is alac very coonvenient and inscructive to have
an interpratacfon of the mechod based dirveccly on the chain rute, Thia
- interpretaticn involves the row vector B. The value of g["v") for asome
variable v, {3 the "current" value of

dyfav.
Consider the stralght-line code corresponding to an executicn trace of
the program and focus on the last part of it. As an example, let the
last three stacements be:

g=2: wim 2k z[§);

a=l: u = v + z[1) * w;

53 ¥ 1= g *

We introduce the notation “=g" as in

v =y kv i
to mean that the final velue of ¥ 18 a function of the wvalues of the
variazblas uf~ the right hand side u,vr ., as they were just before
statement g waes executed.
The function of v =B u * v has a gradient:

3y/3%X =B fau * Jufdk + fav * Iv/a¥
Ag "/3X" is common to all terms, it may be left implied glving
3y =8 fau * Ju + fav * v

Bere fau, fsv are numbers from the factor matrix Fs’ glven by:
fzu =& v
favy =8 u

. 1
Stacement =2=1 1s eimilarly characterized by

u 8= 6:) v o+ z[1) * w

fu @= @ fg=1vy % By + fa-1z[1) * dz[L] + fs-lw * v

32

Congider now the joint effect of etatements s-1,s. Together I:I'Imy define
y a3 a function of u, v, z[i),v as follows: '

yob ury =€) (vl *w) ty
Thie process of characterizicg the semsntics of,assisn:ent atatements by
apropriste substitution 18 well-known [DIJ?E];' A aimilar process of

Y

nuhatiltution glves:

,dy =8 fgu * du + fav #* Jv
(D) fou# (Fo-lv * ov + fa-lz[4] # 3[1] + fa-1v % 2w) 4+ fav 4 Dy
= (fau * fa=lv + fay) * Elv + fau * fa-lz [ll.}.‘l * 3z[1) + (fev * fa=Iw) * duw

For the diescerning eye, theae substitution atepe are seen o be
identical to .the way the § vector chaunged when post multiplied by a
factor macrix! The factor matrix F, sssoclated with statements can be
conveniently abbreviaced aa:

Vo u av
oy [£su | fev]

The previcus section mecticmed this abbreviation in the context of a
concern for efficient atorage of the factor. HNow we see that the
cotation is more than that.
We cam define meltiplication of two objects
Y 3u dv V3w dz[1] v
3y | fsu | fsu | and 3u | fe-1v | fe=1z[i] | fs-1w]

in two ways: one 18 hy expanding both toe full factor wmatrices,

multiplying and contracting again, and the second 1s by our newly

interpreted process of direct substitution:
3 aw - 3z2[i] aw By
Y oan Bw v 3z[i Ju fan* |[fan* fan*

3y [fan[Esv] * du]_fs-l-;ifs—lz i] [fe-lw | = 3y fa=1v | fg=1z[i] |fs~1w fev

kY av dz[1] oW
= §v | E3VHisn¥ fems fan*
¥ | fa-1v foe-1z[1]|fs-1w

Ta see whether the procedure has been really understood, 1t 1s helpful

to go onpe atep further in backward direction to incorporate statement
8=2 Into the description, too. Statement 5-2 1s characterized hy

TN B[}
ow [£s~22[f]

i3

%0 we have

Vodv dz[L] Aw \ az[+4) Vae z[i] az[§]
dyTal b Tec j*dw|[s-22(3] |=3y[a | b |erfe-22(1]]

The question may now arise aa to what happens in case 1 and] have equal

valuea. Tha answer 1s: the procedure still works correctly. In the
gradiant notation it ia quite acceptable to have something like

VW o9z[1] dz[4]
avy_p | 1

"It would in all respecta be identical ta

Vogz[d
ay

The larter form saves some space and aome arithmetiec, bur both are
correct, and heoce *n cages one dosan’t know whether cwo expreasionas
2[1] and z[}] refer to the sama variable, one assumes simply that they
don"t. The algorithm to wultiply the E vector with a factor

Y ad de df
dc | fed|fee]fef |

aa given pravioualy and 28 adapted below, deals correctly with all
permutations of possible identity between c¢,d,e,f:
t :c glac];
Af({t¥0) then bepin
1 glac) = 0
glad! 1= g[3d]) + t * fed;
glde! := gl[de) + £ * feoe;
g[af) = g[3f] + & * fcf;

34

L)

1
3. COMPILATTON OF FAST JACOBIANS

Ip Chapter 4 1t was shows how the gradient of the functlon
¥ = E(xjyees, %) cap be constructed in a time proportionsl to T, where
T is the time tequired for evaluating the function f iteelf. Thin
thapter will attempt to generalize the Teaults of Chapter &4 to [ind the
Jacobilan of a gyatem of functions

- f!rxll"'l 3n}

L]
-

-

e = fel®peeeen %)

given as an algorithm Af(X, ¥). Let T again denote the time required
for executlion of Af and ler 5 bs the amount of memory involved. The
method of Joss computes the Jacoblan J = ﬂyifﬂxj in 0(nT) time and 0O(nS)
spaCE. The next saction shows that a straightforward extension of the
method of Chapter 4 can compute Jacobiams in O{kT) time and O(5) gpace
{not counting epace for the finsl Jacoblan itself). Sc even the
stratghtfervard axtenaton {3 superior te Joas 1In terme of apacs
réquirementa. A compariecn of these methads wvith regard to time will
depend on k and n. If k << n, Joas” method loses ont; if k > n, .Joge”
method i1s superior. In practice, however, the case k > n 13 very rars
and may safely be ignored. If kX * n, a comparison is more difficult and
dependes on the overhead aseociated with either method. 1In particular,
for the important case k¥ = n, Joss” method will usually bae faater, but
at most by a somall facter indapendent of n.

5.1+ PFinding Jacoblane One Row at a Time

Jacobiane coneist of rows, each row being a gradient. Row 1 ia the
gradfent of y; = f,(%y,+e¢, %). PFor a given i, therefore, we could
chaoge to regard ¥y a8 the output variable aed compute ita pradiemt.
Or, to stay closar to the formalism develepad in Chapter 4, we could

5,

35

precede the pracedure exit of Af with the statement
z = y[i];

and regard z as the cutput variable. What ft boils down to is that

3}?1 +
{?fj- 3 = Lieeoyn} =gy X Moo B ¥ Jingetal

where 3, 18 a unit vector in the otate spaca with the one in the
pogition correspending to yy.

In paseing, we polnt out that if one”s real object 1s to compute
&I for somE TOW vectar E} one never need coostruct the Jacobian

J explicitly; instead one may compute

% - J = . * % * *
« EE Fﬁ e l"'l Jinitlal

where E: is & vector with values o; on the positions corresponding
ta the ¥i» and 'with zeros everywhare elas, This corresponds to finding
the gradient of z with theae statements loserted just before exit of AFf:
g = 03
for 1 := 1 step 1 until k do
z =z + a[t] * y[i]:

Computing the full k * m Jacoblan of the vector ; would cumprine
the following atepe:

1} do the computation of ; according to the AFf, and emit factors along
the way;

2} for mach 1, 1 < 1 € k, do:
a) get the E vector to the unit vector corresponding to ¥yi

b) multiply factors into g:

E = E * Fi' 128, B-l,ees, 1}

c) extract the gradient of ¥y from E. This produces the 1-th row
of the Jacoblan.

36

This description shows clearly that the method requires O(kT) time: It
also shows tha time required to be far less than k times am mach as that

for a aingle gradient: factar emission need nat ba repeated.

5+2. Comparison with Some Alternatives

Tha fallowing I3 an alterparive to the one-row-at-a-tima approach
from the previous asaction:

1) Bnir all Factors;

1) Initialize the k * »n matrix g 8o that the i-th row of g is the unit
vector corresponding to y,,

3} Multiply g, from the right, by factora:
g = g * Fj’. 1 =8, E-‘l.lii’. 1;

43 Extract the salumna of g thae belong in the Jacoblan and throw away
the rest.

This variant also requirea O{kT), though thia 1a not as eaay to a8ee as
in the previcus sectlon. The space requirements, however, have gone up
to 0{k3), What we gain {8 that we need not read in the factors more
than once. 5till, a memory requirement of O(k3} seems an exceptionally
aevere penalty to pay. For large k,5 rthe apace willt aimply not be
avallable, whereas for amaller k a more powarful and flaxible way to
keep down the overhead in reading factors is to increase the size ¢f the
factor space buffer.

The main reason we introduced the varisant above {3 that £t 1a thae
most direct right-to-left counterpart of Joss”™ method. Joss also
requires a lot of atorage: O{nS). The close cortreapondence batwaeen thea
method of the previous section and ite variant in this sactisn suggasts
that Joae”™ method can be ecaaily modified to reduce aterage requiramants
. be O{8). TIn fact, this can be Jdone:

Joss {modified):

1} Por each ‘varfable u, allocate a new variable dudxj;

k¥

2} For each xj. 1< 3] %n, do:

a) inirialize all dudxj to zero, except for dx[}]=f, which 1@ to

be gat to one!

b) add to each asgignment statement v (= expr(ul.uzl the

statement
dvdxj:n%gil'_f * du,dxj + lﬂdﬁu‘ * du,dxi;

¢) put all variablea dy[l]ldxj...dy[k]dxj in the J-th column of
the Jacobian.

There f2 no nead to campute E%%TE, atee, each time: thay ¢could be
enitted to a factor gepace (organized here as a queuwel and read
repagtadly. This allows for the &ane space=time tradeaffa by
manipularing the facror atorage buffer alze.

This wmodification of Joss 1is so straightforward and a0 obvicusly
advantageoua in terms of atorage that Lt ia perhaps surprisinog that Joas
never mentiona 1t in hia theaia. It coneticutaes atrong evidence that
Josa was omly Lintereated fn feaalbility of differentiation of
algorithme, not its cost. .

5.3. Crirical Analyais of One=-Row-at=-a=-Time Jacoblans

The methed of producing Jacoblans described 1o section 5.1 ia
general, convenient and economical on space while being reasonably fast.
For k << n, the method may well be perfectly adequate; clearly, it ia
faor k = 1. The implementation described in Chapter & does, in fact,
enploy this method.

In the remainder of Chapter 5 maveral ideasa will be introdeced that
may eventually lead to a compller producing Jacoblana that run
glgnificantly faster than those of Joes for all k € n. 4As these 1ideas
are necessarily more tentative than those deacribed in Chapter &4, the
treatmant 13 Lleam detailed. Certainly one can skip reading the
remainder of Chapter 5 amd proceed cto Chapter & sHithout loss of

continutity.

i3

The rezaon that the one=row=at=a=tine approach ie not necessarily
eptimal 1w quite wimple. The method for finding gradisnts in Chapter 4§
was successful precidely becanae it explolted the fact that the E vertor
in

ajﬂfﬂt - R & F’ * Fﬂ—l er ek Fl * Jiﬂ.itiﬂ.l

had only one row, ao that left=to-right meltiplicacion is 0(n) faacer.
Az sgoon ag a2 Iacobian EFIEE ig deaired, for ? a vector of more than ome
alamant, i bacomes a matrix, and for k * n, the matrices g and ’Jiuitinl
will have aimilar shape, removing the advantage of one multiplication
direction ovaer the other. Yer thara ip no a priori reason to agguma
that ‘only pure left=to-right muletiplicetion or pura right=to-left
mulriplication can be performed. Asaspelativity of matrix meltiplication
allowa many other sultiplicacion orders. Perhaps it s posaible to find
an optimal or near-optimal ordar of smltiplication thar i1is compatible
with the resulte of Chapter 4 iIn the sapecial case that g is a row
vector. In the next gection we will explore optimal multiplication of
Factors and tha problem: aesociated with 1it.

S5¢4. Optimal Multiplication of Factors for Obtaining a Jacoblan

In thiz section we will lock at variouws multiplication orders for

the praduct

g *Fp X Fa g ®eee* FI * iittal

for a givan atring of fsetors F,..., F. -

Ta find the optimal order for one such particular producc of
factors should prove interesting even 1f there 1a at preasent no
guarantee that such an eptimal crder could be found for an algoerithm
with arbitrary flow of centrol, as the algorithm encompasses a varlety
af straight-line programs each emitting stringe of factors differing in

value, aumber and conflguratlion from one anaother.

Each factor F 1s a Jacobian matrix i{n fte swn right {cf. section
4.3) and ae iz a product of consecutive Factors. Bvery Jacoblan factor
hae an out=aat Fope 204 an in-set F, corresponding to the {zingle)

39

cutput variable and (any nuaker of) input variables of the assignment
statement from which F originated. 3Seo the Foup #nd Foo of the faetar F
epitted for
f e f % y4+t

would be {f} and {f, u, t}, respectively. The factor matrix F will be
identicty, except for the "f" row whieh is nonzers enly in the “f", "o
and "t" columns. The concepts Foue Aand F, - generalize to arbitrary
products of factors. The Jacoblan F of a wmapping from Fip to o W11l
be an identiry matrix {m * a), except for the rows corresponding to ¥
vhich recan be nonzers only in the columns corrssponding to Fin- The
nontrivial entries of ¥ are therefore those on the intérsection of 2 row
from F. ., #aod a column frem F, . To simplify the analysis we will
regard all of these nontrivial entries as potentizlly nonzero and hence
ignore sany finer atrueture a Factor way possess. This way, without
actually performing the matrix muliplicacions we can keep track of the
resulting F, . apd F; .~ gets and express opeération counts in terms of

thege.

Before we carry this out, we note that the coucepta Fuut and Fin
apply to products of factors, not necessarily to products involving g or
Jinitial‘ Multiplicaction by g or Jinitial serves egsentially to throw
cut matrix terms that are now koown to be irrelevant. We know from
Chapter 4 how crucial it is to anticipate what is going to be thrown out
eventually so as to avoid computing it in the first place. In a product

(g % Fp ® F3} * (Fy * F) * .0, 004a1)

all effort that goes into computing a certain row of
{Fy * Fy * J qeiq1} 1n wazcted d1f the corresponding column of
(g * Fy * Fg] is all zero. Therefore, we Introduce the concepta Y _.45.4
and X4 endene 49 follows:

Yneaded 18 the aet of varfables that correspond to a ponzers colemn in

b 4 * FE L | F1+l

Eéi} iz the aet of wvariables that correapond to a nonzero Tow in

ependent

Fit *Fyj g i I * 0y it 1al

40

Any factor ¥; with out-met F{il and in-get ?gi} that does not oattiafy
Fﬂl Ergild‘d and Fﬁi} < i;“h“ way be simplified by throwing away
terma that sre apparently ulcimately irrelevant. The effect is to set

{1y ,_ {1} {1)
Fout T Fuut needad

iij Pe ii} nx &epenﬂent

and a aimilar eimplificacion mey be wmade everyvhars along the way.

We are now veady to pressut recurrence formulas for Fﬁﬁ;'j} and
P{ie+1? of the product ’

Fioag " Fg *Fpy ®uu® Fy
as well as for Y ,.4.4 and xdependtnt'

Y[:ldnd {yll]l, e, ylk]}

Tiitded * Tnsodedr 1€ Yoildia " WUl -

- [Y(::ﬁld thi} v Fii , btherige.

xgigendent = {x[1],+.4,x[n]}

i-1 i} i-1 (1
x&ependent xéepe%dant lr(I|.1.1:"'If xélpt%dtnt n Fin] -9

i=1)
xsapandant Faue{i), otherwiee.

1..14 i
Fiut) w Fﬁul

it - o

(Ffiﬂj"‘l}] pfj}} M Y!IE:; ded

riteed)

L 'I'I+ 0 +1
Fi: - Fii P o xﬁependtnt' 1f ng% n Fi% P . B

dependeut* othervisze.

An estimate for the operstion count for a product

*
Fii rj FJ-.I.I- L)
im

41

CEMNC AR Rt
whete |+| denotes the number of varfables 1in a set.

The oaptimization problem has now been formulated in a manner that
can be attacked by dynamic programming [BEL]. TUnfortunately, dynamic
programming requires time ﬂ{:j} whereaa oultiplicacion in any order 1a
never worse than O(nT), where of course T«0(a). 5o it seems evident
that we must lower our geala and recogeilze that a heuriscie approach to

finding ae approximectely optimal solutiop is celled for.

An example may serve to make the problem wmore palatable. The
alpovichm:

for 1 := 1 step 1 yntil k do
begin w = Ini{x[1));
for § := 1 step 1 until m do
w e w o+ a[1,]] * x[]];
y[1) = w3

and }

when run with n = 3 2nd k = 2 will lead to the following sequence of
factors:

v W 33 W 32 W xl K2 w w x3
g* vy, [_]i vl [3 w] |3 w | | iw[sy, [15[]
10) B 7 B 5 &
w Kz W Hl Hl
. » !]

wvhere g = d41ag(0,9,0,0,1,1) and Jatcigl © diag(l,1,1,0,0,03 1if the
state apace ls ordered as (21’ gy X3 W, ¥ Yol

W x3 xz xl W KJ Kz

_ oW
4.0 =l Jspy =, L 1

S0 F

In this example, the optimal ordering 1s emsily seer to be:

FID##E x {4-4{F1n ® Fg} '] FE},

42

ra

Fs.op ™ (ore(Fs 8 F) %en® 1)),
APARY =g * P 6 *Fo.p * Jinipial®

The logic behind this is the ssams as we encountered In Chapter 4.
Laft-to~right multiplicestion La advantageous for a product of factors
that has a single-element P, .. A string of consecutive factors such as
Figr=-» Fg that has a product with a single-element Foue Will be called
a funnel. Replacing all funnels by their products will result in a
subatantial reduction over Cthe one-row-at-a-time approach. When all
funnels have bean replaced by thelr products, we might than search for
long strings with a product having a two-element F_ ... and sc on.
However, in anticipation of the Implementation Lasues aof the next
sections we ghould remark that there is a certain cost associated with
changing mulciplication aeequence wmidstresw. The aavings due to
multiplying fumnela £irst are the moat sweeping: it is the moat eawmily
recognized and the weat <easily implemented. The remaining
multiplications ¢an then probably be parformed best with the one=row=-

at-a—-time achemg.

5.5. Extsnmsion to Arbitrary Flow of Control: run-time method

The approach outlined in the pravious secticn can be extended to
algorithms with arbitrarvy flow of control in two essentially difEerent

ways-

Tha firsat way 1a to delay the determination of multiplication order
until run-time, after all factors have zlready been emitted; this will
ba the aubjest of thia aectiom.

The second way is to determine the multiplication order at compile
time wusing flow graph analysis techniques; that will be the asubject of
the next section.

When the multiplication order 18 net being determined wuwntil all
factors have been emirted, the situacion le in every decall as aketched
in rhe previoua saction. Implemancation of the funnel! wmnleiplicacion
invalves asetting up a separate factor storage space organized as &
firnt~in, firac-oot queye. This new faector atorage apace will house

43

original factors and products of Funmels. Multiplicaticm of the factors
in the new space can be done by any conceivable method such as one-row=
at=a=time. In order to be able to recognize funnels we will need an
array of flué: of size m (the dimension of the state space). Initially,
only the flage for v[1)...¥[k] are set. Without loss of generality we
may assume that the laest factor ewitted has an Fout coneinting of the
pingla element y(i]. We now start the row vecter E of gize m an a unit
vector corresponding to wii), we turn off the y(i)=flag and read in
fastors ag 1f to compute the gradient of y{il}. But before multiplying a
factor n«E§:§j' 1nto E, we check the w-flag. TIf the w=flag ia aet 1t
will mean that another gradient computztion (e.g. the gradients of y[1]}
i1 fintarested 1in the gradient of w and haa been suspended to await the
computation of the gradient of w. 5o on finding the w-flag set, the
alpgorithe would locate all nonzéto terma of E, set the flag for all
nonzerd entries found 1in E. shape tha nomzerc entries intc a new factor
and emit it to the new factor storage space. Then it would elear tha
w-flag and proceed to read and nultipi§ factora 1Into E (reinitislized
now to the unit vector correspomding to w), sgain uneil a factor is readt
in with an output variable whoae flﬁg 19 aet. Thins ﬁrocess 18 repeated
until the entire factor etorsge spsce hag bgen resd and all intermediary
produsts stored in the new factor atorvage space. It will be clegr that
compression and reinitialfzatiom of the row vector B will require O{m)
operations unlesa special precautions are teken. A data strocture that
is a hybrid betwsen a row vector and a linked Ilat structure may be
required to keep trark of all the nonzero pesitions af g. A wsketch of
such a d4ata gtreucture is presented below but without addicional

COMBENLCATY -

m

1] coooooo] treck
=

1
N EmpTe
1

m
[cao TS oo [N o000 el © || o000 ¥ ooooooo | g

. nonzere elements of 3

44

5.6. Extension to Arbitrary Flow of Control: compile-time method

-~

The #ain advantage of trying to determine a muliiplication order at
compile=-tine is that various forms of overhaad asmsociacad with
determining the multiplication order at run=time 40 not uccﬁr. Aa =a
reaulet, the Jacobian computatfen for the special case k=1 need not be
9lower than & gradient computation parformed according Eto Chapter 4.
The disadvantage is that flow pgraph analyals lacks the degree of
resclution that can ba achiaved with a method having an entire execution
trace avallable. Hence eeaertain atrings of factora will not be
recognized ms funnels evaen If they are. " Flow graph analyeis assumes
worst case behavior. For example, 1t cannot distinguish batween ulil]
and u[]j] becausa it knowa nothing about aubscripts; 1t will asaume that
a rertain dertivative ﬂvfﬂxi ia nonzero as long as there is any path at
all to the point undar consideration on which path a value 18 assigned
ko v chat can be traced back to x, vhether or not that path will aver
actually be axecuted. The concepts Y, 4.4 2and Xgependent CE0 ba
approximated uaing flow pgraph analysis; they are nov aets associated
with painte in the program, not aeta sasaciated with factors directly.
The relationship betwsen the two fa that tha set ¥ ..., assoclated with
a cartain point in the program will contain as subsets all the oats
Tieedag Bo88ociated with those factors that are emitted whenever flow of
contral reaches that point fn the program. The F, .. Fy, vets can also
bha approximated by flow graph analysis. For saingle asalgnment

statements
al: womy N
82: a[f) = b * w;
we have .
PPl = {u); Pl - v, P2 = tan P2 = {abywd.

We will ldiat a et of conditions that guarantees that a certain block of
céﬁe repregentd a Funnel. We almo claim that flow graph snalysiz can
find such Bblocke, but neither claim will be proved. The conditlons are
ax follows. The block oust have a mingle exit, though it may have
nultiple entriex. The last statament of Cthe binck should be an

"

assignment atatement, e.g.

B p i=pg % ¢y
such that

a) the laft hand vnri#hln h is & Rcalar;

by p e Yﬁ:éded'

Lat L be the xat !ﬁzlded \ {p}. MHone of the statements in the block may
have a lafthand variable that is an elament of L.

The power, as well aa the limttaticns, of this ctype of Elow graph
analysis can be illustrated by contrasting two algorithms:

At for 1 t= 1 atep 1 until k do
bagin y[1] := 0;
for jr= step 1 until n do
(1) = y[4] + afi,§] * x[j};
end; '

B Eor 4 i= 1 step 1 until k do
begin v = 0;
for § i= 1 step 1 until n do
v i=v +ali,g) * x[§);
yli] = v;

and ;

The method deacribed fn the previous section would handle Sheth
algorithms equally well. The flow graph analysis described in this
section will recognize a funnel in algorithm B but none in algorithm A-
The funnel It recognlzes in algorithm B ia the block

<

= 0

i

or § := 1 atep 1 until n do
v or=v ¥ all,§] * x(§);

What run—time organization corresponds to a complle-time determination

46

of tha multiplication order? BRasically, the factor atorage sSpace wag
organized as& a stack even in Chaptetr 4, but there the atack vas nevet
popped until all factors had been pushed. Wow the factor storage space
will be created even more like a stack. Upon entering a funneling
block, a marker will be placed om the atack. Upom exit of cthe block,
factors are popped and sultiplied into a E vector (initialized to & unit
vector correaponding to the funpel wvarlable) until the marker s
reached. Then the E vector ie compressed and pushed back on the stack.
Tpon exit of the entire algorithm, the one-row-at-a-time approach can be
used to get the desired Jacobian.

47

6. YMPLEMERTATION

4 compliler, called "Jake," has been written to implement the theary
deacribed iIn Chapters 4 and 5. It will produce aubroutines for
gradients or Jacoblans from the text of the aubroutine for the function
ltaelf. It has been designed to provide » practical tool for numerical
anaglyste c¢urrently healtent to use numerical methode requiring
derivatives.

Thia chapter deasribes Jake: i{ts imput, irs owtput, what it does,
what to expect from ir and wvhat not ro expect from it. The deseription
ie aimed at the peraon who wants to wuese and underatand Jake: it is
clearly not adequate for cone vhe needn to make major changes ro Jake.
Jake is & multi-pass compfler and hence vather large, a0 a detalled
description of ie would unnecesaanrily clutter np thia thesis.
Fortunataly, the art of writing large compilera ie more and more thelng
transformed inte a real sclence, and the newly emerpging precepts of that
gcience have been followed in the conatruction of Jake wherever

poszible.

6+1. A DUser Description

Many of the deeign decisions regarding Jake were guided priwmarily
to sult the weer in the seituation characterized by the following
srcenario:

The user ig invelved In a problem requiring some kind of

funcrional iterarion surh ag optimizaciom of a function

with reepect to meny varishles. S0 far the user has

avoided iteration schemes requiring koowledge of

derivativee, such am HRewton 1teration or Fletcher &

Powall iteration. TInatead, the user employs an iterative

scheme only requiring tc sanmple the function, giving up

the better convergence characteristics of the former

methoda. Then the user learns about a new method of

obtaining derivatives which mnight tip the balance in

favor of funcetionsl iteration with derivatives.

48

For such a user, Jake must ba ahle to accept eximting programe for cthe
function with wminiwal changes. Hand=tranelsation of programs 1s very
arror=prone and must bhe svoaided 1f at all possible. Hence, the 1nput
language of Jake ahould ba FORTRAR.

31wilerly, the scenmario virtuelly dictates thet the output of Jake
should be a aubroutine written in PORTRAN, deviating from the ANSY 1966
astandard only in trivial aitustions {e.g. where the 1nput progranm
violates the satandard in the same way). Having the cutput of Jake
appear in FORTRAN rather than in the machine code for a particular
machine enormcusly enhances the flexibility and porcability of Jake
while simplifying ita demign. PFor example, it allows running Jake on &
different machine from the one that will run Jake’s output.

If the input and output language of Jake are virtually deternined
by conaidering the user for which it iwm 1nt¥nded, the language in which
Jake i1teelf i1ig wreltten 1a not. Here the ericeria are sase of
development and ease of distribution with emphasis on the Eirat, dus ta
the restricted geope of the project laading to this chesiz. Tt was
decided to develop Jake im the language C, running under a Unix
operating syatem. "C" fa well euited as a compiler implementation
langusge. IDnix 1is a vary convanient and hospitahkla operating ayatem.
Thix fa a trademark of Ball Laboratories. In anticipation of later
diseribution, Jake has been written in a subset of C and in & atyle that
sheuld allow relatively easy (hand} translaticn into the Ratfor languge.
Ratfor, like C devaloped ar Bell Labs, is a preprocessor for FORTRAN and
at least as portable aa FORTRAN icaself.

G.1.1. The Jake Input Language: how to PrEpATE YOUY program

The input for Jake consists of a pingle FORTRAN aybrcoutine to vhich
a CONSTRUCT statement has been added, and which is subject to certain
restrictions. Firat, the COMSTRUCT statement will be diacuszsed.

40
f.1.1.1. The CONSTRUICT Statement

Copaider the following example:
SUBEROUTINE ¥UNC(XI,N,Y,COEF)
REAL X({N),Y,COEF

CONSTRUCT D{Y)/D{X) IN GRAD(N)
Y=COEF
DO 10 I=K

Y=Y2X{1)

it CONTINUOE
RETUEN
END

Here Y 1e computed as a function of X, while N and COEF are merely
additional parameters. The gradient of ¥ as & function of X iz desired,
and {t g to be atored in the array GRAD, 1.=.
GRAD(Y) = 3Y/3X(I).
Jake learns thia frowm the CONSTRUCT atatepent. (Note that an ordinary
FORTRAN compiler will ryepard the CONSTRUCT as a comment, beginning as ik
dees with a "C" in ¢olvem 1.) Without the CONSTRUCT, .Jake would not
agaume that X 1a the indepandent wariable, noxr that Y 1a the dependent
variszble. By themselves, the variable names X, ¥, ¥ have no speciel
mneaning - S0 the £following aubroutine producea the same result when
eubmitted to Jake:
SUBROUTINE FUNC(U,M,¥,C)
COMBSTRUCT D{V)/D{U} IN CRAD(M)
REAL U{M},¥,C
V=i
oD 10 I=1.M >
V=VAI(1)
10 CONTINUE
RETURN

END

" for the

In previous chapters it was convendent te slwaye use
independent wvariable, but there is no reason te burden Jake with that

convention.

30

4s another example of what can be dope with the CORSTRUCT

atatement, consider

SUBROUTINE WRAT(P,Q,PI,R)
CONSTRUCT D{(Q}/D(P,R} IN 5{2)

REAL P,Q,PI,R,T
T=SIN(PAPI/4)
Q=COS(R) /TR
RETURN
EHD

This example suggests that neither the name of the [unction, the name of

the resulting gradient., the order of parameters in the subrcutine nor

even the form of the independent wvariablea i8 presupposed by Jake.

Based on the COMSTRIUCT statement, Jake will cause to be computed:
s(1) =~ 32 and s¢2) - 29,
PI 18 regarded as a constant.

The next aexample introduces Jacoblana:
SUBROUTINE WHO(U,V,N,W)
REAL UMY, W(N), WN)
COMSTRUCT D{W}/D(U,V} IN R{N,100)
b0 10 I=N
W{L)=O{L)2(N-1+1)
10 CONTINUE
RETURN
ERD
Thia CONSTRUCT atatsment asks for the Jacoblans 3W/3U and 3W/3V to
computed and stored in R as follows:

RCL, 3> = aW(L)/AU(§) for i=1,....n and }=1,....n
R(i,n+{) = W(L)/W(§) for i=1,...,n and §=1,-..,0

In contrast, the following produces a gradient!

13

ba

51

SUBROUTINE ROW(V,N,W)
REAL ¥(N,N),W
CONSTRUCT B{W)/D(H) IN G(1000)
Wal.
DO 10 I=l,N
DO IO J=1,N
10 WelWx¥ (T ,.J7)
RETUEN
END
The layout will Be ag fellowa:
G{I + {J-1) * K) = aW/aV{(L,I)
S0 a2 matrix such ea V(N,F} is really treated as the one=dimensional
array of ne contipnous etorage locatfons Lt represents. It is the tocal
8ize of the dependent varisble{a} that determipes the number of rowa 1in
the Jecobian {1 for a gradient); it 1s the toral alze of the independent
variahles that determinea the number of celurms in the Jacobian. - So the
shape of the Jaccbian is determined by dependent and independent
varighles; the declared dimensionm aof the variable receiving the resulc
must be compatible with thie.

To obtain interpretable results, the recelving variable must be a
matrix for & Jacobian or a gradieot {but the whole gradient wuat then
fit in the firet row), or the recefving variable may be 2 vector for a
gradient. A vector cannct veceive a Jacoblsn.

Thege restrictions only apply o the resulting varlable; as
indicated, independent and dependent variables may have arbitrary shapes
and sizes.

Finally, consider subroutine WHY, which demonstrates the use of
deuble precisicn. ‘
SUBROUTINE WHY(U,¥,W,N)
REAL D(N},V{N},W
CONSTRUCT (W) /D{0} IN GRAD(N)
DOUBLE PEECISION GRAP
Wel.
DO 10 I=1,N

52

WeRAU(I)4V(L)
10 CONTINUE '

RETITRN

END
By #o indicating that the regult vector CGR is in double precision, omne
agka Jake to emit all factore in double precision to psrform
multdplication of factors in double precision and to extract the result
in double precision. At the same time, all variablea that were single
precision in che original program tremain aingls precisdon. Some
intermediate values, such as "WAD{I}" are computed 1in eingle precimion
in the ordginal program but double precision when processed by Jake.
Here 1a a compromise betwaan accuracy, speed and ease of handling by
Jake.

Converaely, 1t 18 soseible to produce a -gingle preciston pgradient
in an pthervige dowble precision computatisn.

6alele2. PRestrictione on the Input Language

Though the fnput language of Jake is FORTRAN, it will not handle
ecorrectly all concetivable programs in all conceivable FORTRAN dialects.
The purpoge of thia aection ig to indicate the limitatione Jake has with
regards to the input program. Elght sueh reatrictions will be lizred,
with commenta and explanations where appropriste.

a) Jake will not recognize "etatement functione."

) Jake will not recopgnize varisbles, constants or fumctions of type
COMFPLEX.

c} The input program must not contain any of the following euvbroutine

names, as they are reserved for Jake:

SPINIT EMITO EMITI EMITZ SPGRAD SPCOPY
DPINIT DMITO DMIT! DMITZ DPFGRAD DPCOPY. -

The output of Jake will contain calls to these subroutines. They
comprise the "run-time support package” asaociated with Jake. The
first row 11ats the asubroutines used Ffor a single precision

23

Jacobian, the second row liete those for a double precision

Jacoblan.

There ara two rather savera restrictions that are difficult to
state preclsely. The sasfeat formulatiom {a completely safe, But it is

ovarly restricetiva:
d’} Jeke cannot handle EQUIVALENCEa correctly.

e”} Jake camnot handle CAlLs and fumetfon referencea cartectiy {except
standard bullt=-in fumetions auch us SIN, DLOGY.

Actually, therer are dany EQUIVALENCES and GALL; that are harmleas and
that will be proceased correccly by Jake. However, Jake im not able to
detect which EQUIVALERCEs ot CALLs are harmful, and the user must assume
that thoarden. To perform thia detection, the user will need to
underactand the theory of Chapter 4.

A mors correct statement of the reatrictions follows:

d) Jake cannot handle correctly EQUIVALENCEs that change the state

mpace.
4

) Jake cannot handle correctly CALLa and funetion refarences cthat
affact the values of varisbles 1in the Btate space im such a way as

to require a nonzerc factor to be emitted.

A8 an example of the difficulties arising with EQUIVALENCE, conalder:
CONSTROCT D{T)}/D{(X) +u: ‘ '
EQUIVALENCE {U,V)}

y=x

Y=y

RETURN J
END

Hare the flow graph analyeim uased by Jake is not able to trace a path of
nonzere factoras from X to Y and 1t will couclude that #¥/23X = 0,
However, the following EQUIVALENCE is harmlesa:

54

Here the flow graph analyais uased by Jake is not able to trace a path of
nonzere factors from X to ¥ and 1t will conclude that 37/3X = 0.
Auwever, the following EQUIVALENCE 1o harmless:

CONSTRUCT D{Y}IP{XJ e
EQUIVALENCE (A,B)
COMMON A

. YT=A®X '
T=B*7Y
RETURN
EKD
where A and B ere merely paraneteras and hence were never part of the

state Space ADYWEF- .

Ta 1llustrate the siruation for CALLa and functione, contraat

FUNCTION ARRMAX(U,N) FUNCTION INDMAX(D,N)
REAL U{N) REAL U(N)
ARRMAX=D(1) INDMAX=1
D0 10 Ia2,N DO 10 I=2,K
) IF(ARRMAX.LT.U{I))ARRMAX=1{I) TF{U{INDMAX) .LT.U{T)) INDMAXw1
10 CONTINUE _ 10 CONTINUE
RETURN RETURN
END END

Using the function IRDMAX within a subroutine submitced fo Jake dis
harple=za, whereas the upe of ARRMAX could be harmful if any of the T{I)
had a noenzero derivative with respect to the independent varisble.

Jake will fepue 4 zaro factor when ARRMAX 18 uaed, without ever
having seen the text of the function ARRMAX.

£} The sawe restrictioms apply tc a READ as for a CALL.

g) There are some restrictions involving standard (built=in)

functions. The following steandard fumctions are recognized and and

55

The following standard functions are not recognized but handled
correctly nevertheleas becaume eilther argumenmts or result are
integer:

FLOAT IFTX INT HMAX1 MINI AMAXO ISIGHN

DFLOAT TAPS MOD MAXD MINO AMINO IDIM
The fnliuwing standard Functions are not recognized and not handled
correctly:

ABS SIGN AMAX] AMINI

DABS DSICN DMAX! DMINI
Standard functions accepted by some FORTEAN compilers but not 1in

the sbove collection will probably not be hendled correctly.
h) Jake cannot handle "ovt-cf-bound" addresaing.

Moat FORYRAN dialects, Iin contrast to the ANSI 1966 standard, allow,
Cuf s

o= a{l0l)
vhare

COMMOR A{100), B{l0)
and the effect will be as if

U = B{1)
had appeared in the prograws Jake caunot handle this correctly for the
same reagon that EQUIVALENCE presents problems.

6.1.2. Jake Output

The output of Jake fs 1In FORTRAN, adhering to the ANSI 1966
standard st least aa much as the input does. TFor instance, on input it
1s acceptable to uee REAL*E ag a synonyn for DOUBLE FRECTIION; only the
latter form will appear oo outputs Oo Input it ia acceptable to gilve
Acllerieh strings in single gquotes, e.g. “BELLO’; on cutput 1t will
appear e#s SHHELLO.

Except for such paraphrasing of the dInput pregram, the major
tranaformat{ons €0 the dinput program occur at procedure entry, Bt
velevant assignment statements, and at procedure exit. The changes at
procedutre entry include shangea to the SUBRCUTINE starement, sdditional
declarationa of wvariables iuntroduced by Jake, and a number of

a6

relevant assignment statements, and at procedure exit.

The changes at

procedure entry Include changes to the SUBROUTINE statement, additional

declavations of wvariables
initializatione.

Perhape the beat way Eo convey an fdes of what Jake does
inpur program {18 ta show sone examplaes.

incroduced by Jaks,

and & number of

ko an

The firet example given haa

been paraphrasad in order to highlight certain imporeant fsaturss at the

expense aof othars.

The gecond and third exsmples are accurate in svery

detafl and have not been "ratouched” in gny way.

B
Example 1: y = N x,, retouched
im]

subroutine mult(x,n,¥)
reai x(n),y

construct d({y)/d(x} in grin}
y=l,
do I0 i=1,n

10 y=y*x(i)
return
end

ix Ex{i}=ix+i ixFn lyer
+ 10

1
[Y Tz V772 yer

The array contalning the product of factors

lefe 1ia YOR{LYGR).

initlalizes the factor storage spsace.

SUBROUTINE MULTJI{X,N,Y,GR,YGR,LYGR)
INTEGER N,I,LYGR

REALX (N}, ¥,GR{R) ,YGR({LYGR)

IX=1

CALL SEINIT{IX+N,LYGR)

CALL FMITO{D) ——ee

Y=1t
o I0 I=1,N
CALL EMITH@ﬁ ,@)
et

¥=Y*X{I)

CONTINUE (1)
CALL SPGRAD{YGR,LYGR, (D))
CALL SPOOPY{GR,TGR(CIEHL)),N)
o T—ex(1)

multiplying from the

SPINIT checks whether the array im large e=nough and
EMITE writes & factor to the

facror storvage epace, where 1 = 0(,1,2 indicatea the mmber of right hand
side variables in the factor. SPGRAD performs the factor multiplication
SPCOPY

The resulting

atarting from a unit vector with a one in the pomition for Y.
extracta the gradient requested from the array YGR.
TGR,
declaration of run-time array bounds in any other way; hence the program
calling MULTF will have to allocate space for YGR.

subroutipne han LYGK as parameters because FORTRAN does not allow

57

Exanple 2! ¥ = A%, unratouched.

10

20

s

= ..'r..q [

e

O

subroutine matmul(a,n,x,y}
real a{n,n), x{n), y(a), jac

construct d{y)/d(x) in jac(o,n)

do 20 i=1.,a
w={J
do 10 j=1,n
weurta (i, J)*x%{i)
continue
yli)=w
continue
return
end

LHHSRCHATIME ML L M, X, s JO0 ¥ a0, L Y il) -
b EnER B Toubod il Lol Red?E . LoI0C, BT, Iys ITY
FEAL oW e 2r e Yoo, JACO e, W YrAC By AL o, Tl
oL b Tl s T 2 TONR AL TS, TaRC e, TIRC 7 TAACS
Y tw -

Ta- 1ly+m d

LAl SPLMTT TR+ LY]

T a1 N

rod b i Tes 10

W
UL I L T I P [T
bl P EMITIC I A+do 0 Dol i

I S T AP S S I

COlL EMITSE L1 o5l 1)

WWFT N

CLINCE L REE

ol EMITES Ll o I¥+T

Fopohopl

VAT 1 ENLE

COp THLE

S TR

Loedfis M

NN L IC I " TS TR P B '

Crad 1o SPGRETN YO INE LY s T+ b0 RN LJR
CALL SFECOPY A TS, W Yl TE+1 1 W2
CET LEIE

FETUREN

UL

58

In thise example it zgn be seen how SPGRAD ia called in a loop once
for every row of tha Jacuhian.f SPGRAD and SPCOPY have some arguments,
suppresgad in exampla 1, chat jsintly keep track of addressing in JAC:
EJAC (maintaining a vov count, uvpdated in SPGRADY), IJAC (maintaining an
index in JAC, updated in SPCRAD and SPCOPY), and N (indicating how far
apart in oemory the cansecutive elemants of a row of JAC are). The name
af the wsubroutine is MATHUY, formad Ffrom tha original MATMUL by
appending a ™"J", then dropping the penultimste character to keep the
antire name within 6 charactara. Msuy compflera allow nemes of 7 or
mora characters, but all accept b-charaster names. Nota also thet Jake
hax introduced temporary varigblaes TJAC, TJACL, ..., TIACE, of which oaly

the firat ona 1 actually used.

Another interesting feature exhibited by this example is that oot
all REAL variables patrtake in the atate space. So the matrix a{n,n) i=
regarded as being outside the state space; hence no epace for a(m.,n) 1s
requited in “the array YJAC. The determinacion of what goes into the
state and what doesn’t is made by Jake through flow graph analysis. A
yariable v auch that eilther 3v/3x = 0 or 3y/3v = 0 can be proven through
flow graph analysis is called "irrelevant" and accorded no place in the
atate smpace. Assignment statements updating such variables v need not

anit factora either.

Bxample 3:

supr-outine Klool v, 2)
ral al 2wl 2)
Fealal =,odd
vonsthrucl I z Al 2wy i dd0 AL 5
21, 40
do 1O 1=1.3)
1 iFC =1 21 Q) z2=z#aloalxii))
ao 20 1=1. 32
if] w110) gato 2O
Zecwdwl i)
TEmEHED

SUEBRDOUTINE ELOCGK X, ¥, Z, 0D, ¥D0L, LYDD)
IMIEGER I, L¥DD, 100, RDE, LOD, SOE, TY, IX
RFEML {32 ¥z Alog)
POUGLE PRECISION Z2.00K 4. & 3, YDO[ILYDD), TOD, TOD1, TOD
#2, TODZ, TLRDA, TRLS, TDDS, TODY, TDDS
TYv=14
T% TY+Z=
Cal.l DPIMITOIX+S, LYDEH)
CALL DMITO 1}
Z=1. T
oo 2001 I-=1,2
IFCX(T 3y LE & 30TO 200Z
CALL DpeITae Ix+1.1 DOFAXLT 1,20
TOO:BE OG0T 3
CoLL DMITZL,. TODN 2. 2.1
2= Z#TOOD
02 CGNTIMNUE
HOD1 CONT IWUE
oG 2002 I-=1, 2
IFOYI I LT, 0 6070 20
CALL DMITZ201,.¥(1)+ DO, LY+, 2,1
2=7e¥i 1) ;
24 COMTIMUE
chll DMITICOL, 242,11}
2T
SO0 -CONT INUE
SO0 CONTINUE
ROD=-02
CALl. DPGRADE YDOD. LYDD, 1, ROL, 100D }
CAall DPCOPYCDOD, I00- 4. YOO IX+1 3 32
CALL DRCOPY(DD, IDO, 4, YOI{ IY+1), 2
RE TIMH
END

http://rt.il

&0

In this thicrd exsople, note the types of all wvariables and
axpressions. In particular, all arguments to DMIT are of coomistent
type. It fe aleo interssting to meee how flov of comtrol has been
revorked. This 1s wnecessary because FORTRAN allowe only 2 aingle

statement following a "logical IF."

The generation of names and statement numbera by Jake deserves an
addicfonal comment. Except for the subroutine names ueed by Jake, such
a8 "SPGRAD," no names or statement numbers uwsed by Jake will ever
interfere with names and statement numbers in the original programs 5o
the pame "IX" used by Jake 1o Example 3 would never have been generated
1f KO0 iceelf had contained IX. Jake will try small perturbaciona of
"IX" until ome is found that is not in KLOO.

6.2. Bov Jaks Worke

A mentioned earlier, the deacription of the innards of Jake will
be very brief. Jake conetisate of four passes;

1) the lexical preprocessor

2} the parser

}) the tree bullding and flow analysis pass

4} the differentiater and ontput constructing pass
To run the program produced by Jake, we need

5} the “run-time support* package
6.2.1. The Lexical Praprocecsor of Jake

The lexical preprocessor of Jake takes the input program and
reworks 1t to give it a recognlzable lexical structure. This ia
necesgary becsyse FORTRAN sttaches walgnfificance to the column a
character {g in; FORTRAN Jdoes not reserve 1cs keywords; FORTRAR deoes not
attach significance to spacea batween variables or {n the middle of
variables, or between keywords and variables; FORTRAR does not allow
patalng with limitsd look-ahead. In short, FORTRAN has nothing like the
lexicel structure one takes for granted in more recent, more decent
languwages. The lexical preprocessor, working on an entire FORTRAN

statement at a time, will:

&l

4} eliminate comments (but it keeps the CONSTRUCT);

by eollect the atatement flelda of a etatement and all (1f any)
continuatfon atatementsa following 1t inta a eingle Ifne of
arbiccary length;

c) agparace all lexemes from each other by epaces or special operator

aymbola;
4} tranalate keywords to lower case and varisbles to upper case;
&} rework statepent numbers.

An example follows.

input after processing
subroutine abe{d) subroutine ARCCD)
construct d{d)/d{e) in E(3) conztreuct CDWE W3]
COMMON/ g fe(3) commaon SGSE(3)
¢ this is a comment B=E{ 1 »E(2 WSORT{E(2)
=e{1)+a(2)*sqrt(do 10 I=s1.,%
he(3)) T0z20l=3
do 10 §=1.,5 10 continue
do 20 j=2 end
10 conktinge
end

The techniques wsad in the praprocessor are mostly ad=hoes, and not
particularty interseting. The only remarkable agpact of the
preproceasor 1g that it works, and works fast. The praprocessor shonld

prove uwaaful in ite own right.

6.2.2. Jake's Parser

In Htriking.éuntraﬂt to the preprocessor, thare 1a nothing ad=hoc
about the parser. The paraer was genarated by the YACC [JOR7S) pareer
generatar system running under Tnfx. Given a BHF deascription of the
FORYRAN grammar, YACC produces an LALR paraeer for FORTRAN which will run
when supplied with a lexical acanner. The praprocessor leaves the input
ptogran of Jake in a form that allows a lexical acanner and a BNF
grammar for FORTRAN to be writren. The grammar iz sgimplifiad by the
restricelon that COMPLEX conatants not occaer and by the fact that

62

ssveral stcatepents (such ae the FORMAT statement) need not be parsed
beyond the Adentifying keyword. Statementa, like PFORMAT, that are
simply Lo be carried along in Jake to be placed in the output without
change; atatements, morgover, that do not affect the sutcome of flow

L)

analysiz, are callead "carcyalonge." After reading the keyword, the
lexical acaenner aimply stores the rest of the statement, unanalyzed, in
a flle for later retrigval. Hence, no BNF needs to be speeified for
FORMATa, WRITE atatements, DATA statements, et Except for the
"earryalong"” featurs, the lexical scanner is fairly standard. It waa
modeled after ([COM?8]. The result of parsing the (preproceassed) Laput
program 18 a atring of tokens in a postfix representation of the program
tree. That tree i3 not actually built until the third pase. The tokens
in the postfix representation may represent arithmetic operations such
as +, =; they may repreaent variables {such tokens are parameterized by
an index inte a nametable containing tﬁe name of ths wvariable),
conptants (likewise); they may represent statemente, such aa COMMOM or
IF.

65.2.3. The Tree-building and Flowgraph Analysig Faasg

Dut of the postfix token string produced by the parser a program
tree is constructed: A aymbol table iz built at the same time. The
symbol table collecta declarative information for varlables: name, type,
dimensions, initialization. beclarations are not incorporated in the
tree. In eaaence, the program tree could be executed directly, at least
by oome kind of abstract machine. All nodes in the tree are elthet
binary, unary, or anull-ary. PFach token hae a Eixed "aricy" of 2, 1, or
0. The null-ary tokene comprise the leaves of the tree. Though the
leaves have no deacendants, they may carry additional information such
as pointers to symbol table entries, polnters to name table entries or
pointers into the carryalong file.

From tha program traa the flow graph is obtained, by breakiog wp
the tree in pleces correaponding to a single atatement (an IF statement
will get braken iato cwe statements) and associating each such atatement
wich & node in the flww graph. GOTOs, IFs, D[0s and statement labels
define the adges in the flow graph. Bach node 1lists the "left hand

61

side" variable that 1s affected by the statement (1f any), as well as
the right hand aide warlaklea that may affect the left hand side
varfabhle. The flow graph snalysis performed is itself fairly atandard
and atraipghtforwvard. The literature on flow graph analysia 1=
extenafve, See e.g. [FAN76]. The questions that Jake atempts to anewer
through flow graph analyeils are whether for a left hand side varlable w
in a certain node we can say for certain that Jy/3v = 0, and 4f nor,
whether for the right hand aide variablesa w in the sam= node we can say
for certain that Ow/dx = 0. The =erofpnnnib1y—nnpzern character of
dw/dx is propagated through the program much in the same way as the
uninittalized/possibly-initialized character of a variable is
propagated., The lacter i1s & standard example of a characteristic
determinable by flow graph anmalysis. The determinatfon about 3y/dv
being zero is essentially eimilar and can be visualized as an

initialization problem for the program running backwarda in tinpe.

Statements having & lefr hand afde that do=z not 1In any way
contribute to the Ffinal wvalua of y or cannot be traced back to the
valuea of x are called "irrelevant.”" Variabless that are given valuea in
"irrelavant" gtatementa only ara called iIrraelevant varibleg. Real-
valued variables that are found to he irrelevant throwgh flow graph
snalysis need not be considared ay part of the state gpace. Ro factors
nead be amitied for irrelevant etatemente. The atatement

v iz Rhp

evaen 1f relevant, need emir only 3v/iw and may omit &v/3p if flow graph
analyaia can prove that dpfax =« L S0 flow graph analyais and tha
detection of (possible) relevance allows & reduction in the state space,
the afze of the row vector that nesds to ba supplied, the mumber of
fartors to be emiread, and eavean the aize of rhe factors that are
emitrad. The tres, the syshol table, and relevaney information is
pasgad on to the lsat pasg.

6.2.4. The Differentfator and Dutput Building Pass

This pagsa haa to emit the factors and smet tharefore be able to
differentiate formslae. The approach to differaptiastion chosen in Jake
iz atmilar to thet in Warnar [WAR75], Josg [JO57h) and FEKedem [(EEDZ?7].

64

It consiate of splitting up more complicated formilas in eimple onews,
velng asaignwenta to newly created tempovary variables. This wary 2
eimple differantiation scheme auffices to create expressiona that have
cormon aubexpressiome of any complexity. The wauld-be common
subexpressions of the derivatives of the original expresaion show up aas
exactly those temporary variables, The simple differentiacion scheme
#lluded to ia one where we merely need to know the dJderivative of each
elenentary mathematical operation with respect to each of ita operands
and nething mora. Tf some of these operands are flagged as "irrelevant”
or "conetant," ec much the better. Becauae operations can bhe only
binary, unary or null-atry, it suffices to have three factor emslssion
routinea, EMITZ, EMITI, and EMITO. (Three more are peeded for double

]

precision gradiente/Jacoblans.)

In addirton to differestiacion, the fourth pasa has to be ahle to
penerate agddragpea @v[i] for addressing in the srars gpace. It hag ro
ha able to geperate declarations and Inftialisatione. All this
sagentinlly depands on the inforwation in the symbol ctable baing
sufficiene-=and that ia the responsibilicy af the previsus pass. Tha
foureh pass mmwar genarate programs taxt for performing faccor
maultiplicarion and axtraction of the deaired information, ome row at a
time, From the row veetor into the receiving variable. Generatton of
this pare of the sutput program is tremendovely esimplified by carsful
deaign of the protedurs interfaces (e.g. parameter listw) of SPGRAD and
SPCOPY.

49 the differentiation of relevant aselznment etatemente results in
a wodified program tree, we gtill need as part of the fourth pass a set
of bru:edure: that will print the tree in a form compatible with FORTRAN
rules. In addicion, it ia preferabla o have the putput appear in
human=readable forw, avolding names like THO)] in faver of the names
appearing 1in the Iinput program or at lesast names reminiscent of thosae.
S50 wmoet naweés created by Jeke are derlved from the name of the variable
recaiving the gradient/Jacobian. Creation of mtatement numbers by Jake
is aimpler and leas mophimticated. Priating the program traea

65

means avolding the extremes of p + p(i) * r {(which fa incorrect} and
{((p} + (g(i}))) + (r) (which im unduly hard to read). Jake acually
produces

(p + (1)) *r
but one can eaally conetruct expressiona whera Jake princs redundant

parantheses.

From a glance at the example outpute from Jake the impression may
have been gained that the real work is being performed in cthe
subroutines EMIT1, SPGRAD, etc., and not in tha zubroutine produced by
Jake. 1In a2 certain eense this 1g true. Barring emall detaile invelving
the argwment ltats of SPINIT and SPGRAD, the ouput produced by Jake i
atill compatible witk Josa® method. That is, the svbroutines EMITi, 1 =
0, 1, 2, can be writtem to perform right-to-left wnultiplication of
factors in the Joss way. 1If it ix true, then, that wuch of the work 1s
done by the aubroutinea EMIT], SPGRAD, etc., 1t does not follow that
these sgubroutines sare particularly hard to write or that they are
particularly long. Moreover, theae auhrouniines can be writeten once and
for all; ounly nioor changea will be required to convert from ¢one
computer to amother with different disk/I0 conventioma, For maximal
gpeed, subroutine SPGRAD can bs writtec in machine code.

The text of two subroutines, EMITZ and SPGRAD, wtll ba presented
tategrally on the naxt two pages. The othar avbroutines are aither too
similar or too simple to werit discussion hera.

66

2000

amlasion

ﬁﬁ?ﬁﬁ rfs

J:i;;}‘, 1fs

10

gubroutine em;tiixndl.deri.1nd2.der2.daruar]
inteser indl:ind2, Jepwvar, fsp

raeal doerl, derl2
tﬂmmanffu¢torfPFs{EQDﬂi:lfﬁlzﬁﬁG}JFSPwnfs

e f e f sp+b2

P e e LL 2000) zo0te 1D
ifst 2000 }=fzr
eaxll rPutfadl nfs, mFs, 4000)
§fzp=Q
Mg f S P2

I+at fup+l =1ndt

r¥3(Fap+l d=dert

ifs Fsr+v2 d-ind2

rful Fsp+l e der?

ifel newfze I=fsp

rfol nemfcr F=dapear

feponuwfar

return

end

67

10

B

30

fep fep
- |
oldsfp
- 2000

der | der | der | o £

1 2 var 1 The 1tiplicati
Tnd | Ind ' T | g, TorRcarien

1 |2 | J I i

L

subr-outipe srarad{varad, lvaradi idirarad, i aradi
inLezsaer raraed israd FsP oldfser, ferend, depuar
teal varadt Ivoerad) L .
o ens fachor/rfs(2000 L£50 2000 3 fsrend: nfsend
Jduw 10 =1, Tvrarad
varadl i)=
varad 44 =1
3 d=r ar-ad+ 1
i dea = arad
Frpr=fsrand
n¥s=nfsand

i Far ne D) oo 30D

ifi nfs w9 0} return

vzll selfaci nfe ris, 000)
Fopmjfed 20000

depvar=rtsl fze)

eldfsp=fsr—1

fer=i1fz{ fzr)

L=y aradl defFvar)

PF0 toea &) ante ZO

varadi depuar 3=0

ifl oldFse le f560) aoto ZO
ind=ifst oldfse})
varadl ind devaradl ind)+ Lérfsl ol dfce d
oldfzr=ol dfzp-1

aute A0

erid

7. CONCLUOSIONS

In thia chapter we summarize the results preeented in thie thesis
and point to future work. '

If piven a aubroutine Af(E, y) representing the function y = (%)
with T = {:1,..., x“}, the ayaten Jake described in this thesis 13 able
to produce a subroutine Af” representing the gradient of ¥y, Brfﬂf;

The table below ehows how Af’ produced by Jake cowmparss with
numerical differencing and wich Joms’ method.

algorithm time space
v = E(X) : Af T s
By!ﬁ; ! num. diff. | O(nT) 5
Ey!H; : Joss 0(nT) o{ns)
3y/9% : Jake 0T 045)

Jake representa a significant fwprovement over the work of Jess. For
the firet time a wethod for symbolic differentiation of slgorithme hans
been developed thet copstitutes a vieble and compecitive alternative to
numerical differencing. With a fast and reliable method of computing
gradients, optimization methode requiring gradlents bhecome nors
attractive. Jake may aerve to revive intecest in thie class of methoda.

In addition to gradiente, Jake can produce Jacoblame as well. Far
a Jacobian of size k * n with k substantially smaller than n, Jake 1s
significantly faster than Jouss and numerical differencing. Some ideas
that may ultimately lead rto faater Jacoblana for k = n have been put

forward in Chapter 5.

Producing gradisnta through differentistion by hand 18 exceedingly
error—prone., Humerical differencing is quite robust, but a DELTA must
be chogsen carefully, to balance trunmcation errar, round=off error and

69

the type of errvor dimcuesed In Chapter 3. Symbolic differentiatiomn 1=
reliable. No hand-eranslation is ilovolved. Symbolic differentiation is
alao expected to be quite accurate, though net much theory 15 available
in eupport of this and some cautlopary notes are gounded in Chapter 3.

T.1. Experisnce with Jake

Several testw have been run with Jake, though Jake has not yet been
applied to any resl=life problems.

The outpute presented in chapter 6 stem from actual rune sith Jake.
Many moére programes representing functions with known gredients were
glven toc Jake and the output wae found to be cortect in all caaea. In
neat of these casem, correctwesa was Judged directly from inspecticn of
the cutput sybroutine. Tn the remaining casea, the output was actually
run and the resultes compared with the knowe gredienta/Jecobiens. These
include the exemple algorithms of aection 7.l1.1 and 7.1.2. The
pubsections btelow gilve the results of timing tests performed on the
subroytinges produced by Jake. All rune were made on a PDP]1/35 with
software—emulated floating point arithmetic, the machine on which Jake
was developed. It should be wery essy to repeat the timing testa om

diffarent machines.
Jelel. Timing Tests for g Gradient

The stacdard deviation of 4 get of numbers {11 .e :“} wag choaen
a it]
29 an =xsuple. The etandard deviation 1e defined by

y - /“/:IEJ {xi-ilzfn, vhere ¥ = 121 xi_z‘n.

A subroutine "atdev" iwplementing this function was given te Jake. The

speted of the subroutine produced by Jake was compared to the speed of
Peedev” 1self, with the wpoed of & progrsm simulating Jose” wmethod for
obtaining the gradient, and with pumerical differencing. The resulta

for varicum n are shown ie the table Below., Rach column hae been acaled

70

independently of all othera to make the “atdev" time equal to ome.

gradient nwl(na50 n=100 n=150
atdey {reference) 1 1 1 I
numerical differsncing 10.8 33.6 93. 4
Joss 1044 34. 91.7 132.13
Jake 8.6 22.2 18.2 149

741.2. Tining Tests for a Jacobian

A& very pimple algorithm is uwsed a5 a rciming test for Jacobliana:
the algoriths matmul which computes ¥ = A% where A 18 an n ¥ n matrix
with conatant =lementa. All methods do indeed reproduce A as their

anawer 3;!35-

n=10 n=20
matuwual {reference) 1 - 1
mmerical differencing 3.3 14,4
Jake 2.5 30,8

T.2. Future ¥Work

Several things could be done tc make Jake a hetter tool; some

small, aome larger, and moet of them fairly obvious.

7.2.1+ The +:o Dperator

Aspigmments of the form u 2= w4+ a * v} are extremely rommon.
According to the theory of Chapter § they corrvespond to factors of the

forn

\Ju Bv

qull. [a]

When multiplying this factor to the § vector, we get in effect:
t = gl? ul;
1t # 0 then g3 ul := 0;
gid u) ;= gl3 w] + ¢t * 1;
gl? v] = g[3 v] + ¢t * a;

71

Thisz could ba written more efficiontly as:

t i=g[3d u);

1f t ¥ O then g[3 v] t= gla v] + t * a3
He can think of the latter as the factor multiplication operation
corresponding to a new type of factor, the factor emitted as a response
te a "+:=" asperator (cf. Algal £B) in contrast to tha wusual oparation
":e. S5 "u e ouw+a® v i3 regarded as "u +:= 2 % v and the factor

apleted 18
+
L LY

ula]

Incorpovating thie change intoe Jake would save many multiplications of a
number by one. Of zourse, such a chenge will not affect the O{T} time
bound 48 such, but it may decrease the value of the coefficient #f T in
0(T). For example, for the algoerithm
for { t=1 step ! wntil n do
y =¥ + x[i];
the nwmbar of muleiplications in the gradient would decreasa from 2n to

-
7+.2+2. Longer Factors

Chapter & shows that the factor emitted for
u ot= g+ g ®* oy

is not really

\ Bu v
dujl. | a

ag the pravicous auhsection sugpescta. Inatead, u = o + a * v ia
transformed into

temp = a * v}

u i= u + tewp;
with the corresponding factors

Vv \ 3u dtemp
emp [& |5 Su|l. | 3. |

72

Here another multiplication by one 18 introduced. It would not be
trivial to changa the differenttiation acheme to allow 1t to deal
directly with larger chunks of the expregeionm st the right hand eida,
but it wmight eliminate local (nefficiencies 1ike the one showm. Hot
only s multiplication by one 1s at nstake, but also the overhesad
asgzoclated with an additional procedure invocation.

7-2.3. BSubroutirne Calls

It would be desirable to extend Jake to smable it to cope with
arbitrary calle to arbitrary subroutinea as long as the text of theme

gubroutines is alao supplied to Jake.

The probleme assoclated with euch an extenaion are varied, but all
zeem technical rather than theoreticzl, COMMON blocks would becowme
iwportant, poeing problems much the same a3 EQWIVALENCE statements do in
the alngle subroutine case. Allowing recursive procedures would be
£til]l more difficult.

7.2.4. language Pxtensiong

Jake could he extended to recognize complex variables. Tt could be
extended to hapdle a larger mset of library funcclions, 1nc1ud{ng
functiona not Iin the FORTRAN sramdard, soch as tan(x) and Bessel
functiona. The CONSTREUCT could be extended to allow the resuleing
Jacobilan to be etored in eparae form according to eome user-supplied

arore function; the ayntax might be something like this;

CORSTRUCT D{Y)/D({X) USINC STORE(ROW,COL,VALUE)

7.2.5. Round-off Behavior

A better understanding of accumulation of round-off 1in wsymbeolic

differentiation 18 desirable.

7-2.6. PFaater Jacoblane

Chapter 5 has already dealt with varices ways iIn which the
cotattuction of Jacoblans might be speeded up. Rowever, more work needs
to be done before symbelic construction of Jecobians will be faster than

73 !

numerical differencing by an order of magnitude.

7+.3. Sumnary

Jake provides a usaful, flextble and efficient tool for algorithmie
d1ffaranttation. It producea gradienta that can be evaluated wmuch
faater than those producad by pravious methods.

A better tool can make a difference gquantitatively, by allowing
p=ople to 4o more= convenlantly and more cheaply what they were doing
already. A batter taool can aleo make a differsnce qualitatively, by
affecting certain trade-offe. It ir haped that Jake may help shift the
balance in functional ireration methods Iin favoer of those that make use

-

of partial derivatives.

74

REFERENCES

[BEL57] Bellman, Rdichard E., "Dynamic Programming”, Princeton Univ.
Press, 19%537. ’

{COM7B] Comer, DI., "MOUSE4: An improved lwplementation of the RATFOR
preprocessor”, Softvare-Practice and Pxperience, ¥ol. B, 1974.

[DIJ76] Dijkscra, Edigir W., "A Discipline of Programming”. Prentice-
Ball, 1975.

[TOHY5]) Jahmsom, 5.C., "YACC = Yet Another Compller-Compiler”, C.5.
Tech. Report 32, Ball Laboratories, July [975.

[T0576] Joes, Johan, "Algorithmisches Differenzieren”, Ph.D. Theaia,
ETH, Zuyrich, Switzerland, 1976.

[KAM76] Kam, JoB., Ullman, J., "Global Dwta Flow Analyada and Tterative
Algorichms®™, JACM, Vol. 23, Me. 1, Jan. 1976.

[KEEDY?] Ezdem, OGCetahon, YAytomeeic DMifferentiation of Computer
Pragrama™, Proe., 1977 Army HNumerical Anslysia and Computer
Conf,., Madiaon, Wac. 1977,

[KUC78] Fuck, David J., "The Structure of Computers and Computations”,
Yol. 1, John Wiley & Sons, 1978,

[STA7S) Standish, T., Harriman, D., FKibler, D. and Meighbors, J., "The
Irrine Program Tranaformation Catalogue", C.8. Dept., TU.C.
Irvine, Irvine, Cal., Jan. 1376.

[STR&9) Strassen, Volker, "Gaussian Elimination 18 not optimal™, Humer.
Math. 13, 1969. .

[WAR?5] Warner, D.D., "A Partial Derivative Generator”, ¢.5.:» Tech.
Repore 28, Bell Laboratories, April 19%75.

75

VITA

Born and ralsed in the Netherlands, Bevt Speelpenning recelved hia
Engineer’s Degree in Applied Mathematies from the University of
Technology at Delfec in 1974. His thesis project fnvoelved the desipn and
implementation of a system for the faak computer solution of agructural
analysie problems accovdiag to the finite ¢lement methed.

After smigrating to the United States he joined the Ph.D. program
in Computer Scisnce at Illinois 1in 1975 Hi®s wmajor professional
interaats are language processing and the design of large aoftware

syatems.

BIBLIOGRAPHIC TATA |1 Repom Na,
SHEET tou UIUCDCS-R-80-1002

3. Reclpient's Accension No.

4. Ticle ond Subricls

COMPILING FAST PARTIAL DERIVATIVES
OF FUNCTIONS GIVER BY ALGORITHMS

eport Uare
January 1980

T Auchoo{s}
Bert Speelpenning

& Performing Organicacion Rept.
Na. UIUCDCS—R—&E—IUEE

¥. Performog Orgunizetion Mame and Addirss
Departnent of Compueer Sciesnce

0. F'roieﬂf?ukﬂi'otk Unir to,

1. Comtract /Graoy No,

US Department of Energy
Waghington, DL

i i f ig U-C
g:i:ﬁ:s ;{ 2133111n° ? US ENERGY/
: EY-76-5-02-2381
L Sponsoning Ocgenization Nume and Address 13. Type of Rapon & Poyiod™
Covered

Ph.D. Thesis

i,

t5 Bupplemcncary Nocen

Fa

14. Abarracts

If the gradient of the funceiom v = f{x_,..., %2_} 12 degired whera £ 1e¢ given by
an algorithm Af{x, n, y), mest numﬂricai anzlyste will use numerical differencing.
This is a gsampling scheme that sppreximares derivatives by the slope of secants

in closely spaced points. Symhbolic methods that make f311 wee of the program

text of Af should be able te come wp with a beteer way to avaluacte the gradient

of f. The system "Jake" deseribed in this thesis produces gradients significantly
fazeer than numerical differencing. Jake can handie alporichms Af with arbitrary
flow of control, Measurements performed on one particular machine suggest that
Jake is faster than numerical differencing for m > 8, Somewhat weaker resulcs
have been obtained for the problem of computing Jaeohians of arbitrary shape.

7. Key Wordz and Documeny Analysis. 17a. D& sctiprors

partial derivatives - ,
Jacobians .
program differentiation

1?b. ldentfiera/Open-Ended Term=

¥Fle. COSATI Field/Group

Availability Stacement 1. Sﬂl:curi:y Cluszs {This 21 Mo, of i"":g.es
LporL)
2
vnliimited . wriry G less (Vhis . Frice
| P NCLASSIF]
L ELFEED

TR M T30 (20T LEC oMUY DC 4082%P T

