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1. INTRODUCTION 

There is a very peculiar situation within Numerical Analysis that 

has persisted for a long time. It concerns the problem of computing 

derivatives of functions conveniently, reliably and cheaply. One might 

have assumed that widely-used codes would exist that automate the 

process of taking derivatives of a function of given description 

yielding descriptions of the derivatives that execute fast when run on a 

computer. After all, the process of taking derivatives is well-

understood mathematically, and the problem of computing derivatives is a 

recurrent one in many methods requiring functional iteration. 

The reality is different. Several excellent numerical methods find 

very little use because they require knowledge of the partial 

derivatives of the function they are operating on. Numerical analysts 

in practice seem to avoid computing derivatives with a passion. Those 

who write down derivatives of complicated formulas by hand are almost 

universally driven to exasperation as the enterprise proves exceedingly 

error-prone. Where the computation of derivatives cannot be avoided, by 

far the most commonly used method is "numerical differencing." This 

method approximates a derivative by sampling the function in nearby 

points, computing the slope of a secant. By all conceivable standards, 

this method must be considered crude and primitive. The convergence 

rate of iteration schemes is often demonstrably lower if numerical 

differencing approximations are substituted for the true derivatives. 

Moreover, finding the gradient of a function f(xi,...,x ) through 

numerical differencing requires n+1 function evaluations. This might 

seem reasonable, even unavoidable. But it is not. People who have had 

the tenacity to write down formulas for gradients by hand have observed 

that there is considerable redundancy between computations for the 

different components of the gradient. It has been postulated that the 

hand-coded computation of the gradient of a formula f need not cost more 

than a small number of function evaluations independent of n. Such 

observations might be of limited value because they apply only to cases 

where the function f is given by a rather simple closed form formula. 
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All the same it seems obvious that one must be able to improve 
substantially on numerical differencing. Numerical differencing regards 
the function as a black box, as a monolithic entity and hence is blind 
to the structure of the function. Surely, a method should be able to 
derive some advantage from being given access to the entire text of the 
function it is asked to differentiate. 

How is it possible then that the situation outlined above has been 
allowed to persist for so long? It is not that symbolic methods for 
differentiation as such have been lacking; indeed, symbolic 
differentiation of expressions has been around almost as long as 
computers. Very sophisticated systems for symbolic algebraic 
manipulation exist, such as MACSYMA and FORMAC, and all offer facilities 
for differentiation of formulas as a matter of course. However, 
numerical analysts on the whole have not viewed these systems as 
adequate solutions to the problem. First, for most algebraic 
manipulation systems, a hand-translation is still required to get the 
output of these systems into a computer-executable form. Second, these 
systems are not geared to optimize entire gradient computations; instead 
they are geared to simplify individual derivatives; in other words, they 
are geared to satisfy the mathematician user, not the programmer user. 
Evaluation of the gradient will still take 0(n) function evaluations. 
Third, and most importantly, algebraic manipulation systems deal with 
formulas in closed form, and are not set up to deal with functions given 
by arbitrary algorithms. 

What is needed is a system as sketched in Figure 1. 

X 

-»■ 

y = = ?(x 

\ 1 
Af 
FORTRAN 

) ^ r 

t e x t . 
' 

Figure 1. Use of Jake 

Such a system will accept the text of an algorithm Af, embodying y=f(x) 
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and written in a suitable programming language, and construct from it 

the text of an algorithm Af' that computes the Jacobian -ĝ . In fact, 

such systems do exist, though none produce algorithms Af that can beat 

numerical differencing in terms of convenience, speed or memory 

requirements. 

An explanation for the fact that no methods exist to automate the 

process of taking derivatives in a way that can successfully compete 

with numerical differencing may be found in the increasing 

specialization occurring within Computer Science. The separation of 

Numerical Analysis from Software is virtually complete and few people 

care to bridge the gap between the areas. In Numerical Analysis, the 

notion of programs that produce programs rather than numbers is largely 

absent. For most numerical analysts the FORTRAN compiler is completely 

transparent, as if Created on the same day as the computer. There is 

little awareness of language processing as a software writing tool in 

the sense of the products we have come to expect from places like Bell 

Labs. Notable exceptions include user languages for physical modeling 

and for statistical computations. Conversely, people involved in 

writing software tools may have a tendency to write only such software 

tools that aid in the writing of other software tools, and although this 

opens fascinating avenues of auto-catalysis, the real usefulness of 

these tools must ultimately come from application to outside areas. 

Tools are means to an end, not ends in themselves. What seems required 

is not merely cooperation between software people and numerical analysts 

but efforts by people with a certain minimal understanding and interest 

in both areas. The effort invested in such hetero-catalysis could pay 

off very handsomely. 

1.1. Object of this Research 

We set out to design and implement a system as in fig. 1 that would 

be general, convenient to use, and fast. Generality pertains to the 

class of algorithms Af it accepts. Convenience of use depends, among 

other things, on the number of changes the user needs to make in his 

algorithm Af before it is acceptable to the system. Speed pertains to 
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the algorithm Af' produced by the system: Af' should produce partial 

derivatives of f much faster than numerical differencing. 

1.2. Major Results of this Research 

A full solution to the problem of compiling fast gradients has been 

obtained. For the problem of compiling fast Jacobians of arbitrary 

shape a partial solution has been found. This thesis describes a method 

and its implementation capable of producing algorithms Af that compute 

the gradient of a function f(xj,...,x ) in an amount of time equivalent 

to a constant number of function evaluations independent of n. The space 

requirements of the algorithm Af are modest. 

1.3. Outline of this Thesis 

Chapters 2 and 3 deal with the feasibility of algorithmic 

differentiation. Sections 2.1 and 2.2 explain the method of Joss 

[JOS76], who showed in his Ph.D. thesis how one can assign a consistent 

and useful meaning to the notion of "derivative of an algorithm". Joss' 

method cannot compete with numerical differencing, as is shown in a 

detailed comparison of the performance of both methods in section 2.7. 

However, Joss' method is a convenient point of departure for a 

description of our own method. 

The positive results of this thesis are detailed in Chapters 4,5 

and 6. Chapter 4 presents a new method for constructing fast gradients. 

Chapter 5 extends the method to the construction of fast Jacobians. 

Chapter 6 describes an actual compiler, Jake, implementing the theory 

presented. Conclusions, timing tests and suggestions for future work 

are presented In Chapter 7. 
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2. SYMBOLIC DIFFERENTIATION OF ALGORITHMS: PREVIOUS WORK 

An algorithm Af representing a mathematical function y=f(x) can be 

transformed by mechanical means Into another algorithm A f that 

represents the derivative y' = -ĝ . 

2.1. Warner, 1975 

For very restricted algorithms Af consisting merely of a sequence 

of assignment statements without any flow of control, this was noted and 

exploited by D.D. Warner in 1975 in a technical report from Bell Labs 

[WAR75]. His Partial Derivative Generator accepts a straight-line code 

program and compiles it into another that, when run, computes 

derivatives of the function represented by the original program. His 

generator rests on the use of the chain rule of differentiation. If the 

values of u, -g":, v and -^— are known (for a given value of x) , then 

3(u*v) * 3u . * 3v 
5x = v * - 3 x + u*-3x 

so that any assignment statement 

w := u * v 

in the original program may be replaced by 

dwdx := v * dudx + u * dvdx; 

w := u * v; 

This applies, more generally, to any known operator op(u,v) such as "+", 

"-", "/", "max": 

w := u op v 

is replaced by 

dwdx := -|°^ * dudx + -|̂ £ * dvdx; 

w := u op v 

where -g°-£ , -g°^ are known expressions in u and v. 

For unary operators a similar result holds. Any straight-line 

computation can be easily broken down into unary and binary operations: 

that is how compilers compile expressions anyway. Trivial rules, such 



as dcojjatant . o and -|f ° 1 complete the picture and also constitute the 

inductive base in a proof of the correctness of Warner's method, a proof 

in which the chain rule provides the inductive step. But Warner doesn't 

really prove the correctness of his approach. It is apparently obvious 

to him that consistently replacing statements like 

w := u op v 

by 

dwdx := -|ip * dudx + I T 2 * dvdx5 

w := u op v 

in a program without flow of control leads to the correct computation of 

the derivative. 

2.2. Joss, 1976 

An important breakthrough was the doctor's thesis of Johann Joss at 

ETH in Switzerland in 1976 [JOS76]. Joss is concerned with algorithms 

(using Algol as a vehicle) that freely use if-then-else, goto and for-

statements. The basic idea is again quite intuitive: for any given 

value of x, the program goes through a definite (and hopefully finite) 

sequence of assignment statements. That sequence of assignment 

statements, which might have been obtained from an execution trace, 

defines a straight-line program. For the particular value of x, the 

straight-line program would produce the same value for y as the original 

program. Moreover, we may reasonably expect that both programs produce 

the same value for y in some very small neighborhood of the point x. If 

this turns out to be true, we may differentiate the straight-line 

program. We know how to differentiate a straight-line program from 

Warner's work, and we know that his method does not radically change the 

structure of the original program; rather it is a mild expansion of it* 

All the original values are still being computed, and.in the same 

sequence as in the original program. Viewing any flow of control in a 

program as a way to abbreviate the straight-line program (and also as a 

way to lay down several different straight-line programs in one single 

notation) suggests the following approach to symbolic differentiation of 

algorithms: 



1) leave all flow-of-control statements untouched 

2) leave all assignments to integer variables untouched 

3) replace all statements assigning to a real variable by a pair of 

statements just as in straight-line programs. 

For example: 

A: w := 0; 

for i := step 1 until n do 

w := w * x + a[i]; 

y := exp(w): 

will be replaced by (assuming array "a" contains constants): 

B: dwdx := 0; 

w := 0; 

for i := 1 step 1 until n do 

begin 

dwdx := dwdx * x + w; 

w := w * x + a[i] 

end; 

dydx := exp(w) * dwdx; 

y := exp(w); 

for a given value of n, let's say n = 2, both A and B are equivalent to 

straight-line programs: 

A = w := 0; 

i := 1; 

w := w * x + a [ i ] ; 

1 := 2; 

w := w * x + a [ i ] ; 

y := exp(w); 

B = dwdx := 0; w := 0; 

i := 1; 

dwdx := dwdx * x + w; 

w := w * x + a[i]; 

i := 2; 

dwdx := dwdx * x + w; 

w := w * x + a [ i ] : 

dydx := exp(w) * dwdx; 

y := exp(w); 
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Here we see that Warner's method indeed underlies Joss' method, and the 

same applies for other values of n. 

In case the straight-line equivalent of a program not only depends 

on the value of some unknown parameter n but also on the particular 

value of x, a more sophisticated approach is needed to show the validity 

of the method. Joss proves in his thesis that the method outlined does 

indeed produce the correct results under quite general conditions. The 

most limiting condition in practice is the condition that computer 

arithmetic be exact. Real variables are assumed to hold real values of 

infinite precision. Chapter 3, on numerical accuracy, discusses the 

seriousness of the exact arithmetic assumption. What the assumption 

allows Joss to prove is that the transformed algorithm computes the 

correct derivative "for almost all" values of x. More precisely, there 

can only be countably many real values of x for which the derivative 

comes out wrong. Most of these values x are on the dividing line 

created by an ̂ f, as the value 0 In 

y := lĵ  x < 0 then -x else x . 

Such values very often correspond to points where the derivative 3y/3x 

does not exist in the first place, so strange answers in such points are 

generally wholly acceptable. 

Joss' thesis is remarkable for its clarity and brevity. The fact 

that it was written in German may have restricted its wider 

dissemination. 

2.3. Kedem, 1977 

Gershon Kedem published a paper in the proceedings of the 1977 U.S. 

Army Numerical Analysis and Computer Conference outlining ideas very 

similar to those of Joss yet not developed as far [KED77],. Kedem's 

paper appears to be the first publication in English showing the 

feasibility of symbolic differentiation of full-fledged programs. The 

implementation described by Kedem is not particularly impressive, and it 

is obvious that Kedem was not aware of Joss' thesis. Deserving praise 

for independently discovering differentiation of algorithms, and still 

providing the only English source of its description, Kedem nevertheless 
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is not the originator of the idea. Joss came first. 

2.4. Extensions to Gradients and Jacobians 

It is immediately obvious that methods to produce derivatives of a 

scalar function of a scalar variable can be extended to produce 

gradients and Jacobians. The gradient of a function y = f(x,,...,x ) is 
3f 3 f 

the row vector -g±r- »���, -ĝ —. The Jacobian of a set of functions 
1 n 

y i : f i ( x r - - x n ) 

ym ' ^ r - ' V 
3y. 

is the m * n matrix J with J.. = g . 

The extension of symbolic differentiation to a general function 

y = J(x) described by a subroutine F(X,Y,N,M) with X,Y vectors of 

arbitrary size N,M is important because most applications deal with 

functions of many variables. 

Warner, Joss and Kedem all considered such extensions: Warner, Joss 

and Kedem are all able to produce gradients; Warner and Joss also 

produce Jacobians; Kedem is able to produce first, second and higher 

order derivatives. 

Warner's system, though able to produce Jacobians, is not as 

powerful as it may sound: all subscripts in array references are 

restricted to constants so in essence they behave as ordinary scalars. 

Kedem and Joss allow true array indexing (computable subscripts) 

and hence need the additional differentiation rule: 

Jffjf = "if 1 = j then 1 else 0" . 

No theoretical problems arise from x being a vector. Joss does not 

mention gradients in the theoretical part of his thesis at all; 

gradients suddenly enter the description of his implementation. Instead 

of pairing each real variable u in the original program with a new 

scalar dudx representing the value -ĝ , he pairs each variable u with an 

array dudx[l:n] whose elements dudxfj] represent the current value of 

�gii—. Instead of replacing "w := u * v" by 

dwdx := v * dudx + u * dvdx; 
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w := u * v 
he replaces it by: 

begin 
for j := 1 step 1 until n do 
begin 

dwdxfj] := v * dudxfj] + u * dvdx[j]; 
end; 
w := u * v 

end 

Clearly, this works. For Joss, who seems primarily interested in giving 
a feasibility proof where no feasibility was known previously, such an 
approach is sufficient. Whether the approach is optimal is not 
immediately clear and this issue deserves investigation. 

2.5. Time and Space Requirements for the Algorithm Produced by Joss 

If the original algorithm Af(x,y), for a certain value of x , takes 
T time to run to completion with space requirements S, then the program 
Af (x,y,J) produced by Joss to compute the Jacobian J =■ 3y/3x will run 
to completion in 0(nT) time and require 0(nS) space, where n is the size 
of the vector of Independent variables x . 

2.6. Comparison of Joss with Numerical Differencing 

As mentioned in Chapter 1, numerical differencing is a widely-used 
alternative to symbolic differentiation of algorithms. Numerical 
differencing is based on sampling the original function in the 
neighborhood of the point x" and therefore does not even need to see the 
text of the algorithm Af(x,y), it merely needs to call it. 

In comparing numerical differencing with Joss' method, the 
following criteria are relevant: 

a) ease 

b) numerical accuracy 
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c) time requirements 

d) space requirements 

The comparison will be made for the computation of the gradient 

|y_ ... -If- from 

SUBROUTINE F(X,N,Y) 

REAL X(N),Y 

END 

2.6.1. Comparison: ease 

There can be no doubt that numerical differencing is easier: 

SUBROUTINE GRADF(X,N,Y.GRAD) 

REAL X(N),Y,GRAD(N) 

DATA DELTA/ ... / 

CALL F(X,N,Y) 

DO 10 I = 1,N 

X(I) = X(I) + DELTA 

CALL F(X,N,YNEW) 

GRAD(I) = (YNEW - Y) / DELTA 

X(I) = X(I) - DELTA 

10 CONTINUE 

RETURN 

END 

Except for the complication of choosing DELTA, this is basically all 

there Is to numerical differencing. Joss' method, or any form of 

symbolic differentiation, cannot compete with that. 
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2.6.2. Comparison: accuracy 

Chapter 3 is devoted to issues of accuracy. We will anticipate 

here our main conclusion: in the presence of round-off it is very 

difficult to predict whether symbolic differentiation will give more 

accurate answers than numerical differencing (with DELTA chosen 

optimally) for any given algorithm Af. 

2.6.3. Comparison: time 

If the original subroutine F(X,N,Y) requires T time for a 

particular value of X, Joss requires O(nT) for the gradient, and so does 

numerical differencing. 

2.6.4. Comparison: space 

Numerical differencing requires extra space only in the form of the 

gradient itself: S + n. Joss requires O(nS), as all real scalars and 

real arrays are accompanied by arrays and matrices to hold the n 

derivatives with respect to x of all values computed. 
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3. ACCURACY CONSIDERATIONS 

The thrust of this thesis is to present a method of producing 

symbolic derivatives that represents an improvement over previous 

methods in terms of speed and of space requirements. In developing the 

new method (described in the following chapters of this thesis), no 

explicit consideration was given to issues of accuracy in the presence 

of round-off. After the method was developed, it was easily seen that 

in terms of accuracy it mirrors the method of Joss from chapter 2 in 

many relevant aspects. Joss, in his thesis, touches on accuracy 

considerations for his method, but mostly by implication. 

It is outside the scope of this thesis to develop a theory of the 

numerical behavior of symbolic derivatives under round-off. This is not 

intended to convey the impression that numerical behavior under round-

off is somehow not important. Numerical behavior is one of several 

factors that affect the user's confidence in the answers produced by a 

certain method. Fortunately, it is possible to address the issue of 

user confidence in a meaningful way even without having a theory of 

round-off. Other problems than round-off are associated with symbolic 

differentiation and they may well be the bigger problem at this point in 

the development and acceptance of symbolic methods. 

To be used, a program must produce answers in which the user can 

have some confidence. In the scientific and cultural climate of today, 

people are quite ready, initially, to accept answers from a computer 

program, but a small number of unpleasant surprises with the program 

will turn the same people sharply against that program. One does not 

make a method stronger by hiding its weaknesses. 

Symbolic differentiation of algorithms does have some pitfalls in 

the sense that it can be misapplied to produce outrageous results. As 

these pitfalls can be avoided rather easily provided one is aware of 

their existence, it is important to point out where these pitfalls lie. 

These pitfalls affect accuracy of the results in a more dramatic way 

even than round-off and therefore this issue belongs in this chapter. 
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3.1. The Algorithm and the Function it Represents 

An algorithm Af ready to be differentiated does not arise in a 
vacuum. Rather, the algorithm was written to represent or approximate 
some mathematical function f. The algorithm is secondary to the 
mathematical function and there may be discrepancies between the two for 
a variety of technical reasons. For one, the mathematical function f 
may be known only implicitly, e.g. as obeying a functional equation 
G(f)=0. Such a function can often be represented by an algorithm only by 
use of iteration. Second, the mathematical function f may be known 
imperfectly, e.g. only on a subinterval or by its values in certain 
points. The algorithm Af may be using some interpolation technique to 
provide an approximation to f on the entire interval of interest. 

A key assumption of symbolic differentiation of algorithms is that 
not only Af approximates f, but (Af)' approximates f as well. 

Symbolic differentiation uses the text of the algorithm Af as its 
sole source of knowledge about the function f. So the best one can hope 
to achieve with symbolic differentiation is to obtain the exact 
derivative (Af)' of Af. In what respect is this different from any 
other computer method such as numerical differencing? At first glance it 
would appear that numerical differencing has an even bigger handicap, as 
it merely samples the algorithm Af at some points but is never allowed 
even to Inspect its text. Yet the following graph suggests that the 
situation is not nearly as simple as that: 

•»■ x 

If Af approximates f through a step function, (Af)' will be zero 
("almost everywhere") no matter how closely Af approximates f. In 



15 

contrast, 
Af(x+6) - Af(x) o 

may be fairly close to f provided 5 is large relative to the step size. 
A large <S places a lower bound on the truncation error and hence will 
not give a very accurate result, but most likely the numerical 
derivative will be in the proper range, whereas symbolic differentiation 
misses the true derivative of f altogether. 

The prevalence of approximations that achieve quite small uniform 
error bounds and that do so by "tacking" seems to confer a rather 
"unfair" advantage to numerical differencing. Such advantage for 
numerical differencing in terms of accuracy is by no means universal, 
however. It is easy to give examples where numerical differencing is way 
off the mark whereas symbolic differentiation is exact, e.g.: 

JT 

, , ., f ^ 

x x+6 -*■ x 

In this example, Af and the numerical derivative are the same as before. 
But now the step in the function Af is not merely a technical artifact, 
the step is there because the function f itself happens to have just 
such a step. 

3.2. Is Joss' Theorem Moot? 

Joss' main theorem deals with an algorithm Af, its symbolic 
derivative (Af)' and a real Interval I for x on which both algorithms 
are being considered. Under the assumption of infinite precision 
arithmetic, the algorithm Af defines a function F. In contrast to the 
previous section we are not considering the function f that Af was 
intended to approximate, we are now considering the function F that is 
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defined by Af as is. Instead of somehow bounding the error in (Af)' 

seen as an approximation of f, can we obtain at least a statement about 

the accuracy of (Af)' seen as an approximation to F' ? 

Joss' result is that indeed such a statement can be made, and in 

particular, that the following can be proved: 

F' = (Af)' "almost everywhere" on the interval I. 

The phrase "almost everywhere" means that there are at most countably 

many points where the equality does not obtain. Another formulation of 

the same result is that F' and (Af)' are equal in the L£ norm. 

The problem with Joss' theorem is not that its proof is Incorrect 

or faulty but rather that it is not applicable to any real machine. 

Real machines do not meet the requirement of infinite precision 

arithmetic. The damaging fact here is not so much the presence of 

round-off in real arithmetic per se, but rather that the representation 

of real values in the memory of the machines must needs be finite. In 

the interval I for x on the real axis, only a finite number of points 

are representable within the machine. Those values comprise a set M of 

measure zero. So Joss' theorem allows that symbolic differentiation 

produces values that are correct (i.e. equal to those of F') for all x 

in I except for those values of x that are representable in the machine! 

In other words, Joss' theorem proves nothing about the accuracy of the 

values of (Af)' evaluated (even without round-off) in the points x of M, 

and it is only these values that are accessible at all and hence of any 

practical significance. 

The next two sections show example algorithms where indeed strange 

(probably even counterintuitive) results are obtained. On closer 

analysis, however, neither result provides a counterexample to Joss' 

theorem and the algorithms are very contrived indeed. The examples 

given are intended as a warning. 

3.3. First Example: random search 

In the procedure below, random() is assumed to be a perfect 

pseudo-random generator, producing numbers between 0 and 1. 
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procedure slowid(x,y); 

begin comment 0<x<1; 

L: y:=random(); 

if( x̂ y ) goto L; 

end 

It is not claimed that the procedure slowid is a practical way of 

computing the function y=x : it may be rather slow. In fact, it is not 

obvious that slowid will converge for all x in the interval from 0 to 1. 

Convergence for all x would place a very stringent burden on the random 

generator. Yet if convergence is only to be guaranteed for values of x 

representable in the machine, it is not hard to show how the random 

generator could be written to make slowid converge for all representable 

x. Any process that would cycle through all representable values in the 

interval would do instead of the random generator. 

In any event, it is not entirely unreasonable to say that slowid 

represents the function y=x. At the same time, (slowid)' = 0 , not 1, 

for all x. 

3.4. Second Example: table lookup 

Assume that floating point numbers of the machine are represented 

by a word of w bits. Assume that the memory of the machine has more than 

2W words. The first 2W words of memory can be used as a table, 

implementing any conceivable function y=F(x) as follows: 

1) take x, examine its bit pattern (w bits). 

2) use the bit pattern as an address into the memory. 

3) retrieve a word of w bits from the memory at that address. 

4) return the retrieved word as the result y. 

The code for steps 1-4 is the algorithm Af and can be thought of as 

stored above the table in the memory. 

Symbolic differentiation again produces zero for every floating 

point number x, regardless of what function was stored in the table. 
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3.5. Summary 

A reader for whom the results obtained for the functions in the 

previous sections seem intuitively incorrect is advised not to use 

symbolic differentiation of algorithms. However, it is not particularly 

hard to change one's perspective such that the results obtained for 

those functions become intuitively correct. This is perhaps more a 

reflection on Intuition than on symbolic differentiation as such. 
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4. COMPILATION OF EFFICIENT GRADIENTS 

For reasons that will become clear soon, this chapter focuses on 
gradients rather than Jacobians of general shape and size. Chapter 5 
will generalize the results of this chapter to compilation of efficient 
Jacobians. 

In Chapter 1 it was argued that symbolic differentiation of 
algorithms as developed by Joss could not compete with numerical 
differencing and Chapter 2 showed this in more detail. To make symbolic 
differentiation competitive one must improve significantly on the 
programs produced by Joss' method. One approach which appears very 
promising is to replace Joss' compiler, which is a one-pass non-
optimizing compiler, by an optimizing compiler Incorporating all the 
latest program optimization techniques and more. In the early stages of 
the research leading to this thesis, much time was devoted to pursuing 
the optimizing compiler approach and it was found to be not ultimately 
successful. The next section will outline this approach and suggest why 
an optimizing compiler staying within the framework of the "Joss 
interface" should not be expected to effect significant speed-ups for a 
significant class of algorithms. After that, we will turn to positive 
results. 

4.1. The Optimizing Compiler Approach to Improving Joss' -Method: its 
limits 

First we show a example algorithm A that allows speedup by a factor 
of 0(n) over Joss. 

A: y := 1; B: g := 0; y := 1; 
for i := 1 step 1 until n do for i := 1 step 1 until n do 

y := y * x[i] ; f 8 '■= t * x[i] 
< + y * un i t ( i ) ; 
Ly := y * x[ i ] ; 
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C: y := 1; D: y :- 1; 
for 1 :=■ 1 step 1 until n do for i := 1 step 1 until n do 

y := y * x[i]; 
for 1 := 1 step 1 until n do 

g[i] := y/xti]; rp := 1; 

r i p [ l ] : - y; 
\^y :» y * x[i] ; 

for i :■ n step -1 un t i l 1 do 

' g [ i ] : - l p [ i ] * rp ; 
rp := rp * x [ i ] ; C 

Algorithm A computes y ° n xt. Algorithm B computes g = 3y/3x 
i°l according to Joss in 0(nz) time. The vector notation in algorithm B 

abbreviates a loop over the n components of the vector. Algorithm C is 
the first indication that an 0(n) algorithm might be found for g. It is 
clear that -%£- = IT x4 so it is tempting to try -%£— = ̂ — . However, 

dxi l̂fi J - xi xi 
algorithm C will fail if any x^ is zero. Algorithm D avoids any 
division and still realizes the 0(n) time bound of algorithm C. 
Algorithm D is based on the identity 

-x&— = l<*Ti where 1., = II x. and r., = II x... dxi 1 x 1 j<i J 1 j>i J 

A question worth considering is whether D could have been obtained 
from B by an automatic method. Indeed, B can be transformed into D by 
steps leaving the semantics of the algorithm invariant. The steps can 
be constrained to be those in the Irvine Catalogue [STA76], for 
instance. However, the path of algorithms and transformations between B 
and D is a very tortuous one, and it is very hard to see how an 
automatic procedure would find that path even if it "knew" that it was 
supposed to end up with algorithm D. Certainly, one would not want to 
rely on theorem proving techniques for any real-life size problem. It 
should also be remarked that D cannot be obtained from B by merely 
exploiting sparsity in g or in unit[i]. That only serves to bring down 

2 2 the operation count from n to n /2. Rather, D involves a rearrangement 
of the entire loop structure. The next question is whether perhaps D 
could have been obtained from A directly, by some automatic method. Or, 
rather, whether such a method can be general enough to handle a large 
class of program structures of interest. Here one thinks of a repertory 



21 

of special techniques for special loop structures, extended wih a set of 

transformations that map more general loops into those special 

structures. Typically, one has no hope of recognizing entire program 

structures, but one may have the hope that it proves sufficient to focus 

merely on innermost loops, the rationale being that speeding up 

innermost loops by 0(n) will speed up the entire program by the same 

order of magnitude. This approach has been used quite successfully by 

Kuck and collaborators [KUC78] in the context of optimizing programs for 

execution on parallel machines. 

A theory for so-called "scalar recurrences" was developed as a 

generalization of algorithm A, but there is no justification for 

believing that local optimization such as optimization of innermost 

loops will achieve much for general algorithms. Consider'algorithm F 

below. It computes y = det(X) where X is a square matrix of size N. 

Algorithm F itself requires 0(N ), while computing the gradient 

3y/3X[i,j] for 1 = 1, ..., N, j = 1, .., N according to Joss requires 

0(N ). Yet optimizing this by hand will give a method that is 0(N3), 
2 2 

hence we save a factor 0(N ). As "n" equals N here, the savings are 

0(n) as before. Nothing like an optimization of the innermost loop of F 

would accomplish such savings. If any doubt as to this point remains, 

we can add partial pivoting to F, and see how that destroys any 

possibility of giving a closed form characterization of what the inner 

loop does, let alone of how to optimize it. 

F: y := 1; 

for 1 := 1 step 1 until N do 

(y := y * X[i,i]; 

for j := i+1 step 1 until N do 

mult := X[j,i]/X[i,i]; 

v for k := j step 1 until N do 

^ I X[j,k] := X[j,k] - mult * X[i,k]; 

To optimize 3y/3x by hand, we may use the easily derived formula 

9 d f £ W = det(X) � X-1 

/ 
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Both det(X) and X"1 can be computed in 0(N3) and multiplied in 0(N2). 

This results in an 0(NJ) algorithm. Note that algorithm A can be 

regarded as a special case of algorithm F with X a diagonal matrix. 

4.2. Compilation of Efficient Gradients: an outline 

We now turn to the major positive results of this thesis. It is 

indeed possible to achieve a speed-up of 0(n) for gradients over Joss' 

approach with a method not intrinsically more complicated than his. To 

show this we have to view his method from a much greater height and with 

far less concern for local efficiency than the optimizing compiler of 

the last section did. We have to abstract and focus on what all the 

examples of the last section and indeed all programs from which to 

produce gradients have in common, and that is that they take the 

information contained in n numbers x[l],..., x[n] and from it produce a 

single scalar value y. We will show that Joss' method is algebraically 

equivalent to a sequence of matrix multiplications, the last one of 

which does not involve a square matrix but a row vector. It is easy to 

see that if those matrices were full, multiplying those same matrices in 

a different sequence would lead to identical results but 0(n) faster. 

It will be shown that the extreme sparsity of the matrices (i.e., the 

matrices have mostly zero entries) can be exploited in a meaningful way, 

and the resulting method is 0(n) faster than Joss without making 

excessive demands on memory space. 

4.3. Joss' Method Viewed as j| Sequence of Matrix Multiplications 

The theory will be presented using an example algorithm. As usual, 

x represents the independent variables, y is the dependent variable, and 

3y/3x is to be constructed. 

for 1 := 1 step 1 until n do 

begin 

t := 0; 

for j := 1 step 1 un t i l n do 

t := t + a [ i , j ] * x [ j ] ; 

z[j] := t ; 

end 
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y := l; 

for i := 1 step 1 until n do 

y := y * z[i] ; 

The method of Joss attempts to keep the matrix J up to date at all 

times: 

J = 

3xj 

"35H 

9 xn 
"3x7 

3t 
3Xi 

3x< 

"3x1 

9xr 
"3x~ 

3t 
"3x 

n 

9z, 

"3x7 

9 zn 
"3x7 

"3x7 

3z, 

~3x~ 

3z. 
"3x 

n 

fe 

The variables making up the rows of J: x, t, z, y comprise the "state 

space" S. A point in the state space characterizes the values of all 

real variables in the program. Any time during execution of the 

program, the state of the memory is given by a point in the state space, 

and J will contain its Jacobian. When an assignment statement such as 

y := y * z[i] is executed, the point in the state space moves, 

and the matrix J must be updated. Joss generates the extra statements 

for jg := 1 step 1 until n do 

ygtjg] s- yg[jg] * z[i] + y * zg[i,jg]; 

This can be abbreviated as: 

yg := yg * z[i] + y * zgfij; 

Due to the chain rule, the right hand side of this statement is linear 

in yg and zg[ i j, and therefore it is possible to describe the update to 
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J as a matrix product: 

i i i i 

l ly l l 

" z t i ] " 

o ' \ 

l ly l l 

o 

z t i ] 

* " z [ i ]
M 

l ly l l . 

J' F 

The matrix F, called a "factor", is determined by the partial 

derivatives of the original expression y * z[i], which partial 

derivatives are placed on the row corresponding to the left hand side 

"y" in the state space, in the columns corresponding to the right hand 

sides, "z[i]" and "y", in the state space. 

It is important to observe that the factor F is a Jacobian matrix 

in its own right. F is the Jacobian of the transformation S -> S that 

moves points in the state space according to y := y * z[i]. We can see 

this readily by introducing some abbreviations and consistently using 

accent marks to distinguish new values from old values. J is 

abbreviated as 

\3j 

3x" 

3t 

3z" 

3y|_ J 

, or even as 3(x, t, z, y)/3(x) 

Similarly, J' is abbreviated as 

\ 3x 

3x' 

3t' 

3z"' 

3y' 

, or as 3(x', t', z', y')/3(x) 

Now F i s seen to be 

\ 3x 3t 3z 3y 

3x"' 

3 t ' 

3z"' 

3y ' 

, or 3(£', t', ?', y')/3($, t, I, y) 
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The "deep truth" underlying the statement J' := F * J now shows up as 

3(x',t',J',y')/3(^):-3($',t',z',y')/3($,t,J,y)*3(x,t,z,y)/3(x) 

So far, we have looked at a single assignment statement, and the effect 

it has on J. Now we must look at the effect of a whole sequence of 

assignments on J. From Joss' work we know that it is sufficient to 

consider straight-line code, the straight-line code being thought of as 

deriving from an execution trace. 

It should be clear that 

Jfinal = Fs * Fs-1 *�*�* Fl * Jinitial ' 

where the factors Fj,..., F have been indexed by the order in which the 

assignment statements that gave rise to them were executed. 

In the equation given above, Jjnj_Mai I
s simply: 

\_3x"_ 

3£"l" 

3t 0 

3z 0 

8y _0_ 

The final result ̂ is not Jfinai>
 D u t a single row extracted, from it: 

3(y)/3(x) = g * Jflnal .where g - (0 0 0 0 ... 0 1). 

Summing up we have 

3(y)/3(x) = | * F8 * F s - 1 *...* F2 * Px * J i n i t i a l 

In Joss' method, this matrix product is evaluated from right to left. 

Though the factors Fi,..., F must of necessity become available in that 

order, it is not necessary that they be used in the same order. Matrix 

multiplication is associative, and it may turn out that a different 

order of multiplication is faster. Indeed, we will show in the next 

section that multiplication from left to right is an order of magnitude 

faster: 

3(y)/3(x-) := ((...(I * Fg) * F^)...) * Fj) * J l n l t l a l 5 
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Any order of multiplication different from the order of generation of 

the factors raises the issue of storage space for the factors. For 

every execution of any assignment statement a factor becomes -available 

(not merely once for its presence in the program text), so at first 

glance the storage problem appears truly overwhelming and this would 

seem to rule out any change In the multiplication order. However, it 

will be shown how the factor storage problem can be solved very neatly, 

resulting in a method that typically requires far less memory space than 

Joss' approach. 

4.4. On the Economics of Matrix Multiplication 

We showed that Joss' method is algebraically identical to a 

sequence of matrix multiplications 

8 * Fs * ��'* Fl * Jinitial 

evaluated from right to left, where both g and ^initial a r e merely 

slices of the unit matrix. All factors F, are square, m * m, where m is 

the dimension of the state space. The matrix g is really a row vector, 

1 * m; the matrix ^±n±t±ai Is m * m. 

This section will show that evaluating the product from left to 

right is 0(n) faster. First, the two ways of evaluating the product 

will be compared using the assumption that all matrices F^ are full. We 

know, of course, that the F., matrices are not full at all; we must then 

verify that the comparison still holds true given the special structure 

the factors possess. The reason we bother making the comparison for 

full matrices at all is its great heuristic value. 

Multiplying a full p * q matrix A with a full q * r matrix B 

results in a p * r matrix C in p * q * r operations. This assumes that 

the standard algorithm is used: 

Cij = I hk Bkj 

Clever algorithms for multiplying square matrices such as Strassen's 

[STR69] are left undiscussed if only because we cannot subsequently 

generalize the results to sparse systems. 
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The matrix product 

m 
m 

T 
m * * m 

m n 

* m 

initial 

if evaluated from the right, has intermediary results all of size m * m 

and hence costs 

s(m n) operations, 

ignoring the last "multiplication" with g. Evaluating the same product 

from left to right, all intermediary results have size 1 * m and hence 

we chalk up 

2 
s(m ) operations, 

this time ignoring the last "multiplication" with Jinitial* Clearly, 

left-to-right is 0(n) faster. 

Now we turn to the analysis of the left-to-right multiplication 

exploiting the very special structure of the factors F. 

Consider the product 

g0 " 8 *
 F

s **��*
 Fl 

evaluated as 

s- 8 

g^, := gj * F. and focus on a particular product 

g := g' * F 

where F is a factor associated with an assignment statement. Take as a 

typical assignment statement the following: 

c := expr(d,e,f); 

Here, "expr" is any expression using +, -, *, / and standard functions; 

the left hand variable c and the right hand variables d, e, f may 

actually be subscripted. "Expr" may involve additional variables, e.g. 

integer variables, as long as they are not in the state space. What 

does F look like? It differs from the unit matrix in at most four 
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places. These are all in the row corresponding to c. The column 

positions of those changes are those corresponding to c, d, e and f. 

V 

Jacobian factor associated 
with c:= expr(d,e,f). 

9expr 
9e 

Now g = g' * F can be computed as follows: 

for i := 1 s 

gtU :-
t := g["c"]; 

tep 1 until 

g'Ul; 

if t t 0 then 

begin 

g["c"] 

g["d"] 

g["e"] 

g["f"] 

end 

:= 0; 

:= g["d"] 

:= g["e"] 

:= gt"f"] 

+ 

+ 

+ 

n 

t 

t 

t 

do 

* F["c", 

* F["c", 

* F["c", 

"d"] ; 

"e"]; 

"f"]; 

Here, "c", etc., has been used as a convenient notation for the row 

number corresponding to variable c in the state space. 

A further simplification is possible if g and g* are made to share 

the same space in memory. Surely, once g is computed, g* is no longer 

of interest. Surely, too, the above algorithm allows g and g* to share 

space; indeed, it becomes faster. 

g := g * F can be computed as follows: 

t := g["c"]; 

If t / 0 then begin g["c"] 

g["d"] 

g["e"] 

g["f"] 

end; 

= 0; 

= g["d"] + t * F["c", "d"] 

= g["e"] + t * F["c", "e"] 

= g["f"] + t * F["c", "f"] 

We have now arrived at the conclusion that the time required to 

multiply a row vector with a factor matrix is independent of n. The 
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time required is easily bounded by a constant times the time required 

for evaluating the right hand side from which the factor was derived. A 

bound of the same form, again independent of n, can easily be obtained 

for the time required to obtain the few nonidentity elements of the 

factor matrix at the time the original statement is executed. 

These bounds should be contrasted with Joss' own method, which 

entails expanding every assignment 

c := expr(d,e,f) 

into an array assignment requiring 0(n) operations: 

pcpd := 3expr/3d; 

pcpe := 3expr/3e; 

pcpf := 3expr/3f; 

for jg := 1 step 1 until n ̂ o 

cg[jg] := pcpd * dg[jg] + pcpe * eg[jg] 

+ pcpf * fg[jg]; 

c := expr(d,e,f); 

4.5. The Problem of Factor Storage 

If the proposed technique of carrying out the multiplications from 

left to right is to be viable, a solution must be found to the problem 

of fast storage and retrieval of factors without requiring an excessive 

amount of memory to do so. 

First, it should be remarked that the factors have very few entries 

worth storing explicitly. The factor associated with 

c := expr(d,e,f) 

can be easily reconstructed (but never needs to be; what counts Is that 

it is determined by it) from the three values 

3expr 3expr 3expr 
3d ' 3e » 3f 

plus the values of four integers giving the row corresponding to c, and 

the columns corresponding to d, e, f. In fact, 

\ 3d 3e 3f 

: F 3c 

is a convenient notation for the factor F, as the next section will 
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show. 

Even after each factor is seen to involve only a small number of 

items to be stored, it is still not possible to give an a priori bound 

on the amount of storage required: the number of factors s depends on 

the number of assignments (involving variables in the state space) that 

is actually executed. In Joss' method, storage requirements are given 

by m * n; in the new method storage requirements can only be bounded as 

a constant times the running time T< of the program. The essential 

difference between the two situations is that Joss' storage must be 

random-access whereas large portions of the factor storage may be on 

secondary store such as disk or "backspace-able" tape. The way the new 

method accesses the factors is strictly like a stack: last in-first 

out, with no factors going out before all factors are in. Hence a block 

of central memory can be set aside as a buffer. Factors are put into 

the buffer when they are generated; If the buffer threatens to overflow, 

it is written out to disk. Conversely, on multiplying the factors, they 

are read from the buffer; if the buffer becomes empty, the previous one 

is read in from disk. 

With this organization, the number of disk accesses D is related to 

the total storage requirement S (linked linearly to the running time T 

of the original program) and the buffer size B as follows: 

D = 2S/B (disregarding rounding) 

As the cost of disk access is largely dependent on D and only very 

weakly dependent on S, it should always be possible to minimize disk 

activity by Increasing the buffer size. Yet essentially there is no 

minimum buffer size and so the minimum memory requirements of the method 

are very low. There is full flexibility for achieving a suitable 

trade-off between disk activity and memory use. In any event, the costs 

are proportional to T, not nT as In Joss. It should be stressed that in 

addition to the buffer of size B, the method only requires room for the 

g vector, size m. It will be recalled that m was the dimension of the 

state space and therefore bounded by the memory size required by the 

original program. To sum up, the method requires about twice as much 

space as the original program plus whatever you can spare for a buffer, 
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with the obvious trade-off between buffer size and disk activity. In 

contrast, Joss uses (n+1) times the space of the original program. 

4.6. An Interpretation of the Method not Based on Joss 

Useful as it was to derive the new method from Joss' method because 

it obviates proving that flow of control can be ignored to the extent 

that it was ignored, it is also very convenient and instructive to have 

an interpretation of the'method based directly on the chain rule. This 

- interpretation involves the row vector g. The value of g["v"] for some 

variable v, is the "current" value of 

3y/3v. 

Consider the straight-line code corresponding to. an execution trace of 

the program and focus on the last part of it. As an example, let the 

last three statements be: 

s-2: w := 2 * z[j]; 

s-1: u := v + z[i] * w; 

s: y := u * v; 

We introduce the notation "=©" as in 

y =§ u * v 

to mean that the final value of y is a function of the values of the 

variables of the right hand side u,v , as they were just before 

statement s was executed. 

The function ofj =fl u * v has a gradient: 

3y/3x =§ fsu * 3u/3x + fsv * 3v/3x 

As "/3x" is common to all terms, it may be left implied giving 

3y =§ fsu * 3u + fsv * 3v 

Here fsu, fsv are numbers from the factor matrix F , given by: 

fsu =§ v 

fsv =§ u 
i 

Statement s-1 is similarly characterized by 

u §= £ ^ v + z[i] * w; 

3u §= &-$ f s - lv * 3v + f s - l z [ i ] * 3z[i] + fs-lw * 3w 
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Consider now the joint effect of statements s-l,s. Together they define 

y as a function of u, v, z[i],w as follows: 

y =§ u * v = £ \ (v + z[i] * w) * v 

This process of characterizing the semantics of assignment statements by 

apropriate substitution is well-known [DIJ78]. A similar process of 

substitution gives: 

3y =§ fsu * 3u + fsv * 3v 

' =(s^l) fsu * (fs-lv * 3v + fs-lzti] * 3z[i] + fs-lw * 3w) + fsv * 3v 

= (s-l) (fsu * fs-lv + fsv) * 3v + fsu * fs-lz[i]) * 3z[i] + (fsv * fs-lw) * 3w 

For the discerning eye, these substitution steps are seen to be 

identical to the way the g vector changed when post multiplied by a 

factor matrix! 

conveniently abbreviated as: 

\ 3u 3v 
3y 

The factor matrix F associated with statements can be 

fsu fsv 

The previous section mentioned this abbreviation in the context of a 

concern for efficient storage of the factor. Now we see that the 

notation is more than that. 

We can define multiplication of two objects 

\ 3u 3v \ 3v 
3y fsu fsu and 3u 

3z[i] 3w 
fs-lv fs-lz[i] fs-lw 

in two ways: one is by expanding both to full factor matrices, 

multiplying and contracting again, and the second is by our newly 

interpreted process of direct substitution: 
3z[i] 3w 3v 

\ 3n 3v \ 3v 3z[i] 3w 
\ 3w 

3y 1 fsnjfsv | * 3u | fs-lv|fs-lz[i]|fs-lw | = 3y 
fsn* 
fs-lv 

fsn* 
fs-lz[i] 

fsn* 
fs-lw 

fsv 

3v 3z[i] 3w 
fsv+fsn* 
fs-lv 

fsn+ 
fs-lz[i] 

fsn* 
fs-lw 

= 3y 

To see whether the procedure has been really understood, it is helpful 

to go one step further In backward direction to incorporate statement 

s-2 into the description, too. Statement s-2 is characterized by 

\ 3z[.11 
3w | fs-2z[,j] 
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So we have 

\ 3v 3 z [ i ] 3w 

9y 

\ 

a b c 

3z [ j ] \ 3v z [ i ] 3zLf3 

b |c*fs-2z[ j ] * 3w | fs-2z[ j ] | = 3y 

The question may now arise as to what happens in case i and j have equal 

values. The answer is: the procedure still works correctly. In the 

gradient notation it is quite acceptable to have something like 

\ 3z[i] 3z[i] 

3y 

It would in all respects be identical to 

\ 3z[i] 

E_j a 

3y 1 P + q 

The latter form saves some space and some arithmetic, but both are 

correct, and hence in cases one doesn't know whether two expressions 

z[i] and z[j] refer to the same variable, one assumes simply that they 

don't. The algorithm to multiply the g vector with a factor 

\ 3d 3e 3f 
3c | fed|fee|fcf 

as given previously and as adapted below, deals correctly with all 

permutations of possible identity between c,d,e,f: 

t := g[3c]; 

J^ (t?*0) then begin 

g[3c] 

g[3d] 

g[3e] 

g[3f] 

end; 

- 0; 

= g[3d] + t * fed; 

= g[3e] + t * fee; 

= g[3f] + t * fcf; 

-
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5. COMPILATION OF FAST JACOBIANS 

In Chapter 4 it was shown how the gradient of the function 

y = f(xj x ) can be constructed in a time proportional to T, where 

T is the time required for evaluating the function f itself. This 

chapter will attempt to generalize the results of Chapter 4 to find the 

Jacobian of a system of functions 

yl = fl(xl xn^ 

?k = V x i«- - - ' V 

given as an algorithm Af(x, y). Let T again denote the time required 

for execution of Af and let S be the amount of memory involved. The 

method of Joss computes the Jacobian J = 3yj/3xj in O(nT) time and O(nS) 

space. The next section shows that a straightforward extension of the 

method of Chapter 4 can compute Jacobians in O(kT) time and 0(S) space 

(not counting space for the final Jacobian itself). So even the 

straightforward extension is superior to Joss in terms of space 

requirements. A comparison of these methods with regard to time will 

depend on k and n. If k << n, Joss' method loses out; if k > n, Joss' 

method is superior. In practice, however, the case k > n is very rare 

and may safely be ignored. If k - n, a comparison is more difficult and 

depends on the overhead associated with either method. In particular, 

for the important case k = n, Joss' method will usually be faster, but 

at most by a small factor independent of n. 

5.1. Finding Jacobians One Row at a Time 

Jacobians consist of rows, each row being a gradient. Row i is the 

gradient of y^ = f^(xj,..., x ). For a given i, therefore, we could 

choose to regard ŷ  as the output variable and compute its gradient. 

Or, to stay closer to the formalism developed in Chapter 4, we could 
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precede the procedure exit of Af with the statement 

z := y[i]; 

and regard z as the output variable. What it boils down to is that 

<T5J ^ - 1 " ' - » n > - 8± * F8 * . . . * FX * J ± n l t l a l 

where g^ is a unit vector in the state space with the one in the 

position corresponding to y.. 

In passing, we point out that if one's real object is to compute 

aj for some row vector a; one never need construct the Jacobian 

J explicitly; instead one may compute 

« ' J = k * Fs *�'�* Fl * initial 

where g-£ is a vector with values a. on the positions corresponding 

to the y^, and with zeros everywhere else. This corresponds to finding 

the gradient of z with these statements inserted just before exit of Af: 

z := 0; 

for 1 := 1 step 1 until k Jo 

z := z + a[i] * y[i]; 

Computing the full k * m Jacobian of the vector y would comprise 

the following steps: 

1) do the computation of y according to the Af, and emit factors along 

the way; 

2) for each i, 1 < 1 < k, do: 

a) set the g vector to the unit vector corresponding to y^; 

b) multiply factors into g: 

g := g * F±, j = s, s-1,..., 1; 

c) extract the gradient of y. from g. This produces the i-th row 

of the Jacobian. 
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This description shows clearly that the method requires O(kT) time; it 

also shows the time required to be far less than k times as much as that 

for a single gradient: factor emission need not be repeated. 

5.2. Comparison with Some Alternatives 

The following is an alternative to the one-row-at-a-time approach 

from the previous section: 

1) Emit all factors; 

2) Initialize the k * m matrix g so that the i-th row of g is the unit 

vector corresponding to y^, 

3) Multiply g, from the right, by factors: 

g := g * Fj, j = s, s-1 1; 

4) Extract the columns of g that belong In the Jacobian and throw away 

the rest. 

This variant also requires O(kT), though this is not as easy to see as 

in the previous section. The space requirements, however, have gone up 

to O(kS). What we gain is that we need not read in the factors more 

than once. Still, a memory requirement of O(kS) seems an exceptionally 

severe penalty to pay. For large k,S the space will simply not be 

available, whereas for smaller k a more powerful and flexible way to 

keep down the overhead in reading factors is to increase the size of the 

factor space buffer. 

The main reason we introduced the variant above is that it is the 

most direct right-to-left counterpart of Joss' method. Joss also 

requires a lot of storage: O(nS). The close correspondence between the 

method of the previous section and its variant in this section suggests 

that Joss' method can be easily modified to reduce storage requirements 

to 0(S). In fact, this can be done: 

Joss (modified): 

1) For each variable u, allocate a new variable dudxj; 
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2) For each x., 1 < j < n, do: 

a) initialize all dudxj to zero, except for dx[j]xj, which is to 

be set to one; 

b) add to each assignment statement v := expr(u>,U2) the 

statement 

dvdxj:=9|x£r. * dUldxj + -
9-§x|^ * du2dxj; 

c) put all variables dy[l]dxj...dy[k]dxj In the j-th column of 

the Jacobian. 

There is no need to compute gXPr, etc., each time: they could be 

emitted to a factor space (organized here as a queue) and read 

repeatedly. This allows for the same space-time tradeoffs by 

manipulating the factor storage buffer size. 

This modification of Joss is so straightforward and so obviously 

advantageous in terms of storage that it is perhaps surprising that Joss 

never mentions it in his thesis. It constitutes strong evidence that 

Joss was only interested in feasibility of differentiation of 

algorithms, not its cost. 

5.3. Critical Analysis of One-Row-at-a-Time Jacobians 

The method of producing Jacobians described in section 5.1 is 

general, convenient and economical on space while being reasonably fast. 

For k « n, the method may well be perfectly adequate; clearly, it is 

for k = 1. The implementation described in Chapter 6 does, in fact, 

employ this method. 

In the remainder of Chapter 5 several ideas will be introduced that 

may eventually lead to a compiler producing Jacobians that run 

significantly faster than those of Joss for all k < n. As these ideas 

are necessarily more tentative than those described in Chapter 4, the 

treatment is less detailed. Certainly one can skip reading the 

remainder of Chapter 5 and proceed to Chapter 6 without loss of 

continuity. 
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The reason that the one-row-at-a-time approach is not necessarily 

optimal is quite simple. The method for finding gradients in Chapter 4 

was successful precisely because it exploited the fact that the g vector 

in 

3y/3x- = ! * Fa * F ^ ...* ^ * J±nitlal 

had only one row, so that left-to-right multiplication is 0(n) faster. 

As soon as a Jacobian 3y/3x is desired, for y a vector of more than one 

element, g becomes a matrix, and for k - n, the matrices g and ^initial 

will have similar shape, removing the advantage of one multiplication 

direction over the other. Yet there is no a priori reason to assume 

that only pure left-to-right multiplication or pure right-to-left 

multiplication can be performed. Associativity of matrix multiplication 

allows many other multiplication orders. Perhaps it is possible to find 

an optimal or near-optimal order of multiplication that is compatible 

with the results of Chapter 4 in the special case that g is a row 

vector. In the next section we will explore optimal multiplication of 

factors and the problems associated with it. 

5.4. Optimal Multiplication of Factors for Obtaining a Jacobian 

In this section we will look at various multiplication orders for 

the product 

8 * Fs * Fs-1 *'��* Fl * initial 

for a given string of factors Fj,..., Fg. 

To find the optimal order for one such particular product of 

factors should prove interesting even if there is at present no 

guarantee that such an optimal order could be found for an algorithm 

with arbitrary flow of control, as the algorithm encompasses a variety 

of straight-line programs each emitting strings of factors differing in 

value, number and configuration from one another. 

Each factor F is a Jacobian matrix in its own right (cf. section 

4.3) and so is a product of consecutive factors. Every Jacobian factor 

has an out-set FQut and an in-set F. corresponding to the (single) 
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output variable and (any number of) input variables of the assignment 
statement from which F originated. So the F . and F. of the factor F 
emitted for 

f := f * u + t 
would be {f> and {f, u, t}, respectively. The factor matrix F will be 
identity, except for the "f" row which is nonzero only in the "f", "u" 
and "t" columns. The concepts FQ . and F. generalize to arbitrary 
products of factors. The Jacobian F of a mapping from F. to FQUt will 
be an identity matrix (m * m), except for the rows corresponding to F . 
which can be nonzero only in the columns corresponding to F. . The 
nontrivial entries of F are therefore those on the intersection of a row 
from F

o u t and a column from F. . To simplify the analysis we will 
regard all of these nontrivial entries as potentially nonzero and hence 
ignore any finer structure a factor may possess. This way, without 
actually performing the matrix muliplications we can keep track of the 
resulting Fout and F. sets and express operation counts in terms of 
these. 

Before we carry this out, we note that the concepts Fout and F. 
apply to products of factors, not necessarily to products involving g or 
^initial" Multiplication by g or -l-i„■£♦■•»ai serves essentially to throw 
out matrix terms that are now known to be irrelevant. We know from 
Chapter 4 how crucial it is to anticipate what is going to be thrown out 
eventually so as to avoid computing it in the first place. In a product 

(g * F4 * F3) * (F2 * Fl * Jinitlal) 

all effort that goes into computing a certain row of 
(F2 * Fj * Jin£j-ial^ *s wasted if the corresponding column of 
(8 * F4 * F3) Is all zero. Therefore, we introduce the concepts Yneeded 
a n d dependent a s f o l l o w s : 

^needed *"S t n e s e t °^ variables that correspond to a nonzero column in 

g * Fg *...* F1+1 

'dependent is the set of variables that correspond to a nonzero row in x(i) 

Fi-1 * Fi-2 *•*•* Fl * Jinitial 
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Any factor F.̂  with out-set F£*£ and in-set F£*' that does not satisfy 
Foit d e e d e d and F<n> £ x £ p e n d e n t may be simplified by throwing away 

terms that are apparently ultimately irrelevant. The effect is to set 

F(i) := Fd) n Y(D 
.out out needed 

p(i) .. p(i) n Y ( D 
Fin * rin dependent 

and a similar simplification may be made everywhere along the way. 

We are now ready to present recurrence formulas for FQut
 and 

F { J * , J ) of the product 

FJ J W FJ * Fj — t * � � � * FJ 

as well as for Y n e e d e d and X d e p e n d e n t. 

Yneeded = <*M 7W> 

Y(±) a Y ( i + 1 ) i f Y(1 + 1> n F^> - 6 
needed needed' needed out v 

' deeded N ' & > U ' f i } . otherwise. 

dependent " <*™ x ^ > 

x(i) = x^
1"1) \ F^> if xC1"1) n F(1> dependent dependent out» dependent in 

[i-D U Fnnl.(i), otherwise. dependent out 

Fout Fout 

F(i..i) = F(i) Fin Fin 

F(i:.j) - (F(i;-J+D u p(J)) n y d ) . out v out out7 needed 

F(i..j) . F(i..j+l) n x(j) if F(j) n F(i..j+l) . 0 
in in dependent* out in v 

-((F! i , , j + 1 )\F ( J!)UF. ( 1 ))nxi J ) . „, otherwise. in outr in dependent 

An estimate for the operation count for a product 

Fi..j * Fj-l..p 

is 
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|rout ' |rin rout ' |J?in ' 
where |#| denotes the number of variables in a set. 

The optimization problem has now been formulated' in a manner that 
can be attacked by dynamic programming [BEL]. Unfortunately, dynamic 
programming requires time 0(s ) whereas multiplication in any order is 
never worse than O(nT), where of course T=0(s). So it seems evident 
that we must lower our goals and recognize that a heuristic approach to 
finding an approximately optimal solution is called for. 

An example may serve to make the problem more palatable. The 
algorithm: 

for i := 1 step 1 until k do 
begin w := ln(x[i]); 

for j := 1 s t ep 1 u n t i l n d£ 

w := w + a t i . j ] * x [ j ] ; 

y [ i ] := w; 
end; 

when run with n = 3 and k = 2 will lead to the following sequence of 
factors: 

w w x„ w x„ w x w 
g * y9 □ ; w ; w ; w 

10 

1 2 
; w IZU •> y± □ ; w 

w x„ 

w x„ w x„ 
w ; w ; w * J 

initial 

where g = diag(0,0,0,0,1,1) and Jlnltlal - diagd, 1,1, 0, 0, 0) if the 
state space is ordered as (x̂  x2, X3 w, y^, y 2). 

W X X X 
So F. „ = w 4. .2 ; F w 

w x x 
7..4 y. 

In this example, the optimal ordering is easily seen to be: 

F10..6 " (•••(F10 * F9> '•• F6>' 
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3(?)/3(J) -8* Fio..6 *F5..1 * Jinitiar 
The logic behind this is the same as we encountered in Chapter 4. 

Left-to-right multiplication is advantageous for a product of factors 
that has a single-element Fout« A string of consecutive factors such as 
F^Q,•.., Fg that has a product with a single-element FQut will be called 
a funnel. Replacing all funnels by their products will result in a 
substantial reduction over the one-row-at-a-time approach. When all 
funnels have been replaced by their products, we might then search for 
long strings with a product having a two-element Fout» and so on. 
However, in anticipation of the implementation issues of the next 
sections we should remark that there is a certain cost associated with 
changing multiplication sequence midstream. The savings due to 
multiplying funnels first are the most sweeping; it is the most easily 
recognized and the most easily implemented. The remaining 
multiplications can then probably be performed best with the one-row-
at-a-time scheme. 

5.5. Extension to Arbitrary Flow of Control: run-time method 

The approach outlined in the previous section can be extended to 
algorithms with arbitrary flow of control in two essentially different 
ways. 

The first way is to delay the determination of multiplication order 
until run-time, after all factors have already been emitted; this will 
be the subject of this section. 

The second way is to determine the multiplication order at compile 
time using flow graph analysis techniques; that will be the subject of 
the next section. 

When the multiplication order is not being determined until all 
factors have been emitted, the situation is in every detail as sketched 
in the previous section. Implementation of the funnel multiplication 
involves setting up a separate factor storage space organized as a 
first-in, first-out queue. This new factor storage space will house 
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original factors and products of funnels. Multiplication of the factors 

in the new space can be done by any conceivable method such as one-row-

at-a-time. In order to be able to recognize funnels we will need an 

array of flags of size m (the dimension of the state space). Initially, 

only the flags for y[l]...y[k] are set. Without loss of generality we 

may assume that the last factor emitted has an FQut consisting of the 

single element y[i]. We now start the row vector g of size m as a unit 

vector corresponding to y[i], we turn off the y[i]-flag and read in 

factors as if to compute the gradient of y[i]. But before multiplying a 
u v - -► factor w | | into g, we check the w-flag. If the w-flag is set it 

will mean that another gradient computation (e.g. the gradients of y[l]) 
is interested in the gradient of w and has been suspended to await the 
computation of the gradient of w. So on finding the w-flag set, the 
algorithm would locate all nonzero terms of g, set the flag for all 
nonzero entries found in g, shape the nonzero entries into a new factor 
and emit it to the new factor storage space. Then it would clear the 
w-flag and proceed to read and multiply factors into g (reinitialized 
now to the unit vector corresponding to w), again until a factor is read 
in with an output variable whose flag is set. This process Is repeated 
until the entire factor storage space has been read and all intermediary 
products stored in the new factor storage space. It will be clear that 
compression and reinitialization of the row vector g will require 0(m) 
operations unless special precautions are taken. A data structure that 
is a hybrid between a row vector and a linked list structure may be 
required to keep track of all the nonzero positions of g. A sketch of 
such a data structure is presented below but without additional 
commentary. 

1 
000 •^ 00 * 00000 ^ 0 & 0000 # 

m 
0000000 

nonzero elements of g 

track 
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5.6. Extension to Arbitrary Flow of Control: compile-time method 

The main advantage of trying to determine a multiplication order at 

compile-time is that various forms of overhead associated with 

determining the multiplication order at run-time do not occur. As a 

result, the Jacobian computation for the special case k=l need not be 

slower than a gradient computation performed according to Chapter 4. 

The disadvantage is that flow graph analysis lacks the degree of 

resolution that can be achieved with a method having an entire execution 

trace available. Hence certain strings of factors will not be 

recognized as funnels even if they are. Flow graph analysis assumes 

worst case behavior. For example, it cannot distinguish between u[i] 

and u[j] because it knows nothing about subscripts; it will assume that 

a certain derivative 3v/3x^ is nonzero as long as there is any path at 

all to the point under consideration on which path a value is assigned 

to v that can be traced back to x, whether or not that path will ever 

actually be executed. The concepts Y n e e d e d and ^dependent can be 

approximated using flow graph analysis; they are now sets associated 

with points in the program, not sets associated with factors directly. 

The relationship between the two is that the set Ynee<je<j associated with 

a certain point in the program will contain as subsets all the sets 

^needed associated with those factors that are emitted whenever flow of 

control reaches that point in the program. The FQut, F^n sets can also 

be approximated by flow graph analysis. For single assignment 

statements 

si: u := v * w; 

s2: a[i] := b * w; 

we have 

Fout = <u>; Fin - <v>w>; ^ut - <a>5 Fin - <«.*.»>� ' ' 

We will list a set of conditions that guarantees that a certain block of 

code represents a funnel. We also claim that flow graph analysis can 

find such blocks, but neither claim will be proved. The conditions are 

as follows. The block must have a single exit, though it may have 

multiple entries. The last statement of the block should be an 
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assignment statement, e.g. 

s: p := g * r; 

such that 

a) the left hand variable p is a scalar; 

b> P is Yneeded' 
( a ) . 

Let L be the set Ynee(je(j \ {p}. None of the statements in the block may 

have a lefthand variable that is an element of L. 

The power, as well as the limitations, of this type of flow graph 

analysis can be illustrated by contrasting two algorithms: 

A: for i := 1 step 1 until k do 

begin y[i] := 0; 

for j:= step 1 until n do 

y [ i ] := y [ i ] + a [ i , j ] * x [ j ] ; 

end; 

B: for 1 := 1 step 1 until k do 

begin v := 0; 

for j := 1 step 1 until n Jo 

v := v + a[i,j] * x[j]; 

y[i] := v; 

end; 

The method described in the previous section would handle both 

algorithms equally well. The flow graph analysis described in this 

section will recognize a funnel In algorithm B but none in algorithm A. 

The funnel It recognizes in algorithm B is the block 

v := 0; 

for j := 1 s t ep 1 u n t i l n J o 

v := v + a [ i , j ] * x [ j ] ; 

What run-time organization corresponds to a compile-time determination 
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of the multiplication order? Basically, the factor storage space was 

organized as a stack even in Chapter 4, but there the stack was never 

popped until all factors had been pushed. Now the factor storage space 

will be treated even more like a stack. Upon entering a funneling 

block, a marker will be placed on the stack. Upon exit of the block, 

factors are popped and multiplied into a g vector (initialized to a unit 

vector corresponding to the funnel variable) until the marker is 

reached. Then the g vector is compressed and pushed back on the stack. 

Upon exit of the entire algorithm, the one-row-at-a-time approach can be 

used to get the desired Jacobian. 
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6. IMPLEMENTATION 

A compiler, called "Jake," has been written to implement the theory 

described in Chapters 4 and 5. It will produce subroutines for 

gradients or Jacobians from the text of the subroutine for the function 

itself. It has been designed to provide a practical tool for numerical 

analysts currently hesitant to use numerical methods requiring 

derivatives. 

This chapter describes Jake: its input, its output, what it does, 

what to expect from it and what not to expect from it. The description 

is aimed at the person who wants to use and understand Jake; it is 

clearly not adequate for one who needs to make major changes to Jake. 

Jake is a multi-pass compiler and hence rather large, so a detailed 

description of it would unnecessarily clutter up this thesis. 

Fortunately, the art of writing large compilers is more and more being 

transformed into a real science, and the newly emerging precepts of that 

science have been followed in the construction of Jake wherever 

possible. 

6.1. A User Description 

Many of the design decisions regarding Jake were guided primarily 

to suit the user in the situation characterized by the following 

scenario: 

The user is involved in a problem requiring some kind of 

functional iteration such as optimization of a function 

with respect to many variables. So far the user has 

avoided iteration schemes requiring knowledge of 

derivatives, such as Newton iteration or Fletcher & 

Powell iteration. Instead, the user employs an iterative 

scheme only requiring to sample the function, giving up 

the better convergence characteristics of the former 

methods. Then the user learns about a new method of 

obtaining derivatives which might tip the balance in 

favor of functional iteration with derivatives. 
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For such a user, Jake must be able to accept existing programs for the 

function with minimal changes. Hand-translation of programs is very 

error-prone and must be avoided if at all possible. Hence, the input 

language of Jake should be FORTRAN. 

Similarly, the scenario virtually dictates that the output of Jake 

should be a subroutine written in FORTRAN, deviating from the ANSI 1966 

standard only in trivial situations (e.g. where the input program 

violates the standard in the same way). Having the output of Jake 

appear in FORTRAN rather than in the machine code for a particular 

machine enormously enhances the flexibility and portability of Jake 

while simplifying its design. For example, it allows running Jake on a 

different machine from the one that will run Jake's output. 

If the input and output language of Jake are virtually determined 

by considering the user for which it is intended, the language in which 

Jake itself is written is not. Here the criteria are ease of 

development and ease of distribution with emphasis on the first, due to 

the restricted scope of the project leading to this thesis. It was 

decided to develop Jake in the language C, running under a Unix 

operating system. "C" is well suited as a compiler implementation 

language. Unix is a very convenient and hospitable operating system. 

Unix is a trademark of Bell Laboratories. In anticipation of later 

distribution, Jake has been written in a subset of C and in a style that 

should allow relatively easy (hand) translation into the Ratfor languge. 

Ratfor, like C developed at Bell Labs, is a preprocessor for FORTRAN and 

at least as portable as FORTRAN itself. 

6.1.1. The Jake Input Language: how to prepare your program 

The input for Jake consists of a single FORTRAN subroutine to which 

a CONSTRUCT statement has been added, and which is subject to certain 

restrictions. First, the CONSTRUCT statement will be discussed. 
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6.1.1.1. The CONSTRUCT Statement 

Consider the following example: 

SUBROUTINE FUNC(X,N,Y,COEF) 

REAL X(N),Y,COEF 

CONSTRUCT D(Y)/D(X) IN GRAD(N) 

Y=COEF 

DO 10 I=N 

Y=Y*X(I) 

10 CONTINUE 

RETURN 

END 

Here Y is computed as a function of X, while N and COEF are merely 

additional parameters. The gradient of Y as a function of X is desired, 

and it is to be stored in the array GRAD, i.e. 

GRAD(Y) = 3Y/3X(I). 

Jake learns this from the CONSTRUCT statement. (Note that an ordinary 

FORTRAN compiler will regard the CONSTRUCT as a comment, beginning as it 

does with a "C" in column 1.) Without the CONSTRUCT, Jake would not 

assume that X is the independent variable, nor that Y is the dependent 

variable. By themselves, the variable names X, Y, N have no special 

meaning. So the following subroutine produces the same result when 

submitted to Jake: 

SUBROUTINE FUNC(U,M,V,C) 

CONSTRUCT D(V)/D(U) IN GRAD(M) 

REAL U(M),V,C 

V=C 

DO 10 1=1,M 

V=V*U(I) 

10 CONTINUE 

RETURN 

END 

In previous chapters it was convenient to always use "x" for the 

independent variable, but there is no reason to burden Jake with that 

convention. 
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As another example of what can be done with the CONSTRUCT 

statement, consider 

SUBROUTINE WHAT(P,Q,PI,R) 

CONSTRUCT D(Q)/D(P,R) IN S(2) 

REAL P,Q,PI,R,T 

T=SIN(P*PI/4) 

Q-C0S(R)/T*R 

RETURN 

END 

This example suggests that neither the name of the function, the name of 

the resulting gradient, the order of parameters in the subroutine nor 

even the form of the independent variables is presupposed by Jake. 

Based on the CONSTRUCT statement, Jake will cause to be computed: 

S(l) - U and S(2) --|§. 

PI is regarded as a constant. 

The next example introduces Jacobians: 

SUBROUTINE WH0(U,V,N,W) 

REAL U(N), V(N), W(N) 

CONSTRUCT D(W)/D(U,V) IN R(N,100) 

DO 10 I=N 

W(I)=U(I)*V(N-I+1) 

10 CONTINUE 

RETURN 

END 

This CONSTRUCT statement asks for the Jacobians 3W/3U and 3W/3V to be 

computed and stored in R as follows: 

R(i,j) = 3W(i)/3U(j) for i=l n and j=l,...,n 

R(i,n+j) = 3W(i)/3V(j) for i=l,...,n and j=l,...,n 

In contrast, the following produces a gradient: 
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SUBROUTINE HOW(V,N,W) 

REAL V(N,N),W 

CONSTRUCT D(W)/D(N) IN G(1000) 

W-l. 

DO 10 1=1,N 

DO 10 J=1,N 

10 W=W*V(I,J) 

RETURN 

END 

The layout will be as follows: 

G(I + (J-l) * N) = 3W/3V(I,J) 

So a matrix such as V(N,N) is really treated as the one-dimensional 
o 

array of N contiguous storage locations it represents. It is the total 

size of the dependent variable(s) that determines the number of rows in 

the Jacobian (1 for a gradient); it is the total size of the independent 

variables that determines the number of columns in the Jacobian. f So the 

shape of the Jacobian is determined by dependent and independent 

variables; the declared dimensions of the variable receiving the result 

must be compatible with this. 

To obtain interpretable results, the receiving variable must be a 

matrix for a Jacobian or a gradient (but the whole gradient must then 

fit in the first row), or the receiving variable may be a vector for a 

gradient. A vector cannot receive a Jacobian. 

These restrictions only apply to the resulting variable; as 

indicated, independent and dependent variables may have arbitrary shapes 

and sizes. 

Finally, consider subroutine WHY, which demonstrates the use of 

double precision. 

SUBROUTINE WHY(U,V,W,N) 

REAL U(N),V(N),W 

CONSTRUCT D(W)/D(U) IN GRAD(N) 

DOUBLE PRECISION GRAD 

W=l. 

DO 10 1=1,N 
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W-W*U(I)+V(I) 

10 CONTINUE ' " 

RETURN 

END 

By so indicating that the result vector GR is in double precision, one 

asks Jake to emit all factors in double precision to perform 

multiplication of factors in double precision and to extract the result 

in double precision. At the same time, all variables that were single 

precision in the original program remain single precision. Some 

Intermediate values, such as "W*U(I)" are computed in single precision 

in the original program but double precision when processed by Jake. 

Here is a compromise between accuracy, speed and ease of handling by 

Jake. 

Conversely, it is possible to produce a single precision gradient 

in an otherwise double precision computation. 

6.1.1.2. Restrictions on the Input Language 

Though the input language of Jake is FORTRAN, it will not handle 

correctly all conceivable programs in all conceivable FORTRAN dialects. 

The purpose of this section is to indicate the limitations Jake has with 

regards to the input program. Eight such restrictions will be listed, 

with comments and explanations where appropriate. 

a) Jake will not recognize "statement functions." 

b) Jake will not recognize variables, constants or functions of type 

COMPLEX. 

c) The input program must not contain any of the following subroutine 

names, as they are reserved for Jake: 

SPINIT EMITO EMIT1 EMIT2 SPGRAD SPCOPY 

DPINIT DMITO DMIT1 DMIT2 DPGRAD DPCOPY. 

The output of Jake will contain calls to these subroutines. They 

comprise the "run-time support package" associated with Jake. The 

first row lists the subroutines used for a single precision 
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Jacobian, the second row lists those for a double precision 

Jacobian. 

There are two rather severe restrictions that are difficult to 

state precisely. The easiest formulation is completely safe, but it is 

overly restrictive: 

d') Jake cannot handle EQUIVALENCES correctly. 

e') Jake cannot handle CALLs and function references correctly (except 

standard built-in functions such as SIN, DLOG). 

Actually, there are many EQUIVALENCES and CALLs that are harmless and 

that will be processed correctly by Jake. However, Jake is not able to 

detect which EQUIVALENCES or CALLs are harmful, and the user must assume 

that burden. To perform this detection, the user will need to 

understand the theory of Chapter 4. 

A more correct statement of the restrictions follows: 

d) Jake cannot handle correctly EQUIVALENCES that change the state 

space. 

e) Jake cannot handle correctly CALLs and function references that 

affect the values of variables in the state space in such a way as 

to require a nonzero factor to be emitted. 

As an example of the difficulties arising with EQUIVALENCE, consider: 

CONSTRUCT D(Y)/D(X) ... 

EQUIVALENCE (U,V) 

U=X 

Y=V s 

RETURN 

END 

Here the flow graph analysis used by Jake is not able to trace a path of 

nonzero factors from X to Y and it will conclude that 3Y/3X = 0. 

However, the following EQUIVALENCE is harmless: 

/ 
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Here the flow graph analysis used by Jake is not able to trace a path of 

nonzero factors from X to Y and it will-conclude that 3Y/3X - 0. 

However, the following EQUIVALENCE is harmless: 

CONSTRUCT D(Y)/D(X) ... 

EQUIVALENCE (A,B) 

COMMON A 

. Y - A * X 

Y = B * Y 

RETURN 

END 

where A and B are merely parameters and hence were never part of the 

state space anyway. , 

To illustrate the situation for CALLs and functions, contrast 

FUNCTION ARRMAX(U,N) FUNCTION INDMAX(U.N) 

REAL U(N) REAL U(N) 

ARRMAX=U(1) INDMAX=1 

DO 10 1=2,N DO 10 1=2,N 

IF(ARRMAX.LT.U(I))ARRMAX=U(I) IF(U(INDMAX).LT.U(I))INDMAX=I 

10 CONTINUE 10 CONTINUE 

RETURN RETURN 

END END 

Using the function INDMAX within a subroutine submitted to Jake is 

harmless, whereas the use of ARRMAX could be harmful if any of the U(I) 

had a nonzero derivative with respect to the independent variable. 

Jake will issue a zero factor when ARRMAX is used, without ever 

having seen the text of the function ARRMAX. 

f) The same restrictions apply to a READ as for a CALL. 

g) There are some restrictions involving standard (built-in) 

functions. The following standard functions are recognized and and 
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The following standard functions are not recognized but handled 

correctly nevertheless because either arguments or result are 

integer: 

FLOAT IFIX INT MAX1 MINI AMAXO ISIGN 

DFLOAT IABS MOD MAXO MINO AMINO IDIM 

The following standard functions are not recognized and not handled 

correctly: 

ABS SIGN AMAX1 AMIN1 

DABS DSIGN DMAX1 DMIN1 

Standard functions accepted by some FORTRAN compilers but not in 

the above collection will probably not be handled correctly. 

h) Jake cannot handle "out-of-bound" addressing. 

Most FORTRAN dialects, in contrast to the ANSI 1966 standard, allow, 

e.g. 

U = A(101) 

where 

COMMON A(100), B(10) 

and the effect will be as if 

U = B(l) 

had appeared in the program. Jake cannot handle this correctly for the 

same reason that EQUIVALENCE presents problems. 

6.1.2. Jake Output 

The output of Jake is in FORTRAN, adhering to the ANSI 1966 

standard at least as much as the input does. For instance, on input it 

is acceptable to use REAL*8 as a synonym for DOUBLE PRECISION; only the 

latter form will appear on output. On input it is acceptable to give 

Hollerith strings in single quotes, e.g. 'HELLO'; on output it will 

appear as 5HHELL0. 

Except for such paraphrasing of the input program, the major 

transformations to the input program occur at procedure entry, at 

relevant assignment statements, and at procedure exit. The changes at 

procedure entry include changes to the SUBROUTINE statement, additional 

declarations of variables introduced by Jake, and a number of 
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relevant assignment statements, and at procedure exit. The changes at 
procedure entry include changes to the SUBROUTINE statement, additional 
declarations of variables introduced by Jake, and a number of 
initializations. 

Perhaps the best way to convey an idea of what Jake does to an 
input program is to show some examples. The first example given has 
been paraphrased in order to highlight certain important features at the 
expense of others. The second and third examples are accurate in every 
detail and have not been "retouched" in any way. 

SUBROUTINE MULTJ(X,N,Y,GR,YGR,LYGR) 
INTEGER N.I.LYGR 
REALX(N),Y,GR(N),YGR(LYGR) 
IX=1 
CALL SPINIT(IX+N,LYGR) 
CALL EMIT0«2))-
Y=l. 
DO 10 1=1,N 

CALL EMIT2(®,X(I) 
Y=Y*X(I) 

10 CONTINUE 
CALL SPGRAD(YGR,LYGRi® ) 

ygr CALL SPCOPY(GR,YGR(<tX«) ) ,N) 
RETURN @ x ( 1 ) 
END 

The array containing the product of factors multiplying from the 
left is YGR(LYGR). SPINIT checks whether the array is large enough and 
initializes the factor storage space. EMITi writes a factor to the 
factor storage space, where 1 = 0,1,2 indicates the number of right hand 
side variables in the factor. SPGRAD performs the factor multiplication 
starting from a unit vector with a one in the position for Y. SPCOPY 
extracts the gradient requested from the array YGR. The resulting 
subroutine has YGR, LYGR as parameters because FORTRAN does not allow 
declaration of run-time array bounds in any other way; hence the program 
calling MULTJ will have to allocate space for YGR. 

Example 1: y - n X J , r e t o 
i - l ■"■ 

subrout ine mul t ( x , n , y ) 
r e a l x(n) 

cons t ruc t d (y ) / d ( : 

10 

i x 

1 
Y 

y=l . 
do 10 i = l 

y=y*x 
r e t u r n 
end 

@x(i)=ix+i 

I 
X(N) 

,y 
K) in gr(n) 

, n 

( i ) 

ix+n l yg r 

' ' 
y///////// 
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Example 2: y - Ax, unretouched. 

subroutine matmul(a,n,x,y) 
real a(n,n), x(n), y(n), jac 

construct d(y)/d(x) in jac(n,n) 
do 20 i=l,n 

w=0 
do 10 j=l,n 

w=w+a(i,j)*x(j) 
10 continue 

y(i)=w 
20 continue 

return 
end 

■..Hi-:R0UT1ME l"IA I I'lLLK A, N, X, V. JAC , V'.JAC, LV.JAC ) 
I l-l i t-GFR M. I • .J. L V . J A L • i .JAL . R.JAC . L.JAC, J J AC , I Y , I X 

PFAL ..' N H i, X« M i, v\ N i , .JAC'! N, W ; , W, V-JACC LVJAC i , TJAC 

*-. I.JUL I . T . IAC^ . T.jr.C ::. T.JAC4. TJAC 'Z- TJP>Cb, TJAC 7- TJAC 8 

1 V 1 >J 

T ■'.- L V + l-l / 
C AL I . SP1IMI T; I X + N, L V JAC ) 
p n , ,u( i L I - j . M 

i " . i l I III I T TO - . 1 > 

W i . 
r i f i rtO'.C J 11 N 

Cr.l I L M I T K I A + . J . Ai I . J ). 2 ) ' 
TJAC A1' I . . I )->#( .J ) 
CALL EM 17 21 I . I . ?., 1 . 1 > 

U U+TJAC 

:-.("MJ2 f i.HM I I HUE 

iViLL EMI r i< 1. 1 , IV+ I i 
Vt J ) l«l 

= ■"""11 CONTINUE 

:-,{-■(■•(■> C 0|.|1 TI-JUE 

R l,'"ii" ."' 
L J A i . |M 

i 'U ;'< I'll? .JJi"iL I , L J.'VZ 

C i il L SPGPALK V. IfiC . LV.JAC ■ 1 V+JJAC . RJAC ■ I JAC ) 
r ALL SPCOPV',' .JAC. U i ' i C , N. VJAC( T>: + 1 i , N ) 

t:i'«."•?: CiJhM LNUE 

RETURN 

f-Nn 

\ 
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In this example it can be seen how SPGRAD is called in a loop once 

for every row of the Jacobian. SPGRAD and SPCOPY have some arguments, 

suppressed in example 1, that jointly keep track of addressing in JAC: 

RJAC" (maintaining a row count, updated in SPGRAD), IJAC (maintaining an 

index.in JAC, updated in SPGRAD and SPCOPY), and N (indicating how far 

apart in memory the consecutive elements of a row of JAC are). The name 

of the subroutine is MATMUJ, formed from the original MATMUL by 

appending a "J", then dropping the penultimate character to keep the 

entire name within 6 characters.. Many compilers allow names of 7 or 

more characters, but all accept 6-character names. Note also that Jake 

has introduced temporary variables TJAC, TJAC1 TJAC8, of which only 

the first one is actually used. 

Another interesting feature exhibited by this example is that not 

all REAL variables partake in the state space. So the matrix a(n,n) is 

regarded as being outside the state space; hence no space for a(n,n) is 

required in 'the array YJAC. The determination of what goes into the 

state and what doesn't is made by Jake through flow graph analysis. A 

variable v such that either- 3v/3x - 0 or 3y/3v = 0 can be proven through 

flow graph analysis is called "irrelevant" and accorded no place in the 

state space. Assignment statements updating such variables v need not 

emit factors either. 
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Example 3 : 

■£ u or- o u t i n e k 1 o o< x . v . 2 ) 
r t . i l x( 3 )> ;■( 2 ) 
r 03.1*8 2, dd 

' • ' . ' i i s t ruc 'L d( 2 >/d( x , Y ) i n dd( 4 , 6 ) 
£■■1. dO 

do 10 i™ l , 3 

10 i f< x< i ). a t . 0. ) 2-2-» .a lc9< x< i ) ) 
do 2 0 i = l.. 2 

i f ( Y< i ). 11 . 0. ) g o t o 20 

2= '2*Y( i > 

.":'•.' 2 - 'SUt'-^ 
r-'i t u r n 

e n d 

SUBROUTINE KLOOJ< X, V, Z, DD, YDD, LYDD ) 
IN'IEGER I , LYDD, IDD.. RDD, LDD, ODD, IY, IX 

REAL X< 3 )• Y< 2 ), ALOG 

DOUBLE PRECIS ION Z. DD( 4 , 6 >, YDD( LYDD >, TDD, TDD1, TDD 

*2» TDD3, TDD4. TDDH5, TDD6. TDD7, TDD8 

rv=-io 
IX - IY+2 

CALL DP I NIK IX+3, LYDD) 
CALL DMITCK 1 ) 
z=i. no 
DO 8001 r-1. 3 
IF( X( I >. LE. 0. I'GOTO 8002 
CALL DMITK IX + I. 1. DO/X( I ), 2 ) 
TDD-AI. 0G( X( I ) ) 
CALL DMIT2< 1, TDD, 2, Z, 1 ) 
Z-Z^TDD 

3002 CONTINUE 
8001 CONTINUE 

DO 8003 I---1, 2 
IF( Yi' I ). LT. 0. )G0T0 20 
CALL DMIT2( 1- Y< I HO.. DO, IY+I. Z, 1 ) 
Z-Z*-Y< I ) ) 

20 CONTINUE 
CALI DMITK 1, Z+Z, 1 ) 
Z~Z**2 

SOC'3 CONTINUE 
8000 CONTINUE 

RDD-0 
CALL DPGRAD< YDD,LYDD, 1,RDD, IDD ) 
CAL I. DPCOPYi DD, IDD, 4, YDD( IX + 1 ), 3 ) 
CALL DPCOPY< DD, IDD, 1-, YDD( IY+1 ), 2 ) 
RETURN 
END ' 

http://rt.il
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In this third example, note the types of all variables and 

expressions. In particular, all arguments to DMIT are of consistent 

type. It is also interesting to see how flow of control has been 

reworked. This is necessary because FORTRAN allows only a single 

statement following a "logical IF." 

The generation of names and statement numbers by Jake deserves an 

additional comment. Except for the subroutine names used by Jake, such 

as "SPGRAD," no names or statement numbers used by Jake will ever 

interfere with names and statement numbers in the original program. So 

the name "IX" used by Jake in Example 3 would never have been generated 

if KLOO itself had contained IX. Jake will try small perturbations of 

"IX" until one is found that is not in KLOO. 

6.2. How Jake Works 

As mentioned earlier, the description of the innards of Jake will 

be very brief. Jake consists of four passes: 

1) the lexical preprocessor 

2) the parser 

3) the tree building and flow analysis pass 

4) the differentiator and output constructing pass 

To run the program produced by Jake, we need 

5) the "run-time support" package 

6.2.1. The Lexical Preprocessor of Jake 

The lexical preprocessor of Jake takes the input program and 

reworks it to give it a recognizable lexical structure. This is 

necessary because FORTRAN attaches significance to the column a 

character is in; FORTRAN does not reserve its keywords; FORTRAN does not 

attach significance to spaces between variables or in the middle of 

variables, or between keywords and variables; FORTRAN does not allow 

parsing with limited look-ahead. In short, FORTRAN has nothing like the 

lexical structure one takes for granted in more recent, more decent 

languages. The lexical preprocessor, working on an entire FORTRAN 

statement at a time, will: 
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a) eliminate comments (but it keeps the CONSTRUCT); 

b) collect the statement fields of a statement and all (if any) 

continuation statements following it into a single line of 

arbitrary length; 

c) separate all lexemes from each other by spaces or special operator 

symbols; 

d) translate keywords to lower case and variables to upper case; 

e) rework statement numbers. 

An example follows. 

input 

subroutine abc(d) 
construct d(d)/d(e) in f(3) 

C0MM0N/g/e(3) 
c this is a comment 

d=e(l)+e(2)*sqrt( 
&e(3)) 
do 10 i=l,5 
do 20 j=2 

10 continue 
end 

af ter processing 

s u b r o u t i n e ABC( D ) 

c o n s t r u c t <D X E )F< 3 ) 
common /G/E( 3 ) 
D=E( 1 HE< 2 )*SQRT< E< 3 ) ) 
do 10 1=1 ,3 
D020J-3 
: 10 c o n t i nue 
e n d 

The techniques used in the preprocessor are mostly ad-hoc, and not 

particularly interesting. The only remarkable aspect of the 

preprocessor is that it works, and works fast. The preprocessor should 

prove useful in its own right. 

6.2.2. Jake's Parser 

In striking.contrast to the preprocessor, there is nothing ad-hoc 

about the parser. The parser was generated by the YACC [J0H75] parser 

generator system running under Unix. Given a BNF description of the 

FORTRAN grammar, YACC produces an LALR parser for FORTRAN which will run 

when supplied with a lexical scanner. The preprocessor leaves the input 

program of Jake in a form that allows a lexical scanner and a BNF 

grammar for FORTRAN to be written. The grammar is simplified by the 

restriction that COMPLEX constants not occur and by the fact that 



62 

several statements (such as the FORMAT statement) need not be parsed 

beyond the identifying keyword. Statements, like FORMAT, that are 

simply to be carried along in Jake to be placed in the output without 

change; statements, moreover, that do not affect the outcome of flow 

analysis, are called "carryalongs." After reading the keyword, the 

lexical scanner simply stores the rest of the statement, unanalyzed, in 

a file for later retrieval. Hence, no BNF needs to be specified for 

FORMATS, WRITE statements, DATA statements, etc Except for the 

"carryalong" feature, the lexical scanner is fairly standard. It was 

modeled after [COM78]. The result of parsing the (preprocessed) input 

program is a string of tokens in a postfix representation of the program 

tree. That tree is not actually built until the third pass. The tokens 

in the postfix representation may represent arithmetic operations such 

as +, -; they may represent variables (such tokens are parameterized by 

an index into a nametable containing the name of the variable), 

constants (likewise); they may represent statements, such as COMMON or 

IF. 

6.2.3. The Tree-building and Flowgraph Analysis Pass 

Out of the postfix token string produced by the parser a program 

tree is constructed. A symbol table is built at the same time. The 

symbol table collects declarative information for variables: name, type, 

dimensions, initialization. Declarations are not incorporated in the 

tree. In essence, the program tree could be executed directly, at least 

by some kind of abstract machine. All nodes in the tree are either 

binary, unary, or null-ary. Each token has a fixed "arity" of 2, 1, or 

0. The null-ary tokens comprise the leaves of the tree. Though the 

leaves have no descendants, they may carry additional information such 

as pointers to symbol table entries, pointers to name table entries or 

pointers into the carryalong file. 

From the program tree the flow graph is obtained, by breaking up 

the tree in pieces corresponding to a single statement (an IF statement 

will get broken into two statements) and associating each such statement 

with a node in the flow graph. GOTOs, IFs, DOs and statement labels 

define the edges in the flow graph. Each node lists the "left hand 



63 

side" variable that is affected by the statement (if any), as well as 

the right hand side variables that may affect the left hand side 

variable. The flow graph analysis performed is itself fairly standard 

and straightforward. The literature on flow graph analysis is 

extensive. See e.g. [KAM76]. The questions that Jake atempts to answer 

through flow graph analysis are whether for a left hand side variable v 

ih a certain node we can say for certain that 3y/3v = 0, and if not, 

whether for the right hand side variables w in the same node we can say 

for certain that 3w/3x = 0. The zero/possibly-nonzero character of 

3w/3x is propagated through the program much in the same way as the 

uninitialized/possibly-initialized character of a variable is 

propagated. The latter is a standard example of a characteristic 

determinable by flow graph analysis. The determination about 3y/3v 

being zero is essentially similar and can be visualized as an 

initialization problem for the program running backwards in time. 

Statements having a left hand side that does not in any way 

contribute to the final value of y or cannot be traced back to the 

values of x are called "irrelevant." Variables that are given values in 

"irrelevant" statements only are called irrelevant varibles. Real-

valued variables that are found to be irrelevant through flow graph 

analysis need not be considered as part of the state space. No factors 

need be emitted for irrelevant statements. The statement 

v := w * p 

even if relevant, need emit only 3v/3w and may omit 3v/3p if flow graph 

analysis can prove that 3p/3x = 0. So flow graph analysis and the 

detection of (possible) relevance allows a reduction in the state space, 

the size of the row vector that needs to be supplied, the number of 

factors to be emitted, and even the size of the factors that are 

emitted. The tree, the symbol table, and relevancy information is 

passed on to the last pass. 

6.2.4. The Differentiator and Output Building Pass 

This pass has to emit the factors and must therefore be able to 

differentiate formulas. The approach to differentiation chosen in Jake 

is similar to that in Warner [WAR75], Joss [JOS76] and Kedem [KED77]. 
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It consists of splitting up more complicated formulas in simple ones, 

using assignments to newly created temporary variables. This way a 

simple differentiation scheme suffices to create expressions that have 

common subexpressions of any complexity. The would-be common 

subexpressions of the derivatives of the original expression show up as 

exactly those temporary variables. The simple differentiation scheme 

alluded to is one where we merely need to know the derivative of each 

elementary mathematical operation with respect to each of its operands 

and nothing more. If some of these operands are flagged as "irrelevant" 

or "constant," so much the better. Because operations can be only 

binary, unary or null-ary, it suffices to have three factor emission 

routines, EMIT2, EMIT1, and EMITO. (Three more are needed for double 

precision gradient8/Jacobians.) ' 

In addition to differentiation, the fourth pass has to be able to 

generate addresses @v[i] for addressing in the state space. It has to 

be able to generate declarations and initializations. All this 

essentially depends on the information in the symbol table being 

sufficient—and that is the responsibility of the previous pass. The 

fourth pass must generate program text for performing factor 

multiplication and extraction of the desired information, one row at a 

time, from the row vector into the receiving variable. Generation of 

this part of the output program is tremendously simplified by careful 

design of the procedure interfaces (e.g. parameter lists) of SPGRAD and 

SPCOPY. 

As the differentiation of relevant assignment statements results in 

a modified program tree, we still need as part of the fourth pass a set 

of procedures that will print the tree in a form compatible with FORTRAN 

rules. In addition, it is preferable to have the output appear in 

human-readable form, avoiding names like U00001 in favor of the names 

appearing in the input program or at least names reminiscent of those. 

So most names created by Jake are derived from the name of the variable 

receiving the gradient/Jacobian. Creation of statement numbers by Jake 

is simpler and less sophisticated. Printing the program tree 
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/ \ 
g x 

means avoiding the extremes of p + g(i) * r (which Is incorrect) and 

((p) + (g(i)))) + (r) (which is unduly hard to read). Jake acually 

produces 

(p + g(i)) * r 

but one can easily construct expressions where Jake prints redundant 

parentheses. 

_6..2._5. The Run-time Support 

From a glance at the example outputs from Jake the impression may 

have been gained that the real work is being performed in the 

subroutines EMITl, SPGRAD, etc., and not in the subroutine produced by 

Jake. In a certain sense this is true. Barring small details involving 

the argument lists of SPINIT and SPGRAD, the ouput produced by Jake is 

still compatible with Joss' method. That is, the subroutines EMITi, i = 

0, 1, 2, can be written to perform right-to-left multiplication of 

factors in the Joss way. If it is true, then, that much of the work is 

done by the subroutines EMITl, SPGRAD, etc., it does not follow that 

these subroutines are particularly hard to write or that they are 

particularly long. Moreover, these subroutines can be written once and 

for all; only minor changes will be required to convert from one 

computer to another with different disk/10 conventions. For maximal 

speed, subroutine SPGRAD can be written in machine code. 

The text of two subroutines, EMIT2 and SPGRAD, will be presented 

integrally on the next two pages. The other subroutines are either too 

similar or too simple to merit discussion here. 
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2000 
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emission 
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7. CONCLUSIONS 

In this chapter we summarize the results presented in this thesis 

and point to future work. 

If given a subroutine Af(x, y) representing the function y = f(x) 

with x = (xj,..., x n), the system Jake described in this thesis Is able 

to produce a subroutine Af' representing the gradient of y, 3y/3x. 

The table below shows how Af' produced by Jake compares with 

numerical differencing and with Joss' method. 

algorithm 

y = f(x) : Af 

3y/3x : num. diff. 

8y/9x : Joss 

9y/9x : Jake 

time 

T 

O(nT) 

O(nT) 

0(T) 

space 

S 

S 

O(nS) 

0(S) 

Jake represents a significant improvement over the work of Joss. For 

the first time a method for symbolic differentiation of algorithms has 

been developed that constitutes a viable and competitive alternative to 

numerical differencing. With a fast and reliable method of computing 

gradients, optimization methods requiring gradients become more 

attractive. Jake may serve to revive interest in this class of methods. 

In addition to gradients, Jake can produce Jacobians as well. For 

a Jacobian of size k * n with k substantially smaller than n, Jake is 

significantly faster than Joss and numerical differencing. Some ideas 

that may ultimately lead to faster Jacobians for k = n have been put 

forward in Chapter 5. 

Producing gradients through differentiation by hand is exceedingly 

error-prone. Numerical differencing is quite robust, but a DELTA must 

be chosen carefully, to balance truncation error, round-off error and 
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the type of error discussed in Chapter 3. Symbolic differentiation is 

reliable. No hand-translation is involved. Symbolic differentiation is 

also expected to be quite accurate, though not much theory is available 

in support of this and some cautionary notes are sounded in Chapter 3. 

7.1. Experience with Jake 

Several tests have been run with Jake, though Jake has not yet been 

applied to any real-life problems. 

The outputs presented in chapter 6 stem from actual runs with Jake. 

Many more programs representing functions with known gradients were 

given to Jake and the output was found to be correct in all cases. In 

most of these cases, correctness was judged directly from inspection of 

the output subroutine. In the remaining cases, the output was actually 

run and the results compared with the known gradients/Jacobians. These 

include the example algorithms of section 7.1.1 and 7.1.2. The 

subsections below give the results of timing tests performed on the 

subroutines produced by Jake. All runs were made on a PDP11/35 with 

software-emulated floating point arithmetic, the machine on which Jake 

was developed. It should be very easy to repeat the timing tests on 

different machines. 

7.1.1. Timing Tests for a Gradient 

The standard deviation of a set of numbers (x̂  >#> xn) was chosen 

as an example. The standard deviation is defined by 

y = ~f I (x.-x)2/n, where x = I x,/n. 

A subroutine "stdev" implementing this function was given to Jake. The 

speed of the subroutine produced by Jake was compared to the speed of 

"stdev" iself, with the speed of a program simulating Joss' method for 

obtaining the gradient, and with numerical differencing. The results 

for various n are shown in the table below. Each column has been scaled 
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independently of all others to make the "stdev" time equal to one. 

gradient n=20 n=50 n=100 n=150 

stdev (reference) 1 1 1 1 

numerical differencing 10.8 33.6 93.4 

Joss 10.4 34. 91.7 132.3 

Jake 8.6 22.2 18.2 17.9 

7.1.2. Timing Tests for a Jacobian 

A very simple algorithm is used as a timing test for Jacobians: 

the algorithm matmul which computes y = Ax where A is an n * n matrix 

with constant elements. All methods do indeed reproduce A as their 

answer 3y/3x. 

n=10 n=20 

matmul (reference) 1 1 

numerical differencing 3.3 14.4 

Jake 8.6 30.8 

7.2. Future Work 

Several things could be done to make Jake a better tool; some 

small, some larger, and most of them fairly obvious. 

7.2.1. The +: = Operator 

Assignments of the form u := u + a * v; are extremely common. 

According to the theory of Chapter 4 they correspond to factors of the 

form 

\ 3 u 3v 
3u 1. 

When multiplying this factor to the g vector, we get in effect: 

t := g[3 u]; 

lft ^ 0 then g[3 u] := 0; 

g[3 u] := g[3 u] + t * 1; 

g[3 v] := g[3 v] + t * a; 
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This could be written more ef f ic ient ly a s : 

t := g[3 u ] ; 

if t j* 0 then g[3 v] := g[3 v] + t * a; 

We can think of the latter as the factor multiplication operation 

corresponding to a new type of factor, the factor emitted as a response 

to a "+:=" operator (cf. Algol 68) in contrast to the usual operation 

":=". So "u := u + a * v" is regarded as "u +:= a * v" and the factor 

emitted is 
+ 
\ 3v 

3u 

Incorporating this change into Jake would save many multiplications of a 

number by one. Of course, such a change will not affect the 0(T) time 

bound as such, but it may decrease the value of the coefficient of T in 

0(T). For example, for the algorithm 

for i :=1 step 1 until n jlo 

y := y + x[ij; 

the number of multiplications in the gradient would decrease from 2n to 

n. 

7.2.2. Longer Factors 

Chapter 6 shows that the factor emitted for 

u := u + a * v; 

is not really 

\ 3u 3v 
3u 1 

as the previous subsection suggests. 

transformed into 

temp := a * v; 

u := u + temp; 

with the corresponding factors 

Instead, u u + a * v is 

\ 3v \ 3u 3temp 
3temp | a | ; 3u | 1. 1. 
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Here another multiplication by one is introduced. It would not be 

trivial to change the differentiation scheme to allow it to deal 

directly with larger chunks of the expression at the right hand side, 

but it might eliminate local inefficiencies like the one shown. Not 

only a multiplication by one is at stake, but also the overhead 

associated with an additional procedure Invocation. 

7.2.3. Subroutine Calls 

It would be desirable to extend Jake to enable it to cope with 

arbitrary calls to arbitrary subroutines as long as the text of these 

subroutines is also supplied to Jake. 

The problems associated with such an extension are varied, but all 

seem technical rather than theoretical. COMMON blocks would become 

important, posing problems much the same as EQUIVALENCE statements do in 

the single subroutine case. Allowing recursive procedures would be 

still more difficult. 

7.2.4. Language Extensions 

Jake could be extended to recognize" complex variables. It could be 

extended to handle a larger set of library functions, including 

functions not in the FORTRAN standard, such as tan(x) and Bessel 

functions. The CONSTRUCT could be extended to allow the resulting 

Jacobian to be stored in sparse form according to some user-supplied 

store function; the syntax might be something like this: 

CONSTRUCT D(Y)/D(X) USING STORE(ROW,COL,VALUE) 

7 . 2 . 5 . Round-off Behavior 

A better understanding of accumulation of round-off in symbolic 

differentiation is desirable. 

7.2.6. Faster Jacobians 

Chapter 5 has already dealt with various ways in which the 

construction of Jacobians might be speeded up. However, more work needs 

to be done before symbolic construction of Jacobians will be faster than 
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numerical differencing by an order of magnitude. 

7.3. Summary 

Jake provides a useful, flexible and efficient tool for algorithmic 

differentiation. It produces gradients that can be evaluated much 

faster than those produced by previous methods. 

A better tool can make a difference quantitatively, by allowing 

people to do more conveniently and more cheaply what they were doing 

already. A better tool can also make a difference qualitatively, by 

affecting certain trade-offs. It is hoped that Jake may help shift the 

balance in functional Iteration methods in favor of those that make use 

of partial derivatives-* 

\ 
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