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Compiling Finite Linear CSP into SAT

Naoyuki Tamura1, Akiko Taga2, Satoshi Kitagawa2, and Mutsunori Banbara1

1 Information Science and Technology Center, Kobe University, JAPAN
tamura@kobe-u.ac.jp

2 Graduate School of Science and Technology, Kobe University, JAPAN

Abstract. In this paper, we propose a method to encode Constraint Sat-
isfaction Problems (CSP) and Constraint Optimization Problems (COP)
with integer linear constraints into Boolean Satisfiability Testing Prob-
lems (SAT). The encoding method is basically the same with the one
used to encode Job-Shop Scheduling Problems by Crawford and Baker.
Comparison x ≤ a is encoded by a different Boolean variable for each in-
teger variable x and integer value a. To evaluate the effectiveness of this
approach, we applied the method to Open-Shop Scheduling Problems
(OSS). All 192 instances in three OSS benchmark sets are examined,
and our program found and proved the optimal results for all instances
including three previously undecided problems.

1 Introduction

Recent advances in SAT solver technologies [1–5] have enabled solving a problem
by encoding it to a SAT problem, and then to use the efficient SAT solver to
find a solution, such as for model checking, planning, and scheduling [6–12].

In this paper, we propose a method to encode Constraint Satisfaction Prob-
lems (CSP) and Constraint Optimization Problems (COP) with integer linear
constraints into Boolean Satisfiability Testing Problems (SAT) of CNF (product-
of-sums) formulas.

As Hoos discussed in [8], basically two encoding methods are known: “sparse
encoding” and “compact encoding”. Sparse encoding [13] encodes each assign-
ment of a value to an integer variable by a different Boolean variable, that is,
Boolean variable representing x = a is used for each integer variable x and inte-
ger value a. Compact encoding [14, 7] assigns a Boolean variable for each bit of
each integer variable.

Encoding method used in this paper is different from these. The method is
basically the same with the one used to encode Job-Shop Scheduling Problems
by Crawford and Baker in [9] and studied by Soh, Inoue, and Nabeshima in
[10–12]. It encodes a comparison x ≤ a by a different Boolean variable for each
integer variable x and integer value a.

The benefit of this encoding is the natural representation of the order relation
on integers. Axiom clauses with two literals, such as {¬(x ≤ a), x ≤ a + 1} for
each integer a, represent the order relation for an integer variable x. Clauses,



for example {x ≤ a,¬(y ≤ a)} for each integer a, can be used to represent the
constraint among integer variables, i.e. x ≤ y.

The original encoding method in [9–12] is only for Job-Shop Scheduling Prob-
lems. In this paper, we extend the method so that it can be applied for any finite
linear CSPs and COPs.

To evaluate the effectiveness of this approach, we applied the method to
Open-Shop Scheduling Problems (OSS). All 192 instances in three OSS bench-
mark sets [15–17] are examined, and our program found and proved the optimal
results for all instances including three previously undecided problems [18–20].

2 Finite Linear CSP and SAT

In this section, we define finite linear Constraint Satisfaction Problems (CSP)
and Boolean Satisfiability Testing Problems (SAT) of CNF formulas.

Z is used to denote a set of integers and B is used to denote a set of Boolean
constants (> and ⊥ are the only elements of B representing “true” and “false”
respectively).

We also prepare two countably infinite sets of integer variables V and Boolean
variables B. Although only a finite number of variables are used in a specific
CSP or SAT, countably infinite variables are prepared to introduce new variables
during the translation. Symbols x, y, z, x1, y1, z1, . . . , are used to denote integer
variables, and symbols p, q, r, p1, q1, r1, . . . , are used to denote Boolean variables.

Linear expressions over V ⊂ V, denoted by E(V ), are algebraic expressions in
the form of

∑
ai xi where ai’s are non-zero integers and xi’s are integer variables

(elements of V ). We also add the restriction that xi’s are mutually distinct.
Literals over V ⊂ V and B ⊂ B, denoted by L(V, B), consist of Boolean

variables {p | p ∈ B}, negations of Boolean variables {¬p | p ∈ B}, and com-
parisons {e ≤ c | e ∈ E(V ), c ∈ Z}. Please note that we restrict compari-
son literals to only appear positively and in the form of

∑
ai xi ≤ c without

loss of generality. For example, ¬(a1x1 + a2x2 ≤ c) can be represented with
−a1x1 − a2x2 ≤ −c − 1, and x 6= y (that is, (x < y) ∨ (x > y)) can be repre-
sented with (x− y ≤ −1) ∨ (−x + y ≤ −1).

Clauses over V ⊂ V and B ⊂ B, denoted by C(V, B), are defined as usual
where literals are chosen from L(V, B), that is, a clause represents a disjunction
of element literals. Integer variables occurring in a clause are treated as free
variables, that is, a clause {x ≤ 0} does not mean ∀x.(x ≤ 0).

Definition 1 (Finite linear CSP). A (finite linear) CSP (Constraint Satis-
faction Problem) is defined as a tuple (V, `, u, B, S) where

(1) V is a finite subset of integer variables V,
(2) ` is a mapping from V to Z representing the lower bound of the integer

variable,
(3) u is a mapping from V to Z representing the upper bound of the integer

variable,
(4) B is a finite subset of Boolean variables B, and



(5) S is a finite set of clauses (that is, a finite subset of C(V, B)) representing
the constraint to be satisfied.

In the rest of this paper, we simply call finite linear CSP as CSP.
We extend the functions ` and u for any linear expressions e ∈ E(V ), e.g.

`(2x− 3y) = −9 and u(2x− 3y) = 6 when `(x) = `(y) = 0 and u(x) = u(y) = 3.
An assignment of a CSP (V, `, u, B, S) is a pair (α, β) where α is a mapping

from V to Z and β is a mapping from B to {>,⊥}.

Definition 2 (Satisfiability). Let (V, `, u, B, S) be a CSP. A clause C ∈ C(V, B)
is satisfiable by an assignment (α, β) if the assignment makes the clause C be
true and `(x) ≤ α(x) ≤ u(x) for all x ∈ V . We denote this satisfiability relation
as follows.

(α, β) |= C

A clause C is satisfiable if C is satisfiable by some assignment.
A set of clauses is satisfiable when all clauses in the set are satisfiable by

the same assignment. A logical formula is satisfiable when its clausal form is
satisfiable. The CSP is satisfiable if S is satisfiable.

Finally, we define SAT as a special form of CSP.

Definition 3 (SAT). A SAT (Boolean Satisfiability Testing Problem) is a CSP
without integer variables, that is, (∅, ∅, ∅, B, S).

3 Encoding finite linear CSP to SAT

3.1 Converting comparisons to primitive comparisons

In this section, we will explain a method to transform a comparison into primitive
comparisons.

A primitive comparison is a comparison in the form of x ≤ c where x is an
integer variable and c is an integer satisfying `(x) − 1 ≤ c ≤ u(x). In fact, it is
possible to restrict the range of c to `(x) ≤ c ≤ u(x) − 1 since x ≤ `(x) − 1 is
always false and x ≤ u(x) is always true. However, we use the wider range to
simplify the discussion.

Let us consider a comparison of x + y ≤ 7 when `(x) = `(y) = 0 and u(x) =
u(y) = 6. As shown in Figure 1, the comparison can be equivalently expressed as
(x ≤ 1∨y ≤ 5)∧(x ≤ 2∨y ≤ 4)∧(x ≤ 3∨y ≤ 3)∧(x ≤ 4∨y ≤ 2)∧(x ≤ 5∨y ≤ 1)
in which 10 black dotted points are contained as satisfiable assignments since
0 ≤ x, y ≤ 6. Please note that conditions (x ≤ 1 ∨ y ≤ 5) and (x ≤ 5 ∨ y ≤ 1),
which are equivalent to y ≤ 5 and x ≤ 5 respectively, are necessary to exclude
cases of x = 2, y = 6 and x = 6, y = 2.

Now, we will show the following lemma before describing the conversion to
primitive comparisons in general.
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Fig. 1. Converting x + y ≤ 7 to primitive comparisons

Lemma 1. Let (V, `, u, B, S) be a CSP, then for any assignment (α, β) of the
CSP, for any linear expressions e, f ∈ E(V ), and for any integer c ≥ `(e) + `(f),
the following holds.

(α, β) |= e + f ≤ c

⇐⇒ (α, β) |=
∧

a+b=c−1

(e ≤ a ∨ f ≤ b)

Parameters a and b range over Z satisfying a + b = c − 1, `(e) − 1 ≤ a ≤ u(e),
and `(f) − 1 ≤ b ≤ u(f). The conjunction represents > if there are no such a
and b.

Proof. (=⇒) From the hypotheses and the definition of satisfiability, we get
α(e)+α(f) ≤ c, `(e) ≤ α(e) ≤ u(e), and `(f) ≤ α(f) ≤ u(f). Let a and b be any
integers satisfying a + b = c − 1, `(e) − 1 ≤ a ≤ u(e), and `(f) − 1 ≤ b ≤ u(f).
If there are no such a and b, the conclusion holds.

If α(e) ≤ a, e ≤ a in the conclusion is satisfied. Otherwise, f ≤ b in the
conclusion is satisfied since α(f) ≤ c−α(e) ≤ c−a− 1 = (a+ b+1)−a− 1 = b.
Therefore, e ≤ a ∨ f ≤ b is satisfied for any a and b.

(⇐=) From the hypotheses, α(e) ≤ a ∨ α(f) ≤ b is true for any a and b
satisfying a + b = c− 1, `(e)− 1 ≤ a ≤ u(e), and `(f)− 1 ≤ b ≤ u(f). From the
definition of satisfiability, we also have `(e) ≤ α(e) ≤ u(e) and `(f) ≤ α(f) ≤
u(f). Now, we show the conclusion through a proof by contradiction. Assume
that α(e) + α(f) > c which is the negation of the conclusion.

When α(e) ≥ c− `(f)+1, we choose a = c− `(f) and b = `(f)− 1. It is easy
to check the conditions `(e)−1 ≤ a ≤ u(e) and `(f)−1 ≤ b ≤ u(f) are satisfied,
and α(e) ≤ a ∨ α(f) ≤ b becomes false for such a and b, which contradicts the
hypotheses.



When α(e) < c− `(f)+1, we choose a = α(e)−1 and b = c−α(e). It is easy
to check the conditions `(e)−1 ≤ a ≤ u(e) and `(f)−1 ≤ b ≤ u(f) are satisfied,
and α(e) ≤ a ∨ α(f) ≤ b becomes false for such a and b, which contradicts the
hypotheses. ut

The following proposition shows a general method to convert a (linear) com-
parison into primitive comparisons.

Proposition 1. Let (V, `, u, B, S) be a CSP, then for any assignment (α, β)
of the CSP, for any linear expression

∑n
i=1 ai xi ∈ E(V ), and for any integer

c ≥ `(
∑n

i=1 ai xi) the following holds.

(α, β) |=
n∑

i=1

ai xi ≤ c

⇐⇒ (α, β) |=
∧

∑n

i=1
bi=c−n+1

∨

i

(ai xi ≤ bi)#

Parameters bi’s range over Z satisfying
∑n

i=1 bi = c − n + 1 and `(aixi) − 1 ≤
bi ≤ u(aixi) for all i. The translation ()# is defined as follows.

(a x ≤ b)# ≡





x ≤
⌊

b

a

⌋
(a > 0)

¬
(

x ≤
⌈

b

a

⌉
− 1

)
(a < 0)

Proof. The satisfiability of
∑

ai xi ≤ c is equivalent to the satisfiability of∧∨
(ai xi ≤ bi) from Lemma 1, and the satisfiability of each ai xi ≤ bi is

equivalent to the satisfiability of (ai xi ≤ bi)#. ut
Therefore, any comparison literal

∑
ai xi ≤ c in a CSP can be converted to a

CNF (product-of-sums) formula of primitive comparisons (or Boolean constants)
without changing its satisfiability. Please note that the comparison literal should
occur positively in the CSP to perform this conversion.

Example 1. When `(x) = `(y) = `(z) = 0 and u(x) = u(y) = u(z) = 3, com-
parison x + y < z − 1 is converted into (x ≤ −1 ∨ y ≤ −1 ∨ ¬(z ≤ 1)) ∧ (x ≤
−1∨ y ≤ 0∨¬(z ≤ 2))∧ (x ≤ −1∨ y ≤ 1∨¬(z ≤ 3))∧ (x ≤ 0∨ y ≤ −1∨¬(z ≤
2)) ∧ (x ≤ 0 ∨ y ≤ 0 ∨ ¬(z ≤ 3)) ∧ (x ≤ 1 ∨ y ≤ −1 ∨ ¬(z ≤ 3)).

3.2 Encoding to SAT

As shown in the previous subsection, any (finite linear) CSP can be converted
into a CSP with only primitive comparisons.

Now, we eliminate each primitive comparison x ≤ c (x ∈ V , `(x) − 1 ≤ c ≤
u(x)) by replacing it with a newly introduced Boolean variable p(x, c) which is
chosen from B. We denote a set of these new Boolean variables as follows.

B′ = {p(x, c) | x ∈ V, `(x)− 1 ≤ c ≤ u(x)}



We also need to introduce the following axiom clauses A(x) for each integer
variable x in order to represent the bound and the order relation.

A(x) = {{¬p(x, `(x)− 1)}, {p(x, u(x))}}
∪ {{¬p(x, c− 1), p(x, c)} | `(x) ≤ c ≤ u(x)}

As previously described, clauses of {¬p(x, `(x) − 1)} and {p(x, u(x))} are
redundant. However, these will be removed in the early stage of SAT solving
and will not much affect the performance of the solver.

Proposition 2. Let (V, `, u, B, S) be a CSP with only primitive comparisons,
let S∗ be a clausal form formula obtained from S by replacing each primitive
comparison x ≤ c with p(x, c), and let A =

⋃
x∈V A(x). Then, the following

holds.

(V, `, u, B, S) is satisfiable
⇐⇒ (∅, ∅, ∅, B ∪B′, S∗ ∪A) is satisfiable

Proof. (=⇒) Since (V, `, u, B, S) is satisfiable, there is an assignment (α, β) which
makes S be true and `(x) ≤ α(x) ≤ u(x) for all x ∈ V . We extend the mapping
β to β∗ as follows.

β∗(p) =
{

β(p) (p ∈ B)
α(x) ≤ c (p = p(x, c) ∈ B′)

Then an assignment (α, β∗) satisfies S∗ ∪A.
(⇐=) From the hypotheses, there is an assignment (∅, β) which makes S∗∪A

be true. We define a mapping α as follows.

α(x) = min {c | `(x) ≤ c ≤ u(x), p(x, c)}

It is straightforward to check the assignment (α, β) satisfies S. ut

3.3 Keeping Clausal Form

When encoding a clause of CSP to SAT, the encoded formula is no more a clausal
form in general.

Consider a case of encoding a clause {x − y ≤ −1,−x + y ≤ −1} which
means x 6= y. Each of x − y ≤ −1 and −x + y ≤ −1 is encoded into a CNF
formula of primitive comparisons. Therefore, when we expand the conjunctions
to get a clausal form, the number of obtained clauses is the multiplication of two
numbers of primitive comparisons.

As it is well known, introduction of new Boolean variables is useful to reduce
the size. Suppose {c1, c2, . . . , cn} is a clause of original CSP where ci’s are com-
parison literals, and {Ci1, Ci2, . . . , Cini

} is an encoded CNF formula (in clausal
form) of ci for each i.



We introduce new Boolean variables p1, p2, . . . , pn chosen from B, and replace
the original clause with {p1, p2, . . . , pn}. We also introduce new clauses {¬pi} ∪
Cij for each 1 ≤ i ≤ n and 1 ≤ j ≤ ni.

This conversion does not affect the satisfiability which can be shown from
the following Lemma.

Lemma 2. Let (V, `, u, B, S) be a CSP, {L1, L2, . . . , Ln} be a clause of the CSP,
and p1, p2, . . . , pn be new Boolean variables. Then, the following holds.

{L1, L2, . . . , Ln} is satisfiable
⇐⇒ {{p1, p2, . . . , pn} {¬p1, L1}, {¬p2, L2}, . . . , {¬pn, Ln}} is satisfiable

Proof. (=⇒) From the hypotheses, there is an assignment (α, β) which satisfies
some Li. We extend the mapping β so that β(pi) = > and β(pj) = ⊥ (j 6= i).
Then, the assignment satisfies converted clauses.

(⇐=) From the hypotheses, there is an assignment (α, β) which satisfies some
pi. The assignment also satisfies {¬pi, Li}, and therefore Li. Hence the conclusion
holds. ut
Example 2. Consider an example of encoding a clause {x−y ≤ −1,−x+y ≤ −1}
when `(x) = `(y) = 0 and u(x) = u(y) = 2. x − y ≤ −1 and −x + y ≤ −1
are converted into S1 = (p(x,−1) ∨ ¬p(y, 0)) ∧ (p(x, 0) ∨ ¬p(y, 1)) ∧ (p(x, 1) ∨
¬p(y, 2)) and S2 = (¬p(x, 2)∨p(y, 1))∧ (¬p(x, 1)∨p(y, 0))∧ (¬p(x, 0)∨p(y,−1))
respectively. Expanding S1 ∨ S2 generates 9 clauses. However, by introducing
new Boolean variables p and q, we obtain the following seven clauses.

{p, q}
{¬p, p(x,−1),¬p(y, 0)} {¬p, p(x, 0),¬p(y, 1)} {¬p, p(x, 1),¬p(y, 2)}
{¬q,¬p(x, 2), p(y, 1)} {¬q,¬p(x, 1), p(y, 0)} {¬q,¬p(x, 0), p(y,−1)}

3.4 Size of the Encoded SAT Problem

Usually the size of the encoded SAT problem becomes large.
Suppose the number of integer variables is n, and the size of integer variable

domains is d, that is, d = u(x)− `(x) + 1 for all x ∈ V . Then the size of newly
introduced Boolean variables B′ is O(nd), the size of axiom clauses A is also
O(nd), and the number of literals in each axiom clause is at most two.

Each comparison
∑m

i=1 ai xi ≤ c will be encoded into O(dm−1) clauses in
general by Proposition 1.

However, it is possible to reduce the number of integer variables in each
comparison at most three. For example, x1 + x2 + x3 + x4 ≤ c can be replaced
with x+x3 +x4 ≤ c by introducing a new integer variable x and new constraints
x− x1 − x2 ≤ 0 and −x + x1 + x2 ≤ 0, that is, x = x1 + x2.

Therefore, each comparison
∑m

i=1 ai xi ≤ c can be encoded by at most
O(md2) clauses3 even when m ≥ 4, and the number of literals in each clause is
3 We corrected the number of clauses which was O(d2) + O(md) in the final version

of CP2006 paper.



at most four (three for integer variables and one for the case handling described
in the previous subsection).

4 Encoding finite linear COP to SAT

Definition 4 (Finite linear COP). A (finite linear) COP (Constraint Opti-
mization Problem) is defined as a tuple (V, `, u, B, S, v) where

(1) (V, `, u, B, S) is a finite linear CSP, and
(2) v ∈ V is an integer variable representing the objective variable to be min-

imized (without loss of generality we assume COPs as minimization prob-
lems).

The optimal value of COP (V, `, u, B, S, v) can be obtained by repeatedly
solving CSPs.

min {c | `(v) ≤ c ≤ u(v), CSP (V, `, u, B, S ∪ {{v ≤ c}}) is satisfiable}

Of course, instead of linear search, binary search method is useful to find the
optimal value efficiently as used in previous works [10–12].

It is also possible to encode COP to SAT once at first, and repeatedly modify
only the clause {v ≤ c} for a given c. This procedure substantially reduces the
time spent for encoding.

5 Solving OSS

In order to show the applicability of our method, we applied it to OSS (Open-
Shop Scheduling) problems. There are three well-known sets of OSS benchmark
problems by Guéret and Prins [15] (80 instances denoted by gp*), Taillard [16]
(60 instances denoted by tai_*), and Brucker et al. [17] (52 instances denoted
by j*), which are also used in [18–20].

Some problems in these benchmark sets are very hard to solve. Actually,
three instances (j7-per0-0, j8-per0-1, and j8-per10-2) are still open, and 37
instances are closed recently in 2005 by complete MCS-based search solver of
ILOG [20].

Representing OSS problem as CSP is straightforward. Figure 2 defines a
benchmark instance gp03-01 of 3 jobs and 3 machines. Each element pij repre-
sents the process time of the operation Oij (0 ≤ i, j ≤ 2). The instance gp03-01
can be represented as a CSP of 27 clauses as shown in Figure 3.

In the figure, integer variables m represents the makespan and each sij rep-
resents the start time of each operation Oij . Clauses {sij + pij ≤ m} represent
deadline constraint such that operations should be completed before m. Clauses
{sij +pij ≤ skl, skl +pkl ≤ sij} represent resource capacity constraint such that
the operation Oij and Okl should not be overlapped each other.



(pij) =

(
661 6 333
168 489 343
171 505 324

)

Fig. 2. OSS benchmark instance gp03-01

{s00 + 661 ≤ m} {s01 + 6 ≤ m} {s02 + 333 ≤ m}
{s10 + 168 ≤ m} {s11 + 489 ≤ m} {s12 + 343 ≤ m}
{s20 + 171 ≤ m} {s21 + 505 ≤ m} {s22 + 324 ≤ m}

{s00 + 661 ≤ s01, s01 + 6 ≤ s00} {s00 + 661 ≤ s02, s02 + 333 ≤ s00}
{s01 + 6 ≤ s02, s02 + 333 ≤ s01} {s10 + 168 ≤ s11, s11 + 489 ≤ s10}

{s10 + 168 ≤ s12, s12 + 343 ≤ s10} {s11 + 489 ≤ s12, s12 + 343 ≤ s11}
{s20 + 171 ≤ s21, s21 + 505 ≤ s20} {s20 + 171 ≤ s22, s22 + 324 ≤ s20}
{s21 + 505 ≤ s22, s22 + 324 ≤ s21} {s00 + 661 ≤ s10, s10 + 168 ≤ s00}
{s00 + 661 ≤ s20, s20 + 171 ≤ s00} {s10 + 168 ≤ s20, s20 + 171 ≤ s10}
{s01 + 6 ≤ s11, s11 + 489 ≤ s01} {s01 + 6 ≤ s21, s21 + 505 ≤ s01}

{s11 + 489 ≤ s21, s21 + 505 ≤ s11} {s02 + 333 ≤ s12, s12 + 343 ≤ s02}
{s02 + 333 ≤ s22, s22 + 324 ≤ s02} {s12 + 343 ≤ s22, s22 + 324 ≤ s12}

Fig. 3. CSP representation of gp03-01

Before encoding the CSP to SAT, we also need to determine the lower and
upper bound of integer variables. We used the following values ` and u (where
n is the number of jobs and machines).

` = max


 max

0≤i<n

∑

0≤j<n

pij , max
0≤j<n

∑

0≤i<n

pij




u =
∑

0≤k<n

max
(i−j) mod n=k

pij

The value u is used for the upper bound of sij ’s and m, and the value ` is used
for the lower bound of m (the lower bound 0 is used for sij ’s). For example,
` = 1000 and u = 1509 for the instance gp03-01.

We developed a program called CSP2SAT which encodes a CSP representation
(of a given OSS problem) into SAT and repeatedly invokes a complete SAT
solver to find the optimal solution by binary search4. We used MiniSat [5] as the
backend complete SAT solver because it is known to be very efficient (MiniSat
is a winner of all industrial categories of the SAT 2005 competition).

We run CSP2SAT for all 192 instances of the three benchmark sets on In-
tel Xeon 2.8GHz 4GB memory machine with the time limit of 3 hours (10800
seconds).
4 The program will be available at http://bach.istc.kobe-u.ac.jp/csp2sat/.



(sij) =




247 296 110 618 537 31 500 127
815 50 328 274 311 672 550 6

1 583 120 339 876 842 675 58
293 669 5 72 250 502 403 994
286 517 870 594 612 347 0 297
404 252 73 28 83 25 300 734
707 997 560 12 48 87 842 340
53 6 703 285 342 872 526 547




Fig. 4. Optimal Scheduling of j8-per10-2 found by CSP2SAT

Figures 7, 8, and 9 provides the results. The column named “Optim.” de-
scribes the optimal value found by the program, and “CPU” describes the total
CPU time in seconds including encoding process. The column named “SAT”
describes the numbers of Boolean variables and clauses in the encoded SAT
problem. Although time spent for encoding is not shown separately in the fig-
ures, it ranges from 1 second to 1163 seconds and fits linearly with the number
of clauses in the encoded SAT program.

CSP2SAT found the optimal solutions for 189 known problems and one un-
known problem (j8-per10-2) within 3 hours.

The known upper bound of j8-per10-2 was 1009. CSP2SAT improved the
result to 1002 and proved there are no solutions for 1001. Figure 4 shows the
start times sij of the optimal scheduling found by the program.

Figure 5 provides the log scale plot of the number of clauses in the encoded
SAT problem (x-axis) and the total CPU time (y-axis) for 190 problems. The
mark + is used for gp* benchmarks, × is used for tai* benchmarks, and ¦ is
used for j* benchmarks. Dotted line is a plot of y = 0.00006x.

Except some instances of j* benchmarks, it seems the total CPU time linearly
fits with the number of clauses. This shows that the encoding used in this paper
is natural and does not uselessly increase the complexity for SAT solver.

For the remaining two open problems j7-per0-0 and j8-per0-1, we solved
and proved their optimal values by using 10 Mac mini machines (PowerPC G4
1.42GHz 1GB memory) running in parallel on Xgrid system [21] and by dividing
the problem into 120 subproblems where each subproblem is obtained by spec-
ifying the order of six operations. Optimal solutions were found and proved for
both of the two remaining instances within 13 hours.

Figure 6 summarizes the newly obtained results. All three remaining open
problems in [18–20] are now closed.

6 Conclusion

In this paper, we proposed a method to encode Constraint Satisfaction Prob-
lems (CSP) and Constraint Optimization Problems (COP) with integer linear
constraints into Boolean Satisfiability Testing Problems (SAT).
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Fig. 5. Log scale plot of the number of clauses and the CPU time

Instance Makespan Previously known bounds
Lower bound Upper bound

j7-per0-0 1048 1039 1048
j8-per0-1 1039 1018 1039
j8-per10-2 1002 1000 1009

Fig. 6. New results found and proved to be optimal

To evaluate the effectiveness of the encoding, we applied the method to Open-
Shop Scheduling Problems (OSS). All 192 instances in three OSS benchmark
sets are examined, and our program found and proved the optimal results for all
instances including three previously undecided problems.
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