
 Kobe University Repository : Kernel

タイトル
Tit le Compiling Finite Linear CSP into SAT

著者
Author(s)

Tamura, Naoyuki / Taga, Akiko / Kitagawa, Satoshi / Banbara,
Mutsunori

掲載誌・巻号・ページ
Citat ion

Lecture Notes in Computer Science,4204 - Principles and Pract ice of
Constraint Programming - CP 2006:590-603

刊行日
Issue date 2006-09

資源タイプ
Resource Type Journal Art icle / 学術雑誌論文

版区分
Resource Version author

権利
Rights

DOI 10.1007/11889205_42

JaLCDOI

URL http://www.lib.kobe-u.ac.jp/handle_kernel/90000146

PDF issue: 2022-08-17

Compiling Finite Linear CSP into SAT

Naoyuki Tamura1, Akiko Taga2, Satoshi Kitagawa2, and Mutsunori Banbara1

1 Information Science and Technology Center, Kobe University, JAPAN
tamura@kobe-u.ac.jp

2 Graduate School of Science and Technology, Kobe University, JAPAN

Abstract. In this paper, we propose a method to encode Constraint Sat-
isfaction Problems (CSP) and Constraint Optimization Problems (COP)
with integer linear constraints into Boolean Satisfiability Testing Prob-
lems (SAT). The encoding method is basically the same with the one
used to encode Job-Shop Scheduling Problems by Crawford and Baker.
Comparison x ≤ a is encoded by a different Boolean variable for each in-
teger variable x and integer value a. To evaluate the effectiveness of this
approach, we applied the method to Open-Shop Scheduling Problems
(OSS). All 192 instances in three OSS benchmark sets are examined,
and our program found and proved the optimal results for all instances
including three previously undecided problems.

1 Introduction

Recent advances in SAT solver technologies [1–5] have enabled solving a problem
by encoding it to a SAT problem, and then to use the efficient SAT solver to
find a solution, such as for model checking, planning, and scheduling [6–12].

In this paper, we propose a method to encode Constraint Satisfaction Prob-
lems (CSP) and Constraint Optimization Problems (COP) with integer linear
constraints into Boolean Satisfiability Testing Problems (SAT) of CNF (product-
of-sums) formulas.

As Hoos discussed in [8], basically two encoding methods are known: “sparse
encoding” and “compact encoding”. Sparse encoding [13] encodes each assign-
ment of a value to an integer variable by a different Boolean variable, that is,
Boolean variable representing x = a is used for each integer variable x and inte-
ger value a. Compact encoding [14, 7] assigns a Boolean variable for each bit of
each integer variable.

Encoding method used in this paper is different from these. The method is
basically the same with the one used to encode Job-Shop Scheduling Problems
by Crawford and Baker in [9] and studied by Soh, Inoue, and Nabeshima in
[10–12]. It encodes a comparison x ≤ a by a different Boolean variable for each
integer variable x and integer value a.

The benefit of this encoding is the natural representation of the order relation
on integers. Axiom clauses with two literals, such as {¬(x ≤ a), x ≤ a + 1} for
each integer a, represent the order relation for an integer variable x. Clauses,

for example {x ≤ a,¬(y ≤ a)} for each integer a, can be used to represent the
constraint among integer variables, i.e. x ≤ y.

The original encoding method in [9–12] is only for Job-Shop Scheduling Prob-
lems. In this paper, we extend the method so that it can be applied for any finite
linear CSPs and COPs.

To evaluate the effectiveness of this approach, we applied the method to
Open-Shop Scheduling Problems (OSS). All 192 instances in three OSS bench-
mark sets [15–17] are examined, and our program found and proved the optimal
results for all instances including three previously undecided problems [18–20].

2 Finite Linear CSP and SAT

In this section, we define finite linear Constraint Satisfaction Problems (CSP)
and Boolean Satisfiability Testing Problems (SAT) of CNF formulas.

Z is used to denote a set of integers and B is used to denote a set of Boolean
constants (> and ⊥ are the only elements of B representing “true” and “false”
respectively).

We also prepare two countably infinite sets of integer variables V and Boolean
variables B. Although only a finite number of variables are used in a specific
CSP or SAT, countably infinite variables are prepared to introduce new variables
during the translation. Symbols x, y, z, x1, y1, z1, . . . , are used to denote integer
variables, and symbols p, q, r, p1, q1, r1, . . . , are used to denote Boolean variables.

Linear expressions over V ⊂ V, denoted by E(V), are algebraic expressions in
the form of

∑
ai xi where ai’s are non-zero integers and xi’s are integer variables

(elements of V). We also add the restriction that xi’s are mutually distinct.
Literals over V ⊂ V and B ⊂ B, denoted by L(V, B), consist of Boolean

variables {p | p ∈ B}, negations of Boolean variables {¬p | p ∈ B}, and com-
parisons {e ≤ c | e ∈ E(V), c ∈ Z}. Please note that we restrict compari-
son literals to only appear positively and in the form of

∑
ai xi ≤ c without

loss of generality. For example, ¬(a1x1 + a2x2 ≤ c) can be represented with
−a1x1 − a2x2 ≤ −c − 1, and x 6= y (that is, (x < y) ∨ (x > y)) can be repre-
sented with (x− y ≤ −1) ∨ (−x + y ≤ −1).

Clauses over V ⊂ V and B ⊂ B, denoted by C(V, B), are defined as usual
where literals are chosen from L(V, B), that is, a clause represents a disjunction
of element literals. Integer variables occurring in a clause are treated as free
variables, that is, a clause {x ≤ 0} does not mean ∀x.(x ≤ 0).

Definition 1 (Finite linear CSP). A (finite linear) CSP (Constraint Satis-
faction Problem) is defined as a tuple (V, `, u, B, S) where

(1) V is a finite subset of integer variables V,
(2) ` is a mapping from V to Z representing the lower bound of the integer

variable,
(3) u is a mapping from V to Z representing the upper bound of the integer

variable,
(4) B is a finite subset of Boolean variables B, and

(5) S is a finite set of clauses (that is, a finite subset of C(V, B)) representing
the constraint to be satisfied.

In the rest of this paper, we simply call finite linear CSP as CSP.
We extend the functions ` and u for any linear expressions e ∈ E(V), e.g.

`(2x− 3y) = −9 and u(2x− 3y) = 6 when `(x) = `(y) = 0 and u(x) = u(y) = 3.
An assignment of a CSP (V, `, u, B, S) is a pair (α, β) where α is a mapping

from V to Z and β is a mapping from B to {>,⊥}.

Definition 2 (Satisfiability). Let (V, `, u, B, S) be a CSP. A clause C ∈ C(V, B)
is satisfiable by an assignment (α, β) if the assignment makes the clause C be
true and `(x) ≤ α(x) ≤ u(x) for all x ∈ V . We denote this satisfiability relation
as follows.

(α, β) |= C

A clause C is satisfiable if C is satisfiable by some assignment.
A set of clauses is satisfiable when all clauses in the set are satisfiable by

the same assignment. A logical formula is satisfiable when its clausal form is
satisfiable. The CSP is satisfiable if S is satisfiable.

Finally, we define SAT as a special form of CSP.

Definition 3 (SAT). A SAT (Boolean Satisfiability Testing Problem) is a CSP
without integer variables, that is, (∅, ∅, ∅, B, S).

3 Encoding finite linear CSP to SAT

3.1 Converting comparisons to primitive comparisons

In this section, we will explain a method to transform a comparison into primitive
comparisons.

A primitive comparison is a comparison in the form of x ≤ c where x is an
integer variable and c is an integer satisfying `(x) − 1 ≤ c ≤ u(x). In fact, it is
possible to restrict the range of c to `(x) ≤ c ≤ u(x) − 1 since x ≤ `(x) − 1 is
always false and x ≤ u(x) is always true. However, we use the wider range to
simplify the discussion.

Let us consider a comparison of x + y ≤ 7 when `(x) = `(y) = 0 and u(x) =
u(y) = 6. As shown in Figure 1, the comparison can be equivalently expressed as
(x ≤ 1∨y ≤ 5)∧(x ≤ 2∨y ≤ 4)∧(x ≤ 3∨y ≤ 3)∧(x ≤ 4∨y ≤ 2)∧(x ≤ 5∨y ≤ 1)
in which 10 black dotted points are contained as satisfiable assignments since
0 ≤ x, y ≤ 6. Please note that conditions (x ≤ 1 ∨ y ≤ 5) and (x ≤ 5 ∨ y ≤ 1),
which are equivalent to y ≤ 5 and x ≤ 5 respectively, are necessary to exclude
cases of x = 2, y = 6 and x = 6, y = 2.

Now, we will show the following lemma before describing the conversion to
primitive comparisons in general.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

Fig. 1. Converting x + y ≤ 7 to primitive comparisons

Lemma 1. Let (V, `, u, B, S) be a CSP, then for any assignment (α, β) of the
CSP, for any linear expressions e, f ∈ E(V), and for any integer c ≥ `(e) + `(f),
the following holds.

(α, β) |= e + f ≤ c

⇐⇒ (α, β) |=
∧

a+b=c−1

(e ≤ a ∨ f ≤ b)

Parameters a and b range over Z satisfying a + b = c − 1, `(e) − 1 ≤ a ≤ u(e),
and `(f) − 1 ≤ b ≤ u(f). The conjunction represents > if there are no such a
and b.

Proof. (=⇒) From the hypotheses and the definition of satisfiability, we get
α(e)+α(f) ≤ c, `(e) ≤ α(e) ≤ u(e), and `(f) ≤ α(f) ≤ u(f). Let a and b be any
integers satisfying a + b = c − 1, `(e) − 1 ≤ a ≤ u(e), and `(f) − 1 ≤ b ≤ u(f).
If there are no such a and b, the conclusion holds.

If α(e) ≤ a, e ≤ a in the conclusion is satisfied. Otherwise, f ≤ b in the
conclusion is satisfied since α(f) ≤ c−α(e) ≤ c−a− 1 = (a+ b+1)−a− 1 = b.
Therefore, e ≤ a ∨ f ≤ b is satisfied for any a and b.

(⇐=) From the hypotheses, α(e) ≤ a ∨ α(f) ≤ b is true for any a and b
satisfying a + b = c− 1, `(e)− 1 ≤ a ≤ u(e), and `(f)− 1 ≤ b ≤ u(f). From the
definition of satisfiability, we also have `(e) ≤ α(e) ≤ u(e) and `(f) ≤ α(f) ≤
u(f). Now, we show the conclusion through a proof by contradiction. Assume
that α(e) + α(f) > c which is the negation of the conclusion.

When α(e) ≥ c− `(f)+1, we choose a = c− `(f) and b = `(f)− 1. It is easy
to check the conditions `(e)−1 ≤ a ≤ u(e) and `(f)−1 ≤ b ≤ u(f) are satisfied,
and α(e) ≤ a ∨ α(f) ≤ b becomes false for such a and b, which contradicts the
hypotheses.

When α(e) < c− `(f)+1, we choose a = α(e)−1 and b = c−α(e). It is easy
to check the conditions `(e)−1 ≤ a ≤ u(e) and `(f)−1 ≤ b ≤ u(f) are satisfied,
and α(e) ≤ a ∨ α(f) ≤ b becomes false for such a and b, which contradicts the
hypotheses. ut

The following proposition shows a general method to convert a (linear) com-
parison into primitive comparisons.

Proposition 1. Let (V, `, u, B, S) be a CSP, then for any assignment (α, β)
of the CSP, for any linear expression

∑n
i=1 ai xi ∈ E(V), and for any integer

c ≥ `(
∑n

i=1 ai xi) the following holds.

(α, β) |=
n∑

i=1

ai xi ≤ c

⇐⇒ (α, β) |=
∧

∑n

i=1
bi=c−n+1

∨

i

(ai xi ≤ bi)#

Parameters bi’s range over Z satisfying
∑n

i=1 bi = c − n + 1 and `(aixi) − 1 ≤
bi ≤ u(aixi) for all i. The translation ()# is defined as follows.

(a x ≤ b)# ≡

x ≤
⌊

b

a

⌋
(a > 0)

¬
(

x ≤
⌈

b

a

⌉
− 1

)
(a < 0)

Proof. The satisfiability of
∑

ai xi ≤ c is equivalent to the satisfiability of∧∨
(ai xi ≤ bi) from Lemma 1, and the satisfiability of each ai xi ≤ bi is

equivalent to the satisfiability of (ai xi ≤ bi)#. ut
Therefore, any comparison literal

∑
ai xi ≤ c in a CSP can be converted to a

CNF (product-of-sums) formula of primitive comparisons (or Boolean constants)
without changing its satisfiability. Please note that the comparison literal should
occur positively in the CSP to perform this conversion.

Example 1. When `(x) = `(y) = `(z) = 0 and u(x) = u(y) = u(z) = 3, com-
parison x + y < z − 1 is converted into (x ≤ −1 ∨ y ≤ −1 ∨ ¬(z ≤ 1)) ∧ (x ≤
−1∨ y ≤ 0∨¬(z ≤ 2))∧ (x ≤ −1∨ y ≤ 1∨¬(z ≤ 3))∧ (x ≤ 0∨ y ≤ −1∨¬(z ≤
2)) ∧ (x ≤ 0 ∨ y ≤ 0 ∨ ¬(z ≤ 3)) ∧ (x ≤ 1 ∨ y ≤ −1 ∨ ¬(z ≤ 3)).

3.2 Encoding to SAT

As shown in the previous subsection, any (finite linear) CSP can be converted
into a CSP with only primitive comparisons.

Now, we eliminate each primitive comparison x ≤ c (x ∈ V , `(x) − 1 ≤ c ≤
u(x)) by replacing it with a newly introduced Boolean variable p(x, c) which is
chosen from B. We denote a set of these new Boolean variables as follows.

B′ = {p(x, c) | x ∈ V, `(x)− 1 ≤ c ≤ u(x)}

We also need to introduce the following axiom clauses A(x) for each integer
variable x in order to represent the bound and the order relation.

A(x) = {{¬p(x, `(x)− 1)}, {p(x, u(x))}}
∪ {{¬p(x, c− 1), p(x, c)} | `(x) ≤ c ≤ u(x)}

As previously described, clauses of {¬p(x, `(x) − 1)} and {p(x, u(x))} are
redundant. However, these will be removed in the early stage of SAT solving
and will not much affect the performance of the solver.

Proposition 2. Let (V, `, u, B, S) be a CSP with only primitive comparisons,
let S∗ be a clausal form formula obtained from S by replacing each primitive
comparison x ≤ c with p(x, c), and let A =

⋃
x∈V A(x). Then, the following

holds.

(V, `, u, B, S) is satisfiable
⇐⇒ (∅, ∅, ∅, B ∪B′, S∗ ∪A) is satisfiable

Proof. (=⇒) Since (V, `, u, B, S) is satisfiable, there is an assignment (α, β) which
makes S be true and `(x) ≤ α(x) ≤ u(x) for all x ∈ V . We extend the mapping
β to β∗ as follows.

β∗(p) =
{

β(p) (p ∈ B)
α(x) ≤ c (p = p(x, c) ∈ B′)

Then an assignment (α, β∗) satisfies S∗ ∪A.
(⇐=) From the hypotheses, there is an assignment (∅, β) which makes S∗∪A

be true. We define a mapping α as follows.

α(x) = min {c | `(x) ≤ c ≤ u(x), p(x, c)}

It is straightforward to check the assignment (α, β) satisfies S. ut

3.3 Keeping Clausal Form

When encoding a clause of CSP to SAT, the encoded formula is no more a clausal
form in general.

Consider a case of encoding a clause {x − y ≤ −1,−x + y ≤ −1} which
means x 6= y. Each of x − y ≤ −1 and −x + y ≤ −1 is encoded into a CNF
formula of primitive comparisons. Therefore, when we expand the conjunctions
to get a clausal form, the number of obtained clauses is the multiplication of two
numbers of primitive comparisons.

As it is well known, introduction of new Boolean variables is useful to reduce
the size. Suppose {c1, c2, . . . , cn} is a clause of original CSP where ci’s are com-
parison literals, and {Ci1, Ci2, . . . , Cini

} is an encoded CNF formula (in clausal
form) of ci for each i.

We introduce new Boolean variables p1, p2, . . . , pn chosen from B, and replace
the original clause with {p1, p2, . . . , pn}. We also introduce new clauses {¬pi} ∪
Cij for each 1 ≤ i ≤ n and 1 ≤ j ≤ ni.

This conversion does not affect the satisfiability which can be shown from
the following Lemma.

Lemma 2. Let (V, `, u, B, S) be a CSP, {L1, L2, . . . , Ln} be a clause of the CSP,
and p1, p2, . . . , pn be new Boolean variables. Then, the following holds.

{L1, L2, . . . , Ln} is satisfiable
⇐⇒ {{p1, p2, . . . , pn} {¬p1, L1}, {¬p2, L2}, . . . , {¬pn, Ln}} is satisfiable

Proof. (=⇒) From the hypotheses, there is an assignment (α, β) which satisfies
some Li. We extend the mapping β so that β(pi) = > and β(pj) = ⊥ (j 6= i).
Then, the assignment satisfies converted clauses.

(⇐=) From the hypotheses, there is an assignment (α, β) which satisfies some
pi. The assignment also satisfies {¬pi, Li}, and therefore Li. Hence the conclusion
holds. ut
Example 2. Consider an example of encoding a clause {x−y ≤ −1,−x+y ≤ −1}
when `(x) = `(y) = 0 and u(x) = u(y) = 2. x − y ≤ −1 and −x + y ≤ −1
are converted into S1 = (p(x,−1) ∨ ¬p(y, 0)) ∧ (p(x, 0) ∨ ¬p(y, 1)) ∧ (p(x, 1) ∨
¬p(y, 2)) and S2 = (¬p(x, 2)∨p(y, 1))∧ (¬p(x, 1)∨p(y, 0))∧ (¬p(x, 0)∨p(y,−1))
respectively. Expanding S1 ∨ S2 generates 9 clauses. However, by introducing
new Boolean variables p and q, we obtain the following seven clauses.

{p, q}
{¬p, p(x,−1),¬p(y, 0)} {¬p, p(x, 0),¬p(y, 1)} {¬p, p(x, 1),¬p(y, 2)}
{¬q,¬p(x, 2), p(y, 1)} {¬q,¬p(x, 1), p(y, 0)} {¬q,¬p(x, 0), p(y,−1)}

3.4 Size of the Encoded SAT Problem

Usually the size of the encoded SAT problem becomes large.
Suppose the number of integer variables is n, and the size of integer variable

domains is d, that is, d = u(x)− `(x) + 1 for all x ∈ V . Then the size of newly
introduced Boolean variables B′ is O(nd), the size of axiom clauses A is also
O(nd), and the number of literals in each axiom clause is at most two.

Each comparison
∑m

i=1 ai xi ≤ c will be encoded into O(dm−1) clauses in
general by Proposition 1.

However, it is possible to reduce the number of integer variables in each
comparison at most three. For example, x1 + x2 + x3 + x4 ≤ c can be replaced
with x+x3 +x4 ≤ c by introducing a new integer variable x and new constraints
x− x1 − x2 ≤ 0 and −x + x1 + x2 ≤ 0, that is, x = x1 + x2.

Therefore, each comparison
∑m

i=1 ai xi ≤ c can be encoded by at most
O(md2) clauses3 even when m ≥ 4, and the number of literals in each clause is
3 We corrected the number of clauses which was O(d2) + O(md) in the final version

of CP2006 paper.

at most four (three for integer variables and one for the case handling described
in the previous subsection).

4 Encoding finite linear COP to SAT

Definition 4 (Finite linear COP). A (finite linear) COP (Constraint Opti-
mization Problem) is defined as a tuple (V, `, u, B, S, v) where

(1) (V, `, u, B, S) is a finite linear CSP, and
(2) v ∈ V is an integer variable representing the objective variable to be min-

imized (without loss of generality we assume COPs as minimization prob-
lems).

The optimal value of COP (V, `, u, B, S, v) can be obtained by repeatedly
solving CSPs.

min {c | `(v) ≤ c ≤ u(v), CSP (V, `, u, B, S ∪ {{v ≤ c}}) is satisfiable}

Of course, instead of linear search, binary search method is useful to find the
optimal value efficiently as used in previous works [10–12].

It is also possible to encode COP to SAT once at first, and repeatedly modify
only the clause {v ≤ c} for a given c. This procedure substantially reduces the
time spent for encoding.

5 Solving OSS

In order to show the applicability of our method, we applied it to OSS (Open-
Shop Scheduling) problems. There are three well-known sets of OSS benchmark
problems by Guéret and Prins [15] (80 instances denoted by gp*), Taillard [16]
(60 instances denoted by tai_*), and Brucker et al. [17] (52 instances denoted
by j*), which are also used in [18–20].

Some problems in these benchmark sets are very hard to solve. Actually,
three instances (j7-per0-0, j8-per0-1, and j8-per10-2) are still open, and 37
instances are closed recently in 2005 by complete MCS-based search solver of
ILOG [20].

Representing OSS problem as CSP is straightforward. Figure 2 defines a
benchmark instance gp03-01 of 3 jobs and 3 machines. Each element pij repre-
sents the process time of the operation Oij (0 ≤ i, j ≤ 2). The instance gp03-01
can be represented as a CSP of 27 clauses as shown in Figure 3.

In the figure, integer variables m represents the makespan and each sij rep-
resents the start time of each operation Oij . Clauses {sij + pij ≤ m} represent
deadline constraint such that operations should be completed before m. Clauses
{sij +pij ≤ skl, skl +pkl ≤ sij} represent resource capacity constraint such that
the operation Oij and Okl should not be overlapped each other.

(pij) =

(
661 6 333
168 489 343
171 505 324

)

Fig. 2. OSS benchmark instance gp03-01

{s00 + 661 ≤ m} {s01 + 6 ≤ m} {s02 + 333 ≤ m}
{s10 + 168 ≤ m} {s11 + 489 ≤ m} {s12 + 343 ≤ m}
{s20 + 171 ≤ m} {s21 + 505 ≤ m} {s22 + 324 ≤ m}

{s00 + 661 ≤ s01, s01 + 6 ≤ s00} {s00 + 661 ≤ s02, s02 + 333 ≤ s00}
{s01 + 6 ≤ s02, s02 + 333 ≤ s01} {s10 + 168 ≤ s11, s11 + 489 ≤ s10}

{s10 + 168 ≤ s12, s12 + 343 ≤ s10} {s11 + 489 ≤ s12, s12 + 343 ≤ s11}
{s20 + 171 ≤ s21, s21 + 505 ≤ s20} {s20 + 171 ≤ s22, s22 + 324 ≤ s20}
{s21 + 505 ≤ s22, s22 + 324 ≤ s21} {s00 + 661 ≤ s10, s10 + 168 ≤ s00}
{s00 + 661 ≤ s20, s20 + 171 ≤ s00} {s10 + 168 ≤ s20, s20 + 171 ≤ s10}
{s01 + 6 ≤ s11, s11 + 489 ≤ s01} {s01 + 6 ≤ s21, s21 + 505 ≤ s01}

{s11 + 489 ≤ s21, s21 + 505 ≤ s11} {s02 + 333 ≤ s12, s12 + 343 ≤ s02}
{s02 + 333 ≤ s22, s22 + 324 ≤ s02} {s12 + 343 ≤ s22, s22 + 324 ≤ s12}

Fig. 3. CSP representation of gp03-01

Before encoding the CSP to SAT, we also need to determine the lower and
upper bound of integer variables. We used the following values ` and u (where
n is the number of jobs and machines).

` = max

 max

0≤i<n

∑

0≤j<n

pij , max
0≤j<n

∑

0≤i<n

pij

u =
∑

0≤k<n

max
(i−j) mod n=k

pij

The value u is used for the upper bound of sij ’s and m, and the value ` is used
for the lower bound of m (the lower bound 0 is used for sij ’s). For example,
` = 1000 and u = 1509 for the instance gp03-01.

We developed a program called CSP2SAT which encodes a CSP representation
(of a given OSS problem) into SAT and repeatedly invokes a complete SAT
solver to find the optimal solution by binary search4. We used MiniSat [5] as the
backend complete SAT solver because it is known to be very efficient (MiniSat
is a winner of all industrial categories of the SAT 2005 competition).

We run CSP2SAT for all 192 instances of the three benchmark sets on In-
tel Xeon 2.8GHz 4GB memory machine with the time limit of 3 hours (10800
seconds).
4 The program will be available at http://bach.istc.kobe-u.ac.jp/csp2sat/.

(sij) =

247 296 110 618 537 31 500 127
815 50 328 274 311 672 550 6

1 583 120 339 876 842 675 58
293 669 5 72 250 502 403 994
286 517 870 594 612 347 0 297
404 252 73 28 83 25 300 734
707 997 560 12 48 87 842 340
53 6 703 285 342 872 526 547

Fig. 4. Optimal Scheduling of j8-per10-2 found by CSP2SAT

Figures 7, 8, and 9 provides the results. The column named “Optim.” de-
scribes the optimal value found by the program, and “CPU” describes the total
CPU time in seconds including encoding process. The column named “SAT”
describes the numbers of Boolean variables and clauses in the encoded SAT
problem. Although time spent for encoding is not shown separately in the fig-
ures, it ranges from 1 second to 1163 seconds and fits linearly with the number
of clauses in the encoded SAT program.

CSP2SAT found the optimal solutions for 189 known problems and one un-
known problem (j8-per10-2) within 3 hours.

The known upper bound of j8-per10-2 was 1009. CSP2SAT improved the
result to 1002 and proved there are no solutions for 1001. Figure 4 shows the
start times sij of the optimal scheduling found by the program.

Figure 5 provides the log scale plot of the number of clauses in the encoded
SAT problem (x-axis) and the total CPU time (y-axis) for 190 problems. The
mark + is used for gp* benchmarks, × is used for tai* benchmarks, and ¦ is
used for j* benchmarks. Dotted line is a plot of y = 0.00006x.

Except some instances of j* benchmarks, it seems the total CPU time linearly
fits with the number of clauses. This shows that the encoding used in this paper
is natural and does not uselessly increase the complexity for SAT solver.

For the remaining two open problems j7-per0-0 and j8-per0-1, we solved
and proved their optimal values by using 10 Mac mini machines (PowerPC G4
1.42GHz 1GB memory) running in parallel on Xgrid system [21] and by dividing
the problem into 120 subproblems where each subproblem is obtained by spec-
ifying the order of six operations. Optimal solutions were found and proved for
both of the two remaining instances within 13 hours.

Figure 6 summarizes the newly obtained results. All three remaining open
problems in [18–20] are now closed.

6 Conclusion

In this paper, we proposed a method to encode Constraint Satisfaction Prob-
lems (CSP) and Constraint Optimization Problems (COP) with integer linear
constraints into Boolean Satisfiability Testing Problems (SAT).

�

���

�����

�������

���������

��������� ����������� ��������� ��������� �������	�

 �
�
�
��

������� �����	����� � �	 �

! � ��� �	"���#	$&%�� ' #
(��' � � ��� $

) � �	*�+ �����	"���� ,
��, �����-����. /

Fig. 5. Log scale plot of the number of clauses and the CPU time

Instance Makespan Previously known bounds
Lower bound Upper bound

j7-per0-0 1048 1039 1048
j8-per0-1 1039 1018 1039
j8-per10-2 1002 1000 1009

Fig. 6. New results found and proved to be optimal

To evaluate the effectiveness of the encoding, we applied the method to Open-
Shop Scheduling Problems (OSS). All 192 instances in three OSS benchmark
sets are examined, and our program found and proved the optimal results for all
instances including three previously undecided problems.

Acknowledgments

We would like to give thanks to Katsumi Inoue, Hidetomo Nabeshima, Takehide
Soh, and Shuji Ohnishi for their helpful suggestions.

References

1. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26

Instance Optim. CPU SAT
Variables Clauses

gp03-01 1168 3 14155 61133
gp03-02 1170 3 13945 59978
gp03-03 1168 3 13945 59978
gp03-04 1166 3 13995 60253
gp03-05 1170 3 13855 59483
gp03-06 1169 3 13915 59813
gp03-07 1165 3 13925 59868
gp03-08 1167 3 13955 60033
gp03-09 1162 3 14075 60693
gp03-10 1165 3 13945 59978
gp04-01 1281 10 28097 179010
gp04-02 1270 13 33928 223257
gp04-03 1288 9 28182 179655
gp04-04 1261 12 32925 215646
gp04-05 1289 10 27927 177720
gp04-06 1269 9 27383 173592
gp04-07 1267 9 25955 162756
gp04-08 1259 9 26516 167013
gp04-09 1280 9 26737 168690
gp04-10 1263 13 37736 252153
gp05-01 1245 36 72727 643703
gp05-02 1247 33 65993 578694
gp05-03 1265 37 75457 670058
gp05-04 1258 23 50497 429098
gp05-05 1280 33 68151 599527
gp05-06 1269 37 74131 657257
gp05-07 1269 32 68801 605802
gp05-08 1287 28 55489 477290
gp05-09 1262 35 70387 621113
gp05-10 1254 33 69009 607810
gp06-01 1264 57 96410 1038543
gp06-02 1285 65 106659 1158484
gp06-03 1255 72 115317 1259806
gp06-04 1275 63 104957 1138566
gp06-05 1299 65 107806 1171907
gp06-06 1284 65 106400 1155453
gp06-07 1290 77 119091 1303972
gp06-08 1265 71 113726 1241187
gp06-09 1243 72 118943 1302240
gp06-10 1254 57 95559 1028584

Instance Optim. CPU SAT
Variables Clauses

gp07-01 1159 99 137537 1761090
gp07-02 1185 148 188537 2461830
gp07-03 1237 132 179037 2331300
gp07-04 1167 131 176437 2295576
gp07-05 1157 141 182137 2373894
gp07-06 1193 127 166587 2160237
gp07-07 1185 102 141187 1811241
gp07-08 1180 144 184787 2410305
gp07-09 1220 150 194437 2542896
gp07-10 1270 127 171837 2232372
gp08-01 1130 160 186315 2762188
gp08-02 1135 190 216215 3233688
gp08-03 1110 197 215955 3229588
gp08-04 1153 227 242020 3640613
gp08-05 1218 247 259830 3921463
gp08-06 1115 175 203085 3026638
gp08-07 1126 204 229215 3438688
gp08-08 1148 183 207245 3092238
gp08-09 1114 189 213225 3186538
gp08-10 1161 203 227980 3419213
gp09-01 1129 323 317881 5423978
gp09-02 1110 327 291477 4954180
gp09-03 1115 395 357077 6121380
gp09-04 1130 340 322063 5498387
gp09-05 1180 362 333871 5708483
gp09-06 1093 401 359455 6163691
gp09-07 1090 339 325507 5559665
gp09-08 1105 349 321325 5485256
gp09-09 1123 316 286803 4871017
gp09-10 1110 355 310993 5301422
gp10-01 1093 470 353491 6705492
gp10-02 1097 526 412677 7878078
gp10-03 1081 535 376317 7157718
gp10-04 1077 515 378438 7199739
gp10-05 1071 515 358743 6809544
gp10-06 1071 508 410960 7844061
gp10-07 1079 523 408839 7802040
gp10-08 1093 498 392578 7479879
gp10-09 1112 541 434897 8318298
gp10-10 1092 656 483276 9276777

Fig. 7. Results for benchmark instances provided by Guéret and Prins

(1996) 521–532
2. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-

lems. In: Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI 97). (1997) 366–371

3. Marques-Silva, J.P., Sakallah, K.A.: GRAPS: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48 (1999) 506–521

4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001). (2001) 530–535

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing (SAT
2003). (2003) 502–518

6. Kautz, H.A., McAllester, D.A., Selman, B.: Encoding plans in propositional logic.
In: Proceedings of the 5th International Conference on Principles of Knowledge
Representation and Reasoning (KR’96). (1996) 374–384

Instance Optim. CPU SAT
Variables Clauses

tai 4x4 1 193 2 5043 31706
tai 4x4 2 236 1 4643 27426
tai 4x4 3 271 2 5460 32925
tai 4x4 4 250 2 5358 32341
tai 4x4 5 295 2 6081 36418
tai 4x4 6 189 2 4721 29194
tai 4x4 7 201 2 4743 29188
tai 4x4 8 217 2 5629 35110
tai 4x4 9 261 2 5328 31517
tai 4x4 10 217 2 5611 35444
tai 5x5 1 300 6 11526 94098
tai 5x5 2 262 5 10110 82314
tai 5x5 3 323 6 11318 90297
tai 5x5 4 310 5 11047 88190
tai 5x5 5 326 6 10356 80906
tai 5x5 6 312 5 10942 87344
tai 5x5 7 303 6 10951 87906
tai 5x5 8 300 6 11009 88852
tai 5x5 9 353 6 11940 94884
tai 5x5 10 326 7 11344 90508
tai 7x7 1 435 21 30952 370295
tai 7x7 2 443 24 31244 372853
tai 7x7 3 468 30 31669 374258
tai 7x7 4 463 20 31224 370305
tai 7x7 5 416 22 30171 360661
tai 7x7 6 451 45 30986 367026
tai 7x7 7 422 33 32415 389596
tai 7x7 8 424 20 30863 370287
tai 7x7 9 458 21 31929 380761
tai 7x7 10 398 20 29939 359194

Instance Optim. CPU SAT
Variables Clauses

tai 10x10 1 637 98 94183 1678890
tai 10x10 2 588 95 95343 1716326
tai 10x10 3 598 92 92303 1651992
tai 10x10 4 577 92 91314 1639647
tai 10x10 5 640 96 93978 1677177
tai 10x10 6 538 95 91151 1642608
tai 10x10 7 616 103 92285 1648788
tai 10x10 8 595 95 91094 1631685
tai 10x10 9 595 97 94528 1697235
tai 10x10 10 596 95 93315 1674220
tai 15x15 1 937 523 309784 8563684
tai 15x15 2 918 567 325397 9026993
tai 15x15 3 871 543 315726 8767426
tai 15x15 4 934 560 326511 9067128
tai 15x15 5 946 541 323109 8940331
tai 15x15 6 933 560 326512 9067214
tai 15x15 7 891 566 322034 8943618
tai 15x15 8 893 546 319320 8866998
tai 15x15 9 899 568 324060 8998985
tai 15x15 10 902 586 325865 9053491
tai 20x20 1 1155 3105 775142 29178719
tai 20x20 2 1241 3559 777061 29153596
tai 20x20 3 1257 2990 770228 28898989
tai 20x20 4 1248 3442 779059 29238508
tai 20x20 5 1256 3603 785066 29485803
tai 20x20 6 1204 2741 773489 29073596
tai 20x20 7 1294 2912 779414 29225385
tai 20x20 8 1169 2990 778336 29262619
tai 20x20 9 1289 3204 785835 29493666
tai 20x20 10 1241 3208 770645 28917758

Fig. 8. Results for benchmark instances provided by Taillard

7. Ernst, M.D., Millstein, T.D., Weld, D.S.: Automatic SAT-compilation of planning
problems. In: Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI 97). (1997) 1169–1177

8. Hoos, H.H.: SAT-encodings, search space structure, and local search performance.
In: Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI 99). (1999) 296–303

9. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfi-
ability algorithms to scheduling problems. In: Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI-94). (1994) 1092–1097

10. Soh, T., Inoue, K., Banbara, M., Tamura, N.: Experimental results for solving
job-shop scheduling problems with multiple SAT solvers. In: Proceedings of the
1st International Workshop on Distributed and Speculative Constraint Processing
(DSCP’05). (2005)

11. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A compet-
itive and cooperative approach to propositional satisfiability. Discrete Applied
Mathematics (2006) (to appear).

12. Nabeshima, H., Soh, T., Inoue, K., Iwanuma, K.: Lemma reusing for SAT based
planning and scheduling. In: Proceedings of the International Conference on Au-
tomated Planning and Scheduling 2006 (ICAPS’06). (2006) 103–112

13. de Kleer, J.: A comparison of ATMS and CSP techniques. In: Proceedings of the
11th International Joint Conference on Artificial Intelligence (IJCAI 89). (1989)
290–296

Instance Optim. CPU SAT
Variables Clauses

j3-per0-1 1127 2 10805 42708
j3-per0-2 1084 5 20335 95123
j3-per10-0 1131 3 12675 53453
j3-per10-1 1069 3 15335 68062
j3-per10-2 1053 4 15355 68341
j3-per20-0 1026 2 10015 39923
j3-per20-1 1000 2 9245 35496
j3-per20-2 1000 4 15755 71137
j4-per0-0 1055 7 22062 133215
j4-per0-1 1180 11 32160 209841
j4-per0-2 1071 8 26057 163530
j4-per10-0 1041 10 29457 190740
j4-per10-1 1019 7 22538 137589
j4-per10-2 1000 9 26057 164892
j4-per20-0 1000 10 28726 186429
j4-per20-1 1004 9 26074 165849
j4-per20-2 1009 9 26822 171525
j5-per0-0 1042 28 40825 335726
j5-per0-1 1054 28 58687 508163
j5-per0-2 1063 26 44127 367603
j5-per10-0 1004 18 39967 329523
j5-per10-1 1002 17 37653 307928
j5-per10-2 1006 16 36509 296700
j5-per20-0 1000 17 38329 315830
j5-per20-1 1000 27 56607 492707
j5-per20-2 1012 25 51485 442196

Instance Optim. CPU SAT
Variables Clauses

j6-per0-0 1056 817 63443 652740
j6-per0-1 1045 57 92340 990913
j6-per0-2 1063 57 75801 797362
j6-per10-0 1005 52 67661 705462
j6-per10-1 1021 46 76467 808206
j6-per10-2 1012 51 77799 823964
j6-per20-0 1000 60 69400 727773
j6-per20-1 1000 46 75431 798740
j6-per20-2 1000 40 66181 692002
j7-per0-0 – – 85887 1051419
j7-per0-1 1055 428 109837 1380492
j7-per0-2 1056 292 113537 1431330
j7-per10-0 1013 332 108687 1368170
j7-per10-1 1000 121 107087 1347411
j7-per10-2 1011 1786 93887 1165467
j7-per20-0 1000 66 95487 1193523
j7-per20-1 1005 132 125087 1595847
j7-per20-2 1003 132 107987 1361349
j8-per0-1 – – 145495 2118473
j8-per0-2 1052 870 177995 2630988
j8-per10-0 1017 2107 168310 2481679
j8-per10-1 1000 8346 140620 2047787
j8-per10-2 1002 7789 136655 1984646
j8-per20-0 1000 148 139255 2030756
j8-per20-1 1000 136 149265 2191364
j8-per20-2 1000 144 145300 2125157

Fig. 9. Results for benchmark instances provided by Brucker et al.

14. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.
In: Proceedings of the IFIP 13th World Computer Congress. (1994) 253–258

15. Guéret, C., Prins, C.: A new lower bound for the open-shop problem. Annals of
Operations Research 92 (1999) 165–183

16. Taillard, E.D.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64 (1993) 278–285

17. Brucker, P., Hurink, J., Jurisch, B., Wöstmann, B.: A branch & bound algorithm
for the open-shop problem. Discrete Applied Mathematics 76 (1997) 43–59

18. Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence 139 (2002) 21–45

19. Blum, C.: Beam-ACO — hybridizing ant colony optimization with beam search:
an application to open shop scheduling. Computers & OR 32 (2005) 1565–1591

20. Laborie, P.: Complete MCS-based search: Application to resource constrained
project scheduling. In: Proceedings of the Nineteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-05). (2005) 181–186

21. Apple Computer Inc.: Xgrid Guide. (2004)

