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1. INTRODUCTION

The main characteristic of reconfigurable computing platforms [Lysaght and Rosen-
stiel 2005; Gokhale and Graham 2005] is the presence of reconfigurable hardware (re-
configware), that is, hardware that can be reconfigured on-the-fly (i.e., dynamically
and on-demand) to implement specific hardware structures. For example, a given sig-
nal processing application might require only 12-bit fixed-point precision arithmetic
and use custom rounding modes [Shirazi et al. 1995], whereas other application codes
might make intensive use of a 14-bit butterfly routing network used for fast parallel
computation of a fast Fourier transform (FFT). In either case, a traditional processor
does not have direct support for these structures, forcing programmers to use hand-
coded routines to implement the basic operations. In the case of an application that
requires a specific interconnection network, programmers must encode in a procedure
the sequential evaluation of the data flow through the network. In all these exam-
ples, it can be highly desirable to develop dedicated hardware structures that can
implement specific computations for performance, but also for other metrics such as
energy.

During the past decade a large number of reconfigurable computing systems have
been developed by the research community, which demonstrated the capability of
achieving high performance for a selected set of applications [DeHon 2000; Harten-
stein 2001; Hauck 1998]. Such systems combine microprocessors and reconfigware in
order to take advantage of the strengths of both. An example of such hybrid archi-
tectures is the Napa 1000 where a RISC (reduced instruction set computer) processor
is coupled with a programmable array in a coprocessor computing scheme [Gokhale
and Stone 1998]. Other researchers have developed reconfigurable architectures based
solely on commercially available field-programmable-gate-arrays (FPGAs) [Diniz et al.
2001] in which the FPGAs act as processing nodes of a large multiprocessor machine.
Approaches using FPGAs are also able to accommodate on-chip microprocessors as
softcores or hardcores. In yet another effort, researchers have developed dedicated re-
configurable architectures using as internal building blocks multiple functional units
(FUs) such as adders and multipliers interconnected via programmable routing re-
sources (e.g., the RaPiD architecture [Ebeling et al. 1995], or the XPP reconfigurable
array [Baumgarte et al. 2003; XPP]).

Overall, reconfigurable computing architectures provide the capability for spatial,
parallel, and specialized computation, and hence can outperform common computing
systems in many applications. This type of computing effectively holds extensive par-
allelism and multiple flows of control, and can leverage the existent parallelism at
several levels (operation, basic block, loop, function, etc.). Most of the existing recon-
figurable computing systems have multiple on- and off-chip memories, with different
sizes and accesses schemes, and some of them with parameterized facilities (e.g., data
width). Reconfigware compilers can leverage the synergies of the reconfigurable archi-
tectures by exploting multiple flows of control, fine- and coarse-grained parallelism,
customization, and by addressing the memory bandwidth bottleneck by caching and
distributing data.

Programming reconfigware is a very challenging task, as current approaches do not
rely on the familiar sequential programming paradigm. Instead, programmers must
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assume the role of hardware designers, either by learning a new hardware-oriented
programming language such as VHDL or Verilog or by coding in particular program-
ming styles that are geared towards hardware synthesis. Many authors believe that
automatic compilation from standard software programming languages is vital for the
success of reconfigurable computing systems, as the complex design expertise required
for developing a contemporary hardware system is too much for the typical user (e.g.,
embedded systems programmers) to handle.

A current, and pressing challenge in this area is the establishment of effective recon-
figware compilers, which would help the programmer to develop efficient reconfigware
implementations without the need to be involved in complex and low-level hardware
programming. Although in the context of programmable logic devices,1 mature de-
sign tools exist for logic synthesis and for placement and routing, there is a lack of
robust integrated tools that take traditional sequential programs and automatically
map them to reconfigurable computing architectures. In addition, high-level synthesis
(HLS)2 tools have mostly been developed for ASICs (application-specific integrated cir-
cuits), and neither wield the special characteristics of the reconfigurable architectures
nor the required high-level abstraction. Those tools are typically based on resource-
sharing schemes [Gajski et al. 1992] that target the layout flexibility of ASICs. As
such, they are, typically, much less efficient when considering the predefined logic cell
architecture and limited routing resources of fine-grained reconfigurable processing
units (RPUs), for example, FPGAs, where resource sharing is inadequate for most op-
erations. As a consequence, the inherent characteristics of reconfigware require spe-
cialized (architecture-driven) compilation efforts.

This survey describes representative research work on compilation for reconfig-
urable computing platforms. It does not, however, address the work on mapping meth-
ods using programming languages with hardware-oriented semantics and structures,
as well as efforts on using software languages for describing circuits and circuit gen-
erator environments [Mencer et al. 2001]. Although the use of software languages
(mainly Java and C++) adds new capabilities to hardware description language (HDL)
approaches, its effective use resembles the definition of the architecture at register
transfer level (RTL). While these approaches may not be considered as high-level pro-
gramming flows, they can, however, be part of the back-end phase of most compilers
described hereafter. Given the many perils of the imperative programming paradigm, a
number of researchers have advocated the use of alternative programming models. Al-
though efforts have been made for the hardware compilation of declarative programs
(e.g., in Ruby [Luk and Wu 1994]), functional languages (e.g., Lava, Haskell [Bjesse
et al. 1998] and SAFL [Sharp and Mycroft 2001]), and synchronous programming lan-
guages such as Esterel (e.g., Edwards [2002]), they have been limited in scope, and
may gain wide acceptance only when such programming models permit more efficient
solutions for a wide range of problems than the ones commonly accomplished using
traditional languages (such as C). Due to the very limited acceptance of these pro-
gramming models in both industry and academia, this survey does not address them.
Alternatively, there has also been extensive work in the context of hardware/software
partitioning in the context of compilation and synthesis for ASICs in the codesign com-
munity, which we do not explicitly address here. Readers interested in this topic may
consult prior work by the codesign community [Micheli and Gupta 1997] and efforts
considering reconfigware (e.g., Li et al. [2000]).

1Note that here we make no distinction between FPGAs and PLDs.
2There is no distinction among the terms high-level synthesis, architectural synthesis, and behavioral
synthesis.
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Fig. 1. Typical reconfigurable computing platforms: (a) coarse-grained RPU; (b) fine-grained RPU.

Complementary to this survey, the reader can find other scholarly publications fo-
cusing on specific features of reconfigurable computing platforms or on software tools
for developing FPGA-based designs. A review of HLS for dynamically reconfigurable
FPGAs can be found in Zhang and Ng [2000]. A summary of results of a decade of
research in reconfigurable computing is presented by Hartenstein [2001]. A survey of
reconfigurable computing for digital signal-processing applications is given in Tessier
and Burleson [2001]. Compton and Hauck [2002] present a survey on systems and
software tools for reconfigurable computing, and Todman et al. [2005] focus on archi-
tectures and design methods.

This survey is organized as follows. In Section 2 we briefly describe current archi-
tectures for reconfigurable computing platforms. In Section 3 we present an overview
of typical compilation flows. In Section 4 we describe a set of representative high-level
code transformations, and in Section 5 present the most representative mapping tech-
niques. In Section 6 we describe a set of representative high-level compilaton efforts
for reconfigurable architectures, highlighting the high-level techniques and code trans-
formations. Lastly, in Section 7 we conclude with some final remarks.

2. RECONFIGURABLE ARCHITECTURES

Reconfigurable computing systems are typically based on reconfigurable processing
units (RPUs) acting as coprocessor units and coupled to a host system, as depicted
in Figure 1. The type of interconnection between the RPUs and the host system, as
well as the granularity of the RPUs, lead to a wide variety of possible reconfigurable
architectures. While some architectures naturally facilitate the mapping of specific
aspects of computations to them, no single dominant RPU solution has emerged for
all domains of applications. As a consequence, many research efforts have focused
on the development of specific reconfigurable architectures. The Xputer architecture
[Hartenstein et al. 1996] was one of the first efforts to address coarse-grained recon-
figurable architectures. Internally, it consists of one reconfigurable data path array
(rDPA) organized as a rectangular array of 32-bit arithmetic-logic units (ALUs). Each
ALU can be reconfigured to execute some operators of the C language. The process-
ing elements are mesh-connected via three levels of interconnection, namely nearest
neighbors, row/column back-buses, and a global bus.
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RaPiD [Ebeling et al. 1995] is a coarse-grained field-programmable architecture
composed of multiple FUs (functional units), such as ALUs, multipliers, registers, and
RAM blocks. These units are organized linearly over a bus, and communicate through
registers in a pipeline fashion. RaPiD allows the user to construct custom application-
specific architectures in a runtime reconfigurable way, that is, as the application is be-
ing executed. In RaPiD, data is streamed in directly from external memories or input
devices (e.g., sensors). Programmed controllers generate a small instruction stream
that is decoded as it flows in parallel with the datapath. In RaPiD, small sets of data
and intermediate results are stored locally in registers and small RAMs close to their
destination FUs. A programmable interconnect is configured to forward data between
specific FUs on a per-application basis.

A radically distinct architecture is the PipeRench [Goldstein et al. 1999], an archi-
tecture geared solely to pipelined computations with a virtually unlimited number of
pipeline stages (hardware stripes). Each stripe has an array of processing elements
(PEs). Each PE consists of an ALU and a pass register file. The PipeRench is tailored
to compute unrolled computations of streams and to the chaining of execution and
configuration. In PipeRench, computations are scheduled on virtual stripes and the
architecture swaps the configuration in and out for each of the stripes on demand.

The ADRES (architecture for dynamically reconfigurable embedded systems) [Mei
et al. 2003] consists of a 2-D reconfigurable architecture of coarse-grained 32-bit PEs.
The architecture tightly couples a VLIW (very long instruction word) processor and
a reconfigurable array. The reconfigurable array is responsible for exploiting paral-
lelism through highly-pipelined kernels, and the VLIW is responsible for exploiting
the ILP (instruction-level parallelism) in nonkernel parts of the application. Besides
the multiplexers for input operands, the output registers and the configuration buffers,
each PE includes an FU and a register file. The FUs use predicates for enabling
their execution (predicate signals are routed as operand interconnections between
FUs).

The MIT RAW machine [Taylor et al. 2002] is a coarse-grained two-dimensional
mesh architecture in which each computing core (tile) has a RISC processing element
with registers and an ALU, local memory blocks (one for data, one for instructions, and
another to program the switch network) and programmable communication channels.
A controller is used to program a switch router. Initial versions of the RAW archi-
tecture have considered reconfigurable logic in each tile, closely coupled to the RISC
[Waingold et al. 1997].

The Garp architecture [Callahan et al. 2000] integrates a MIPS core with an RPU
to be used as an accelerator in a coprocessor integrated model. The RPU is organized
as a 2-D array of CLBs (configurable logic blocks) interconnected by programmable
interconnections. Each row has a section dedicated to memory interfacing and control
and uses a fixed clock. The reconfigurable array has direct access to memory for fetch-
ing either data or configuration words, hence avoiding both data and reconfiguration
bottlenecks.

The MorphoSys architecture [Singh et al. 2000] is another reconfigurable computing
platform integrating a RISC processor core, a reconfigurable array of cells (8×8), and
a memory interface unit. The MorphoSys RPU has coarse-grained granularity, as each
cell has an ALU (28-bit fixed and capable of one of 25 functions), a multiplier (16×12
bits), and a register file (composed of four 16-bit registers).

Finally, the SCORE (stream computations organized for reconfigurable execution)
system [Caspi et al. 2000; DeHon et al. 2006] uses distributed memory modules with
attached reconfigurable logic, and explicitly supports a stream-oriented computational
model between computation in resident pages and buffers managed by a runtime
operating system manager [Markovskiy et al. 2002].
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In general, the type of coupling of the RPUs to the existent computing system has
a significant impact on the communication cost, and can be classified into the three
groups listed below, in order of decreasing communication costs:

—RPUs coupled to the host bus: The connection between RPUs and the host processor
is accomplished via a local or a system bus. Examples of reconfigurable computing
platforms connecting to the host via a bus are HOT-I, II [Nisbet and Guccione 1997];
Xputer [Hartenstein et al. 1996]; SPLASH [Gokhale et al. 1990]; ArMem [Raimbault
et al. 1993]; Teramac [Amerson et al. 1995]; DECPerLe-1 [Moll et al. 1995]; Trans-
mogrifier [Lewis et al. 1998]; RAW [Waingold et al. 1997]; and Spyder [Iseli and
Sanchez 1993].

—RPUs coupled like coprocessors: Here the RPU can be tightly coupled to the host
processor, but has autonomous execution and access to the system memory. In most
architectures, when the RPU is executing the host processor is in stall mode. Exam-
ples of such platforms are the NAPA [Gokhale and Stone 1998]; REMARC [Miyamori
and Olukotun 1998]; Garp [Hauser and Wawrzynek 1997]; PipeRench [Goldstein
et al. 2000]; RaPiD [Ebeling et al. 1995]; and MorphoSys [Singh et al. 2000].

—RPUs acting like an extended datapath of the processor and without autonomous ex-
ecution. The execution of the RPU is controlled by special opcodes of the host proces-
sor instruction-set. These datapath extensions are called reconfigurable functional
units. Examples of such platforms include the Chimaera [Ye et al. 2000b]; PRISC
[Razdan 1994; Razdan and Smith 1994]; OneChip [Witting and Chow 1996]; and
ConCISe [Kastrup et al. 1999].

Devices integrating one microprocessor with reconfigurable logic have been commer-
cialized by companies such as Triscend [2000], Chameleon [Salefski and Caglar 2001];
and Altera [Altera Inc.],3 Of the major players, only Xilinx [Xilinx Inc.] includes at
the moment an FPGA with one or more hardcore microprocessors, the IBM PowerPC
processor.

Softcores based on von-Neumann architectures are widely used. The best known ex-
amples of such softcore microprocessors are the Nios (I and II) from Altera and the
MicroBlaze from Xilinx. They assist in the development of applications, since a pro-
gramming flow from known software languages (typically C) is ensured by using ma-
ture software compilers (typically the GNU gcc). There are also examples of companies
delivering configurable processor softcores, specialized to domain-specific applications.
One such example is the softcore approach addressed by Stretch [Stretch Inc], which
is based on the Tensilica Xtensa RISC (a configurable processor) [Gonzalez 2000; Ten-
silica] and an extensible instruction set fabric.

Most research efforts use FPGAs and directly exploit its low-level processing el-
ements. Typically, these reconfigurable elements or configurable logic blocks (CLBs)
consist of a flip-flop and a function generator that implements a boolean function of up
to a specific number of variables. By organizing these CLBs, a designer can implement
virtually any digital circuit. Despite its flexibility, these fine-grained reconfigurable
elements have been shown to be inefficient in time and area for certain classes of
problems [Hartenstein 2001, 1997]. Other research efforts use ALUs as the basic re-
configware primitives. In some cases, this approach provides more efficient solutions,
but limits system flexibility. Contemporary FPGA architectures (e.g., Virtex-II [Xilinx
2001] or Stratix [Altera 2002]) deliver distributed multiplier and memory blocks in an
attempt to maintain the fine-grained flavor of its fabric while supporting other, coarser-
grained, classes of architectures commonly used in data-intensive computations.

3Altera has discontinued the Excalibur FPGA devices, which integrated an on-chip hardcore ARM processor.
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Table I. Examples of Architectures with Different Granularities
Cell Canonical
Granularity Operations Examples of Devices Shape Cell Type Bit-width
fine (wire) Logic

functions of
2-5 bits

FPGAs, Xilinx
Virtex and Altera
Stratix

2D array LUT, multiplexer,
register MULT,
DSP blocks RAM
Blocks

2-5
1
18
customizable

DPGA [DeHon
1996]

2D array LUT 4

PipeRench
[Goldstein et al.
1999]

2D array ALU + Pass
Register File

2-32
(parametriz-
able before
fabrication)

rDPA/KressArray
(Xputer)
[Hartenstein et al.
1996; Kress 1996]

2D array ALU + register 32
(parametriz-
able before
fabrication)

coarse (operand) ALU
operations of
4-32 bits

MATRIX [Mirsky
and DeHon 1996]

2D array ALU with
multiplier +

memory

8

RaPiD [Ebeling
et al. 1995]

1D array ALU, multipliers,
registers, RAM

16

XPP [Baumgarte
et al. 2003]

2D array ALU with
multiplier, RAM

4-32
(parametriz-
able before
fabrication)

MorphoSys [Singh
et al. 2000]

2D array ALU + multiplier
+ register file

28

ADRES [Mei et al.
2003]

2D array ALU + multiplier
+ register file

32

ARRIX FPOAs
[MathStar]

2D array ALU + MAC +

register file
16

mix-coarse Sequence of
assembly
instructions

RAW [Taylor et al.
2002]

2D array RISC + memory +

switch network
32

When compared to native coarse-grained architectures, the approaches using an
operation-level abstraction layer over the physical fine granularity of an FPGA have
more flexibility, but require longer compilation times and need more configuration
data (and longer reconfiguration times). This abstraction layer can be provided by a
library of relatively placed macros (RPMs) with direct correspondence to the opera-
tors of the high-level software programming languages (arithmetic, logic, and memory
access). This library can contain more than one implementation of the same opera-
tor, representing different tradeoffs among area, latency, and configuration time. Fur-
thermore, the use of a library decreases the overall compilation time, enables more
accurate estimations, and is already a proven concept in HLS systems. A second op-
tion for an abstraction layer is the use of hardware templates with specific architec-
ture and parametrizable and/or programmable features. An extreme case of this, are
the configurable softcore processors. Approaches using a layer of abstraction imple-
mented by architecture templates are the dynamic processor cores implemented in
fine-grained RPUs (e.g., FPGAs), such as the DISC (dynamic instruction set computer)
[Wirthlin 1995]. This approach allows the dynamic reconfiguration of dedicated hard-
ware units when a new instruction appears whose correspondent unit has not yet been
configured.

Table I summarizes the various efforts on reconfigurable architectures, focusing on
their granularity and main characteristics, classified into three broad categories, as
follows:
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—Fine-grained: The use of the RPUs with fine-grained elements to define specialized
datapath and control units.

—Coarse-grained: The RPUs in these architectures are often designated field-
programmable ALU arrays (FPAAs), as they have ALUs as reconfigurable blocks.
These architecture are especially adapted to computations over typical data-widths
(e.g., 16, 32 bits).

—Mix-coarse-grained: These include architectures consisting of tiles that usually inte-
grate one processor and possibly one RPU on each tile. Programmable interconnect
resources are responsible for defining the connections between tiles.

The PipeRench [Goldstein et al. 2000, 1999] (see Table I) can be classified as a fine-
or as a coarse-grained architecture, as the parametrizable bit-width of each processing
element can be set before fabrication within a range from a few bits to a larger number
of bits typically used by coarse-grained architectures. Bit-widths from 2 to 32 bits have
been used [Goldstein et al. 1999]. The XPP [Baumgarte et al. 2003] (see Table I) is
a commercial coarse-grained device; Hartenstein [2001] presents additional coarse-
grained architectures.

With RPUs that allow partial reconfiguration it is possible to reconfigure regions
of the RPU while others are executing. Despite its flexibility, partial reconfiguration
is not widely available in today’s FPGAs. With acceptable reconfiguration time, dy-
namic (runtime) reconfiguration might be an important feature that compilers should
address. Reconfiguration approaches based on layers of on-chip configuration planes
selected by context switching have been addressed by, for example, DeHon [1996] and
Fujii et al. [1999]. These techniques allow time-sharing of RPUs over computation.
Overlapping reconfiguration with computation would ultimately allow us to mitigate,
or even to eliminate, the reconfiguration time overhead.

3. OVERVIEW OF COMPILATION FLOWS

This section presents an overview of compilation flows that target reconfigurable com-
puting architectures. A generic compilation flow is depicted in Figure 2. As with tra-
ditional compilation, it first uses a front-end to decouple the specific aspects of the
input programming language (e.g., its syntax) from an intermediate representation
(IR). Next, the middle-end of the compiler applies a variety of architecture-neutral
transformations (e.g., constant folding, subexpression elimination, elimination of re-
dundant memory accesses), and architecture-driven transformations (e.g., loop trans-
formations, bit-width narrowing) to expose specialized data types and operations and
fine-grained as well as coarse-grained parallelism opportunities. While some transfor-
mations exploit high-level architectural aspects such as the existence of multiple mem-
ories to increase the availability of data, other transformations exploit the ability to
customize specific functional units in an RPU (reconfigurable processing unit), thereby
directly implementing high-level instructions at the hardware level. The latter in-
cludes the customization of arithmetic units to directly support fixed-point operations
using nonstandard bit-width formats that are representations or rounding modes. Fi-
nally, the flow includes a back-end. This compiler stage schedules macro-operations
and instructions, generates the definition of a concrete architecture by the synthesis of
its datapaths and FUs, and performs the low-level steps of mapping and placement and
routing (P&R), if applicable. Some of these steps may be accomplished by integrating
commercial synthesis tools in the flow, in many cases using target-specific component
library modules.

As many of the reconfigurable computing platforms include a traditional proces-
sor, partitioning the computations between the processor and an RPU is a key aspect
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Fig. 2. Generic compilation flow for reconfigurable computing platforms.

of the compilation flow. This partitioning, and the corresponding data partitioning,
is guided by specific performance metrics, such as the estimated execution time and
power dissipation. As a result, the original computations are partitioned into a soft-
ware specification component and a reconfigware component. The software component
is then compiled onto a target processor using a traditional or native compiler for that
specific processor. The reconfigware components are mapped to the RPU by, typically,
translating the correspondent computations to representations accepted by hardware
compilers or synthesis tools. As part of this partitioning, additional instructions to
synchronize the communication of data between the processor and the RPU are re-
quired. This partitioning process is even more complex if the target architecture con-
sists of multiple processors or the communication schemes between devices or cores
can be defined in the compilation step, as is the case when targeting complex embedded
systems.

After the reconfigware/software partitioning process, the middle-end engages in tem-
poral and spatial partitioning for the portions of the computations that are mapped to
the RPU. Temporal partitioning refers to the splitting of computations in sections to be
executed by time-sharing the RPU, whereas spatial partitioning refers to the splitting
of the computations in sections to be executed on multiple RPUs, that is, in a more tra-
ditional parallel computing fashion. The mapping of the data structures onto memory
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resources on the reconfigurable computing platform can also be done at this phase of
the mapping.

Many compilation use commercially available HLS tools for the final mapping steps
targeting the RPU. Other approaches have been developed to map the computations
onto the RPU resources as a vehicle for exploiting specific techniques enabled by spe-
cific architectural features of its target RPUs. Loop pipelining, scheduling, and the gen-
eration of hardware structures for the datapath and for the control unit are included
in this category. Note, however, that these efforts depend heavily on the granularity of
the RPU, and therefore on its native model of computation. Finally, to generate the re-
configware configurations (that is, binaries to program the RPUs), compilers perform
mapping, placement, and routing. Compilers targeting commercial FPGAs typically
accomplish these tasks using vendor-specific tools.

Estimations (e.g. of the required hardware resources or execution latencies) are re-
quired by some of the compilation steps in this flow to select among transformations
and optimizations. Some of these auxiliary techniques are very important for dealing
with the many degrees of freedom that reconfigurable architectures expose. A compiler
should engage in sophisticated design space exploration (DSE) approaches to derive
high-quality reconfigware implementations.

3.1. Programming Languages and Execution Models

It is widely believed that the major barrier to adoption of promising reconfigurable
technology is the lack of adequate programming flows that offer a higher level of ab-
straction than currently provided by available HDLs [Babb et al. 1999]. Tools support-
ing high-level programming specifications would accelerate tremendously the develop-
ment cycle of reconfigurable systems and facilitate the migration of already developed
algorithms to these systems—a key aspect for their widespread acceptance.

The main obstacle to offering a high-level programming abstraction, such as the
imperative programming model of widely popular languages like C or Java, lies in the
semantic gap between this imperative model and the explicitly concurrent models used
to program hardware devices. Common hardware description languages such as VHDL
or Verilog use an execution model based on communicating sequential processes (CSP)
[Hoare 1978], and thus are far from the imperative models. Hence compilation of pro-
grams from the imperative paradigm to hardware has to bridge this semantic gap by
automatically extracting as much concurrency as possible, or simply relying on library
implementations, where the notions of concurrent execution have been crystallized
by library developers and openly publicized in application programming interfaces
(APIs).

This semantic gap prompted the development of a wide range of approaches from
the programming model perspective covering a wide spectrum of solutions, ranging
from the easier approach, where the input language already offers a concurrent execu-
tion model close to the CSP model, to the harder approach of uncovering concurrency
automatically from traditional imperative languages.

The extraction of concurrency has been a long-standing, and notoriously hard, re-
search problem for the compiler and parallel computing communities. Constructs such
as pointer manipulation in languages such as C or C++ hinder static analyses tech-
niques from achieving a significant number of program transformations in the synthe-
sis process [Séméria et al. 2001]. Compilation support for object-oriented mechanisms
and dynamic data structures (e.g., memory allocation of linked lists) also requires ad-
vanced compilation analyses in the context of hardware synthesis [Jong et al. 1995;
Radetzki 2000]. Alternative imperative execution models, such as languages with ex-
plicit support for data streaming (e.g., Streams-C [Gokhale et al. 2000b]), alleviate
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some of the data disambiguation problems and substantially improve the effective-
ness of the mapping to reconfigurable systems, as they are especially suited for data
streaming computations and for concurrent execution. Intraprocess concurrency, how-
ever, is still limited by the ability of the compiler to uncover concurrency from sequen-
tial statements.

At the other end of the spectrum, there are the approaches that use languages with
explicit mechanisms for specifying concurrency. In this class there is a wealth of efforts,
ranging from languages that expose concurrency at the operation level (e.g., Handel-C
[Page 1996]) to tasks (e.g., Mitrion-C [Mitrionics]) or threads (e.g., Java threads [Tripp
et al. 2002]).

Orthogonal to general-purpose language efforts, others have focused on the defini-
tion of languages with constructs for specific types of applications. SA-C [Böhm et al.
2001] is a language with single-assignment semantics geared toward image processing
applications which has a number of features facilitate translation to hardware, namely,
custom bit-width numerical representations and window operators. The language se-
mantic effectively relaxes the order in which operations can be carried out and allows
the compiler to use a set of predefined library components to implement them very effi-
ciently. Other authors have developed their own target-specific languages. The RaPiD-
C [Cronquist et al. 1998] and the DIL [Budiu and Goldstein 1999] languages were
developed specifically for pipeline-centered execution models supported by specific tar-
get architectures. While these languages allow programmers to close the semantic gap
between high-level programming abstractions and the low-level implementation de-
tails, they will probably ultimately serve as intermediate languages which a compiler
tool can use when mapping higher level abstraction languages to these reconfigurable
architectures.

The indisputable popularity of MATLAB [Mathworks], as a domain-specific lan-
guage for image/signal processing and control applications, made it a language of
choice when mapping to hardware computations in these domains. The matrix-based
data model makes MATLAB very amenable to compiler analyses, in particular array-
based data-dependence techniques. The lack of strong types, a very flexible language
feature, requires that effective compilation must rely heavily on type and shape in-
ference (see, e.g., Haldar et al. [2001a]), potentially limiting the usefulness of more
traditional analyses.

Finally, there have also been efforts at using graphical programming environments
such as the Cantata environment, used in the CHAMPION project [Ong et al. 2001],
and the proprietary language Viva [Starbridge-Systems]. Essentially, these graphical
systems allow the concurrency to be exposed at the task level, and are thus similar in
spirit to the task-based concurrent descriptions offered by the CSP-like languages.

3.2. Intermediate Representations

Given the inherently parallel nature of reconfigurable architectures, where multiple
threads of control can operate concurrently over distinct data items, the intermediate
representation (IR) of a compiler for these architectures should explicitly represent
this notion of concurrency. The IR should enable, rather than hamper, transformations
that take advantage of specific features of the target reconfigurable architecture.

A natural IR explicitly represents control and data dependences as in the tradi-
tional control/dataflow graph (CDFG) [Gajski et al. 1992]. This representation uses the
control-flow structure of the input algorithm and embeds operations in basic blocks.
For each basic block, a dataflow graph (DFG) which is later mapped to the RPU is con-
structed. Note that aliases (arising from array or pointer accesses or from procedure
calls) hinder the construction of DFGs. Concurrent execution of basic blocks is limited
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by the ability of a compiler to uncover data dependences across blocks. This limita-
tion is even more noticeable when the available parallelism through multiple flows
of control can be supported by the target architecture. The hyperblock representation
[Mahlke et al. 1992] prioritizes regions of the control flow graph (CFG) to be considered
as a whole, thus increasing the amount of available concurrency in the representation
[Callahan and Wawrzynek 1998], which can be used by a fine-grained scheduler to
enlarge the number of operations considered at the same time [Li et al. 2000].

A hierarchical representation, the hierarchical task graph (HTG) [Girkar and Poly-
chronopoulos 1992], was explored in the context of HLS when targeting ASICs (e.g.,
Gupta et al. [2001]). This representation can efficiently represent the program struc-
ture in a hierarchical fashion and explicitly represent functional parallelism, from the
imperative programming language. The HTG combined with a global DFG provided
with program decision logic [August et al. 1999] seems to be an efficient intermediate
model to represent parallelism at various levels. For showing multiple flows of control
it is possible to combine information from the data-dependence graph (DDG) and the
control-dependence graph (CDG) [Cytron et al. 1991], thus allowing a compiler to ad-
just the granularity of its data and computation partition with the target architecture
characteristics.

In the co-synthesis and HLS community the use of task graphs is very common. An
example is the unified specification model (USM) representation [Ouaiss et al. 1998b].
The USM represents task- and operation-level control and dataflow in a hierarchical
fashion. At the task level, the USM captures accesses of each task to each data set by
using edges and nodes representing dataflow and data sets, respectively, and is thus
an interesting representation when mapping data sets to memories.

Regardless of the intermediate representation that exposes the available concur-
rency of the input program specification, there is still no clear migration path from
more traditional imperative programming languages to such hardware-oriented rep-
resentations. This mapping fundamentally relies on the ability of a compilation tool
to uncover the data dependences in the input computation descriptions. In this con-
text, languages based on the CSP abstractions are more amenable to this represen-
tation mapping than languages with state-full imperative paradigms such as C or
C++.

3.3. Summary

There have been many different attempts, reflecting very distinct perspectives, in
addressing the problem of mapping computations expressed in high-level program-
ming languages to reconfigurable architectures. To date, no programming model, high-
level language or intermediate representation has emerged as a widely accepted pro-
gramming and compilation infrastructure paradigm that would allow compilers to
automatically map computations described in high-level programming languages to
reconfigurable systems. Important aspects such as the ability to map an existing soft-
ware code base to such a language and to facilitate the porting of library codes are
likely to play key roles in making reconfigurable systems attractive for the average
programmer.

4. CODE TRANSFORMATIONS

The ability to customize the hardware implementation to a specific computation in-
creases the applicability of many classical code transformations, which is well docu-
mented in the compiler literature (e.g., Muchnick [1997]). While in many cases these
transformations can simply lead to implementations with lower execution times, they
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also enable implementations that consume less hardware resources, given the ability
for fine-grained reconfigware to implement specialized circuits.

We now describe in detail key code transformations suitable for reconfigurable com-
puting platforms. We distinguish between transformations that are very low-level, (at
the bit-level) and can therefore exploit the configurability of very fine-grained recon-
figurable devices such as FPGAs, and more instruction-level transformations (includ-
ing loop-level transformations) that are more suitable for mapping computations to
coarser-grained reconfigurable architectures.

4.1. Bit-Level Transformations

This section describes three common operation specializations used when compil-
ing to fine-grained reconfigurable architectures, namely bit-width narrowing, bit-
optimizations, and conversion from floating- to fixed-point data types.

4.1.1. Bit-width Narrowing. In many programs, the precision and range of the numeric
data types are over-defined, that is, the necessary bit-widths to store the actual val-
ues are clearly smaller than the ones supported natively by traditional architectures
[Caspi 2000; Stefanovic and Martonosi 2000]. While this fact might not affect per-
formance when targeting a microprocessor or a coarse-grained RPU (reconfigurable
processing unit), it becomes an aspect to pay particular attention to when targeting
specialized FUs in fine-grained reconfigurable architectures. In such cases, the im-
plementation size and/or the delay of an FU with the required bit-width can be sub-
stantially reduced. Bit-width inference and analysis is thus an important technique
when compiling for these fine-grained architectures, especially when compilation from
programming languages with limited support for discrete primitive types, such as the
typical software programming languages, is addressed. There are examples of lan-
guages with the bit-width declaration capability, such as Valen-C [Inoue et al. 1998]
a language based on C, which was designed having in mind the targeting of embed-
ded systems based on core processors with parameterized data-width; other exam-
ples of languages with support for bit-width declarations are Napa-C, Stream-C, and
DIL.

Bit-width narrowing can be static, profiling-based, dynamic or both. Static analy-
ses are faster but need to be more conservative. Profiling-based analyses can have
long runtimes, can reduce the bit-widths even more, but are heavily dependent on the
input data. One of the first approaches using static bit-width analysis for mapping
computations to reconfigware described in the literature is the approach presented by
Razdan [1994] and Razdan and Smith [1994] in the context of the compilation for the
PRISC architecture. This approach only considers static bit-width analysis for acyclic
computations.

Budiu et al. [2000] describe BitValue, a more advanced static bit-width dataflow
analysis that is able to deal with loops. The analysis aims to find the bit value for
each operand/result. Each bit can have a definite value, either 0 or 1, an unknown
value, or can be represented as a “don’t care”. They formulate BitValue as a dataflow
analysis problem with forward, backward, and mixing steps. The dataflow analysis
to propagate those possible bit values based on propagation functions dependent on
the operation being analyzed. The backward analysis to propagate “don’t care” values,
and the forward analysis to propagate both defined and undefined values. Forward
and backward analyses are done iteratively through bit-vector representations until a
fixed-point is reached.

Another static analysis technique focuses on the propagation of value ranges that a
variable may have during execution, and has been used in the context of compilation
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to reconfigware by Stephenson et al. [2000]. This analysis can determine narrower
bit-widths requirements than previous analyses, and uses auxiliary information, such
as the array dimension, to make a bound in the variables indexing array elements.
However, using value ranges does not permit extraction of information about bits
except at the extremities (i.e., least significant bits and most significant bits) of the
data.

Some authors claim that static analysis is sometimes excessively conservative and
thus use offline profiling-based analyses to determine the bit-width of variables. How-
ever, these analyses often incur long runtimes, as the program must be executed once
or several times, and strongly depend on the dataset used. Thus, imprecision may
occur in some implementations when data sets produce overflows or underflows not
exposed in the profiling. To circumvent this problem, researchers have proposed off-
line, program execution-based, analyses that do not need data sets, but may incur long
execution times [Ogawa et al. 1999].

A precision analysis specific to dynamic fine-grained reconfigurable architectures
is proposed by Bondalapati and Prasanna [1999]. They use static or profiling-based
inference of the sufficient bit-widths for each iteration of a loop. Then, specialized data-
paths can be used for executing particular iteration ranges of a loop by exploiting
dynamic reconfiguration.

Implementations capable of dynamically acquiring sufficient bit-widths to perform
an operation correctly have been used in the context of the reduction of power dissipa-
tion in processor architectures [Brooks and Martonosi 1999]. Such techniques can be
used in fine-grained architectures to reduce the delay of FUs when data arriving at an
FU does not need all the bit-width statically allocated. An advanced use of dynamic
bit-with inference (although to the best of our knowledge has not been researched)
could be used to specialize, during runtime, the datapath according to the precisions
needed.

4.1.2. Bit-Optimizations. Applying bit-width narrowing and bit-optimization to pro-
grams with intensive bit-manipulations (mask, shift by constants, concatenation, etc.)
is likely to lead to significant improvements by saving resources and decreasing ex-
ecution times. Bit-optimizations are frequently done in logic synthesis using binary
decision diagram (BDD) representations [Micheli 1994]. This representation is poten-
tially time- and memory-consuming, and thus is not very effective when used in large
examples (note that a small DFG of a program can have a large logic graph). Because
of this, some compilers use other techniques aimed at reducing the logic needed. Such
techniques operate mainly on the DFG with propagation of constants at the bit level
using, for example, the BitValue propagation technique referred to above.

The DIL is an example of a compiler that considers some optimizations at the bit
level [Budiu and Goldstein 1999]. The DIL language has some constructs that facilitate
bit-optimizations also. For instance, the statement c=(a.b)[7,0], where b is an 8-bit
variable, the operator “.” represents concatenation, and square brackets represent the
bit-range of the expression assigned to c, simplifies to c=b[7,0] and permits us to have
wires only between the 8 least significant bits of b directly connected to c. The previous
statement in DIL is equivalent to the C statement: c=(0xff)&((a<<8)|((0xff)&b)), which
requires more aggressive analysis to show the optimized circuit.

Aggressive bit optimizations should determine that the implementation of
some statements in hardware do not need hardware resources, as is the case for
if((ans & 0x8000)==0x8000). Some bit-level analysis and optimizations can determine,
after loop unrolling, that a fine-grained hardware implementation of the body of
the function shown in Figure 3(a) only requires wire interconnections as depicted in
Figure 3(b).
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Fig. 3. Bit reversing (32 bit word): (a) coded in a software programming language; (b) implemented in
hardware.

4.1.3. Conversion from Floating- to Fixed-Point Representations. Floating-point data repre-
sentations are a commonly used format to represent real numbers in almost all com-
puting domains. However, the costs associated with arithmetic operations in floating-
point format are much higher than using an integer representation in terms of logic
gates and number of clock cycles. An alternative representation, commonly used in
DSP (digital signal processing) algorithm implementations, is the fixed-point data
type, which allows the arithmetic operations to be done by integer FUs with the re-
quirement of scaling factors (the binary point is implicitly encoded as shifts), imple-
mented by shifting the operands and/or the result of the operations. It is common to
see algorithms that have been developed mostly on computers supporting floating-
point data types. In some cases the tradeoff between the precision and efficiency of
a computation in fixed-point format is acceptable given the substantial reduction in
cost. However, each time these algorithms are ported to architectures where floating-
point is not natively supported, the designer faces an error-prone, tedious, and time-
consuming conversion from floating- to fixed-point representations.

This floating- to fixed-point conversion has been the focus of several research projects
that compile C programs onto DSPs [Aamodt and Chow 2000; Kum et al. 2000; Willems
et al. 1997]. Most approaches reported in the literature use profiling and/or user anno-
tations to assist in the automatic phases of the conversion. It is common that whenever
the tools are unable to find a translation for a specific variable, they ask for the help
of the user. In the context of ASIC synthesis, some companies have already presented
tools to convert from floating- to fixed-point, usually assisted by profiling steps; for
example, the CoCentricTM tool [Synopsys 2000] uses a design flow starting from the
SystemC language. The conversion is based on an interpolation mechanism that helps
the designer in the conversion of most variables in a program.

Floating- to fixed-point conversions have been the focus of some research groups
when compiling to fine-grained reconfigurable architectures (e.g., FPGAs). Leong et al.
[1999] show a conversion method based on profiling and the minimization of a cost
function. This method assigns a unique fixed-point representation to each variable in
the source code. Although the approach does not deal with loops in the C code, it high-
lights the importance of the conversion. Nayak et al. [2001b] describe an automatic
approach, which divides the conversion into two main steps. The first step aims at find-
ing the minimum number of bits of the integer part of the representation using value
range propagation analysis (forward and backward), with similarities to the bit-width
reduction techniques covered in the previous section. In the second step, the approach
seeks the minimum number of bits in the fractional part of the fixed-point represen-
tation. It starts by using the same number of fractional bits for all the variables and
then refines the representation via an error analysis technique.

Concerning the conversion of numeric formats and their efficient implementation,
the compilation of numerical algorithms to reconfigurable architectures may have
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some particularities, according to the granulartity of the target architecture. In coarse-
grained architectures (with or without barrel-shift hardware support), the reduction
of the number of scaling operations might be an important goal. This reduction can
have great importance in the overall performance of the implementation, as a trivial
translation can produce a large number of such shift operations. Elimination of shift
operations is possible when the operands that need to be aligned (e.g., addition) are
represented with the same number of fractional bits. In fine-grained architectures, the
shift operations by a known compile-time constant can be implemented by redirection
of the bits of the fractional part of the representation, and thus is costless. In this case
the reduction of the number of scaling operations is not considered.

4.1.4. Nonstandard Floating-Point Formats. It is possible to improve the execution time
of arithmetic operations and/or reduce the amount of hardware resources used for spe-
cific applications by the adoption of nonstandard floating-point formats, which use
specific numbers of bits for exponent and mantissa representations according to ac-
curacy requirements. One floating-point format is referred to as block floating-point
number representations [Ralev and Bauer 1999]. It combines the advantages of fixed-
and floating-point representations, and hence can be an important optimization when
compiling digital signal-processing applications [Kobayashi et al. 2004] to reconfigware
(e.g., especially to fine-grained architectures such as FPGAs).

4.2. Instruction-Level Transformations

At the next level in granularity in code transformations, there are many instruction-
level transformations that attempt to simplify or reduce the hardware resources al-
located for a given computation by using a combination of algebraic simplification or
circuit specialization.

Simple algebraic transformations can be used for tree height reduction (THR), com-
mon subexpression elimination (CSE), constant folding, constant propagation, and
strength reduction [Muchnick 1997]. Many of the algebraic transformations have a
positive impact, both in terms of execution time as well as use of hardware resources,
and are independent of the target reconfigurable architecture. Examples of such trans-
formations include the classical algebraic strength reduction and simplification cases
such as replacing − 1xa by –a, −(−j) by j, or 0+i by i. Other transformations are use-
ful when the target architecture does not directly support the original operation, for
example, replace i2 by i x i.

There are algebraic transformations specific to specialized hardware implementa-
tions that are only possible due to the flexibility of reconfigware. These transforma-
tions simplify the hardware needed to perform a given operation. For example, when
a constant of the form 2N is added to an operand, a single incrementer and a bit-level
concatenation is required instead of a generic adder (an example of bit-level operator
specialization). Another example is operator strength reduction (OSR); for example, we
can replace 2xi by i<<1 or replace 3xi by i+(i<<1).

When compiling arithmetic expressions, some properties should be evaluated in or-
der to find more efficient hardware implementations. The arithmetic properties (com-
mutative, associative, distributive, etc.), when efficiently combined, can substantially
reduce the number of operations in an expression or/and the critical path length of the
resulting hardware implementation.

4.2.1. Tree-Height Reduction (THR). Tree-height reduction or tree-height minimization
[Micheli 1994] is a well-known technique to reduce the height of a tree of operations
by reordering them in a way that the initial functionality is preserved (see Figure 4).
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Fig. 4. Tree-height reduction: (a) a simple expression; (b) DFG with cascaded operations; (c) DFG after tre-
height reduction is applied; (d-e) Impact on the scheduling length considering the serialization of memory
accesses when applying to the DFG in (b) and (c), respectively.

The technique attempts to expose more parallelism by, in the best case, reducing the
height of an expression tree from O(n) to O(log n), with n representing the number of
nodes (operations) in the critical path, leading to a reduction of the critical path length
of the circuitry that implements the expression tree.

THR can be easily performed when the expression consists of operations of the same
type. When considering expressions with different operations, THR can be applied by
finding the best combination of the arithmetic properties of those operations and fac-
torization techniques. Applying THR may, in some cases, lead to worse implementa-
tions. This might happen when some operations in the expression tree share hardware
resources and hence their execution must be serialized. The example in Figure 4 de-
picts this particular case. Figure 4(e) shows a schedule length, obtained from the DFG
after THR, which is longer than the schedule length directly obtained from the original
DFG and shown in Figure 4(d).

4.2.2. Operation Strength Reduction (OSR). The objective of operation strength reduc-
tion is to replace an operation by a computationally less expensive one or a sequence of
operations. Strength reduction is usually applied in the context of software compilers
to induction variables [Muchnick 1997]. Also, integer divisions and multiplications
by compile-time constants can be transformed into a number of shifts and addi-
tions/subtractions [Magenheimer et al. 1988]. Due to the hardware characteristics—
specialization (shifts by constants are implemented as simple interconnections) and a
dataflow implementation (without the need of auxiliary registers to store the interme-
diate results)—strength reduction can reduce both the area and the delay of the op-
eration, and is therefore well suited for the compilation to fine-grained reconfigurable
architectures (e.g., FPGAs without built-in multipliers or dividers). Trivial cases oc-
cur when there is a multiplication or a division of an integer operand by a power of
two constant. For these cases, a multiplication is accomplished by a simple shift of the
operand, which only requires interconnections on fine-grained architectures.

The nontrivial multiplication cases require other implementation schemes. Some
authors use arithmetic operations (e.g., factorization) to deal with the multiplications
by constants. Bernstein [1986] proposes an algorithm that aims to find an optimal
solution, but with exponential time complexity. An efficient scheme for hardware is us-
ing the canonical signed digit (CSD) representation [Hartley 1991], which is constant
with a minimum number of nonzero bits and uses the symbols −1, +1 and 0. This rep-
resentation permits to use of a small number of adder/subtracter components [Hart-
ley 1991]. The minimum number of these components can be attained by applying
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Table II. Example of Operation Strength Reduction Techniques on Integer Multiplications by Constants
Operation 231×A
Representation Binary CSD CSD+CSE

011100111 100-10100-1 Pattern: 100-1
Resources (not considering shifts) 5 adders 2 subtracters and 1 adder 1 adder and 1 subtracter

Fig. 5. Code hoisting: (a) original code; (b) DFG implementation without code hoisting; (c) transformed code
after code hoisting; (d) DFG implemntation with code hoisting and THR.

common subexpression elimination (CSE) on the CSD representation. In this case,
CSE resumes to the identification of common CSD subpatterns. Table II shows three
cases of applying OSR to the simple arithmetic operation: 231×A. The binary case
refers to the direct use of the binary representation and gives a solution with the max-
imum number of operations (resources) required. As we can see, the use of CSD and
CSE significantly reduces the number of additions and subtractions.

The OSR transformation can also be applied when dealing with floating-point op-
erations, and has been used, for example, in the DeepC compiler [Babb et al. 1999],
transforming expressions such as x/2.0 by subtracting one unit from the exponent of x.

4.2.3. Code Motion: Hoisting and Sinking. Code motion [Muchnick 1997], either locally
or globally, is a technique that changes the order of operations in the program. Two
distinct movements can be applied: code hoisting (moving up, i.e., against the flow of
control) and code sinking (moving down, i.e., along the flow of control). Code motion is
beneficial in the reduction of the size of the code by moving repeated computations of
the same expression or subexpression, to a common path. In the context of hardware
compilation, code motion may have the potential benefit of making the two computa-
tions independent (in terms of control flow), thus enabling concurrent execution. Such
movement may increase the potential for other optimization techniques, as in the ex-
ample in Figure 5. In this example, code hoisting and THR result in one more adder
unit, but decrease the critical path length by the delay of one adder unit. Depending on
the example, code hoisting and code sinking can be applied in the context of conditional
paths to decrease the schedule length or to reduce the number of resources needed.

Depending on the scope of usage in a program, various types of code motion can be
classified as follows:

—Loop invariant code motion: Code hoisting of loop invariant computations eliminates
code that does not need to be executed on every loop iteration, and thus reduces the
length of the schedule of the execution of the body of the loop.

—Interprocedural code motion: This transformation moves code (simple expressions,
loops, etc.) across function boundaries such as constants and symbolic invariant
expressions.

ACM Computing Surveys, Vol. 42, No. 4, Article 13, Publication date: June 2010.



Compiling for Reconfigurable Computing: A Survey 13:19

Fig. 6. Loop unrolling and opportunities for parallel execution: (a) original C source code; (b) full unrolling
of inner loop.

—Code motion across conditionals: This is the most used type of code motion. Recent
techniques have been applied in the CDFG and HTG for HLS of ASICs [Gupta et al.
2001; Santos et al. 2000], considering constraints on the number of each FU type.

—Code motion within a basic block: This is implicitly performed when a DFG is used,
but it should be considered when ASTs are the intermediate representation used.
In this case, code motion is used when performing scheduling with, for example,
resource-sharing schemes.

One example of the first type is scalarization, which substitutes an array access with
an address invariant in the loop by a variable and puts the array access before the loop
body. In this context, this transformation reduces the number of memory accesses.

4.3. Loop-Level Transformations

An important goal of some of the more complex, and thus far-reaching, transfor-
mations is the matching of the instruction-level parallelism in a given computa-
tion to the available hardware resources at hand. In this category are the classical
loop unrolling, loop tiling, and unroll-and-jam transformations. For example, loop un-
rolling potentially creates more opportunities for concurrently executing multiple in-
stances of arithmetic operators that are only subject to data or hardware resource
dependences.

Many loop transformations [Wolfe 1995] such as coalescing, collapsing, distribution
(fission), jamming (fusion), interchanging, peeling, reordering, reversal, stripmining,
tiling, splitting, and unrolling, when used in the context of reconfigurable hardware
implementation, exhibit various unique characteristics. Overall, these transforma-
tions aim at increasing the amount of instruction-level parallelism (ILP), for exam-
ple, by unrolling, and/or increasing the availability of the data items (e.g, by tiling).
In addition, they may also enable other transformations mentioned in the previous
sections.

Loop unrolling is the most commonly used loop transformation, as it decreases the
loop overhead while increasing the opportunities for ILP. The loop body is replicated,
and the index for each iteration is propagated to the statements in each instance of
the loop body as illustrated in Figure 6. In some cases, however, due to I/O constraints
and lack of further potential for optimizations, the utilization of loop unrolling does
not compensate the extra hardware resources needed.

Loop tiling [Wolfe 1995] can be applied to inner loops to create two nested loops,
and is able to split the original iteration space. Such a transformation enables the
parallelization of instances of the new inner loop when each instance computes on
data sets located on different memories or on the same memory with more than one
port.
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Fig. 7. Loop unrolling and array data distribution example: (a) original C source code; (b) loop unrolled by
2 and distribution of img.

Another example of a loop transformation, especially devoted to decreasing exe-
cution time, is loop merging (fusion), because it can increase the efficiency of loop
pipelining.

4.4. Data-Oriented Transformations

The flexibility of reconfigurable arhitectures, in terms of the configuration and or-
ganization of storage structures, makes data-oriented transformations such as data
distribution, data replication, and scalar replacement particularly suited for these ar-
chitectures. Many other transformations, in particular loop transformations, exhibit
a special synergy with these data-oriented transformations, particularly for computa-
tions that manipulate array variables using affine index access functions, as in many
signal and image processing algorithms.

4.4.1. Data Distribution. This transformation partitions a given program array vari-
able (other data structures can also be considered) into many distinct arrays, each of
which holds a disjoint subset of the original array’s data values. Each of these newly
created arrays can then be mapped to many distinct internal memory units or modules,
but the overall storage capacity used by the arrays is preserved. This transformation,
sometimes in combination with loop unrolling, enables implementations that can ac-
cess the various sections of the distributed data concurrently (whenever mapped to
distinct memories, thus increasing the data bandwidth). Figure 7 illustrates the ap-
plication of loop unrolling and data distribution for the array img of the example code
depicting the declarations of the two arrays imgOdd and imgEven.

4.4.2. Data Replication. Another data-oriented transformation that increases the
available data bandwidth, this time at the expense of an increase in the storage used,
is data replication. In this case, shown in Figure 8, data is copied as many times as
desired into distinct array variables, which can then be mapped to distinct memory
modules to enable concurrent data access.

Clearly, and compared to the previous transformation, the storage cost of replication
may be prohibitive. As a result, its applicability is limited to small arrays that are
immutable throughout the computation, that is, to variables that hold coefficient or
parameter data that needs to be accessed frequently and freely. In addition to the
storage issues, there is also the issue of consistency should the data be modified during
the computation. In this case, the execution must ensure all replicas are updated with
the correct values before the multiple copies can be accessed [Ziegler et al. 2005].
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Fig. 8. Loop unrolling and array data replication example: (a) original source code; (b) loop unrolled by 2
and replication of img.

Fig. 9. Scalar replacement using loop urolling: (a) original C source code; (b) scalar replacement of k using
loop unrolling.

4.4.3. Scalar Replacement. In this transformation [So et al. 2004] the programmer
selectively chooses which data items will be reused throughout a given computation
and cached in scalar variables. In the context of traditional processors, the compiler
then attempts to map these scalar variables to internal registers for increased per-
formance. When mapping computations to reconfigurable architectures, designers at-
tempt to cache these variables either in discrete registers or in internal memories
[So and Hall 2004]. Figure 9 illustrates the application of scalar replacement to the k
array variable. In this case, multiple accesses to each element of the array are elimi-
nated by a prior loading of each element to a distinct scalar variable. The use of scalar
replacement using loop peeling was shown in Diniz [2005]. In this case, the first it-
eration where the reused data is accessed is peeled away from the remaining loop
iterations.

This transformation, although simple to understand and apply when the reused data
is read-only in the context of the execution of a given loop, is much more complicated to
implement when in a given loop the data that is reused is both read and written. In this
case, care must be taken that the cached data in the scalar replaced register is copied
back into the original array data, so that future instantiations of the transformations
can use the correct value.

4.5. Function Inlining and Outlining

Function inlining and outlining are dual source transformations with complementary
effects. Function inlining (also known as function unfolding and inline expansion) re-
places a call instruction or function invocation statement with the statements in the
body of the invoked function. With respect to hardware compilation, one of the first
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Fig. 10. Example illustrating function inlining: (a) source code; (b) datapath for the function; (c) hardware
structure used to time share the hardware resources of the function; (d) datapaths after function inlining.

Fig. 11. Example with function outlining: (a) source code; (b) transformed code; (c) datapath for the
function.

uses of function inlining was referred to by Rajan and Thomas [1985]. Function out-
lining (also known as inverse function inlining, function folding, and function exlining
[Vahid 1995]) abstracts two or more similar sequences of instructions replacing them
with a call instruction or function invocation of the abstracted function.

Figures 10 and 11 illustrate these transformations. While function inlining in-
creases the amount of potential instruction-level parallelism by exposing more in-
structions in the function call-site, function outlining reduces it. Function inlining
eliminates the explicit sharing of the resources implementing the function body as
each call site is now replaced by its own set of hardware resources, as illustrated
in Figure 10. However, the resources for each call-site are now exposed at the call
site level to resource sharing algorithms, and may augment the potential for resource
sharing. Inlining also allows the specialization of the inlined code, and consequently
the correspondent hardware resources, for each specific call site. This may be possi-
ble when there are constant parameters, leading to constant propagation, or differ-
ent types inferred or bit-widths for one or more input/output variables of the function
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according to the call site, in turn allowing many other optimizations as well as op-
erator specialization. In addition, each of the call site invocations has its own set
of hardware resources, exposing what is called functional or task parallelism in the
program.

Conversely, function outlining, as illustrated in Figure 11, improves the amount of
resource sharing, as all invocations use the same hardware for implementing the orig-
inal functionality. This is performed at the expense of constraining the potential task-
level parallelism in the hardware implementation, as the various function invocations
now need to have their execution serialized by the common hardware resources.

5. MAPPING TECHNIQUES

We now present some of the most important aspects related to the mapping of compu-
tations to reconfigurable architectures—a very challenging task given the heterogene-
ity of modern reconfigurable architectures. As many of the platforms use a board with
more than one reconfigurable device and multiple memories, a key step consists in the
spatial partitioning of computations among the various reconfigurable devices in the
board and/or its temporal partitioning when the computations do not fit in a single de-
vice or in all devices, respectively. Furthermore, array variables must be mapped to the
available memories (onchip and/or offchip memories). At lower levels, operations and
registers must be mapped to the resources of each reconfigurable device. The compiler
must supply one or more computing engines for each reconfigurable device used. In
addition, it is very important to exploit pipelining execution schemes at either a fine-
or coarse-grained level.

The following sections describe several mapping techniques, beginning with the ba-
sic execution techniques and then addressing spatial and temporal partitioning and
pipelining.

5.1. Control Flow Optimizations

When compiling sequential programming languages, the exploitation of multiple flows
of control provided by specialized architectures can be an important performance-
enhancing technique. The concurrent nature of hardware provides support for parallel
execution of multiple branches of the computation as highlighted by the transforma-
tions in the next sections.

5.1.1. Speculative Execution. The generation of specific architectures and the mapping
of computational constructs on reconfigurable architectures in such a way that spec-
ulative execution of operations without side-effects is accomplished might be impor-
tant to attain performance gains. This speculative execution does not usually require
additional hardware resources, especially if the functional units (FUs) are not being
shared among operations. This is the case for most of the integer operations as, for
example, the additional hardware resources needed to share an adder of two integer
operands makes the sharing inefficient. Speculation in the case of the operations with
side-effects (e.g., memory writes) requires the compiler to quantify if the restoring step
that must be done neither degrades the performance nor needs an unacceptable num-
ber of hardware resources.

5.1.2. Multiple Flows of Control. Since the control units for the datapath are also gen-
erated by the compilation process, it is possible to address multiple flows of control.
This can increase the number of operations executing on each cycle by increasing
the ILP. These multiple flows of control can be used in the presence of conditional
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Fig. 12. Examples of partitions (the graphs can represent a DFG or a task graph): (a) possible spatial
partitions but impossible temporal partitions; (b) possible spatial and temporal partitions.

constructs (e.g., if-then-else), loops without data-dependencies among them, or func-
tional parallelism. The generation of implementations with concurrent execution of, for
example, data-independent loops may lead to noticeable performance improvements,
especially when such loops do not share resources.

5.1.3. From Control to Dataflow. Given the suitability in fine-grained reconfigurable
architectures for implementing concurrent harware structures, program decision logic,
that is, logic that enables/disables the execution of a certain instruction [August et al.
1999], and predicated execution [Beck et al. 1993] are effective techniques for handling
control constructs. This implementation scheme can be used to convert the mutually
exclusive paths in if-then-else or switch statements to concurrent paths (known as if-
conversion [Allen et al. 1983]) where operations are controlled by the corresponding
predicates. When considering speculative execution of operations without side-effects,
only selection points and memory stores have to be dependent on the program decision
logic. Selection points (e.g., implemented with multiplexers) do not need intervention
of the control unit, as selection entries corresponding to signals are directly produced
by the program decision logic which can be integrated in the datapath.

The creation of the program decision logic may consider minimization of the logic ex-
pressions. The impact of minimization, when dealing with fine-grained reconfigurable
architectures, may not be important. However, when targeting coarse-grained archi-
tectures, where each logic operation needs a processing element, the minimization may
lead to important reductions on the number of resources needed.

The selection points are easily determined by transforming the program to the SSA
(static single assignment) form [Cytron et al. 1991]. The selection points are explicitly
represented in the SSA-form. Furthermore, since this form is single-assignment, it
simplifies the construction of the DFG.

Besides if-conversion there are other techniques that can transform control con-
structs into simple dataflow. For instance, the statement if((a &1)==1) a++; can be im-
plemented by adding 0 to a and using the least significant bit of the variable a as
carry-in. The potential performance improvement for such transformations is low, but
when they are applicable, the resource savings are substantial.

5.2. Partitioning

Both temporal and spatial partitioning may be performed at the structural or behav-
ioral (also known as functional partitioning) levels. This description of partitioning
techniques focuses mainly on the partitioning at behavioral levels, since this article
is about compilation of high-level descriptions to reconfigurable computing platforms.
Figure 12 presents an example depicting spatial and temporal partitioning. Note that
the dependences must imply a strict ordering of the temporal partitions. This is not the
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case for spatial partitions. When applied simultaneously, the partitioning problem is
much more complex, and current solutions deal with it by splitting the partitioning in
two steps. For example, after temporal partitioning, spatial partitioning is performed
for each temporal partition. An example of a system dealing with spatial and temporal
partitioning is the SPARCS [Ouaiss et al. 1998a]. The next sections describe the most
relevant work on temporal and spatial partitioning.

5.2.1. Temporal Partitioning. Temporal partitioning allows us to map computations to
reconfigurable architectures without sufficient hardware resources. It reuses the avail-
able device resources by different circuits (configurations) by time-multiplexing the
device, and is thus a form of virtualization of hardware resources. Resource virtualiza-
tion on RPUs, achievable due to its dynamic reconfiguration capabilities, also provides
an attractive solution to save silicon area. The resultant temporal partitions need a
controller responsible for the control flow of configurations (done by the host processor
or by a specific controller). Schemes to communicate data between configurations are
also needed to support this type of partitioning.

Most of the research effort on temporal partitioning have been applied to rapid pro-
totyping of hardware circuits (structural temporal partitioning at gate-level) that do
not fit in the available hardware resources (e.g., Liu and Wong [1999] and Trimberger
[1998]). One of the first compilers addressing temporal partitioning was presented by
Gokhale and Marks [1995]. Other examples of compilers integrating temporal par-
titioning are the NENYA compiler [Cardoso and Neto 1999, 2003] and the XPP-VC
compiler [Cardoso and Weinhardt 2002].

The similarities of both scheduling in HLS [Gajski et al. 1992] and temporal par-
titioning allow the use of known scheduling schemes for temporal partitioning. Some
authors, for example, Ouaiss et al. [1998a] and Vasilko and Ait-Boudaoud [1996], have
considered temporal partitioning at the behavioral level, bearing in mind the integra-
tion of synthesis. Vasilko and Ait-Boudaoud [1996] present a heuristic based on a static
list-scheduling algorithm, enhanced to consider temporal partitioning and partial re-
configuration. The approach exploits the partial dynamic reconfiguration capability of
the devices, while creating temporal partitions.

The simplest approaches only consider temporal partitioning, without exploiting the
sharing of FUs. Purna and Bhatia [1999] use both a temporal partitioning algorithm
based on leveling the operations by an ASAP scheme and another one based on cluster-
ing of nodes. The approach neither considers communication costs nor resource shar-
ing. Takayama et al. [2000] present an alternative algorithm that selects the nodes to
be mapped in a temporal partition with two different approaches, one for satisfying
parallelism and the other for decreasing communication costs.

Cardoso and Neto [2000] present an extension to static list scheduling, where the al-
gorithm is aware of the communication costs while trying to minimize the overall exe-
cution time. The results achieved compare well to near-optimal solutions obtained with
a simulated annealing algorithm tuned to do temporal partitioning while minimizing
an objective function which integrates the execution time of the temporal partitions
and the communication costs.

Ouaiss et al. [1998a] and Kaul and Vemuri [1998] define the temporal partition-
ing problem as a 0-1 nonlinear programming (NLP) model. This model is then trans-
formed to integer linear programming and solved. Due to the long execution times,
this approach is not practical for large examples, and thus some heuristic methods
have been developed to permit its usability on larger input examples [Kaul and Vemuri
1999]. Kaul et al. [1999] exploit loop fission while doing temporal partitioning. They
aim at minimizing the overall latency by using the active temporal partition as long
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Fig. 13. Loop distribution as a form of splitting a loop across different temporal partitions.

as possible in the presence of a sequence of tasks executed repeatedly. Sharing FUs
is considered inside tasks, and temporal partitioning is performed at the task level.
Design space exploration is performed by inputting different design implementations
for each task (with different resource sharing tradeoffs) to the temporal partitioning
algorithm. Each implementation is generated by a HLS tool, constraining the num-
ber of FUs of each type. Note, however, that this approach lacks a global view and is
time-consuming.

Compilers for dynamically reconfigurable FPGA-based systems need to consider the
case of reducing the number of temporal partitions (configurations), by enabling shar-
ing of some FUs in the same temporal partition. Pandey and Vemuri [1999] show a
scheme based on the force-directed list-scheduling algorithm that considers resource
sharing and temporal partitioning. The algorithm tries to minimize the overall exe-
cution times, performing a tradeoff between the number of temporal partitions and
the sharing of FUs. However, the approach adapts a scheduling algorithm not origi-
nally tailored to do temporal partitioning and lacks a global view. Cardoso [2003] de-
scribes an algorithm matched to the combination of temporal partitioning and sharing
of FUs that, in addition, maintains a global view. Unlike other approaches, the algo-
rithm merges those tasks in a combined and global method. The results confirm the
efficiency and effectiveness of the approach.

Compiling loops that require more resources for each temporal partition than avail-
able can be attained by the application of two loop transformations, namely:

—Loop distribution, a technique used in software compilation [Muchnick 1997], parti-
tions a loop into two or more loops, each of which now fits in the available hardware
resources. However, loop distribution often uses more memory resources to store the
values of certain scalar variables (scalar variable expansion) computed in each it-
eration of the first loop and used by the second loop (see example in Figure 13).4

Although using loop distribution can be efficient, it might not be applied due to loop-
carried dependences. Its advantage is that reconfiguration is only needed between
the loops.

—Loop dissevering [Cardoso and Weinhardt 2002] (see Figure 14) can be applied to
guarantee the compilation of any kind of loop, in the presence of any type of de-
pendences, and with any nested structures. This transformation converts a loop
into a set of configurations, which can be managed by the host CPU or by a con-
figuration controller when this controller is included in the target architecture
[Baumgarte et al. 2003]. This transformation does not depend on loop dependenecs
and does not require expansion of certain scalar variables into arrays, as is the case

4When the loops are unbound or with iteration space determined at compile time, this also requires the
communication of data sizes unknown at compile time.
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Fig. 14. Loop dissevering as a form of splitting a loop across different temporal partitions: (a) original
source code (the arrow shows where the loop is partitioned); (b) transformed code with the statements needed
to communicate the value of scalar variables between configurations; (c) the reconfiguration controlflow
graph to be orchestrated by the configuration management or the host microprocessor.

for the loop distribution technique. Since loop dissevering requires reconfigurations
in each loop iteration, it is more suitable for short loops and outer loops in loop nests.

Research effort have presented devices with multiple on-chip contexts with almost
negligible reconfiguration times (one clock cycle) of configurations already on-chip, and
industrial efforts have already presented context switching between configurations in
a few nanoseconds [Fujii et al. 1999]. With those non-negligible reconfiguration times,
temporal partitioning methods should consider the overlapping of reconfiguration and
execution in order to reduce the overall execution time. Ganesan and Vemuri [2000]
present a method to do temporal partitioning considering pipelining of the reconfigu-
ration and execution stages. Their approach divides the FPGA into two parts, bearing
in mind the overlapping of the execution of a temporal partition in one part (previously
reconfigured) with the reconfiguration of the other part.

5.2.2. Spatial Partitioning. Spatial partitioning refers to the task of automatically split-
ting a computation into a number of parts such that each of them can be mapped to
each reconfigurable device (RPU). This task is performed when computations cannot
be fully mapped into a single RPU and the reconfigurable computing platform has two
or more RPUs with interconnection resources among them. Spatial partitioning does
not need to preserve dependences when splitting the initial computations. Spatial par-
titioning, however, needs to take care of the pins available for interconnection, and to
operations that access the same data sets. The computations accessing those data sets
need to be mapped on RPUs that have access to the memory storing them.

As spatial partitioning has been extensively studied by the hardware design com-
munity, mainly in mapping circuitry onto multi-FPGA boards, it is not surveyed here.
A detailed presentation of this topic can be found in Brasen and Saucier [1998]; Krup-
nova and Saucier [1999]; and Vahid et al. [1998]. In the context of compiling to recon-
figware, behavioral spatial partitioning was, to the best of our knowledge, originally
reported in Schmit et al. [1994]. Behavioral partitioning has already been shown to
lead to better results than structural partitioning [Schmit et al. 1994; Vahid et al.
1998]. Peterson et al. [1996] describe an approach targeting multiple FPGAs using
simulated annealing. Lakshmikanthan et al. [2000] present a multi-FPGA partition-
ing algorithm based on the Fiduccia-Mattheyses algorithm. Results achieved with a
simulated annealing approach are also shown.
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Spatial partitioning is also performed in the CHAMPION environment [Ong et al.
2001]. There, different algorithms are applied at the module level, and only partition-
ing points at the interconnections of the modules are considered. In this environment,
the partitioning preserves the functional information flow, which is similar to struc-
tural partitioning. The algorithms consider the constraints on the pin number of each
FPGA, on the accesses to external memories (a partition can contain a certain number
of RAM access modules, which is limited by the number of local memories connected
to each FPGA), and on the temporal partitioning. The partitioning phase aims at min-
imizing the number of FPGAs used. When targeting machines with multiple FPGAs,
where each FPGA has access to a single memory, it is important to split computa-
tions across the FPGAs whenever such individual computations access disjoint sets
of data. Thus, the computations and data are both split and mapped onto different
FPGAs and memories and can execute in parallel, thereby enabling coarse-grained
parallelism.

5.3. Resource Mapping

This section briefly describes the issues on mapping the computing constructs to the
resources available in the target architecture.

5.3.1. Register Assignment. In principle, scalar variables are directly stored in the
RPU registers, and compound data structures (e.g., arrays) mapped to memories.
Hence scalar variables need not be loaded from and stored to memories and are al-
ways directly available on the RPU.

Typically, not all the variables used in a given program need registers, as some
of them are promoted to wires. Register assignment algorithms [Muchnick 1997]
can be used whenever the number of variables in the program (in each temporal
partition, to be more precise) exceeds the number of registers in the reconfigurable
architecture.

When using static-single-assignment (SSA) intermediate representation forms, the
list of �–functions presented in each loop header (here, only natural loops [Much-
nick 1997] are considered) defines the scalar variables which need to be registered in
order to preserve the functionality. An SSA-form can be directly mapped to a DFG,
since each SSA scalar variable is associated to an edge in the DFG (each edge rep-
resents a data transfer). These edges can be typically implemented by wires in hard-
ware. This approach is well suited for the dataflow characteristics of the reconfigurable
architectures.

Another possibility is to use one register for each variable in the source program.
However, this option may use an unnecessary number of registers, may constrain the
chaining of operations, and may increase the amount of hardware needed to enable the
writing to a register by all the source definitions.

As flip-flops are abundantly distributed in FPGA-based reconfigurable architectures
(one per cell), register sharing is not fruitful. There is no need for lifetime analysis of
scalar variables in the code to use a minimum number of registers to store them. Such
an analysis is used in software compilation and in HLS because of the usual use of
centralized register files, the limited number of register resources, and, in the case of
ASICs, the profitable sharing of registers.

Note, however, that more registers are needed to store results of FUs assigned to
more than one operation or as pipeline stages, as explained in the following sections.

Registers can also be used to store data computed or loaded in a loop iteration and
used in subsequent iterations:
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—Temporal common subexpression elimination is a technique used in CAMERON to
optimize the generated datapath [Böhm et al. 2001]. The technique identifies expres-
sions that recompute values that were computed in previous iterations of the loop
and replaces them with registers. The authors show the application of the technique
to window-based image processing applications.

—Data reuse is applied when the same array elements are loaded in different loop
iterations, or when an array element is stored in one loop iteration and loaded in
subsequent loop iterations. Whenever this happens, the number of loads can be re-
duced by using registers to store data in between iterations, as explained later on.

5.3.2. Mapping of Operations to Resources. Successive operations can sometimes be
grouped in a single operation corresponding to an FU in the hardware library of
the target reconfigurable architecture, for example, A×B+C is grouped to MUL-
ADD(A,B,C). Such a grouping is known in software compilation by instruction-
combining [Muchnick 1997]. It is used, for example, in the XPP [Baumgarte et al.
2003] where each PE of the architecture directly supports special functions such
as MUL-ADD. When targeting fine-grained reconfigurable hardware (e.g., FPGAs),
instruction-combining is only worth the effort if the hardware to implement the com-
bined instructions performs better than the individual operations. Note also that
instruction-combining may reduce the potential to share FUs among operations.

A specific example of mapping operations to resources is related to the use of con-
stant coefficient multipliers. This type of multiplier can be efficiently implemented
using FPGA hardware resources [Wirthlin et al. 2001]. Such multipliers might be an
option to consider over operator strength reduction when such reduction may need too
many adders/subtracters.

Whenever each operation can be computed by more than one FU (e.g., using differ-
ent implementations of a multiplier), as is the case when dealing with fine-grained
architectures, the mapping phase can be more complex, and heuristics are usually em-
ployed. A simple strategy may use the fastest FUs for the operations in the critical
path of the datapath, and may try to use FUs with fewer resources for operations in
the other paths.

Some FUs can be shared/reused by a number of operations of the same type. A set of
operations can be used in an FU, for example, ALU, and operations of different types
can also reuse that FU.5 When a resource is reused, registers, multiplexers, and control
circuitry are needed. One of the compilers that include resource sharing by operations
in a basic block is the NAPA-C compiler [Gokhale and Gomersall 1997]. The compiler
also uses the commutative property which, whenever possible, tries to swap the input
operands of a shared FU in order to reduce the number of multiplexers needed.

Sometimes, FUs can be shared among operations without the intervention of the
control unit and insertion of registers (see example in Figure 15) [Cardoso and
Neto 1999]. Such an opportunity may arise among compatible operations present in
branches of if-then-else and switch instructions (which define mutually exclusive ex-
ecution paths). However, this sharing can increase the critical path delay, as in the
example shown in Figure 15.

There are sometimes specialized opportunities to optimize the mapping. For in-
stance, in fine-grained reconfigware, the generated circuit can have access to the reset
signal of the flip-flops, and thus can simplify the mapping of computations with scalar
variables initialized to zero, which is the case for many loop control variables. Without

5Note that even in fine-grained reconfigurable architectures (e.g., FPGAs) the reuse of some of the FUs is
not efficient due to the hardware resources needed by the scheme to implement the reuse.

ACM Computing Surveys, Vol. 42, No. 4, Article 13, Publication date: June 2010.



13:30 J. M. P. Cardoso et al.

Fig. 15. Hardware implementations of a simple example (a): (b) without functional unit sharing; (c) sharing
one multiplier in mutually exclusive execution paths.

using the reset signal, the initial value to be assigned (zero) is selected with a multi-
plexer structure, among the other assignments. Using the reset signal in examples of
type: for (int i = 0; i < N; i ++ ) {}; where there is no assignment to variable i in the loop
body, implies the elimination of the multiplexer.

Selection structures (e.g., � functions in the SSA-form) can be implemented as mul-
tiplexers or by sharing lines/buses accessed with a set of tri-state buffers for each data
source. Selection points of the form N:1 (N inputs to one output) can be implemented by
trees of 2:1 multiplexers or by a single N:1 multiplexer. The implementation depends
on the granularity and multiplexer support of the target architecture (e.g., N:1 mul-
tiplexers are decomposed in 2:1 multiplexers in the garpcc compiler [Callahan 2002]).
The use of multiplexers is an efficient solution when the number of data sources to be
multiplexed is low; otherwise the use of tri-state connections may be preferable. Al-
though many reconfigurable devices directly support 2:1 multiplexers, tri-state logic is
not supported by most architectures.

Some simple conditional statements, however, can be implemented by fairly simple
hardware schemes. For example, expressions such as (a<0) and (a>=0) can be per-
formed by simply inspecting the logic value of the most significant bit of the variable,
a (assuming the sign of the representation identified by that bit).

Mapping operations to hardware resources in the presence of bit-widths that exceed
the ones directly supported by coarse-grained reconfigurable architectures presents
its own set of issues. In these architectures, and when operations exceed the avail-
able bit-width directly supported by the FUs, the operations must be decomposed, that
is, transformed to canonical/primitive operations. This decomposition or expansion of
instructions may then exacerbate instruction scheduling issues.

5.4. Pipelining

Pipeline execution overlaps different stages of a computation. For instance, a given
complex operation is divided into a sequence of steps, each of which is executed in
a specific clock cycle and by a given FU. The pipeline can execute steps of different
computations or tasks simultaneously, resulting in a substantial throughput increase
and thus leading to better aggregate performance. Reconfigurable architectures, both
fine- and coarse-grained, present many opportunities for custom pipelining via the
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configuration of memories, FUs and pipeline interstage connectivity. The next sections
describe various forms of pipelining enabled by these architectures.

5.4.1. Pipelined Resources. In this form of pipelining, operations are structured inter-
nally as multiple pipeline stages. Such stages may lead to performance benefits when
those operations are executed more than once.6 Some approaches use decomposition
of arithmetic operations in order to allow the addition of pipeline stages. For instance,
the approach by Maruyama and Hoshino [2000] decomposes arithmetic operations to
sets of 4-bits. Such decomposition is used to increase the throughput of the pipelining
structures and to chain sequences of operations more efficiently. For instance, the least
significant 4 bits of the result of a 32-bit ripple-carry adder can be used by the next
operation without waiting for the completion of the 32-bits. Other authors perform de-
composition due to the lack of direct support in coarse-grained architectures. The DIL
compiler for the PipeRench architecture is an example of the latter case [Cadambi and
Goldstein 2000].

5.4.2. Pipelining Memory Accesses. Pipelining of memory operations is an extremely
important source of performance gains in any computer architecture, given the grow-
ing gap between processor speeds and memory latencies. Reconfigurable computing
architectures are no exceptions to this rule, and several commercially available ar-
chitectures offer support for such memory access modes [Annapolis 1999b; Jones et al.
1999]. In this context researchers have developed frameworks to exploit these features,
particularly in the context of data-streaming applications [Frigo et al. 2001].

5.4.3. Loop Pipelining. Loop pipelining is a technique that aims at reducing the execu-
tion time of loops by explicitly overlapping computations of consecutive loop iterations.
Only iterations (or parts of them) that do not depend on each other can be overlapped.
Two distinct cases are loop pipelining of inner loops and pipelining across nested loops.
While the former has been researched for many years, the latter has not been the fo-
cus of too much attention. We first consider inner-loop datapath pipelining and discuss
important aspects on compiling applications with well ”structured” loops.7

The pipeline vectorization technique of the SPC compiler proposed by Weinhardt
and Luk [2001b] in the context of FPGAs was also applied to the XPP-VC compiler
[Cardoso and Weinhardt 2002], which targets the coarse-grained PACT XPP reconfig-
urable computing architecture [Baumgarte et al. 2003]. Pipeline vectorization consid-
ers loops without true loop-carried dependences and loops with regular loop-carried
dependences (i.e., those with constant dependence distances) as pipelining candidates.
As only innermost loops are eligible for pipelining with this technique, some loop trans-
formations (unrolling, tiling, etc.) are considered as making the most promising loops
innermost loops. For each loop being pipelined, pipeline vectorization constructs a DFG
for the loop body by replacing conditional statements by predicated statements and se-
lections between variable definitions by multiplexers. For loops without dependences,
the body’s DFG is pipelined by inserting registers as in standard hardware operator
pipelines. Loops with regular dependences are treated similarly, but feedback regis-
ters for the dependent values must be inserted. To reduce the number of memory ac-
cesses per loop iteration, memory values which are reused in subsequent iterations are
stored in shift registers. Finally, the loop counter and memory address generators are

6Resources compute more than once when used in loop bodies or when used by more than one operation
presented in the behavioral description.
7Loops that are perfectly or quasi-perfectly nested and have symbolically constant or even compile-time
constant loop bounds and that manipulate arrays using data references with affine index access functions.
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Fig. 16. Example of software pipelining: (a) original code; (b) transformed code.

adjusted to control the filling of the aforementioned shift registers, pipeline registers,
and the normal pipeline operation.

Another approach to inner loop pipelining is based on software pipelining (also
known in the context of HLS as loop folding [Gajski et al. 1992]) techniques [Muchnick
1997]. Figure 16 shows an example of the software pipelining transformation (using a
prologue and an epilogue), which can lead to better performance if the arrays, A and
B, can be accessed concurrently. In such a case, the new values of tmp1 and tmp2 are
loaded in parallel with the multiplication tmp1∗tmp2.

Many authors use the modulo scheduling scheme to perform software pipelining.
Rau’s iterative modulo scheduling (IMS) algorithm [Rau 1994] is the one most used.
Examples of compilers using variations of Rau’s algorithm are the garpcc [Callahan
and Wawrzynek 2000]; the MATLAB compiler of the MATCH project [Haldar et al.
2001a]; the NAPA-C compiler [Gokhale et al. 2000a]; and the compiler presented by
Snider [2002]. The loop pipelining approach used in MATCH [Haldar et al. 2001a] also
uses a resource constrained list-scheduling algorithm in order to limit the number of
operations active per state, and thus the number of resources needed. Snider’s ap-
proach [2002] uses an IMS version that considers retiming [Leiserson and Saxe 1991]
to optimize the throughput and exploits the insertion of pipeline stages between op-
erations. The garpcc [Callahan and Wawrzynek 2000] targets a reconfigurable archi-
tecture with a fixed clock period and pipeline intrinsic stages, and does not require
exploitation of the number of stages and retiming optimizations. Table III presents
the main differences of the loop pipelining schemes used by the state-of-the-art com-
pilers as far as loop pipelining is concerned.

Another pipelining scheme consists in the overlapping iterations of an outer loop
maintaining the pipelining execution of the inner loop, as illustrated by Bondalapati
[2001]. The idea is to overlap the execution of iterations of the outermost loop main-
taining the pipelined execution of the inner loop. This scheme requires memories in-
stead of simple registers as pipeline stages. These stages inserted in the body of the
inner loop must decouple the execution of all the iterations of such loops. Interesting
speedups have been shown for this technique when applied to an IIR (infinite impulse
response) filter and targeting the Chameleon architecture [Salefski and Caglar 2001].

Some loop transformations, such as loop unrolling, may increase the potential for
performance improvements by exposing higher ILP degrees, permitting other code op-
timizations, and/or by exposing a larger scope for loop pipelining. Automatic analysis
schemes to determine pipelining opportunities in the presence of loop transformations
lead to very complex design spaces, as these loop transformations interact and sub-
stantially impact the amount of hardware resources required to implement pipelined
implementations after being subject to these transformations.

Recently, a pipeline scheme at coarse-grained levels has been exploited by Ziegler
et al. [2002]. The scheme allows the overlap of the execution steps of subsequent loops
or functions, that is, functions or loops waiting for data to start computing as soon
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Table III. Main Differences of Inner Loop Pipelining Schemes
Loop Target

Pipelining Based on the Architecture
Compiler Scheme Algorithm: Characteristics Goal Applicability
SPC
[Weinhardt
and Luk
2001b]

Pipeline
Vectorization

Pipeline Vec-
torization,
retiming

Fixed clock
period, some
FUs with fixed
pipeline stages

Throughput as
high as possible

well-structured,
inner FOR
loops with
affine index
memory
accesses

garpcc
[Callahan
and
Wawrzynek
2000]

Software
pipelining

IMS Fixed clock
period, intrinsic
pipeline stages

Throughput as
high as possible

A broad class of
inner loops with
affine index
memory
accesses

Snider’s
compiler
[Snider
2002]

Software
pipelining

IMS with
retiming

Some FUs with
fixed pipeline
stages

Exploit clock
period versus area
(adding stages)

A broad class of
inner loops with
affine index
memory
accesses

as the required data items are produced in a previous function or by a specific itera-
tion of a previous loop. Compilers can identify the opportunities for this coarse-grained
pipelining by analyzing the source program and recognizing producer/consumer rela-
tionships between iterations of loops. In the simplest case, the compiler identifies the
set of computations for each of the loops in the outermost loop body and organizes them
into tasks. Then, it forms a DAG that maps to the underlying computing units. Each
unit can execute more than one function, and the compiler is responsible for generating
structures to copying the data to and from the storage associated with each pipeline
stage (if a direct link between the computing units is not supported). It is also responsi-
ble for generating synchronization code that ensures that each of the computing units
accesses the correct data at the appropriate intervals.

5.4.4. Pipelining Configuring-Computation Sequences. Since the configuration of the re-
configurable resources takes several clock cycles,8 it is important to hide such la-
tency overheads by overlapping the steps to store the next configuration on chip while
the current active configuration is running. Even in architectures without on-chip
cache for configuration data or context planes, but with partial reconfiguration sup-
port, such pipelining can be used to hide the reconfiguration time overhead by us-
ing, for example half of the device to run the current configuration and the other
half to configure the next one [Ganesan and Vemuri 2000]. On some reconfigurable
architectures (e.g., the XPP [Baumgarte et al. 2003]) three stages are needed to ex-
ecute each configuration: fetching (loading the configuration data from an external
memory to the on-chip cache); configuring (loading the configuration data from the
on-chip cache directly to the array resources9); and computing or running the active
configuration.

Given the latencies associated with fetching and loading configurations, it is critical
for these systems to rely on advanced compiler analyses and optimization algorithms

8Even when using multicontext devices, loading configuration data onto the inactive planes takes several
clock cycles.
9This step can directly activate array resources to start running or can refer to the storing of each array
resource configuration in “shadow planes” (context planes) each time a resource is not free to accept another
configuration.
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that can minimize the number of configurations needed and their reconfiguration such
that the overall execution time is minimized [Fekete et al. 2001]. Prefetching, is a com-
mon technique for hiding some of the latency associated with the loading and fetching
of configurations, and is used whenever the configurations can be scheduled in a de-
terministic fashion. Despite the obvious relationship to compilation techniques, the
aspects of scheduling and managing configurations are omitted in this survey, as they
are commonly seen as operating system or runtime-system issues.

5.5. Memory Mapping Optimizations

Today’s reconfigurable computing platforms include a hierarchy of memories with
variable sizes and access speeds, and with variable numbers of ports and dif-
ferent depth/width configurations. The next sections describe important memory
optimizations.

5.5.1. Partitioning and Mapping of Arrays to Memory Resources. Manual mapping of the
program data-structures onto the large number of available physical memory banks
is too complex, and exhaustive search methods are too time-consuming. Although the
generation of a good memory mapping is critical for the performance of the system,
very few studies have been done on the automatic assignment of data structures to
complex reconfigurable computing systems, especially research that considers certain
optimizations such as allocating arrays across memory banks. Compiler techniques
can be used to partition the data structures and to assign each partition to a memory
in the target architecture. Data partitioning has long been developed for distributed
memory multicomputers where each of its units accesses its local memory (see, e.g.,
Ramanujam and Sadayappan [1991]). All the work done in this area is therefore ap-
plicable to reconfigurable architectures.

Arrays can be easily partitioned when the memory is disambiguated at runtime.
However, this form of partitioning has limited use, does not guarantee performance im-
provements, and requires hardware structures to select from different possible memo-
ries at runtime. Hence, schemes to guarantee data allocation into different memories
such that each set is disambiguated at compile time can lead to significant perfor-
mance improvements. One of these techniques is known as bank disambiguation, and
is a form of intelligent data partitioning. Concerning reconfigurable computing, bank
disambiguation has been performed in the context of compilation to the RAW machine
[Barua et al. 2001] and to a version of the RAW machine with custom logic in place
of the RISC microprocessor [Babb et al. 1999]. Such a scheme permits us to discover,
at compile time, subsets of arrays or data accessed by pointers that can be partitioned
into multiple memory banks. The idea is to locate the data as close as possible to
the processing elements using it. These techniques can perform a very important role
when compiling to coarse-grained (e.g., XPP [Baumgarte et al. 2003]) and fine-grained
(e.g., Virtex-II [Xilinx 2001] and Stratix [Altera 2002]) reconfigurable computing ar-
chitectures, as they include various on-chip memory banks.

Figure 17 gives an illustrative example: Unrolling the inner loop results in the
source code shown in Figure 17(a). From the unrolled version, it is possible to perform
data partitioning into smaller arrays (Figure 17(b)), having in mind the distribution
of data into different memories (bank disambiguation, see Figure 17(c)). The trans-
formation with subsequent memory mapping of the six arrays into six individually
accessed memories permits access in each iteration of the loop to all six data elements
at the same time, and thus increases the number of operations performed per clock
cycle. Barua et al. [2001] present an automatic technique called modulo unrolling to
unroll by the factor needed to obtain disambiguation for a specific number of memory
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Fig. 17. Bank disambiguation as a form to increase the memory bandwidth and the ILP degree when tar-
geting architectures that support various memory banks accessed at the same time: (a) original C code;
(b) C code after unrolling and bank disambiguation; (c) arrays mapped to six memories and the correspon-
dence of each array element to the original arrays.

banks. The technique can be used not only to improve performance but also show that
array variables of a size surpassing each on-chip memory capacity can be efficiently
partitioned so that each partition fits a single memory.

Although reconfigurable computing architectures usually add other optimization op-
portunities based on the customization of memory size, width, and address gener-
ator unities, some relations exist with techniques previously proposed by the high-
performance computing community, such as the compilation for distributed memory
parallel systems [Gokhale and Carlson 1992].

HLS for ASICs assumes that the hardware is custom-built for the application and
that the minimization of the number of memory banks and the size of each memory
are important goals. In reconfigware, an architecture is implemented in the available
resources, the number and type of memory banks is known a priori, and the mem-
ory locations could be used as long as memory space is available. Some related is-
sues remain however, such as the techniques used in the context of HLS for ASICs
to map each array element in memory positions in order to simplify the address gen-
erators (less area and delay) [Schmit and Thomas 1998]. Also related are the meth-
ods for mapping arrays to memories which consider the presence of multiple accesses
at the same time in the code due to the exposition of both data parallelism [Ra-
machandran et al.; Schmit and Thomas 1997] and functional parallelism [Khouri et al.
1999].

A number of approaches have addressed some of these features. The work of Gokhale
and Stone [1999] presents a method to map arrays to memories based on implicit enu-
meration, but considers only one level of memories of equal type and size and external
to the FPGA. Weinhardt and Luk [2001a] describe an integer linear programming ap-
proach for the inference of on-chip memories with the goal of reducing the memory
accesses, but in the context of loop pipelining and vectorization. The work by Ouaiss
and Vemuri [2001] is one of the first attempts to target a reconfigurable memory hi-
erarchy. They use an integer linear programming approach to find the optimal map-
ping of a set of data segments to the memories. They neither consider all the possible
characteristics of the memory resources nor the impact of a specific mapping on the
scheduler, and the approach requires long runtimes. Lastly, the work by Baradaran
and Diniz [2006] uses array data access pattern compiler knowledge along low-level
critical path and scheduling information in order to make better decisions of what
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to cache in RAMs or registers in the context of scalar replacement and loop-based
transformations.

5.5.2. Parallelization of Memory Accesses. In many reconfigurable systems, optimiza-
tions related to memory accesses are important contributions to decreasing the execu-
tion time. While some systems have dedicated units to fetch data from memory, others
must implement a specialized memory access controller. This controller typically deals
with the vagaries of the physical interface (e.g., data pins and timing or the hard-
ware protocols) and is customizable for the width and number of memory access paths.
Several approaches used to increase the performance of the memory interfaces in the
context of reconfigurable computing are now surveyed, paying particular attention to
the unique opportunities offered by customization.

As with traditional systems, parallel memory accesses increase the memory band-
width. Reconfigurable computing systems can exploit this opportunity by defining
different memory ports to interface with the available memory banks in a parallel
fashion.

5.5.3. Customization of Memory Controllers. Reonfigurable architectures offer a unique
opportunity to address the memory access and interfacing issues via customization.
Improvements can be achieved by creating specialized hardware components for gen-
erating addresses and packing and unpacking data items (see next section). Compilers
can analyze memory access patterns for pipelining of array references across multiple
iterations of loops. Furthermore, the compiler can derive information about the rela-
tive rates among various array references and embed that knowledge into the schedul-
ing of memory operations.

Baradaran et al. [2004] focus on the design, implementation and validation of exter-
nal memory interfacing modules that are generated by a compiler and a HLS tool that
translates high-level computations directly to FPGA hardware. For maximum gener-
ality, they have separated the memory interface into two components. The first compo-
nent is target-dependent, and captures the specific target architecture timing require-
ments for accessing memory. The second component is architecture-independent, and
provides a set of channels and memory access mode abstractions for the application to
store and retrieve data from memory. In particular, the interface schemes they have
implemented allow compiler-generated designs to exploit pipelined access modes and
to mix both pipelined and nonpipelined memory access modes. This approach also al-
lows the development of application-specific scheduling optimizations [Park and Diniz
2001].

5.5.4. Packing/Unpacking Data Items. An important feature of reconfigurable architec-
tures is the ability to define operations over nonstandard data type formats. In terms
of memory operations, further gains can be exploited by packing and unpacking data
items that are smaller than the basic memory transfer unit into a single memory trans-
fer format. For example, if a computation operates on consecutive elements of an array
of 5 bit elements and each memory operation transfers 32-bit words, the compiler can
organize the data layout of the array so that 6 data items are packed into 32 bits in
memory. Figure 18 illustrates the physical mapping of an array into memory using
padding of the least two significant bits. Several compiler analysis techniques have
been developed both in the context of distributed memory multi-computers as well as
reconfigurable architectures to exploit these opportunities [Rivera and Tseng 1998].

The typical implementation uses “conversion FIFOs” to pack and unpack the data
into the 32-bit external data format and allows the datapath to consume the data as if
it were composed of 6 consecutive 5-bit elements.
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Fig. 18. Packing and unpacking example of 5-bit items into 32-bit words: (a) original code; (b) code using
unpacking.

Fig. 19. Example of the use of a tapped-delay line for reducing the number of memory accesses: (a) original
code; (b) transformed code.

5.5.5. Elimination of Memory Accesses using Register Promotion. This mapping technique
exploits the reuse of array values across iterations of a given loop and is typically used
in combination (either explicit or implicit) with the scalar replacement transforma-
tions described in Section 4. The overall objective is to eliminate redundant memory
accesses across loop iterations by reusing data accessed in earlier iterations, and saved
in scalar variables which are then promoted to registers. Figure 19 shows an example
of the application of this technique, enabling the reduction of the number of memory
loads from 3×N-9 to N-1. The transformed code (Figure 19(b)) can be synthesized to
a tapped-delay line where the various taps correspond to the scalar variables D1, D2,
and D3.

While this example exploits the reuse in scalar variables with a tapped-delay line,
it is also possible to reuse the data using a RAM module. In the latter case the delay
line is conceptually implemented using a read and write pointer RAM address. The
implementation typically uses many fewer resources, but all the data elements of the
tapped-delay line are not immediately available, which can be a substantial disadvan-
tage. The work by Baradaran et al. [2004] explores the space and time tradeoffs for
these alternative implementations.

5.6. Scheduling

Scheduling is the process of assigning operations to a discrete time step, usually a
clock cycle, to a specific, and possibly shared, hardware resource or FU. Typically, the
scheduler generates state transition graphs (STGs) that model a control unit to coor-
dinate the memory accesses, the execution of the loops, and the sharing of hardware
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resources. From the STGs, a scheduler can easily generate a finite state machine based
on one-hot encoding to implement the controller for the state transition graph.

There has been work that exposes some scheduling concepts to the programmer.
An example is the approach presented by Page [1996] which considers compilation for
Handel-C descriptions. The mapping assigns a register to each variable in the source
code, thereby chaining all operations in an expression in one clock cycle. To control
pipelined execution, the user must use auxiliary variables at operation level.

Other work has focused on the generation of specific hardware implementations able
to execute concurrent loops without dependences in the context of HLS for ASICs.
[Lakshminarayana et al. 1997] describe a static scheduling algorithm that generates
control units to coordinate the parallel execution of such concurrent loops. Ouaiss and
Vemuri [2000] present an arbitration scheme to deal with concurrent accesses to the
same unit at runtime.

Traditionally, HLS has focused on the exploitation of resource sharing with the goal
of achieving optimum performance results within a predefined silicon area. The re-
sources constraints are typically specified by inputting the number of FUs for each op-
eration type. Some approaches use conditional code motion beyond basic blocks [Gupta
et al. 2001; Santos et al. 2000] that might reduce the schedule length without an in-
crease in area. As simple primitive operations seldom justify the effort of sharing a
component, compilers attempt to perform code motion and aggregate several instruc-
tions in a single basic block to improve the profitability of resource sharing.

To enhance the scope of the scheduling phase, some authors use regions of basic
blocks. Examples of such regions are the use of the hyperblock and the approach pre-
sented in Cardoso and Neto [2001]. In this later approach, basic blocks are merged
across loop boundaries. The scheduler works at the top level of a hierarchical task
graph (HTG) and merges blocks at loop boundaries based on an ASAP (as soon as
possible) scheme. For each HTG, the scheduler uses a static-list scheduling algorithm
[Gajski et al. 1992] at the operation level.

5.7. Back-End Support

The back-end support is related to the generation of the datapath and control unit
structures (based on the granularity of the target reconfigurable architecture) and the
configuration data (also known as bitstream in the FPGA domain) to be processed by
the reconfigurable computing platform.

For generating the hardware structure when a fine-grained architecture is targeted,
three distinct approaches can be used: HLS tools, logic synthesis tools, or module gen-
erators. Note, however, that the use of HLS tools needs the support of logic synthesis
and/or module generators.

Some compilers use back-end commercial logic synthesis and placement and routing
tools. Such an approach has been adapted from the traditional design flow for ASICs,
and has the long runtimes and the inevitability of independent phases as its major
disadvantages. The compiler and the logic synthesis tool are connected by generating
the description of the architecture in a textual model accepted by those tools. Most of
them accept popular HDLs (such as VHDL or Verilog) at RTL (register-transfer level)
in structural and/or behavioral form. Other approaches use a high-level back-end, such
as an HLS tool (e.g., Bondalapati et al. [1999]). In those approaches, the compiler has
the goal of translating among semantic differences between, for example, software
programming languages and hardware description languages.

Module generators can be used efficiently to generate the hardware structure of
each operation. Their use in some cases outperforms logic synthesis in terms of hard-
ware resources and delays and reduces the compilation time considerably. Examples of
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compilers using module generators are the Nenya [Cardoso and Neto 1999]; the garpcc
[Callahan et al. 2000]; the NAPA-C [Gokhale and Stone 1998]; and the DIL compiler
[Budiu and Goldstein 1999]. The DIL compiler expands the module structures to per-
form placement and routing. It performs some optimizations on each specific instance
of a module according to the information about input/output variables (bit-width, bit
constants, etc.). One of the tools that can be used as a module generator is the JHDL
framework [Bellows and Hutchings 1998], which allows us to describe the datapath at
RTL in a subset of Java extended by special APIs [Wirthlin et al. 2001]. Such a de-
scription can be independent of the target FPGA architecture, and thus requires the
use of mapping, placement, and routing to generate the configuration data.

Another approach is the use of module generators for a particular FPGA. Such gen-
erators use a structural description based on the operations of each FPGA cell, and
thus do not need the mapping phase. Such structures can contain preplacement infor-
mation that can reduce the overall placement and routing time. Jbits [Guccione et al.
2000] is a tool to automatically generate bitstreams without heavy commercial P&R
tools. Jbits has already been used as a back-end in a compiler environment [Snider
et al. 2001]. This compiler performs some low-level optimizations, which are done at
the LUT level (the Xilinx Virtex FPGA was used), and include LUT/register merging
and LUT combining. The approach shows a compilation time of seconds to compile an
example of medium complexity.

Most of the compilers to reconfigware do not use complex logic synthesis steps for
generating the control structure (the main reason is the use of relatively uncompli-
cated control units). This is different from HLS techniques when targeting ASICs,
which use heavy sharing of FUs, and thus need complex control units [Gajski et al.
1992]. Some compilers to reconfigware use templates associated with each language
constructor and a combination of trigger signals to sequence the hardware execution
(e.g., Wirth [1998]).

For coarse-grained architectures, where most of the operations in the source lan-
guage are directly supported by the FUs existing in each cell of the target architecture,
neither a circuit generator nor logic synthesis are needed to generate the datapath. In
such architectures, the mapping phase is also much easier. However, in architectures
supporting control structures, the control generation is mostly conducted by the com-
piler itself. For the generation of the bitstreams, proprietary placement and routing
tools are used. Such architectures reduce the compilation time tremendously because
they require less complex back-end phases (see the XPP-VC compiler [Cardoso and
Weinhardt 2002]).

6. COMPILERS FOR RECONFIGURABLE ARCHITECTURES

The next section lists the most prominent research efforts on compiling from high-
level languages to reconfigurable architectures. The maturity of some of these tech-
niques and (some) stability in the underlying reconfigurable technology enabled the
emergence of commercial companies with their own technical compilation solutions.
They help to port applications written in high-level programming languages to recon-
figurable devices. Although this survey does not describe their technical solutions in
detail, two commercial efforts are noteworthy, namely SRC [SRC Computers Inc.] and
Nallatech [Nallatech Inc.]. Both support the mapping of programs written in a subset
of the C programming language to FPGAs.

In this section we distinguish efforts that target fine-grained RPUs (reconfigurable
processing units), for example, FPGAs, from the ones targeting coarse-grained RPUs.
Despite the, sometimes radical difference in terms of granularity, there are many
commonalities between the many techniques used to map computations to these
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architectures. We begin with a brief description of the various, more representative,
compilation efforts. Many of these efforts, while similar in terms of the input language
they handle, differ substantially in the techniques or granularity used. Many aspects
of these compilers are highlighted in Table IV through Table XIII at the end of this
section.

6.1. Compilers for FPGA-Based Systems

This section focuses on compilation efforts that exclusively target FPGA-based sys-
tems through a wide variety of approaches and for a wide range of input programming
languages and computational models. First, some earlier and, for that reasons, less
mature compilation efforts are described.

6.1.1. Early Compilation to FPGA Efforts. One of the first efforts on the compilation of
computations to FPGAs considered simple translation schemes of OCCAM programs
[Page and Luk 1991] directly into hardware. Other simple approaches have been re-
ported such as Transmogrifier C [Galloway 1995] and the compiler by Wo and Forward
[1994], both considering a C-subset and a syntax-oriented approach [Wirth 1998].
Some authors considered the use of explicitly parallel languages expressing concur-
rency at the operation level. One such approach is presented by Page [1996], which
considers compilation from Handel-C descriptions.

The PRISM I-II [Agarwal et al. 1994; Athanas and Silverman 1993] approach was
one of the first to aim at compiling from a subset of the C programming language
for a target architecture with software and reconfigware components [Athanas 1992].
It focused on low-level optimizations (at the gate or logic level). Schmit et al. [1994]
describe one of the first approaches to target FPGAs using HLS tools. Their approach
focused on spatial partitioning at both behavioral and structural domains. Other au-
thors have used commercial HLS tools to define a specific architecture using the FPGA
substrate, as in the example in Doncev et al. [1998], and then map the computation at
hand to it.

6.1.2. Compilation to FPGAs Comes of Age. After the earlier and arguably more timid ef-
forts, a growing interest in academia for compilation efforts from high-level languages
to FPGAs has been seen. Rather than forcing the programmers to code in hardware-
oriented programming languages, many research efforts took the pragmatic approach
of directly compiling high-level languages, such as C and Java, to hardware. Most of
these efforts support mechanisms to specify hardware and produce behavioral RTL-
HDL descriptions to be used by a HLS or a logic synthesis tool. Initially, most efforts
focused on ASICs but due to the increasing importance of FPGAs, many compilation
efforts explicitly targeting FPGA devices have been developed. While initially many
of these efforts originated in academia (e.g., Weinhardt and Luk [2001b] and Nayak
et al. [2001a]), there was also a great deal of interest shown by industry. As a result,
tools (e.g., the FORGE compiler) especially designed for targeting FPGAs became a
reality.

A representative selection of the most noteworthy efforts for compiling from high-
level languages to reconfigurable architectures is now presented. The selection starts
with efforts to compile C programs and continues by showing efforts that consider
other languages (e.g., MATLAB or Java). At the end, two different approaches are
described: one considers a component-based approach and the other is more related to
HLS, since it starts with VHDL specifications.
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6.1.3. The SPC Compiler. The SUIF pipeline compiler (SPC) focuses on automatic vec-
torization techniques [Weinhardt and Luk 2001b] for the synthesis of custom hardware
pipelines for selected loops in C programs. The SPC analyzes all program loops, in
particular innermost loops without irregular loop-carried dependences. The pipelines
aggressively exploit ILP opportunities when executing the loops in hardware. Address
generators are synthesized for accesses to program arrays (multidimensional), and
shift-registers are used extensively for data reuse. Pipeline vectorization takes advan-
tage of several loop transformations to meet hardware resource constraints while max-
imizing available parallelism. Memory allocation and access optimizations are also
included in the SPC [Weinhardt and Luk 2001a].

6.1.4. The Compiler from Maruyama and Hoshino. Maruyama and Hoshino [2000] devel-
oped a prototype compiler that maps loops written in the C programming language
to fine-grained pipeline hardware execution. Their compiler splits the arithmetic op-
erations of the input program into cascading 8-bit-wide operations (a transformation
known as decomposition) for higher pipelining throughput. It uses speculative execu-
tion techniques to allow it to initiate the execution of a loop iteration while the previous
iteration is still executing. In the presence of memory bank dependences the pipeline
is stalled and the accesses are serialized. Feedback dependences, either through scalar
or array variables, cause speculative operations in the pipeline to be cancelled, but
restarted after the updates to the arrays complete. The compiler also supports the
mapping of some recursive calls by converting them internally to iterative constructs.
In addition, the compiler front-end supports parallelization annotations that allow
the compiler to perform task and data partitioning, but few technical details are
available.

6.1.5. The DeepC Silicon Compiler. The DeepC silicon compiler presented in Babb
[2000] and Babb et al. [1999] maps C or Fortran programs directly into custom silicon
or reconfigurable architectures. The compiler uses the SUIF framework and relies on
state-of-the-art pointer analysis and high-level analyses techniques such as bit-width
analysis [Stephenson et al. 2000]. Many of its passes, including parallelization and
pointer-analysis, have been taken directly from MIT’s RAW compiler (Rawcc) [Barua
et al. 2001; Lee et al. 1998]. The compiler targets a mesh of tiles where each tile has
custom hardware connected to a memory and an inter-tile communication channel.
This target architecture is inspired by the RAW machine concept, but where the pro-
cessing element used in each tile is custom-logic (reconfigurable or fixed) instead of a
microprocessor. The compiler performs bank disambiguation to partition data across
the distributed memories attempting to place data in the tile that manipulates it. A
specific architecture consisting of an FSM and a data-path is then generated for each
tile. Besides the generation of the architecture for each tile, the compiler also gen-
erates the communication channels and the control unit, which is embedded in each
FSM, to communicate data between tiles. The compiler supports floating-point data
types and operations. Each floating-point operation in the code is replaced by a set of
integer and bit-level micro-operations correspondent to the realization of its floating-
point unit. This permits optimizing some operations dealing with floating-point data.
Finally, the DeepC compiler generates technology-independent Verilog behavioral RTL
models (one for each tile) and the circuitry is generated with back-end commercial RTL
synthesis and placement and routing tools.

6.1.6. The COBRA-ABS Tool. The COBRA-ABS tool [Duncan et al. 1998, 2001] syn-
thesizes custom architectures for data-intensive algorithms using a subset of the C
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programming language. This tool performs spatial partitioning, scheduling, mapping,
and allocation using simulated annealing techniques. The target architecture for the
COBRA-ABS tool is a multi-FPGA system with various arithmetic ASICs, each of
which with its own local memory. The system is programmed in a VLIW style using a
large register file and a centralized control unit. The system uses commercial synthe-
sis tools for placement and routing to generate the various FPGA configurations. This
tool uses a HLS approach that targets ASICs. Since the HLS is based on a simulated-
annealing approach, the reported synthesis time is prohibitively long. For example, a
simple design with 13 operations and 12 memory accesses took approximately 12 hours
on a Sun Ultra 1/140 to synthesize.

6.1.7. The DEFACTO Project. The DEFACTO (design environment for adaptive com-
puting technology) project [Bondalapati et al. 1999] is a system that maps computa-
tions, expressed in high-level imperative languages such as C and FORTRAN, directly
to FPGA-based computing platforms such as the Annapolis WildStarTM FPGA-based
board [Annapolis 1999]. It partitions the input source program into a component that
executes on a traditional processor and another component that is translated to behav-
ioral, algorithmic-level VHDL to execute on one or more FPGAs. DEFACTO combines
parallelizing compiler technology with commercially available high-level VHDL syn-
thesis tools. DEFACTO uses the SUIF system and performs several traditional paral-
lelizing compiler analyses and transformations such as loop unrolling, loop tiling, data
and computation partitioning. In addition, it generates customized memory interfaces
and maps data to internal storage structures. In particular, it uses data reuse analysis
coupled with balance metrics to guide the application of high-level loop transforma-
tions. When doing hardware/software partitioning, the compiler is also responsible for
automatically generating the data management (copying to and from the memory as-
sociated with each of the FPGAs), and synchronizing the execution of every FPGA in a
distributed memory parallel computing style of execution.

6.1.8. The Streams-C Compiler. Streams-C [Gokhale et al. 2000b] relies on a commu-
nication sequential processes (CSP) parallel programming model [Hoare 1978]. The
programmer uses the annotation mechanism to declare processes, streams, and sig-
nals. In Streams-C, a process is an independently executing object with a process body
specified by a C routine, and signals are used to synchronize their execution. The pro-
gram also defines the data streams and associates a set of input/output ports to each
process, explicitly introducing read and write operations via library primitives.

The Streams-C compiler builds a process graph decorated with the correspond-
ing data stream information. It then maps the computation on each process to an
FPGA and uses the MARGE compiler [Gokhale and Gomersall 1997] to extract and
define the specific datapath VHDL code (structural RTL model) from the AST (ab-
stract syntax tree) of the C code that defines the body of each process. The com-
piler inserts synchronization and input/output operations by converting the annota-
tions in the source C, first to SUIF internal annotations and then to library function
calls. The MARGE compiler is also responsible for scheduling the execution of loops
in each process body in a pipelined fashion. Performance results are reported by
Frigo et al. [2001].

6.1.9. The CAMERON Project. The Cameron compiler [Böhm et al. 2001, 2002] trans-
lates programs written in a C-like single-assignment language, called SA-C, into
dataflow graphs (DFGs) and then onto synthesizable VHDL designs [Rinker et al.
2001]. These DFGs typically represent the computations of the body of the loops and
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have nodes that represent the input/output of data, as well as nodes correspond-
ing to macro-node operations. These macro-operations represent more sophisticated
operations such as the generation of the window inside a given array, defining which
elements of the array participate in the computation. The compiler then translates
each DFG to synthesizable VHDL, mostly relying on predefined and parameterizable
library macro templates. A back-end pass uses commercial synthesis tools, such as
[Synplicity]’s Synplify, to generate the FPGA’s bitstreams.

The resulting compiled code has both a component that executes on a traditional
processor as well as one executing on computing architectures with FPGA devices. SA-
C is a single-assignment (functional) language intended to facilitate the development
of image processing applications and its efficient translation to hardware. Its features
include the specification of variables’ bit-widths and the use of syntax mechanisms to
specify certain operations over one- or two-dimensional arrays, enabling the compiler
to create specific hardware structures for such operations. The specification of reduc-
tion operators also allows the programmer to directly to hint to the compiler about the
appropriate efficient implementations for these operators in VHDL.

The SA-C compiler applies a series of traditional program optimizations (code
motion, constant folding, array and constant value propagation, and common-
subexpression elimination). It also includes other transformations with a wider scope
that can be controlled by pragmas at the source-code level. These include array and
loop bound propagation, so that the maximum depth of loop constructs could be easily
inferred from the array these constructs manipulate. Bit-width selection for space and
tiling to expose more opportunities for ILP are also considered by the compiler.

This work addresses an important aspect of mapping applications to reconfigurable
architectures by focusing on a particular domain of applications and developing lan-
guage constructs specific for that domain. The core of the compilation is devoted to
using the information in pragmas and matching them with the predefined library tem-
plates using the semantics of the looping and window constructs.

6.1.10. The Match Compiler. The MATCH10 [Banerjee et al. 2000; Nayak et al. 2001a]
compiler accepts MATLAB descriptions [Mathworks] and translates them to behav-
ioral RTL-VHDL [Haldar et al. 2001b], subsequently processed by commercial logic
synthesis and placement and routing tools. MATCH includes an interface for deal-
ing with IP (intellectual property) cores. An IP core database is used which includes
the EDIF/HDL representation of each IP, the performance/area description, and the
interface to the cores. The instantiated cores are integrated during the compilation.
As MATLAB is not a strongly typed and shaped language, the translation process in-
cludes type and shape11 analysis (directives can be used by the user). The result of
these analyses is annotated in the AST. Matrix operations are then expanded into
loops (scalarization). Then, parallelization is conducted (loops can be split onto dif-
ferent FPGAs and run concurrently), which generates a set of partitioned ASTs with
embedded communication and synchronization. The next step is to perform precision
analysis by transforming floating-point and integer data types to fixed-point and in-
ferring the number of bits needed. The compiler then integrates the IP cores (they can
be FUs for each operation in the AST or optimized hardware modules for specific func-
tions called in the AST) and creates a VHDL-AST representation with the optimized
cores.

10A transfer of technology has been carried out to the startup company, AccelChip, Inc. ACCELCHIP
http://www.accelchip.com/.
11Shape analysis refers to the inference about the number of dimensions of a Matlab variable (matrix).
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Another step is related to pipelining and scheduling. The compiler checks if a loop12

can be pipelined. If so, a DFG with predicated nodes is generated and the memory
accesses are scheduled based on the number of ports in each memory. The compiler
tries to pipeline the memory accesses, which is frequently the performance bottleneck.
During this task, the compiler uses the delays of each IP core. Modulo scheduling is
used to exploit loop pipelining parallelism. Finally, the compiler translates the VHDL-
AST onto a VHDL-RTL description used by commercial logic synthesis tools to gener-
ate the netlist later placed and routed by the specific FPGA tools.

6.1.11. The Galadriel and Nenya Compiler. The GALADRIEL compiler translates Java
bytecodes to an architectural synthesis tool that is specific for reconfigurable com-
puting platforms (NENYA) [Cardoso and Neto 1999, 2003], comprising an FPGA con-
nected to one or more memories. The compiler accepts a subset of Java bytecodes that
enables the compilation of representative algorithms, specified in any language that
can be compiled to the Java virtual machine (JVM). NENYA extracts hardware images
from the sequential description of a given method to be executed by the FPGA. For de-
signs larger than the size of the FPGA, the approach addresses temporal partitioning
techniques in the compilation process.

The compiler exposes several degrees of parallelism (operation, basic block, and
functional) [Cardoso and Neto 2001]. The method being compiled is fully restructured
according to the control and data dependences exposed (loop transformations and loop
pipelining were not included). The compiler generates, for each temporal partition, a
control unit and a datapath module, including memory interfaces. The control unit is
output in behavioral RTL-VHDL and the datapath in structural RTL-VHDL.

The scheduler uses fine-grained timing slots to schedule operations, considers dif-
ferent macro-cell alternatives to implement a given functionality, and takes into ac-
count the bit-width of the operands for the area/delay estimation (each component
in the hardware library is modeled by functions obtained by line/curve fitting). Ear-
lier versions of the compiler targeted the Xilinx XC6200 FPGA using circuit gen-
erators. When such generators are not available for a specific FPGA, commercial
logic synthesis is used for the preback-end phase [Cardoso and Neto 2003]. Finally,
the FPGA bitstreams are generated using vendor-specific placement and routing
tools.

6.1.12. The Sea Cucumber Compiler. Sea Cucumber (SC) [Tripp et al. 2002] is a Java
to FPGA hardware compiler that takes a pragmatic approach to the problem of con-
currency extraction. It uses the standard Java thread model to recognize task-level or
coarse-grained parallelism as shown by programmers. In the body of each thread, the
SC compiler then extracts the fine-grained parallelism using conventional controlflow
and dataflow analysis at the statement level and across multiple statements. Once
the CFG is extracted, a series of low-level instruction-oriented transformations and
operations are performed, such as predication to allow it to generate hardware cir-
cuit specifications in EDIF using JHDL [Bellows and Hutchings 1998], which are then
translated to Xilinx bitstreams. As described in the literature, this compiler does not
aim at the automatic discovery of loop-level or cross-iteration parallelism, as is the
goal of other compilers that map imperative programs to hardware.

6.1.13. The HP-Machines Compiler. Researchers at the Hewlett Packard Corp. devel-
oped a compiler to deal with a subset of C++ with special semantics [Snider et al. 2001].

12Loop constructs present in the Matlab code are converted to finite state machines (FSM).
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This approach uses an abstract state machine concurrent programming model, called
“Machines”. An application can be specified by a set of state machines, and parallelism
can be represented explicitly. The user specifies the medium-grained parallelism and
the compiler extracts the fine-grained parallelism (ILP). The compiler is capable of
high- and low-level optimizations such as bit-width narrowing and bit optimizations
to reduce to wire concatenation operations. The compiler maps different Xilinx FPGAs
by using the JBits [Guccione et al. 2000] tool as a back-end.

6.1.14. The SPARCS Framework. Other authors have adapted traditional HLS frame-
works to target reconfigurable computing systems. In the SPARCS framework [Ouaiss
et al. 1998a], temporal and spatial partitioning are performed before HLS. The system
starts from a task-memory graph and a behavioral, algorithmic level VHDL specifica-
tion for each task. The unified specification model (USM) [Ouaiss et al. 1998b] is used
as an intermediate representation. Although the system resolves important issues re-
lated to temporal/spatial partitioning and resource sharing, it suffers from long run
times because it is dominated by design space exploration. The target of the tool is
a platform with multiple FPGAs and memories, for which they use commercial logic
synthesis and placement and routing tools. The interconnections among FPGAs and
memories can be static or reconfigurable at runtime.

6.1.15. The ROCCC Compiler. The Riverside optimizing compiler for reconfigurable
computing (ROCCC) is a C to hardware compiler that focuses on FPGA-based acceler-
ation of frequently executed code segments, most notably loop nests [Guo et al. 2004].
It uses a variation of the SUIF2 and MachSUIF compilation infrastructure, called
compiler intermediate representation for reconfigurable computing (CIRRF) [Guo and
Najjar], where streaming-oriented operations are explicitly represented via internal
primitives for buffer allocation and external memory operation scheduling. This rep-
resentation is particularly useful in the context of window-based image and signal
processing computations [Guo et al. 2004].

6.2. Compilers for Coarse-Grained Reconfigurable Architectures

Many other research and commercial projects took the alternative route of consider-
ing proprietary reconfigware and used their own tools from the language specification
down to the placement and routing phases. Examples of such efforts are the compilers
for the PipeRench, RaPiD, Xputer, and XPP.

6.2.1. The DIL Compiler for PipeRench. The PipeRench compiler (called the DIL com-
piler) [Budiu and Goldstein 1999] maps computations described in a proprietary inter-
mediate single-assignment language, called the dataflow intermediate language (DIL),
into the PipeRench. The PipeRench consists of columns of pipeline stages (stripes), and
the model of computation permits pipelining the configuration of the next strip to be
used with the execution of the current one.

DIL can be viewed as a language to model an intermediate representation of high-
level language descriptions such as C, and is used to describe pipelined combinatorial
circuits (unidirectional dataflow). DIL has C-like syntax and operators and uses fixed-
point type variables with bit widths that can be specified by the programmer as spe-
cific bit-width values, or alternatively, derived by the compiler. The approach mainly
delegates to the compiler the inference of bit-widths for the data used [Budiu et al.
2000]. The only bit-widths that must be specified are those related to input and output
variables.
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The compiler performs over 30 analyses steps before generating the configuration
model to be executed in the PipeRench. Each arithmetic operator used in the DIL pro-
gram is specified in a library of module generators. Those modules are described in
DIL as well. The compiler expands all the modules (operator decomposition) and func-
tions and fully unrolls all the loops presented in the application. Hence, a straight-line
single assignment program is generated. Then, a hierarchical acyclic DFG is con-
structed. The DFG has nodes representing operations, I/O ports, and delay-registers.
Each operator node can be a DFG itself. After the generation of the global DFG, the
compiler performs some optimizations. Such optimizations include traditional com-
piler optimizations (e.g., common subexpression elimination, algebraic simplifications,
and dead code elimination), a form of retiming known by register reduction and inter-
connection simplification. One of the main strengths of the compiler is to perform such
optimizations through the overall representation (also considering the representation
of each module used by each operator). Hence, it specializes and optimizes the proper
instance of each module structure based on the bit-width of the input/output variables
and on the constant values of input variables.

The placement and routing (P&R) phase is done through the DFG using a determin-
istic linear-time greedy algorithm, based on list scheduling [Cadambi and Goldstein
2000]. This approach leads to implementations that are two or three orders of magni-
tude faster than the P&R in commercial tools.

6.2.2. The RaPiD-C Compiler. To facilitate the specification and mapping of computa-
tions to the RaPiD reconfigurable architecture [Ebeling et al. 1995], the RaPiD project
also developed a new concurrent programming language, RaPiD-C [Cronquist et al.
1998], with a C-like syntax flavor. RaPiD-C allows the programmer to specify par-
allelism, data movement, and data partitioning across the multiple elements of the
array. In particular, RaPiD-C introduces the notion of space-loop, or sloop. The com-
piler unrolls all of the iterations of the sloop and maps them onto the architecture. The
programmer, however, is responsible for permuting and tiling the loop to fit onto the
architecture, and is also responsible for introducing and managing the communication
and synchronization in the unrolled versions of the loops. In particular, the program-
mer must assign variables to memories and ensure that the correct data is written
to the RAM modules by using the language-provided synchronization primitives, wait
and signal.

In terms of compilation, the RaPiD-C compiler extracts from each of the loop con-
structs a control tree for each concurrent task [Cronquist et al. 1998]. A concurrent
task is defined by a par statement in the language. Each task control tree has, as inte-
rior nodes, sequential statements (defined by the seq construct) and for statements. At
the leaves, the control tree has wait and signal nodes. The compiler inserts synchro-
nization dependences between wait and signal statements.

During compilation, the compiler inserts registers for variables and ALUs for arith-
metic operations, in effect creating a DFG for the entire computation to be mapped
to a stage in the architecture. The compiler then extracts address and instruction
generators that are used to control the transfer of values between the stages of the
architecture during execution. In terms of dynamic control extraction, the RaPiD-C
compiler uses two techniques, called multiplexer-merging and FU merging, respec-
tively. In the multiplexer merging, the compiler aggregates several multiplexers into
a single larger multiplexer and modifies the control predicates for each of the inputs,
taking into account the netlist of multiplexers created as a result of the implementa-
tion of conditional statements. The FU merging takes advantage of the fact that a set
of several ALUs can be merged if their inputs are mutually exclusive in time and the
union of their inputs does not exceed a fixed number.
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The compiler also represents in its control tree occasions in which the control is
data dependent, that is, dynamic. In this scenario, the compiler represents this depen-
dency by an event and a condition. These abstractions are translated into hardware re-
sources present at every stage. For example, the first iteration of a loop can be explicitly
represented by the i.first condition being true only at the first iteration of a for loop.
Also, alu.carry is explicitly represented at the hardware level. The compiler then ag-
gregates these predicates into instructions, generates the corresponding decoding that
drives each of the available control lines of the architecture so that the control signals
can be present at the corresponding stage during execution.

6.2.3. The CoDe-X Framework. CoDe-X [Becker et al. 1998] is a compilation framework
to automatically map C applications onto a target system consisting of a host computer
and Xputers [Hartenstein et al. 1996]. Segments of C computations are mapped to the
KressArray/rDPA, while the remaining code is compiled to the host system with a
generic C-compiler. The CoDe-X compiler uses a number of loop transformations (such
as loop distribution and stripmining) to increase the performance of the segment of
code mapped to the rDPA. The compiler also performs loop folding, loop unrolling, vec-
torization, and parallelization of loops when they compute on different stripes of data.
The datapath synthesis system (DPSS) framework [Hartenstein and Kress 1995] is
responsible for generating the configurations. The DPSS accepts ALE-X, a language to
describe arithmetic and logic expressions for Xputers, descriptions which can be gener-
ated from C code using the CoDe-X compiler. The rDPA address generator and control
units (both coupled to the array) orchestrate loop execution on the Xputer. As the array
itself only implements dataflow computations, the compiler converts controlflow state-
ments of the form if-then-else to dataflow. The DPSS tool is responsible for schedul-
ing, using a dynamic list-scheduling algorithm, the operations in the statements
mapped to the array, with the only constraint being a single I/O operation at each
time (the Xputer uses only one bus to stream I/O data). The final step uses a mapper,
based on simulated annealing, to perform the placement and routing of the generated
datapath onto the array and to generate the configurations for the array and for the
controller.

6.2.4. The DRESC Compiler. DRESC (dynamically reconfigurable embedded system
compiler) [Mei et al. 2002] is a C compiler that was developed to target ADRES [Mei
et al. 2005; Sutter et al. 2006]. The compiler uses as a front-end the [IMPACT] com-
piler infrastructure. A partitioning step is, with the help of profiling, responsible for
identifying the computationally intensive loops in the application. A novel modulo
scheduling algorithm, which combines placement, routing, and scheduling, is used to
map pipelined loop kernels onto the reconfigurable array. One interesting point of the
compilation flow is the possibility of targeting a family of ADRES architectures by
changing an architectural description file. Examples were shown for exploiting differ-
ent routing topologies as well as heterogeneous FUs [Mei et al. 2005].

6.2.5. The XPP-VC Compiler. The XPP vectorizing C compiler (XPP-VC) [Cardoso and
Weinhardt 2002] maps C code into the XPP architecture [Baumgarte et al. 2003]. It is
based on the SUIF compiler framework and uses new mapping techniques combined
with the pipeline vectorization method previously included in the SPC [Weinhardt and
Luk 2001b]. Computations are mapped to the ALUs and data-driven operators of the
XPP architecture and temporal partitioning is employed whenever input programs
require more resources than are available for each configuration.
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6.3. Compilers for Tightly Coupled Reconfigware and Software Components

Many research efforts have been tailored to architectures that couple a microproces-
sor to RPUs (reconfigurable processing units) in the same chip. Most of them address
compilation techniques targeting in-house architectures. Some of the most remarkable
compilers are the CHIMAERA-C [Ye et al. 2000a], the garpcc [Callahan et al. 2000],
and the NAPA-C [Gokhale and Stone 1998] just to name a few. The next sections give
a brief introduction to these compilers.

6.3.1. The CHIMAERA-C Compiler. The CHIMAERA-C compiler [Ye et al. 2000a] ex-
tracts sequences of instructions from the C code, each one forming a region of up to
nine input operands and one output. The goal of this approach is to transform small
acyclic sequences of instructions, without side-effect operations, in the source code into
special instructions implemented in the RPU (which in this case is a simple reconfig-
urable functional unit) [Hauck et al. 2004]. This approach aims to achieve speed-ups
of the overall execution. As the compiler only considers reconfigware compilation for
the previously described segments of code, it is inappropriate for used as a stand-alone
reconfigware compiler.

6.3.2. The Compiler for Garp. An ANSI C compiler for the Garp architecture, called
garpcc [Callahan et al. 2000], was developed at the University of California at
Berkeley. It uses the hyperblock13 [Mahlke et al. 1992] to extract regions in the code
(loop kernels) suitable for reconfigware implementation, and transforms “if-then-else”
structures into predicated forms. The basic blocks included in a hyperblock are merged
and the associated instructions are represented in a single DFG, which explicitly ex-
poses the operation-level fine-grained parallelism [Callahan and Wawrzynek 1998].
The compiler integrates software pipelining techniques [Callahan and Wawrzynek
2000], adapted from previous work on compilation, to VLIW processors. The compiler
uses predefined module generators to produce the proprietary structural description.
The garpcc compiler relies on the Gama tool [Callahan et al. 1998] for the final map-
ping phases. Gama uses mapping methods based on dynamic programming and gen-
erates from the DFG a specific array configuration for the reconfigurable matrix by
integrating a specific placement and routing phase.

The ideas of the garpcc compiler were used by Synopsys in the Nimble compiler [Li
et al. 2000]. As garpcc, Nimble also uses as a front-end the SUIF framework [Wilson
et al. 1994]. The target of the Nimble compiler are devices with an embedded CPU
tightly coupled to an RPU. The compiler uses profiling information to identify inner
loops (kernels) for implementation on a specific datapath in the RPU, aiming at the
overall acceleration of the input program. Reconfigware/software partitioning is au-
tomatic. The reconfigware segment is mapped to the RPU by the ADAPT datapath
compiler. This compiler uses module descriptions for generating the datapath, and
generates a sequencer for scheduling possible conflicts, for example, memory accesses,
and orchestration of loops. The compiler also considers floor-planning and placement
during this phase. The datapath structure with placement information is then fed to
the placement and routing FPGA vendor tool to generate the bitstreams.

6.3.3. The NAPA-C Compiler. The NAPA-C compiler uses a subset of C with extensions
to specify concurrency and bit-widths of integers [Gokhale and Stone 1998]. It targets

13A hyperblock represents a set of contiguous basic blocks. It has a single point of entry and may have
multiple exits. The basic blocks are selected from paths commonly executed and suitable for implementation
in reconfigware.
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Table IV. Characterization of a Representative Number of Compilation Efforts
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a reconfigurable architecture consisting of a microprocessor coupled to reconfigware
(FPGA resources), both sharing the same memory address space. The user declares
the code segment to be compiled to reconfigware. The compiler uses the MARGE (mal-
leable architecture generator) tool to generate a datapath [Gokhale and Gomersall
1997]. MARGE uses a library of parameterized macros/modules, including ALUs, coun-
ters, encoders, filters, SRAMs, and register banks. Some of the library elements are
preplaced and prerouted, thus reducing the total compilation time from hours to min-
utes [Gokhale and Gomersall 1997]. Macros are generated using the Modgen tool. The
logic structure of each macro can be described with a C-like language (structure is
defined as a function of the bit-width of the operands, geometric shape is also de-
fined, etc.). The output of MARGE is an RTL model containing Modgen components.
With MARGE, FUs are shared by operations whenever possible, that is, every time
the FUs are of the same bit-width size, the same functionality, and are not being
used by other operations on the schedule cycle. Control generators are used to syn-
thesize control units to orchestrate the reconfigware execution. MARGE assigns a reg-
ister for each scalar variable in the source code. Both the registers to store variables
and the auxiliary registers to store temporary values are implemented by banks of
registers.

Results are shown using the NAPA-C compiler to target the CLAyTM FPGA from Na-
tional Semiconductor in Gokhale and Gomersall [1997] and the NAPA (RISC+FPGA)
device [Rupp et al. 1998] in Gokhale and Stone [1998]. Gokhale and Stone [1999] show
a scheme for automatic mapping of array variables to memory banks. The NAPA-C
compiler was ultimately improved to compile stream-based computations, described in
the Stream-C language [Gokhale et al. 2000b], to commercially available FPGAs.

6.4. Overview of Compiler Properties

The following tables summarize important properties of the previously discussed
compilers. Table IV presents a general characterization of the compilers, which are
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Table V. Main Characteristics of Some Compilers: General Information (I)
Compiler Year (1st pub.) Affiliation
Transmogrifier-C 1995 Univ. of Toronto, Canada
PRISM-I, II 1992 Brown Univ., USA
Handel-C 1996 Oxford Univ., Celoxica, UK
Galadriel & Nenya 1998 INESC-ID, Univ. of Algarve, Portugal
SPARCS 1998 Univ. of Cincinnati, USA
DEFACTO 1999 Univ. of South California/Information Sciences Institute, USA
SPC 1996 Univ. Karlsruhe, Germany, London Imperial College, UK
DeepC 1999 MIT, USA
Maruyama 2000 Univ. of Tsukuba, Japan
MATCH 1999 Northwestern Univ., USA
CAMERON 1998 Colorado State Univ., USA
NAPA-C 1997 Sarnoff Corporation, USA
Stream-C 2000 Los Alamos National Laboratory, Sarnoff

Corporation, Adaptive Silicon, Inc., USA
Garpcc 1998 Univ. of California at Berkely, USA
CHIMAERA-C 2000 Northwestern University, USA
HP-Machine 2001 Hewlett-Packard Laboratories, USA
ROCCC 2003 University of California at Riverside, USA
DIL 1998 Carnegie Mellon Univ., USA
RaPiD-C 1997 Univ. of Washington, USA
CoDe-X 1995 Univ. of Kaiserlautern, Germany
XPP-VC 2002 PACT XPP Technologies AG., Munich, Germany

grouped according to the programming model used (sequential or concurrent) with
distinctions on the abstraction level (high or low). Also represented in the table are
the types of reconfigurable computing architectures they target (commercial FPGAs,
a processor coupled with RPUs or coarse-grained RPUs) and the domain of special-
ization (architecture-specific or application-specific), which is important in some of the
cases. Not surprisingly, most compilers use a high-level sequential programming model
and target commercial FPGAs. This is explained pragmatically by the wide acceptance
of imperative software programming languages when describing at high-levels of ab-
straction and by the widespread usage of commercial FPGAs.

More detailed characteristics of some of these compilers are illustrated in
Tables V through XIII. A separation mark in each table splits the compilers targeting
fine-grained from those targeting coarse-grained architectures. Each table shows, for
each compiler, the most relevant information and compilation techniques (�’s identify
supporting and ×’s identify not supporting or not applicable). Table V shows the year
of the first known publication and the place where the compiler was implemented;
Table VI shows the input language accepted, the granularity of the description, and
the programming model. Tables VII and VIII depict the front-end, the data types
supported, the intermediate representations, and the level of parallelism exploited.
Table IX shows the support of loops, array variables, the approach used when map-
ping the existent arrays onto the memories of the platform, the support of loop pipelin-
ing, the use of shift-registers and packing to reduce memory accesses. Table X exhibits
the support of bit-width narrowing, bit optimizations, and sharing of FUs. Table XI
identifies the support for temporal, spatial, and reconfigware/software partitioning.

Table XII shows the representation model for the output, the tool to generate
the hardware structure, and the tool to generate the configuration data. Finally, in
Table XIII we can see, for each compiler, the target platform whose results were
published.

Although a theme that requires further research effort to be effective and competi-
tive to manual design, a number of research compilers have been adopted by companies
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Table VI. Main Characteristics of Some Compilers: General Information (II)
Input Programming Granularity of

Compiler Language description Model Used
Transmogrifier-C C-subset Operation Software, imperative
PRISM-I, II C-subset Operation Software, imperative
Handel-C Concurrency +

channels + memories
(C-based)

Operation Delay, CSP model,
each assignment in
one cycle

Galadriel & Nenya Any language
compiled to Java
bytecodes (subset)

Operation Software, imperative

SPARCS VHDL tasks Operation VHDL and tasks
DEFACTO C-subset Operation Software, imperative
SPC C, Fortran: (subsets) Operation Software, imperative
DeepC C, Fortran: (subsets) Operation Software, imperative
Maruyama C-subset Operation Software, imperative
MATCH MATLAB Operation and/or

functional blocks
Software, imperative

CAMERON SA-C Operation Software, functional
NAPA-C C-subset extended Operation Software, imperative

added with
concurrency

Stream-C C-subset extended Operation Software,
stream-based,
processes

Garpcc C Operation Software, imperative
CHIMAERA-C C Operation Software, imperative
HP-Machine C++ (subset) extended

to specify Machines
Operation Machines

(process/thread)
Notion of update per
cycle

ROCCC C-subset Operation Software, imperative
DIL DIL Operation Delay notion, ?
RaPiD-C RaPiD-C Operation Specific to RaPiD, par,

wait, signal, and
pipeline statements

CoDe-X C-subset, ALE-X Operation Software, imperative
XPP-VC C-subset (extended) Operation Software, imperative

as one of their main products. As an example, research techniques used in the MATCH
compiler [Banerjee et al. 2000; Nayak et al. 2001a], were transferred to AccelChip.
Other examples of academic research on compilers, the results of which have also
been transferred to companies, include the research work on hardware compilation
from Handel-C performed at the Oxford University [Page 1996] in the second half of
the 1990’s, ultimately leading to the creation of Celoxica. Research on the Streams-C
hardware compiler [Gokhale et al. 2000b] was licensed to Impulse Accelerated Tech-
nologies, Inc. [Impulse-Accelerated-Technologies; Pellerin and Thibault 2005]; and the
work on the garpcc compiler [Callahan et al. 2000] was used by Synopsys in the Nimble
compiler [Li et al. 2000].

There has been ongoing research effort. One of the most relevant recent efforts is
the Trident C-to-FPGA compiler [Tripp et al. 2005], which was especially developed
for mapping scientific computing applications described in C to FPGAs. The compiler
addresses floating-point computations and uses analysis techniques to expose high
levels of ILP and to generate pipelined hardware circuits. It was developed with user-
defined floating-point hardware units in mind as well.
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Table VII. Main Characteristics of Some Compilers (cont.): Front-End Analysis (I)
Compiler High-Level Mapping to Hardware Front-End
Transmogrifier-C Integrated Custom
PRISM-I, II Integrated Lcc
Handel-C Integrated Custom
Galadriel & Nenya Integrated Custom: GALADRIEL
SPARCS Integrated HLS Custom
DEFACTO Commercial HLS SUIF
SPC Integrated SUIF
DeepC Commercial RTL synthesis SUIF
Maruyama Integrated Custom
MATCH Commercial RTL synthesis Custom
CAMERON Commercial LS Custom
NAPA-C Integrated SUIF
Stream-C Integrated SUIF
Garpcc Integrated SUIF
CHIMAERA-C Integrated GCC
HP-Machine Integrated Custom
ROCCC Integrated SUIF2
DIL Integrated Custom
RaPiD-C Integrated Custom
CoDe-X Integrated Custom
XPP-VC Integrated SUIF

Table VIII. Main Characteristics of Some Compilers (cont.): Front-End Analysis (II)
Intermediate

Compiler Data Types Representations Parallelism
Transmogrifier-C Bit-level AST Operation
PRISM-I, II Primitive Operator Network

(DFG)
Operation

Handel-C Bit-Level AST ? Operation
Galadriel & Nenya Primitive HPDG + global DFG Operation, inter basic block,

inter-loop
SPARCS Bit-level USM Operation, task-level
DEFACTO Primitive AST Operation
SPC Primitive DFG Operation
DeepC Primitive SSA Operation
Maruyama Primitive DDGs (data dependence

graphs)
Operation

MATCH Primitive AST, DFG for pipelining Operation
CAMERON Bit-Level Hierarchical DDCF

(Data Dependence and
Control Flow) + DFG +

AHA graph

Operation

NAPA-C Pragmas (bit-level) AST Operation
Stream-C Pragmas (bit-level) AST Operation
Garpcc Primitive Hyperblock + DFG Operation, inter basic blocks
CHIMAERA-C Primitive DFG Operation
HP-Machine Bit-level Hypergraph + DFG Operation, Machines
ROCCC Primitive CIRRF Operation
DIL Bit-level

(fixed-point)
Hierarchical and acyclic
DFG

Operation

RaPiD-C Primitive + pipe +

ram
Control Trees Functional, Operation

CoDe-X Primitive DAG Operation, loops
XPP-VC Primitive HTG+, CDFG Operation, inter basic block,

inter-loop
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Table IX. Main Characteristics of Some Compilers (cont.): Supported Features
Array Floating-Point Recursive Sharing of

Compiler Loops Variables Operations Pointers Functions FUs
Transmogrifier-C � × × × × ×

PRISM-I, II � × × × × ×

Handel-C � × × × × ×

(only on distinct
Galadriel & � � × × × conditional
Nenya paths)
SPARCS � � × × × �

DEFACTO � � × × × �

SPC � � × × × ×

(inner)
DeepC � � � � × �

Maruyama � � × × limited ×

MATCH � � Converted to × × ×

fixed-point
CAMERON � � × × × ×

NAPA-C � � × × × �

Stream-C � � × × × �

� Software
garpcc � Software � ×

(inner) � Software �

CHIMAERA-C × × Software Software software ×

HP-Machine × (unrollable) � × × × �

DIL × (unrollable) × (arrays are × × × ×

used to specify
interconnections)

RaPiD-C � � (used to access × × × �

I/O data)
CoDe-X � � × × × ×

XPP-VC � � × × × ×

7. FINAL REMARKS AND CONCLUSION

Reconfigurable computing platforms present numerous challenges to the average soft-
ware programmer, as they expose a hardware-oriented computation model where pro-
grammers must also assume the role of hardware designers. To address this gap, re-
searchers have developed compilation techniques and systems supporting the notion
of reconfigware to automatically map computations described in high-level program-
ming languages to reconfigurable architectures. Several of the approaches have been
influenced by research in the area of hardware/software codesign and hardware syn-
thesis, whereas others have attempted to bridge the gap directly using techniques
from traditional compilation systems for which a dedicated hardware-oriented, and
often architecture-specific, back-end was developed.

This survey presents some of the most prominent compilation techniques and
efforts for reconfigurable platforms, whose main characteristics are identified in
Table IV through Table XIII. Invariably, the applicability of some compilation tech-
niques depends on the granularity of the target platform. As an example, bit-level
operator specialization is clearly important for fine-grained architectures, but has lim-
ited usage for coarse-grained architectures. Other techniques, such as tree-height re-
duction are important in both kinds of architectures. Techniques developed for more
traditional single processor and multiprocessor architectures, such as loop-based and
data-oriented transformations, can be adapted when mapping computations to recon-
figurable architectures. Furthermore, reconfigurable architectures have enabled newer
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Table X. Main Characteristics of Some Compilers (cont.): Optimizations
Arrays-to- Memory Memory
multiple- Accesses Accesses

Bit-width Bit- Memories Loop Reduction by Reduction
Compiler Narrowing Optimizations Mapping Pipelining Shift-Register by Packing
Transmogrifier-C × � × × × ×

PRISM-I, II × � × × × ×

Handel-C × × Explicit use Manual manual manual
of memories

Galadriel & Nenya � � (exhaustive × × ×

or manual)
SPARCS × � � ? ? ×

DEFACTO × × × � � �

SPC × × � (ILP) � � ×

DeepC � × � × × ×

Maruyama × × × � × ×

MATCH � � × � × �

CAMERON × × × � � ×

NAPA-C × × � (implicit � × ×

enumeration)
Stream-C × × � (implicit � × ×

enumeration)
Garpcc × × × � × × (queues

are used
to grap a
cache line
at a time)

CHIMAERA-C × × × × × ×

HP-Machine � � × � × ×

ROCCC × × ? ? � ?
DIL � � × � × ×

RaPiD-C × × Explicit use � × ×

of memories
CoDe-X × × × � × �

XPP-VC × × � (one array � � ×

per internal
memory)

techniques or variations of existing ones that are of limited or no applicability for
traditional architectures.

Given the traditional lengthy and error-prone process of hardware synthesis, many
systems have used pre-existing compilation frameworks, coupled with either com-
mercial high-level synthesis tools or custom solutions that include module genera-
tors, to reduce the overall hardware/software solution development time. Furthermore,
the recent use of placement schemes based on the list-scheduling algorithm shows
short compilation times with acceptable results. A pressing concern when targeting
reconfigurable platforms, in particular for fine-grained architectures, is the ability
of the compiler to estimate the size and the clock rate and/or the delay of the final
mapping.

Overally, the automatic mapping of computations to reconfigurable computing ar-
chitectures represents a relatively new and very promising area of research, where
researchers have built on a wealth of research on software compilation, parallelizing
compilers, and system-level and architectural synthesis. This survey describes various
up-to-date techniques on compilation to reconfigurable computing platforms. Many,
but possibly not all, of the techniques described here are currently used in state-of-
the-art compilers for reconfigurable computing platforms, thus revealing the diversity
and also the maturity of the field of reconfigurable computing.

ACM Computing Surveys, Vol. 42, No. 4, Article 13, Publication date: June 2010.



Compiling for Reconfigurable Computing: A Survey 13:55

Table XI. Main Characteristics of Some Compilers (cont.): Forms of Partitioning
Array Temporal Spatial RW/SW

Compiler Partitioning Partitioning Partitioning Partitioning
Transmogrifier-C × × × ×

PRISM-I, II × × × ×

Handel-C × × × ×

Galadriel & Nenya × � × ×

SPARCS × � � ×

DEFACTO × × × ×

SPC × × × ×

DeepC � × × ×

Maruyama × × × ×

MATCH × × � �

CAMERON × × × ×

NAPA-C × × × × (annotations)
Stream-C × × × ×

garpcc × × × �

CHIMAERA-C × × × �

HP-Machine × × × ×

ROCCC × × × ×

DIL × × (the architecture
is automatically
virtualized)

× ×

RaPiD-C × × × ×

CoDe-X × × × �

XPP-VC × � (includes loop
dissevering)

× ×

Table XII. Main Characteristics of Some Compilers (cont.): Back-End Support
Generation of the

Hardware Structure: Back-end
Output of the compiler: VLS: Vendor Logic (bitstream generation):

(1): RTL-HDL Synthesis CPR: Commercial
(2): Algorithmic HDL CG: Circuit Generators Placement and

Compiler (3): bitstreams OO: one-to-one Mapping Routing Tools
Transmogrifier-C ? CG CPR
PRISM-I, II ? CG CPR
Handel-C (1) CG CPR
Galadriel & Nenya (1) Data-path: CG CPR

Control unit: VLS
SPARCS (1) VLS CPR
DEFACTO (2) VLS CPR
SPC (1) CG CPR
DeepC (1) VLS CPR
Maruyama (1) VLS CPR
MATCH (2) VLS CPR
CAMERON (1) VLS CPR
NAPA-C (1) CG CPR
Stream-C (1) CG CPR
garpcc (3) CG Proprietary: Gama
CHIMAERA-C ? Manually ? —
HP-MAchine (3) CG Proprietary + Jbits
ROCCC Data-path: (1) VLS CPR

Control unit: (2)
DIL (3) CG Proprietary
RaPiD-C (3) OO Proprietary
CoDe-X (3) OO Proprietary
XPP-VC (3) OO Proprietary: xmap
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Table XIII. Main Characteristics of Some Compilers (cont.): Target Platform
Compiler Target Platform
Transmogrifier-C 1 FPGA
PRISM-I, II 1 FPGA
Handel-C 1 FPGA
Galadriel & Nenya 1 FPGA, multiple memories
SPARCS multiple FPGAs, multiple memories
DEFACTO multiple FPGAs, multiple memories
SPC 1 FPGA, multiple memories?
DeepC A mesh of tiles each one with 1 FPGA connected to 1 memory
Maruyama 1 FPGA, multiple memories
MATCH multiple FPGAs, each one connected to one memory
CAMERON 1 FPGA, multiple memories
NAPA-C 1 FPGA, multiple memories
Stream-C 1 FPGA, multiple memories
garpcc μP (Garp) connected to a proprietary RPU
CHIMAERA-C μP (SimpleScalar) connected to an RFU
HP-MAchine 1 FPGA, multiple memories
ROCCC 1 FPGA
DIL PipeRench RPU
RaPiD-C RaPiD RPU
CoDe-X Multi-KressArrays connected to a host system
XPP-VC 1 XPP, multiple memories
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BÖHM, W., HAMMES, J., DRAPER, B., CHAWATHE, M., ROSS, C., RINKER, R., AND NAJJAR, W. 2002. Mapping a
single assignment programming language to reconfigurable systems. J. Supercomput. 21, 2, 117–130.
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