
Compiling HPC Kernels for the REDEFINE CGRA

Kavitha T Madhu∗, Saptarsi Das∗, Nalesh S.∗, S. K. Nandy∗ and Ranjani Narayan†
∗CAD Laboratory, Indian Institute of Science, Bangalore

Email: {kavitha, sdas, nalesh}@cadl.iisc.ernet.in, nandy@serc.iisc.in
†Morphing Machines Pvt. Ltd., Bangalore

Email: ranjani.narayan@morphingmachines.com

Abstract—In this paper, we present a compilation flow for
HPC kernels on the REDEFINE coarse-grain reconfigurable
architecture (CGRA). REDEFINE is a scalable macro-dataflow
machine in which the compute elements (CEs) communicate
through messages. REDEFINE offers the ability to exploit high
degree of coarse-grain and pipeline parallelism. The CEs in
REDEFINE are enhanced with reconfigurable macro data-paths
called HyperCells that enable exploitation of fine-grain and
pipeline parallelism at the level of basic instructions in static
dataflow order. Application kernels that exhibit regularity in
computations and memory accesses such as affine loop nests
benefit from the architecture of HyperCell [1], [2]. The proposed
compilation flow aims at exposing high degree of parallelism in
loop nests in HPC application kernels using polyhedral analysis
and generates meta-data to effectively utilize the computational
resources in HyperCells. Memory is explicitly managed through
compiler’s assistance. We address the compilation challenges such
as partitioning with load balancing, mapping and scheduling
computations and management of operand data while targeting
multiple HyperCells in the REDEFINE architecture. The pro-
posed solution scales well meeting the performance objectives of
HPC computing.

I. INTRODUCTION

Coarse-grain reconfigurable architectures offer the ability
to exploit massive parallelism close to a many-core/multicore
system with a very low power budget. There exist CGRAs
in which ASIC-like hardware data-paths can be created on
demand, at runtime. Examples of such CGRAs include Molen
Polymorphic Processor [3], Convey Hybrid-Core Computer
[4], DRRA [5], REDEFINE [6]. Unlike GPUs, they are not
strictly restricted to SIMD paradigm of execution. In the recent
past a plethora of such CGRAs have emerged as potential
platforms for accelerating kernels from HPC applications. Such
architectures aid in exploiting different types of parallelism
resident within application kernels, thus paving way for a
compiler to expose four main types of (latent) parallelism,
viz., ILP, DLP and TLP and pipeline parallelism. REDE-
FINE is one such CGRA designed to ease exploitation of
all kinds of parallelism. A Network-on-Chip (NoC) provides
a packet switched network that interconnects compute and
storage resources. This inherent flexibility in the NoC aids in
pooling together the compute and storage resources suitably
for an application kernel. A plurality of Compute Elements
(CEs) in REDEFINE aid in exploiting DLP, TLP and pipeline
parallelism. The ability of REDEFINE to employ CEs with
reconfigurable macro data-paths called HyperCells [1], [2]
enables exploitation of fine grain parallelism resident within
a coarse grain entity. Also, REDEFINE inherently allows
low latency configuration and synchronization. These features
coupled with the ability to to partially reconfigure a subset of

HyperCells makes it suitable for executing HPC kernels.

While architectures (such as REDEFINE) are available as
experimental platforms to exploit different types and granular-
ities of parallelism, a big challenge needs to be addressed: A
tool to expose parallelism resident in application kernels. In
this paper we focus on compilation strategies for REDEFINE
based on polyhedral loop optimizations since most HPC ap-
plications spend a large fraction of execution time on loops.
Regular loop nests with affine array accesses can be analysed
with compilation frameworks based on the polyhedral model
[7]. The approach employed in [7] performs partitioning for
general purpose control-flow cores with data locality ensured
at register or cache levels. Similar approaches have been
employed to target specific hardware units such as FPGA [8].

This paper presents a comprehensive compilation solution
covering multiple aspects such as partitioning, mapping, data
layout for the architecture to optimize the performance of
loops. The compilation strategy exploits the communication
hierarchy provided by the architecture to generate performance
optimal executables. It employs a bottom-up approach where
computations are identified for CEs first. The computations
are then aggregated into coarse-grain schedulable entities for
REDEFINE keeping in mind that the hardware resources are
shared among different forms of communication. Maximiz-
ing resource utilization is the objective in each step of the
compilation flow. Primary goals of the proposed compilation
process presented in this paper are partitioning and mapping
kernels for maximally utilizing resources (with balanced loads
across computing resources), creating schedules for the coarse-
grain computations such that there is maximal overlap in
inputs and outputs and hence exploit locality, creating meta-
data for orchestrating data delivery from an external memory
infrastructure onto REDEFINE memory such that memory
transaction overheads are minimized and reducing the recon-
figuration overheads by employing fine grain reconfiguration.

II. DESCRIPTION OF THE REDEFINE ARCHITECTURE

REDEFINE [6] is a CGRA composed of multiple CEs
(refer figure 1). The CEs communicate with each other over an
NoC. REDEFINE architecture framework facilitates exploita-
tion of coarse-grain as well as pipeline parallelism through
execution of kernels on multiple CEs in dataflow order. An ap-
plication kernel is expressed in terms of convex basic schedu-
lable entities for execution in REDEFINE called HyperOps. A
HyperOp further comprises multiple co-operating pHyperOps
that communicate with each other. Each pHyperOp is a MIMO
operation mapped onto a CE. Multiple pHyperOps forming
a HyperOp are launched simultaneously onto REDEFINE



fabric. Memory is structured as an explicitly managed sets
of multiple banks as shown in figure 1. It offers a global
store for REDEFINE’s compute fabric and the address space
is logically partitioned to be used for prefetching. Memory
barriers and contention resolution mechanism for CEs across
HyperOps are realized by the orchestrator. In order to exploit
higher degree of ILP resident within each pHyperOp, we
enrich CEs with HyperCells[1], [2]. HyperCell is a micro-
dataflow machine with a controller designed for executing
Dataflow Graphs (DFGs) in a pipelined manner. HyperCell
provides close to ASIC realization of a DFG and enables
exploitation of high degree of ILP at the level of the DFG
it executes and pipeline parallelism across instances of the
DFG. HyperCell comprises a reconfigurable data-path, a

HRouter HyperCell

Memory
Bank Set

Orchestrator

H H

H H

H H

H H

H H

H H

H H

H H

H H

H H

H H

H H

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Memory
Bank Set

Host 
Environment

REDEFINE 

Fig. 1: REDEFINE CGRA with HyperCells as CEs

Peripheral 
Switch 

Switch Buffer 

Compute Unit 

Corner Switch 

To and from NoC Router 

Local Storage 

HyperCell 

Reconfigurable Data-path 

Transporter 

Controller 

Data 

Control 

Fig. 2: Micro-architecture of HyperCell

local storage and a controller. The reconfigurable data-path
comprises a number of ALUs/FUs connected over a circuit-
switched programmable interconnect (refer to figure 2, [1],
[2]). The local storage acts as a dedicated operand/output
data storage for the reconfigurable data-path and offers high
bandwidth for data transfer. HyperCell controller provides the
necessary micro-architectural support for exploiting temporal
parallelism. Data transfer between memory and local storage
and local storage and HyperCell fabric is based on a set of
control words. Controller executes instances of the kernels in
a modulo schedule based on control sequences that typically
have a prologue, a steady state (executed repeatedly depending
on the bounds) and an epilogue. The NoC [9] facilitates
inexpensive communication between HyperCells with a hand-
shake mechanism for flow-control between communicating

(a) Coarsening of iterations

(b) Creation of pHyperOp

(c) Creation of HyperOp

Fig. 3: Coarsening of iterations and creation of pHyperOp and
HyperOp in a simple 2-d loop nest

HyperCells. In addition, NoC is used by HyperCells to access
memory. Although NoC allows communication between any
HyperCell and any set of memory banks, the compiler tries
to place data and computations such that memory transactions
are local to columns of HyperCells. Compiler also determines
the interaction among HyperOps of a kernel. Orchestrator is
configured with this information every time a new kernel is
to be executed on REDEFINE. Orchestrator also synchronizes
execution of HyperOps. Further, when a HyperOp is ready to
be launched for execution, orchestrator configures the Hyper-
Cells executing a HyperOp. It also manages data movement
between the host environment and REDEFINE’s memory.

III. COMPILATION FLOW

In this section we discuss our proposed compilation flow.
The section is structured as follows. We discuss various factors
that affect performance of a kernel in section III-A. In section
III-B we present the steps in the proposed compilation flow
with the objectives of maximizing utilization of hardware
resources, thereby maximizing efficiency of execution.

A. Factors Affecting Performance

Consider a simple two dimensional loop-nest shown in fig-
ure 3. The loop when expressed as a dependence graph in the
iteration space, is a lattice of points. Each point in the lattice
embeds the DFG corresponding to the computation c[i][j]
= c[i-1][j] + a[i][j] + b[i][j]. The DFG cor-
responding to each iteration is mapped onto a HyperCell’s
reconfigurable data-path. It may have to be coarsened into
tiles (refer figure 3a) to maximize utilization or partitioned



to meet the structural constraints. Each HyperCell executes
many instances of the coarsened/partitioned loop body in a
pipeline. In the context of multi-dimensional loop nests, a
tile (referred to as a pHyperOp) in the coarsened iteration
space is assigned one HyperCell for execution (refer figure
3b). Multiple HyperCells are capable of concurrently executing
a number of pHyperOps, using the NoC to communicate data
between pHyperOps. Compiler combines such pHyperOps into
bundles aka HyperOps (refer figure 3c) that are launched
atomically on REDEFINE’s compute fabric.

Figure 4 depicts the execution of a loop nest divided
into multiple HyperOps on REDEFINE. The total execution
time of the loop on REDEFINE includes the time spent in
actual computation, time spent in configuring the HyperCells
and time spent in synchronization. During configuration or
synchronization operations, compute elements stay idle re-
sulting in low utilization. Low latency synchronization and
reconfiguration at the granularity of HyperOps and inexpensive
point-to-point synchronization between HyperCells are inher-
ent in REDEFINE architecture. The architecture offers partial
reconfiguration feature reducing the runtime overheads further.
Contribution of configuration and synchronization time to total
execution time is estimated to be much smaller than actual
computation time. Hence, achieving better utilization while
performing computations is of utmost importance. Three major
factors impact utilization during computations and are listed
here in decreasing order of their impact on overall computation
time.

Global Communication of Configuration Meta-Data

Computation with Overlapped Communication

Synchronization among Producer Consumer HyperOps

Global Communication of Configuration Meta-Data

Computation with Overlapped Communication

Synchronization among Producer Consumer HyperOps

Execution
of a Single 
HyperOp

Fig. 4: Execution flow of HyperOps in the REDEFINE archi-
tecture

1) Initiation interval of Computations in each HyperCell:
Initiation interval corresponds to the rate at which compu-
tations can be launched within each HyperCell. Ideally, a
new DFG instance should be initiated every cycle in each
HyperCell. Computation time (Tcomp) increases linearly with
increase in initiation interval. Architectural artifacts affect the
initiation interval of computations as explained subsequently.

Limited Local Storage and network bandwidth induce
an initiation interval when the inputs and outputs delivered
between HyperCell’s data-path and local storage or outputs
to another HyperCell require higher bandwidth. The network
resources may further be shared among multiple paths of
communication (Let p be the number of paths share the set
of network resources).
∆inloc

= # local storage inputs
local storage bandwidth

∆outloc = # local storage outputs
local storage bandwidth

∆out,nw = # outputs written to other HyperCell(s)
network bandwidth

p

∆in,outloc = max(∆inloc
,∆outloc ,∆out,nw)

Memory Bandwidth induces an initiation interval due to
inputs and outputs being fetched from memory or written to
memory for each instance of DFG.
∆in,outmem

= #memory inputs+#memory outputs
min(memory bandwidth,networkbandwidth/p)

Control Storage and Local Storage size of HyperCells
limit the longest reuse distance(i.e., the longest interval for
which input or output data of a computation can be kept alive
for use in a successive instance of computation maxcontrol )
supported by a single HyperCell, increasing the critical path
of computation τ and the initiation interval ∆cp = τ

maxcontrol
.

Overall initiation interval is given by the following
expression and is minimized across various compilation steps.
∆ = max(∆in,outloc ,∆in,outmem ,∆cp)

2) Under-utilization of FUs in HyperCell: HyperCell’s FUs
may be under-utilized due to factors such as imperfection in
loops, structural constraints of the data-path such as number
of FUs, IO ports and mappability. This has a sub-linear effect
on execution time.

3) Under-utilization of HyperCells in REDEFINE fabric:
Static mapping of HyperOps onto REDEFINE fabric proves
useful in generating configuration statically but may result in
under-utilization due to pipeline start and drain and at the
boundaries of iteration space. Pipeline start and drain may
prevent concurrent start of execution of pHyperOps belonging
to a HyperOp.

B. Compilation Steps

The compilation steps are designed for maximizing utiliza-
tion primarily by minimizing initiation interval due to various
hardware artifacts. While other factors may affect utilization,
initiation interval impacts performance the most and hence, has
higher priority over other optimization criteria among different
steps.

1) Identifying DFGs for HyperCell: HyperCell’s reconfig-
urable data-path offers the flexibility to house the computations
in a dataflow graph (DFG) that honors its structural constraints
and has the fastest communication infrastructure. If the DFG
corresponding to a point in the iteration space does not meet
the structural constraints of a HyperCell’s data-path, it is parti-
tioned into multiple subgraphs that are mapped onto different
HyperCells instead of performing loop fission to place the
producer and consumer computations close. Each HyperCell
has its own configuration storage allowing partitioned graphs to
reside in separate HyperCells and communicate seamlessly. On
the other hand, multiple points in the iteration space need to be
grouped together if the DFG under-utilizes compute resources
in the data-path. Tiling is an important loop transformation
applied to achieve this. The objective of this step is to identify
the correct tile size so as to maximize resource utilization of
HyperCells and increase temporal locality of data within a tile.
Compute resources of HyperCell maybe under-utilized when
executing tiles at the iteration space boundaries. Tiles whose
boundaries align with the iteration space boundaries are best
suited for achieving high utilization with affordable trade-off
in data locality. Imperfect loop nests add to the utilization



problem since they are not executed throughout the iteration
space. If loop fission cannot be performed, they need to be
handled explicitly when coarsening. The tile size then needs to
be computed such that it can accommodate statements causing
imperfections. Let the n dimensional iteration space of the can-
didate loop be represented by the set of iteration vectors I =
{i1, i2, i3 · · · in}. Let H = {h1, h2, h3 · · ·hn} be the tiling
hyperplanes such that all hjs are linearly independent and are
computed as mentioned in [7] with higher priority associated
with WAW dependence vectors than RAW/RAR vectors. WAW
vectors are associated with higher priority since excluding a
WAW vector results in more memory operations than the other
dependence types. Let the size of a tile along each hyperplane
vector be defined by a set of real values {s1, s2, s3 · · · sn}1.
A tile is identified and associated with sizes such that the
following conditions are met: DFG corresponding to the tile
must be mappable on HyperCell fabric. Initiation interval
∆tile = max(∆inloc

,∆outmem,partial
,∆cp,partial) is mini-

mum, where ∆outmem,partial
is the initiation interval due to

stores to memory caused by RAW dependences only and
∆cp,partial is the initiation interval due to critical path. Uti-
lization of HyperCell FUs is maximum. ∆tile corresponds to
the initiation interval due to coarsening.

2) Creation of pHyperOp: Recall that a pHyperOp is a part
of the iteration space that gets mapped onto a single HyperCell.
A pHyperOp is created in a similar manner as outlined in
step III-B1 where hyperplane vectors and sizes along the
vectors are computed. A pHyperOp is created for locality
of data using HyperCell’s local storage and to effectively
pipeline them. Hence, parallel pipelineable instances need to
be identified within a pHyperOp. Let H = {h1, h2, h3 · · ·hn}
be the hyperplane vectors computed in the coarsened iteration
space sorted in the decreasing order in data locality. Parallel
instances are identified by finding another vector hp such
that hp · d > 0 for all non RAR dependence vectors d. The
vector hp is the normal to a wavefront along which parallel
pipelineable instances of computation are found. Sizes are
computed along all hyperplane vectors except one hyperplane
vector which indicates the direction along which wavefront
instances grow in number. This vector hload is identified as the
first vector from left in the set H such that hload is linearly
independent of hp. Each dependence vector in a pHyperOp
tile has an associated minimum tile size for least initiation
interval, a steady state size of control sequences and a max-
imum size (in terms of the number of steady state instances)
along hyperplane vectors H . The size of pHyperOp tile is
chosen such that the following conditions are met: Steady
state of control sequence of the pHyperOp can be accom-
modated in control storage. Initiation interval ∆pHyperOp =
max(∆inmem

,∆outloc,partial
,∆cp,partial) is minimum, where

∆outloc,partial
is the initiation interval due to stores to local

storage due to RAW dependences only and ∆cp,partial is the
initiation interval due to critical path. Ratio of maximum size
of the pHyperOp to steady state size is maximum. For better
load balancing in irregularly shaped iteration spaces, larger size
maybe associated with hyperplane vectors that align with the
boundaries of the iteration space. Effective initiation interval
at the end of this step is min(∆pHyperOp,∆tile).

1A tile comprises lattice points enclosed by n pair of parallel hyperplanes.
The dimension of the tile along a pair of parallel hyperplanes hi is a real
value si.

3) Creation and Mapping of HyperOp: Multiple pHyper-
Ops are aggregated to create a HyperOp. While aggregating,
we map pHyperOps to HyperCells keeping in mind the ar-
chitectural limits such as memory and network bandwidth.
A HyperOp uses the NoC for two purposes namely inter-
pHyperOp communication and memory transactions. Recall
that initiation interval is affected by paths (to memory or be-
tween pHyperOps) sharing network resources. Memory banks
are available along each column of REDEFINE fabric. To
minimize network resource sharing, pHyperOps are mapped
onto HyperCells such that a set of HyperCells in a column
access the bank of the column. Algorithm 1 describes the
creation of a HyperOp and its mapping onto HyperCells. The
algorithm either sets up a long pipeline of computations along
a vector with most overlap in output data or multiple shorter
pipelines based on available memory bandwidth. The shorter
pipelines may further be shortened to reduce start and drain
delays. Under-utilization at boundaries may be reduced by
creating HyperOps along vectors that align with the boundaries
of the iteration across multiple steps of compilation.

Algorithm 1 Algorithm to create HyperOp and map onto
REDEFINE fabric

1: Map the first pHyperOp to the HyperCell in the top-left
corner on REDEFINE fabric.

2: Identify a hyperplane vector vi with non-RAR depen-
dences in forward direction along vi and along which most
dependence edges from the first pHyperOp align.

3: Compute the memory bandwidth requirement of pHyper-
Ops mrequired along vi as mrequired=dmemory transac-
tions required per instance of the pHyperOp / (2×∆mine)

4: Let pipeline length = 2 × mrequired. The pHyperOps
along vi are placed in a vertical-reverse S[10] manner such
that the instances are pipeline length HyperCells apart.

5: if pipeline length > 0 then
6: Sort other hyperplane vectors with non-RAR depen-

dences in forward direction in decreasing order of no. of
WAW/RAW dependence edges along each iteration vector.

7: From the vectors which have most dependence vectors
aligned along them, identify vector vj along which overlap
of inter-HyperCell communication paths is minimum.

8: Place pHyperOps along vj in between pairs of pHyper-
Ops selected along vi.

9: end if

4) Data Layout: Data layout corresponds to identifying
a map of the addresses of inputs and outputs into address
space of REDEFINE fabric to ensure minimum memory access
conflicts, while distributing the data uniformly. For each pHy-
perOp placed along a column in REDEFINE fabric, each input
is treated as a single block of data. The blocks corresponding to
a pHyperOp can be placed in different banks of a set avoiding
access conflicts. There maybe inputs shared across pHyperOps
along a column. Storing a single copy of such data in a single
bank leads to imbalance in storage among banks. On the other
hand, multiple copies of such inputs can be created, one copy
for each pHyperOp using the data following the dynamic single
assignment model. This leads to balanced distribution but poor
memory utilization. Instead, such input blocks are partitioned,
replicated partially and distributed among banks of memory.
Once a layout of inputs and outputs is identified, the sizes of



inputs and outputs are computed based on the size of each bank
as explained in the algorithm 2. This indicates the size of a
HyperOp in terms of tile dimensions and its corresponding
pHyperOp. The maximum size of pHyperOps in terms of
iteration space is computed after identifying the layout.

Algorithm 2 Algorithm to layout data for a HyperOp
1: for all input and output arrays of the DFG mapped onto

HyperCells in each column do
2: if input array range is unique to each pHyperOp in a

column or is partially shared between pHyperOps or is an
output array range then

3: Place a copy of the array range for each pHyperOp in
a round-robin manner to ensure least conflict with operand
data of the HyperCell placed previously.

4: end if
5: end for
6: for all input array range being reused among a subset of

pHyperOps in a column do
7: if Steady state of control sequences cannot be increased

any further then
8: Replicate the entire input array-range being shared

such that each pHyperOp gets an independent copy of
inputs and place them similarly as the previous step.

9: else if the no. of rows of steady state control sequence
can be increased n times then

10: Compute appropriate partition and replication factors
for the data array-range such that the steady state size
does not increase by a factor larger than n, conflicts are
minimized and data distribution across banks is uniform.

11: end if
12: end for
13: Compute the size of arrays in each bank such that they

add to the memory bank size.

C. HyperOp Scheduling

HyperOp instances need to be scheduled to be executed
on REDEFINE fabric honoring dependence and resource
constraints. HyperOp instances communicate with each other
through memory. An order of execution among HyperOps
is identified using hyperplane vectors such that data local-
ity among successive HyperOps is maximized. Orchestrator
is configured to honor the order of HyperOp execution. It
computes runtime parameters such as loop bounds, input and
output addresses. Launching a new HyperOp instance requires
configuring this subset of parameters. Orchestrator is config-
ured to prefetch operands for a successive HyperOp instances
based on the schedule. Prefetch is expected to overlap with
HyperOp execution. A subset of memory banks are used for
prefetching while the rest are used by HyperCells. For data that
needs to be fetched for a successive iteration, if volume of data
required is order of magnitude less than computation, inputs
required for a subsequent iteration can be fetched, reducing
data transfer overheads. While computations can be launched
at a rapid rate within a HyperCell with initiation interval as
computed at the end of HyperOp creation step, configuration
and synchronization time add to overall execution time. We
hence compute the ratio of overall execution time to the
computation time as the effective initiation interval and use
it as a metric to evaluate the compiler’s effectiveness.

IV. RESULTS

In this section, we present experimental results to demon-
strate the effectiveness of the proposed compilation process on
REDEFINE accelerator enriched with HyperCells. We choose
to implement a number of HPC kernels from the Polybench
benchmark suite [11]. The kernels include loops from the
domains of linear algebra and stencil computations. For each
kernel we create 6 experimental setups with different problem
sizes. These 6 setups are denoted as Setup 1 to 6 in figures
5, 6 and 7. Kernels MATMUL, SYRK and SY2RK are of
O(n3) complexity, GESUMMV and GEMVER are of O(n2)
complexity, JACOBI 1-D, JACOBI 2-D and SIEDEL 2-D are of
complexity O(mn), O(mn2) and O(mn2) respectively. Here
n ranges from 256 to 8192 in power of 2 while m’s values
are 2, 10 and 100.

For experimentation, we use a template of the REDEFINE
compute fabric with toroidal mesh topology. The CEs are
arranged in 6 rows and 4 columns. Each CE is enriched with
a HyperCell with 25 FUs. Each FU comprises an integer ALU
and a single precision floating point unit. The local storage
of each HyperCell consists of 8 banks of 64 deep register
files. Each HyperCell has a configuration memory of 16KB.
Memory is arranged as two blocks of memory banks. Each
block is divided into 6 sets. Each set acts as the data storage
for one row of four HyperCells. NoC is capable of delivering
4 load or store requests per cycle. Hence each set is divided
into 4 banks, where each bank is 16KB in size. Orchestrator
has two main storages: configuration storage (16KB in size)
and context memory storage (20KB in size and holds context
for four HyperOps at a time).

In order to demonstrate the effectiveness of our proposed
compilation process, we present effective computation time,
configuration time and synchronization time as fractions of
total execution time for various kernels (Tcomp

Texe
, Tconfig

Texe
and

Tsync

Texe
) in figure 5. Except for JACOBI-1D, the configuration

times are significantly lower compared to total execution time
due to large number of computations. Amount of computation
in JACOBI-1D is not large enough to effectively amortize
configuration overheads.

0

0.2

0.4

0.6

0.8

1

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

Tco
m

p
/Texe

Tco
n

fig/Te
xe

Tsyn
c/Te

xe

MATMUL GESUMMV GEMVER-1 GEMVER-
2/3

GEMVER-4 SYRK SYR2K SIEDEL-2D JACOBI-1D JACOBI-2D

Setup - 1 Setup - 2 Setup - 3 Setup - 4 Setup - 5 Setup - 6

Fig. 5: Effective computation time as a fraction of overall
execution time

In figure 6 we present efficiency of execution for the vari-
ous kernels defined as the ratio of actual execution time of the
kernel on REDEFINE and execution time of the same kernel



on an ideal machine with the same computational resources.
Actual performance is affected by architectural artifacts of
REDEFINE and HyperCell such as NoC bandwidth, memory
bandwidth. We assume that the ideal machine does not suffer
from these constraints. Due to effective reuse of operand
data by the compiler, we achieve reasonable efficiency for
most kernels. As problem size increases, configuration and
synchronization overheads get amortized more effectively and
the fraction of boundary HyperOps which under-utilize the RE-
DEFINE fabric decreases, resulting in increased efficiency of
execution. For larger problem sizes, kernels such as MATMUL,
SYRK, SYR2K and JACOBI-1D achieve efficiency of 0.35 to
0.45. The remaining kernels are constrained by bandwidth lim-
itations of HyperCells and increasing input output bandwidth
of each HyperCell is the only way to improve efficiency.

Fig. 6: Efficiency of execution for various kernels

Figure 7 shows percentage difference between the effective
initiation interval and the architecture induced lower bound
on initiation interval. This is a more realistic comparison to
demonstrate the effectiveness of compilation. In this compari-
son variation in performance among kernels due to bandwidth
constraints is nullified. Difference in observed initiation inter-
val and theoretical initiation interval reduces with increased
problem sizes. Only larger problem sizes are considered in
figure 7. MATMUL and SIEDEL-2D show more than 40%
difference with architecture induced initiation interval. This
is attributed to the under-utilization of FUs in HyperCell.
GEMVER-2/3 and GEMVER-4 also show similar behavior.
This is attributed to the under-utilization of HyperCells in
REDEFINE fabric. For JACOBI-1D, the high configuration
overhead adversely affects the initiation interval. For other
kernels the difference is less than 20%.

Fig. 7: Percentage difference between effective Initiation Inter-
val & Architecture induced lower bound on Initiation Interval

V. CONCLUSION

In this paper, we present a compilation strategy for stati-
cally analyzable HPC kernels for a massively-parallel CGRA
called REDEFINE. REDEFINE has multiple CEs with an NoC

interconnect. It facilitates exploiting high degree of coarse
grain and pipeline parallelism. The CEs comprise HyperCells
for exploiting fine-grain ILP and pipeline parallelism. The
compilation flow targets this architecture for accelerating ker-
nels that exhibit regular parallelism such as affine loop nests
with large bounds. It is designed using polyhedral compi-
lation principles for partitioning the kernels among multiple
HyperCells efficiently for parallelism while balancing utiliza-
tion of memory and computation resources. While targeting
REDEFINE, it is also responsible for generating appropri-
ate configuration for orchestrating execution of coarse-grain
computation entities as well as controlling data movement
between an external host environment and REDEFINE. Results
presented show the effectiveness of the compilation flow in
utilizing computation resources.

REFERENCES

[1] K. T. Madhu, S. Das, M. Krishna, N. Sivanandan, S. K. Nandy,
and R. Narayan, “Synthesis of instruction extensions on hypercell, a
reconfigurable datapath,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XIV), 2014 International
Conference on. IEEE, 2014, pp. 215–224.

[2] S. Das, K. Madhu, M. Krishna, N. Sivanandan, F. Merchant, S. Natara-
jan, I. Biswas, A. Pulli, S. Nandy, and R. Narayan, “A framework for
post-silicon realization of arbitrary instruction extensions on reconfig-
urable data-paths,” Journal of Systems Architecture, vol. 60, no. 7, pp.
592–614, 2014.

[3] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. M. Panainte, “The MOLEN polymorphic processor,” IEEE Trans.
Computers, vol. 53, no. 11, pp. 1363–1375, 2004. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TC.2004.104

[4] T. M. Brewer, “Instruction set innovations for the convey HC-1
computer,” IEEE Micro, vol. 30, no. 2, pp. 70–79, 2010. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/MM.2010.36

[5] M. Shami and A. Hemani, “Partially reconfigurable interconnection
network for dynamically reprogrammable resource array,” in ASIC,
2009. ASICON ’09. IEEE 8th International Conference on, 2009, pp.
122–125.

[6] M. Alle, K. Varadarajan, A. Fell, C. R. Reddy, J. Nimmy, S. Das,
P. Biswas, J. Chetia, A. Rao, S. K. Nandy, and R. Narayan,
“REDEFINE: Runtime reconfigurable polymorphic ASIC,” ACM
Trans. Embedded Comput. Syst, vol. 9, no. 2, 2009. [Online].
Available: http://doi.acm.org/10.1145/1596543.1596545

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08. New
York, NY, USA: ACM, 2008, pp. 101–113. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375595

[8] C. Alias, B. Pasca, and A. Plesco, “Automatic generation of fpga-
specific pipelined accelerators,” in Reconfigurable Computing: Archi-
tectures, Tools and Applications. Springer, 2011, pp. 53–66.

[9] A. Fell, P. Biswas, J. Chetia, S. K. Nandy, and R. Narayan,
“Generic routing rules and a scalable access enhancement for the
network-on-chip RECONNECT,” in Annual IEEE International SoC
Conference, SoCC 2009, September 9-11, 2009, Belfast, Northern
Ireland, UK, Proceedings, 2009, pp. 251–254. [Online]. Available:
http://dx.doi.org/10.1109/SOCCON.2009.5398048

[10] N. Bansal, S. Gupta, N. Dutt, and A. Nicolau, “Analysis of the
performance of coarse-grain reconfigurable architectures with different
processing element configurations,” in Workshop on Application Specific
Processors, held in conjunction with the International Symposium on
Microarchitecture (MICRO), 2003. Citeseer, 2003.

[11] “Polybench: Polyhedral benchmark suite,”
http://www.cs.ucla.edu/ pouchet/software/polybench/.


