
Compiling Irregular Software to

Specialized Hardware

Richard Townsend

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019

©2019
Richard Townsend
All rights reserved

ABSTRACT

Compiling Irregular Software to Specialized Hardware

Richard Townsend

High-level synthesis (HLS) has simplified the design process for energy-efficient hardware

accelerators: a designer specifies an accelerator’s behavior in a “high-level” language, and a

toolchain synthesizes register-transfer level (RTL) code from this specification. Many HLS sys-

tems produce efficient hardware designs for regular algorithms (i.e., those with limited condi-

tionals or regular memory access patterns), but most struggle with irregular algorithms that rely

on dynamic, data-dependent memory access patterns (e.g., traversing pointer-based structures

like lists, trees, or graphs). HLS tools typically provide imperative, side-effectful languages to

the designer, which makes it difficult to correctly specify and optimize complex, memory-bound

applications.

In this dissertation, I present an alternative HLS methodology that leverages properties of

functional languages to synthesize hardware for irregular algorithms. The main contribution is

an optimizing compiler that translates pure functional programs into modular, parallel dataflow

networks in hardware. I give an overview of this compiler, explain how its source and target

together enable parallelism in the face of irregularity, and present two specific optimizations that

further exploit this parallelism. Taken together, this dissertation verifies my thesis that pure

functional programs exhibiting irregular memory access patterns can be compiled into

specialized hardware and optimized for parallelism.

This work extends the scope of modern HLS toolchains. By relying on properties of pure func-

tional languages, our compiler can synthesize hardware from programs containing constructs

that commercial HLS tools prohibit, e.g., recursive functions and dynamic memory allocation.

Hardware designers may thus use our compiler in conjunction with existing HLS systems to

accelerate a wider class of algorithms than before.

Contents

List of Figures v

List of Tables x

Acknowledgements xi

1 Introduction 1

1.1 My Thesis . 1

1.2 Structure of the Dissertation . 2

1.3 High-Level Synthesis and Irregular Algorithms . 3

1.4 Contributions . 4

2 Related Work 8

2.1 High-Level Synthesis . 8

2.1.1 Functional HLS . 9

2.1.2 Irregular HLS . 11

2.2 Hardware Dataflow Networks . 13

2.3 Parallelizing Divide-and-Conquer Algorithms . 15

2.3.1 Software Techniques . 15

2.3.2 Memory Partitioning . 16

2.3.3 HLS for Divide-and-Conquer . 17

2.4 Optimizing Recursive Data Structures . 19

3 An Overview of Our Compiler 22

3.1 Our Main IR: a Variant of GHC Core . 22

3.2 The End-to-End Compilation Flow . 27

3.3 Lowering Core . 35

i

3.3.1 Removing Polymorphism . 35

3.3.2 Making Names Unique . 37

3.3.3 Lambda Lifting . 37

3.3.4 Removing Recursion . 38

3.3.5 Tagging Memory Operations . 47

3.3.6 Simplifying Case . 49

3.3.7 Adding Go . 50

3.3.8 Lifting Expressions . 53

3.3.9 Optimizing Reads . 54

4 From Functional Programs to Dataflow Networks 55

4.1 A Restricted Dialect of Core: Floh . 56

4.1.1 An Example: Map . 57

4.2 Dataflow Networks . 59

4.3 Translation from Floh to Dataflow . 62

4.3.1 Translating Expressions . 62

4.3.2 Translating Simple Functions and Cases 63

4.3.3 Translating Clustered Functions and Cases 66

4.3.4 Putting It All Together: Translating the Map Example 69

4.4 Dataflow Networks in Hardware . 71

4.4.1 Evaluation Order . 72

4.4.2 Stateless Actors . 72

4.4.3 Stateful Actors . 73

4.4.4 Inserting Buffers . 73

4.5 Experimental Evaluation . 77

4.5.1 Methodology . 77

4.5.2 Strict vs. Non-strict Tail Recursive Calls 78

4.5.3 Sensitivity to Memory Latency . 79

4.5.4 Sensitivity to Function Latency . 80

5 Realizing Dataflow Networks in Hardware 81

5.1 Specifications: Kahn Networks . 83

5.1.1 Kahn Networks . 83

ii

5.1.2 Dataflow Actors . 85

5.1.3 Unit-rate, Mux, and Demux Actors . 86

5.1.4 Nondeterministic Merge . 87

5.2 Hardware Dataflow Actors . 88

5.2.1 Communication and Combinational Cycles 88

5.2.2 Unit-Rate Actors . 89

5.2.3 Mux and Demux Actors . 90

5.2.4 Merge Actors . 92

5.3 Channels in Hardware . 95

5.3.1 Data and Control Buffers . 95

5.3.2 Forks . 97

5.4 The Argument for Correctness . 98

5.5 Our Dataflow IR: DF . 101

5.5.1 Channel Type Definitions . 101

5.5.2 Actor Instances and Type Definitions . 104

5.5.3 Checking DF Specifications . 106

5.6 Experimental Evaluation . 107

5.6.1 Experimental Networks . 108

5.6.2 Random Buffer Allocation . 109

5.6.3 Manual Buffer Allocation . 110

5.6.4 Pipelining the Conveyor . 110

5.6.5 Memory in Dataflow Networks . 111

5.6.6 Overhead of Our Method . 112

6 Optimizing Irregular Divide-and-Conquer Algorithms 114

6.1 Transforming Code . 116

6.1.1 Finding Divide-and-Conquer Functions . 116

6.1.2 Task-Level Parallelism: Copying Functions 117

6.1.3 Memory-Level Parallelism: Copying Types 118

6.1.4 New Types and Conversion Functions . 119

6.2 Partitioning On-Chip Memory . 119

6.3 Experimental Evaluation . 121

6.3.1 Exposing Memory-Level Parallelism . 123

iii

6.3.2 Exploiting Memory-Level Parallelism . 124

7 Packing Recursive Data Types 127

7.1 An Example: Appending Lists . 128

7.2 Packing Algorithm . 131

7.2.1 Packed Data Types . 132

7.2.2 Pack and Unpack Functions . 133

7.2.3 Injection and Hoisting . 135

7.2.4 Simplification . 138

7.2.5 Heuristics to Limit Code Growth . 143

7.3 Experimental Evaluation . 144

7.3.1 Testing Scheme . 145

7.3.2 Experimental Results . 146

8 Conclusions and Further Work 150

8.1 Conclusions . 150

8.2 Further Work . 151

8.2.1 Formalism . 151

8.2.2 Extending the Compiler . 152

8.2.3 Synthesizing a Realistic Memory System 152

8.2.4 Improved and Additional Optimizations 153

Bibliography 155

iv

List of Figures

1.1 A visualization of the research supporting my thesis. I focus on synthesizing hard-

ware from pure functional programs exhibiting irregular memory access patterns,

e.g., the functionmap f l, which applies a function f to each element of a linked list l,

storing the results in a new list (a). I translate these programs into modular, parallel

dataflow networks in hardware (b), and apply two optimizations that exploit more

parallelism in the synthesized circuits: the first improves memory-level parallelism

in divide-and-conquer algorithms by combining a novel code transformation with

a type-based memory partitioning scheme (c); the second packs more data into re-

cursive types to improve spatial locality (i.e., data-level parallelism) and reduce an

irregular program’s memory footprint (d). 5

3.1 The abstract syntax of the compiler’s main IR: a variant of GHC’s Core [124]. We

augment this grammar with the regular expression meta-operators * (zero or more), |

(choice), and + (one or more). Note that the | token in the type-def rule is actual Core

syntax, not the choice meta-operator. 23

3.2 Overview of our compilation flow: we rewrite Haskell programs into increasingly

simpler representations until we can perform a syntax-directed translation into Sys-

temVerilog. 27

3.3 A dataflow graph for the callLength function. This walks an input list, pushing K1

onto the stack for each element traversed. Upon reaching the end of the list, the stack

pointer, an accumulator, and a Go value are passed to the subnetwork implementing

retLength. 33

3.4 SystemVerilog for a two output demultiplexer, with one output feeding into a destruct

actor that dismantles a Cons cell into its respective fields. 34

v

4.1 The map function implemented in Floh. The call function walks the input list and

pushes each element on a stack of continuations (replacing function activation records)

encodedwith a list-like data type; the ret function pops each element x from the stack,

applies f to it, and prepends the result to the returned list. 58

4.2 Our menagerie of dataflow actors. Those left of the line require data on every input

channel to fire. 60

4.3 Translating a reference to a variable x : a connection is made to the fork actor that

distributes its value. 62

4.4 Translating a data constructor or a primitive, constant-generating, or memory access

function call: each argument (one or more variables) is taken from a new connection

to that variable’s fork actor and the result is the output of the primitive actor. 63

4.5 Translating a let construct: Each of the newly-bound variables is evaluated and con-

nected to fork actors that make their values available to the body. 63

4.6 Translating a simple two-argument function f with two external call sites, s0 and

s1. Data constructor actors impose strictness by bundling a caller’s arguments in a

tuple; a destruct actor dismantles the tuple back into the constituent arguments. A

mergeChoice actor selects which caller’s tuple will access the function, while a demux

routes the result to the caller. 64

4.7 Translating a case construct: a demux actor routes input w to the destruct actor cor-

responding to w’s data constructor. Each destruct splits the token into fields: x and y

for A or z for B. The data constructor from w also serves as a choice token that drives

both the mux that selects the case’s result and the demuxes that steer the values of

live variables p and q to the alternatives that use them. The omitted demux output

for q means eA does not reference that variable. 65

4.8 Translating a case construct containing tail-recursive calls. Values produced by the

alternatives are collected at a merge actor; arguments for intra-cluster tail calls are

fed to each function’s internal call site machinery. Not shown are the demuxes for

live variables, which are treated the same as in Figure 4.7. 66

vi

4.9 Translating function clusters. Functions f and g comprise the cluster since they call

one another recursively. Any values produced by members of a cluster are merged

together to form the cluster’s output channel; using a mux instead could lead to dead-

lock. We omit local demuxes for clustered functions for the same reason. A layer of

mux actors below the argument tuple’s destruct actor act as a “lock” by preventing

multiple external calls from overlapping within a cluster; the presence of a token on

the cluster’s output channel triggers the “unlocking” of these muxes, allowing an-

other external call to access the cluster. 67

4.10 A dataflow graph for map from Figure 4.1. This initializes the stack (map); walks the

input list, pushing each element on the stack (call); then pops each element off the

stack, applies f, and places the result at the head of the new list (ret). Tail calls to

call and ret are not strict, decoupling loops 1, 2, and 3, and more importantly, loops 5

and 6, to enable pipelining. 70

4.11 A point-to-point link and its flow control protocol, after Cao et al. [18]. Data and

valid bits flow downstream, with valid indicating the data lines carry a token; ready

bits flow upstream, indicating that downstream is willing to consume a token. 72

4.12 An example of our buffer allocation scheme (using our third heuristic). We insert

buffers to break cycles in the network (e.g., 2) and prevent reconvergent deadlock

(e.g., 3). 75

4.13 Non-strict evaluation is generally superior to strict. When combined with a good

function argument ordering, the finite, non-strict implementations yield a 1.3–2×

speedup over strict. 79

4.14 Mitigating increasing memory latency with non-strict function evaluation. 79

5.1 A recursive definition of Euclid’s greatest common divisor algorithm and a dataflow

network implementing it. The tail-recursion is implemented with feedback loops. . . 81

5.2 A unit-rate actor that computes a combinational function f of twoW -bit inputs (bit 0

of each port carries the “valid” flag) once both arrive. Depicted is the circuit, a sample

DF specification of the actor (assuming f is a primitive addition function), and the

corresponding SystemVerilog. 90

5.3 A three-inputW -bit multiplexer; select is 2 bits. 91

5.4 A demultiplexer with a two-bit select input and threeW -bit outputs. 91

5.5 A merge used to share a unit-rate subnetwork. 92

vii

5.6 A two-input nondeterministic merge that reports its arbitration decisions on the 1-bit

output sel. 93

5.7 A two-input nondeterministic merge that does not report its selection. 94

5.8 A data (pipeline) buffer, after Cao et al. [18]. This breaks combinational paths in the

data/valid network. 95

5.9 A control buffer, after Cao et al. [18]. This breaks combinational paths in the (up-

stream) ready network. 96

5.10 A three-way fork. An output port’s emtd flip-flop is set when the input token has

been consumed on that port. All are reset after a token is consumed on every port. . . 97

5.11 A DF program describing the topology and channel types for a portion of GCD from

Figure 5.1. 102

5.12 Syntax of DF. Brackets [], bar |, and asterisk ∗ are meta-symbols denoting grouping,

choice, and zero-or-more. Bold characters, including parentheses (), bar |, and caret

∧, are tokens. 103

5.13 The splitter component of a Conveyor. This network partitions tokens arriving on

the input stream in by comparing each input value against a “split” value (the initial

token s). Each input token is sent out on one of three ports depending on whether it

is less than (lt), equal to (eq), or greater than (out) the split value. 108

5.14 Bitonic sorting: the network on the left routes the larger of two input tokens to the top

output and the smaller to the bottom. These are the vertical lines in the eight-element

bitonic sorting network on the right (after Cormen et al. [33]). 108

5.15 Completion times under random buffer placement. Horizontal lines labeled with a

buffer count indicate the completion time of the best manual design. 109

5.16 Buffering our networks. Red bars represent control buffers; black for data. Each cycle

requires both buffers. 110

5.17 Three Conveyor pipelining strategies: doubling the number of stages has only a small

effect on total completion time. 111

6.1 (a) A divide-and-conquer function synthesized into a single block connected to a

monolithic on-chip cache. (b) Our technique duplicates such functions and partitions

the cache to enable task- and memory-level parallelism. 115

viii

6.2 A call graph (a) before and (b) after transformation. Divide-and-conquer (DAC) func-

tions f and h are copied to form fC and hC ; fS and hS are additional versions that split

the work between the originals and their copies. Non-DAC functions called from

DAC functions are also copied (gC). “Copied” types flow along dotted red arrows. . . 117

6.3 (a) Our code transformation consistently increases the number of memory accesses

per cycle—a proxy for memory-level parallelism (oracle memory model). (b) Under

the realistic memory model, cache partitioning and the code transformation each

produce modest improvements; their combination is best because parallel tasks can

exploit extra memory bandwidth. 123

7.1 Performance under various degrees of packing (shorter is better): total number of

memory accesses, total memory traffic in bits, and completion time in cycles. The

numbers for each benchmark are normalized to its unpacked case (Table 7.1 lists base-

lines). For accesses and traffic, solid bars denote reads; open bars are writes. 147

ix

List of Tables

5.1 Comparing manually-coded RTL SystemVerilog with that generated from DF. 112

6.1 Simulated Memory Parameters . 122

6.2 Heap and Stack Partition Assignments for the Transformed & Partitioned Examples . 125

7.1 Baseline measurements for my benchmarks and area increases with packing factor.

Size is lines of code in Haskell source; Runtime is simulated execution time of the

circuit (in thousands of cycles); Traffic is the total amount of memory read andwritten

(in kilobytes); Area is the area (in adaptive logic modules for a Cyclone V FPGA). Area

Increase is the fractional increase under packing factors 1, 2, and 3 (2× is doubling). . 146

x

Acknowledgements

My path to a PhD (including writing this dissertation) was filled with bumps, forks with no sign-

posts, and plenty of other obstacles that hindered any form of progress. The following individuals

helped me find my way over the past 6 years, showing me how to smooth out the bumps, make

decisions at each fork, and deal with the obstacles as they appeared.

I cannot thank Stephen A. Edwards enough for subverting every negative stereotype of a PhD

advisor; I wouldn’t have made it here without him. Things he didn’t do: burden me with unnec-

essary work, research or administrative; force me to work certain hours/days to fit his schedule

or expectations; ignore my attempts at regular communication. Things he did do: provide endless

advice and guidance, both in my research and general academic decisions; support my research

choices (in my later years, as he said he would) and passion for teaching; talk me out of every

research slump I experienced.

I appreciate my co-advisor, Martha A. Kim, for her willingness to advise me and provide

feedback as though I was one of her primary students. She guided me through much of the

work for my first research paper submission (given that its subject was more in her field than

Stephen’s), helped design the experimental framework for all my papers, and heavily contributed

to the aesthetic presentation of every chart, figure, and graph I have constructed.

I would like to thank the other faculty and staff at Columbia that made this dissertation possi-

ble. I thank Luca Carloni, Ronghui Gu, andDavid F. Bacon for agreeing to serve onmy dissertation

committee; particular thanks to Luca for also serving on the committees for my candidacy exam

and thesis proposal defense. Jessica Rosa smoothed out the administrative burden that comes

with managing a PhD career; I had no idea that distributing/defending/depositing a dissertation

had so many moving parts, and would not have been able to navigate the process without her.

Finally, I attribute much of my academic writing style to the inimitable Janet Kayfetz, whose

Academic Writing course was a welcome change to my otherwise Computer Science-focused

graduate career. I still reference her purple packet of wisdom regularly.

Three of my PhD peers deserve specific thanks. My desk neighbor, Emilio Cota, wrote and

xi

defended his dissertation right before I started working on mine; he was always available to give

insight into his process. Andrea Lottarini provided similar dissertation-based advice, and acted as

a helpful sounding board for some of the key organizational decisions I made in this dissertation.

Finally, Paolo Mantovani has been implicitly aiding me through the entire writing process: I

usually had his dissertation in a saved Google Chrome tab, which I referenced weekly to validate

my writing process. He also took the time to guide me through the use of hardware synthesis

tools to obtain some of the experimental results in this dissertation.

Much thanks to Olin Shivers, whose excellent PhD dissertation served as an organizational

template for mine (particularly the introduction and conclusions).

My time at Oberlin College (2009-2013) set me up for success as a graduate student. The

Computer Science department filled me with the passion for this subject that got me to this point;

much thanks to Ben Kuperman, Alexa Sharp, Tom Wexler, Cynthia Taylor, John Donaldson, Bob

Geitz, and Richard Salter. Special thanks to Tom Reid, bowling guru and master of the mental

game, who taught me mindfulness in a time when I needed it most.

I want to thank all the families that have supported me throughout the past six years. My bar-

bershop families (Voices of Gotham, the Atlantic Harmony Brigade, and my quartet, Madhattan)

helped develop leadership qualities that I used in my academic career, and provided stress out-

lets through singing and camaraderie. My Oberlin family has grown with me in the city for the

past 6 years, and I appreciate everyone in the group for being there for me when things seemed

academically darkest.

Finally, my family provided immeasurable emotional support; I would not have survived this

experience without their love and advice. I particularly thank my mom, dad, and step-mom

(Karen, John, and Suzy) for always being available to talk to me when I needed it.

xii

Chapter 1

Introduction

1.1 My Thesis

Pure functional programs exhibiting irregular memory access patterns can be compiled into spe-

cialized hardware and optimized for parallelism.

A growing fraction of the area in modern chips is dedicated to application-specific hardware

accelerators. These specialized cores consume less energy to perform a task than a general-

purpose processor, and energy consumption is of critical, growing concern. To simplify their

design, architects have turned to high-level synthesis (HLS) tools that produce circuits from high-

level behavioral specifications. While these tools can produce efficient hardware for “regular”

algorithms, they struggle with irregular algorithms that use recursion and dynamic pointer-based

data structures like lists and trees.

One major issue with these HLS tools is their use of C-like languages as their source: the

mutable memory model and side-effectful nature of these languages prevent standard HLS opti-

mizations from exploiting parallelism in the face of irregularity (i.e., recursion and dynamically

allocatedmemory). In this dissertation, I present an alternative HLS flow that uses a new compiler

to synthesize hardware from pure functional programs. The compiler provides new optimizations

that enable more parallelism in irregular programs and targets a specific model of computation,

patient dataflow networks, that exploits this parallelism in hardware.

1

List of Tables

1.2 Structure of the Dissertation

This dissertation is organized as follows:

• The rest of this chapter provides background to motivate this dissertation and presents the

contributions that support my thesis.1

• Chapter 2 surveys a selection of previous work related to these contributions.

• Next, Chapter 3 provides an introduction to functional languages (via a detailed presen-

tation of our compiler’s main intermediate representation), a high-level overview of our

compiler, and the initial compiler passes that prepare a program for its translation into a

dataflow network.

• I then dive into the translation from functional programs to hardware dataflow networks

in Chapter 4 and present the novel compositional circuits that implement these networks

in Chapter 5. Our networks’ semantics are explained across these two chapters, both intu-

itively (Section 4.2) and formally (Section 5.1).

• The next two chapters describe our novel compiler optimizations. Chapter 6 covers how

we optimize a specific class of irregular divide-and-conquer algorithms and presents the

partitioned memory system our generated circuits use by default. Chapter 7 presents a

“packing” algorithm that transforms recursive types (and the functions operating on them)

at compile-time to improve the memory efficiency of our circuits.

• I conclude this dissertation in Chapter 8 with a summary of my work and some potential

directions for future research.

1Because this work is part of a larger project, I use first-person singular pronouns when describing this dis-
sertation’s organization and any experimental evaluation (I am the sole author of the dissertation and ran all the
experiments myself); all other pronouns will be first-person plural. I mention others’ specific contributions as they
are presented in this dissertation.

2

List of Tables

1.3 High-Level Synthesis and Irregular Algorithms

In the mid-2000s, the landscape of computer architecture experienced a paradigm shift: while

semiconductor manufacturers continued to pack more, smaller transistors onto chips (following

Moore’s Law [92]), it became increasingly difficult to switch them all simultaneously at their

highest frequency without experiencing significant increases in power consumption (i.e., Den-

nard Scaling [38] broke down). In other words, current power constraints dictate that only a

small fraction of transistors on a modern chip can be powered simultaneously, giving rise to a

phenomenon known as dark silicon [14, 46].

Specialized hardware accelerators present a solution to this problem: accelerators are small

(compared to general-purpose processors) application-specific circuits that have been carefully

designed to execute a task (e.g., web search [105], machine learning [23], and database process-

ing [136]) while providing higher performance and lower energy requirements than a general-

purpose processor [128]. Unfortunately, the traditional design process for accelerators makes

them hard to adopt: architects must work at the register-transfer level (RTL) of abstraction, im-

plementing high-level algorithms with low-level digital logic constructs like combinational gates

and flip-flops. This leads to a tedious, error-prone process that precludes the rapid exploration of

design trade-offs (e.g., between computing resources and memory) [4].

The high-level synthesis (HLS) design methodology is a promising alternative [32]: design-

ers use high-level languages to describe their specifications, and a synthesis toolchain generates

the RTL code that realizes these specifications in hardware. The majority of existing HLS tools

synthesize hardware from C-like software specifications (Nane et al.’s survey [96] presents 33

HLS toolchains; 80% use a C-like input language), and have been shown to produce low-power,

high-performing cores [88, 128]. HLS researchers tend to concern themselves with accelerat-

ing “regular” algorithms, i.e., computations with predictable memory access patterns. Prevalent

HLS testsuites reflect this trend [65, 107]; the majority of benchmark programs provided in these

testsuites use statically-sized arrays and matrices to structure data.

Modern HLS tools use loop-based optimizations and memory partitioning schemes to im-

prove the performance of their synthesized accelerators. For example, given a simple array sum

loop, an HLS tool could unroll the loop to reveal two array accesses per iteration, partition the

array so its odd and even elements are stored in independent on-chip memories, and schedule the

instructions to execute simultaneously or in a pipelined fashion (based on available resources).

When the loop nests exhibit more convoluted access patterns or loop-carried dependencies, poly-

3

List of Tables

hedral analysis [25, 30, 31, 130] can guide code transformations that make the array accesses more

amenable to pipelining and partitioning.

Irregular algorithms dealing with dynamically sized, pointer-based structures (e.g., lists, trees,

or graphs) stymie these kinds of HLS optimizations. These algorithms appear in many settings

and have the potential for parallelization [80], but their use of recursion and dynamic, data-

dependent memory operations render traditional HLS optimizations (e.g., polyhedral-based) in-

effective or overly conservative. Commercial HLS tools like Xilinx’s Vivado [138] prohibit dy-

namic memory allocation (which is necessary to implement truly dynamic data structures) for

this very reason. New synthesis schemes and optimizations are thus required to synthesize these

irregular algorithms in hardware.

Although others have recently suggested solutions to these issues [1, 36, 133, 142], they exac-

erbate the problem by using C-like languages as a specification: C’s mutable memory model and

direct control over pointers inhibits simple static analysis for memory-based optimizations, and

the prevalence of side effects decreases opportunities for parallelization in general.

Pure functional languages are better suited for specifying irregular algorithms in this context.

Functional languages in general provide higher-level abstractions (e.g., pattern matching, type

inference, algebraic data types) that can improve designer productivity and simplify the correct

specification of complex, irregular algorithms [54]. A “pure” language prohibits computations

with side effects: an expression will always produce the same result when given the same argu-

ments. Thus, compilers can freely reorder, modify, or parallelize more code in a pure functional

language without modifying the underlying semantics [7, 59, 100, 101]. Purity also entails an

immutable memory model (mutating a value in memory is a side effect) that admits specialized

memory architectures and optimizations catered to irregular algorithms.

Pure functional languages thus have the potential to solve the problems faced by HLS systems

handling irregular memory access patterns. This dissertation shows how to realize this potential.

1.4 Contributions

To solve the irregular synthesis problem posed in the previous section, we have designed an op-

timizing compiler that synthesizes SystemVerilog (RTL) code from the pure functional language

Haskell. This dissertation describes the compiler, which comprises the following research con-

tributions (visualized in Figure 1.1):

4

List of Tables

•a •b . . . c

•a’ •b’ . . . c’

f f f

•a b c. . .

•a’ b’ c’. . .

f f f

Data

•Pointer

Unused

read

f

write

M
M
U

. . .

Trees

Lists

SRAM

DRAM

a
b c

d

Figure 1.1: A visualization of the research supporting my thesis. I focus on synthesizing hardware
from pure functional programs exhibiting irregular memory access patterns, e.g., the function
map f l, which applies a function f to each element of a linked list l, storing the results in a
new list (a). I translate these programs into modular, parallel dataflow networks in hardware (b),
and apply two optimizations that exploit more parallelism in the synthesized circuits: the first
improves memory-level parallelism in divide-and-conquer algorithms by combining a novel code
transformation with a type-based memory partitioning scheme (c); the second packs more data
into recursive types to improve spatial locality (i.e., data-level parallelism) and reduce an irregular
program’s memory footprint (d).

• Abstraction-lowering compiler passes. Our compiler takes in Haskell programs as

its source. We use Haskell because its high-level abstractions and pure language model

make it easy to correctly implement parallel algorithms operating on recursive data struc-

tures [85], e.g., amap function that applies a variable-latency operation f to each element of

a dynamically-sized linked list to produce a new list (Figure 1.1a). To simplify their transla-

tion to hardware, we first transform these Haskell programs into a functional intermediate

representation (IR) that prohibits constructs with no direct representation in hardware (e.g.,

recursion, recursively defined data types, anonymous functions). We perform this transfor-

mationwith a number of abstraction-lowering compiler passes, including a novel algorithm

for removing recursion (previously published in the 2015 CODES proceedings [141]) and a

simple technique to introduce explicit pointers and memory operations.

• A translation from functional programs to patient dataflow networks. This contri-

bution bridges the gap between software and hardware in our compiler. Given a program in

our functional IR, we perform a (mostly) syntax-directed translation into abstract dataflow

5

List of Tables

networks (Figure 1.1b). These dataflow networks are inherently distributed, parallel, and

“patient”: they can handle long, unpredictable latencies from complex memory systems

without any static scheduling or global controller. This property is ideal in our domain,

since we target memory-bound irregular algorithms (instead of the more compute-bound

scientific algorithms most HLS tools target). A novelty of our approach is how designers

“ask for” pipeline parallelism through tail-recursionwith non-strict functions: our recursive

functions can begin execution immediately after their first argument arrives. When such

a function calls itself tail-recursively, multiple invocations of the function run in parallel.

This work has been published as part of the 2017 CC conference proceedings [125].

• Compositional dataflow circuits. After generating these abstract networks, we synthe-

size them into latency-insensitive [20] circuits that implement a restricted class of Kahn

process (dataflow) networks [76]. These circuits may be connected to others with or with-

out buffering, making it easy to consider a variety of designs. For example, buffer-free con-

nections are fast but lead to combinational paths that limit clock speed; inserting buffers

breaks long paths at the expense of latency. Our generated circuits retain the “patience”

of Kahn’s formalism through a valid/ready flow control protocol (i.e., backpressure); local

handshaking eliminates any global controller (and thus long signal lines) and enables the

insertion and removal of buffering. This accommodates blocks with dynamically varying

latency (e.g., memory controllers) andmakes it easy to adjust the number of pipeline stages,

even in the presence of feedback. We have published work on these circuits in both the 2017

MEMOCODE conference proceedings [44] and a special volume of the TECS journal [43].

• A framework to accelerate irregular divide-and-conquer algorithms. We pair a

compile-time code transformation with a type-based memory partitioning scheme to opti-

mize recursive divide-and-conquer algorithms operating on recursive data structures. After

finding functions that implement such algorithms in a source program, we duplicate the

functions and split their input data structures in half (“divide”) so each function copy may

operate on its half in parallel (“conquer”). Each function becomes an independent circuit in

hardware, exploiting task-level parallelism. To prevent a memory-induced bottleneck, we

use the rich type information in our functional programs to allocate specific object types

(e.g., lists, trees) to dedicated partitions of on-chip memory, and size each partition with a

profiling-based heuristic (Figure 1.1c). To avoid local overflow, we back these on-chip par-

titions with larger, off-chip DRAM, and rely on a cache methodology to determine when to

transfer data between on- and off-chip memories.

6

List of Tables

• An optimization for recursive data types. This optimization algorithm modifies the

memory layout of recursive data types to reduce the number of high-latency trips to mem-

ory and increase data-level parallelism. Modern processors typically rely on caches for a

similar purpose (and we use caches in our memory architecture), but the irregular memory

access patterns associated with traversing recursive (i.e., pointer-based) structures inhibits

the cache’s ability to exploit spatial or temporal locality. Our algorithm thus packs recursive

types such as lists and trees into cells that hold more data in an effort to improve spatial

locality and data-level parallelism at compile-time (Figure 1.1d). This packing algorithm

also reduces the total number of pointers in a recursive data structure, which can decrease

the circuit’s memory footprint and the number of trips made to memory (a common per-

formance bottleneck in irregular algorithms).

The compiler has been implemented with both of the above optimizations included, and I

have used it to generate hardware from various Haskell programs exhibiting irregular memory

access patterns (due to their use of recursive data structures). This verifies the first part of my

thesis: pure functional programs exhibiting irregular memory access patterns can be compiled

into specialized hardware.

I have also run experiments that empirically validate the two optimizations described above;

the results show that they can improve performance for a variety of Haskell programs realized in

hardware. The first optimization exploits task- and memory-level parallelism, while the second

exploits data-level parallelism. Taken together, these optimizations verify the second part of my

thesis: hardware synthesized from irregular functional programs can be optimized for parallelism.

7

Chapter 2

Related Work

This chapter presents previous work that most closely relates to my thesis and contributions. I

discuss the general problems motivating this dissertation, others’ solutions to these problems,

and how these solutions differ from or contribute to mine.

2.1 High-Level Synthesis

HLS relates to this work in that both raise the level of abstraction for hardware designers to pro-

mote rapid accelerator development and design-space exploration. A typical HLS flow starts with

a designer specifying an algorithm in a C-like language; this specification may include hardware-

aware constructs like clocks, ports, or timing constraints. The HLS tool analyzes the input pro-

gram, applies standard compiler optimizations (e.g., common subexpression elimination, dead

code removal), and transforms it into a control-flow graph: each node in the graph is an in-

struction or basic block, and edges indicate the flow of control between instructions (the graph

may also include data-dependency information). The tool binds the instructions to hardware

resources, and schedules when each instruction will be carried out by its assigned resource. Fi-

nally, it produces an RTL circuit specification that respects both the result of resource-binding

and scheduling and any of the hardware designer’s architectural constraints.

Here, I discuss how others have investigated alternativemethods of hardware synthesis. Some

use a functional input language to either provide higher-level abstractions to the designer or

simplify the verification or optimization of the synthesized circuits. Others retain the imperative

approach of typical HLS tools, but propose new hardware architectures to extend the reach of

HLS past regular, loops-over-arrays algorithms. Our compiler combines both approaches: we use

a functional input language to simplify the design process and reveal new compiler optimizations,

and we target irregular algorithms to extend the scope of current HLS techniques.

8

List of Tables

2.1.1 Functional HLS

Functional programming paradigms have appeared in hardware design research for decades; re-

searchers long ago realized the strong connection between pure functions (those that always

produce the same output for a given input) and synchronous digital circuits. These previous

works sought to simplify circuit specification via functional constructs (e.g., higher-order func-

tions, algebraic data types) while naturally capturing a circuit’s structure and semantics.

Gammie’s survey [54] covers much of the historical landscape, focusing on functional lan-

guages that take a structural approach to digital circuit description: functions represent gate-

level constructs (e.g., multiplexers, flip-flops) and operate on streams of data that capture values

flowing on wires. Sheeran’s µFP language [119] is often touted as the first of these functional

hardware description language (HDLs); it leverages higher-order combinators to compose circuit

primitives, and prescribes a set of algebraic laws that its specifications fulfill. Due to its focus on

these combinators and lack of types, µFP is best for describing simple circuits with highly regular,

repetitive structures.

Lava [13, 60, 61] is a family of embedded hardware description languages (EHDLs). These

EHDLs are Haskell libraries that interpret pure functions as synchronous digital circuits. To cap-

ture a notion of time, Lava takes inspiration from the synchronous dataflow language Lustre [63]

and provides a special Signal data type that defines an infinite sequence of values. Semantically,

a Signal is a mapping from discrete, global clock cycles to values occurring on a physical vector

of wires. Based on the library-defined types used by the programmer, executing a Lava program

can either simulate the circuit on specified inputs, verify properties about the circuit, or generate

an abstract syntax tree capturing the circuit’s structure, which can then be analyzed or fed into

other tools for more verification or RTL generation (e.g., to Verilog or VHDL).

Kuper’s Cλash project [6, 7] is similar to Lava: it uses Haskell programs for structural circuit

specification. However, Cλash has a subtle distinction that brings it closer to our work: instead

of solely relying on Haskell’s compiler for circuit generation (thus “embedding” the language),

Cλash has a dedicated compiler that analyzes the language constructs comprising each Haskell

function and synthesizes circuitry for those constructs. Functions thus do not require the special

Signal type from Lava to be synthesized; a function without a Signal is synthesized into a combi-

national circuit, while the presence of the Signal type corresponds to sequential circuitry. While

our compiler performs a similar syntax-directed translation to generate hardware, Cλash is still

distinct in its use of structural hardware description and its lack of support for user-defined re-

9

List of Tables

cursive functions and data types (their online tutorial still specifies this restriction [5], although

Raa’s master’s thesis [106] seems to remove it).

Bachrach et al. take a different tack with their Chisel HDL [8] by embedding it in Scala instead

of Haskell. Chisel’s types capture values flowing onwires (e.g., Bits, Bool, Fix for signed integers);

a timing-aware type like Lava and Cλash’s Signal is not required, as Chisel programs include im-

plicit clock and reset signals where necessary. Instead of Haskell’s algebraic data types, Chisel

provides an object-oriented model where users can extend base classes to represent collections of

data, specific hardware interfaces (e.g., a FIFO input to a circuit), or hierarchical components (sim-

ilar to Verilog’s modules). Functions and classes may be polymorphic, and higher-order functions

provide high-level abstractions to simplify the design process.

Unlike the structural approach taken by the above languages, we and others take a behav-

ioral approach: designers specify the algorithmic behavior of a circuit (instead of its gate-level

structure), and the compiler generates and optimizes the necessary logic to implement that be-

havior. For example, Kuga et al. [79] synthesize hardware from a subset of Haskell, focusing on

the implementation of parallel design patterns like map, zipWith, and reduce. Unlike us, they do

not specify whether they can handle recursion or arbitrary algebraic data types.

As a more notable example, the FLaSH compiler of Mycroft and Sharp [95, 117] synthe-

sizes resource-aware hardware circuits from a simple functional language. While their orig-

inal language (SAFL) was simpler than our compiler’s intermediate representation, they later

added “channel arguments” to functions to express communication between ports in hardware

(SAFL+) [118] and a type-based approach for direct stream processing (SASL) [51, 50]. Their

technique for sharing resources (i.e., functions called from multiple places) inspired ours; they

place an arbiter at the entry to a shared function, remember which caller gained access, and fi-

nally route the result back to the caller. Furthermore, their most recent additions extended the

compiler to admit function pipelining and synthesize dataflow networks, bringing them closer

to our work. However, their compiler targets hardware with bounded storage requirements: no

heaps or stacks are permitted in the synthesized circuits, so they cannot implement recursive

data types. My thesis specifically concerns programs with recursive data types (since they elicit

irregular memory access patterns); our compiler thus handles a larger class of programs.

The SHard compiler of Saint-Mleux et al. [111] compiles a functional language (Scheme) into

a dataflow representation to produce custom hardware. They only implement strict functions: all

arguments must arrive at a function before it can begin execution. Our compiler instead lever-

ages a non-strict function policy to reduce execution time and improve throughput by exploiting

10

List of Tables

pipeline parallelism across function calls (see Section 4.1.1 for a specific example). Their treat-

ment of memory is unusual: they only directly support function closures, so data structures such

as lists must be coded as closures. Our language uses algebraic data types for data structures,

providing a more intuitive approach for the hardware designer.

Bluespec [4] takes an alternative behavioral approach, but still draws inspiration fromHaskell

to provide a rich type system and inherent parallelism. Designers describe behavior with guarded

atomic actions, which are then synthesized into globally scheduled combinational logic blocks.

Conversely, our synthesized dataflow networks employ a flow control protocol that effectively

acts as a distributed scheduler, eliminating the need for Bluespec’s dedicated control logic.

Our translation of a functional language to dataflow networks was inspired by that of Arvind

and Nikhil [3], but differs in two important ways. First, they generate dynamic dataflow graphs,

i.e., loops and function calls are unrolled on-the-fly as their programs run. We choose amore chal-

lenging, higher performance target: physical networks, which means we have to build dataflow

graphs with loops that explicitly arbitrate shared resources. Our solution will produce superior

results because it avoids general-purpose overhead.

Second, their virtual approach (i.e., using a stored-program implementation) allows them to

support unbounded buffers. While this does eliminate the danger of insufficient buffering, it

requires the introduction of additional dataflow components to throttle loops and is impossible

to implement directly in hardware. Our compiler targets physical hardware with finite buffers

and provides a natural throttling mechanism in the form of a flow control protocol.

2.1.2 Irregular HLS

My dissertation shows how to synthesize hardware for irregular algorithms implemented as func-

tional programs; others have instead augmented imperative-based HLS tools to handle these

kinds of algorithms. Specifically, four recent works have all proposed novel methods to exploit

parallelism in hardware synthesized from irregular C programs (although their definitions of

“irregularity” have slight differences). Each leverages the LLVM compiler framework to first

translate the input C program into a standardized intermediate representation (IR), which they

optimize to generate efficient specialized hardware. They all target loop-based programs and, due

to the input language, must grapple with complications caused by a mutable memory model; our

compiler instead deals with recursive programs that admit simpler program analysis due to our

language’s immutable memory model.

11

List of Tables

Like us, Josipovic et al. [75] describe a synthesis technique that realizes programs as latency-

insensitive dataflow networks. Their network building blocks are similar to ours, and they use the

same handshaking protocol as us to implement latency-insensitivity. However, their translation

process yields inherently sequential networks: their compiler partitions a program’s instructions

into sequential basic blocks, each basic block is individually translated into a dataflow subnet-

work, and special dataflow components are inserted between these subnetworks to implement

control flow. They alsomust correct for potentially out-of-ordermemory accesses, which can lead

to data hazards under C’s mutable memory model. Their solution is a complex load-store queue

that must be carefully connected to the rest of the network to ensure functional correctness.

The Coarse-Grained Pipelined Accelerator (CGPA) framework of Liu et al. [84] synthesizes

novel hardware architectures for C/C++ programs containing complex control flow or irregular

memory access patterns. After translating the program to the LLVM IR, their HLS flow imple-

ments each loop’s instructions with a multi-stage pipeline of hardware “workers” separated by

FIFO buffers: sequential workers in one stage supply data to multiple parallel workers in the

next, exploiting pipeline parallelism. The sequential workers typically implement irregular data

structure traversal, while the parallel workers implement any independent instructions frommul-

tiple loop iterations; this decoupling tolerates variable latency (e.g., cache misses may slow down

traversal, but the parallel workers can continue executing as long as they have input data in their

FIFOs) and enables more parallelism (parallel workers operate independently). Their framework

inserts additional LLVM primitives to aid in their analysis, and they impose instruction schedul-

ing constraints to ensure the correctness of their synthesized pipelines. Our synthesized dataflow

networks perform dynamic scheduling on their own (no static scheduling is required), and our

input language is side-effect free, simplifying our translation to hardware.

Tan et al.’s ElasticFlow HLS tool [122] is similar to CGPA. Given a loop nest with a regular

outer loop (i.e., it does not exhibit loop-carried dependencies) and at least one dynamic-bound

inner loop, they synthesize a multi-stage pipeline where each inner loop becomes a “loop pro-

cessing array” (LPA), and all other operations in the loop nest are synthesized into traditional,

fixed-latency pipeline stages; the stages are then connected via FIFOs. The LPA architecture is

their main contribution: it contains multiple loop processing units (LPUs) that can each execute

an inner loop to completion (instead of just some of its instructions), a distributor that dispatches

inner loop invocations (one per outer loop iteration) to idle LPUs, and a collector that ensures

inner loop results are passed to the next pipeline stage in-order with the help of a reorder buffer

(ROB). They use an integer linear programming technique to determine the number of LPUs for

12

List of Tables

a given LPA and the size of each LPA’s ROB, maximizing the dynamic throughput of the LPUs

under a given hardware area constraint. They improve upon CGPA by handling out-of-order

execution for entire loop nests (as opposed to just individual instructions) and achieving higher

resource efficiency with special LPUs that can implement one of many inner loop nests.

Zhao et al. [142] present a similar C++-based HLS architectural template, but they specifically

focus on decoupling complex data structures (e.g., priority queues and trees) from the algorithms

that use them. In their work, a data structure is complex if any of its functions exhibit long or vari-

able latency and contain variable-bound loops or memory dependencies. Their templates have

four components (like those in ElasticFlow’s LPAs), which communicate via latency-insensitive

handshaking (like our dataflow networks): mutator function units and accessor function units

implement the data structures’ mutator and accessor functions; a dispatcher receives function

calls from the algorithm and passes them off to the appropriate function units, respecting func-

tion dependencies; and a collector receives results from the function units and passes them back

to the algorithm. The dispatcher may overlap execution of multiple accessor units, but mutator

functions cannot be overlapped with any other since they may modify memory. We rely on an

immutable memory model in our work to avoid this restriction; if two writes of different type are

available (e.g., writing a tree cell vs. a list cell), we can service them in parallel.

2.2 Hardware Dataflow Networks

Our compiler translates Haskell programs into latency-insensitive dataflow networks in hard-

ware. Dataflow networks are a natural model for parallel, distributed computation: processes in

a network (called “actors”) execute in parallel and communicate via sequences of tokens passed

over unbounded channels. These networks are well-suited to specifying complex hardware de-

signs because of their “patience”: process speed has no effect on network function. While the

underlying formalism of these networks is well-defined [39, 76, 81, 82], different approaches have

been taken to realize these networks in physical hardware.

Tripakis et al. [126] survey a number of these dataflow-to-hardware projects; most focus on

statically schedulable models such as SDF that do not support data-dependent actors, e.g., mul-

tiplexers and demultiplexers. Carloni et al. and Carmona et al. champion patient dataflow net-

works following this model with their respective Latency-Insensitive Design [19, 20] and Elastic

Circuits projects [21]. Both of these works implement the patience of the abstract dataflowmodel

13

List of Tables

with a handshaking protocol. Possignolo et al. [104] also consider token/handshaking pipelines

for processor design: they start with a synchronous circuit with no handshaking and transform it

into a patient dataflow network by introducing four actor circuits (unit-rate, fork, demultiplexer,

and merge) based on designer annotations. Although their fork and merge actors can induce

deadlock in general (a danger in any dataflow design), they provide a set of design rules that

prevent deadlock. They use Colored Petri Nets to model throughput, an augmented form of the

model Collins and Carloni used to analyze and optimize their latency-insensitive systems [27].

While many handshaking protocols exist to implement latency-insensitivity, one of the most

common ones uses a valid bit to indicate that a process is sending a token downstream, and a

ready bit to indicate that the downstream process can consume that token. This 2-bit protocol

is standard in asynchronous systems [115]. Intel’s 8008 used a similar protocol in 1972 to wait

for slow memory [70], but the protocol likely appeared even earlier. We use this protocol in our

networks, specifically taking inspiration from Li et al. [83], but the same system can be found in

Cortadella et al. [34, 35], Dimitrakopoulos et al. [40], ARM’s AXI4-stream protocol [2], and the

FIFOs provided in Altera and Xilinx FPGAs (Field-Programmable Gate Arrays).

Careful implementation of this handshaking protocol is required to prevent combinational

cycles, e.g., due to a valid bit depending on a ready bit and vice versa. ForSyDe [86, 112, 113]

avoids these handshaking-induced combinational cycles by always inserting delays on channels.

These channels are not user-visible: their system presents the user with a synchronous model

of computation (i.e., unit-rate dataflow with no decisions). This makes it difficult for a user to

specify variable-rate processes in ForSyDe. Our networks rely on a special pair of buffers and

a three-phase evaluation order (data, then valid, then ready) to prevent combinational cycles,

yielding faster designs than the fully-buffered networks of ForSyDe.

The above works apply latency-insensitive design practices to existing hardware systems;

others are closer to our work in their use of patient dataflow networks as targets for high-level

synthesis. Keinert et al.’s [78] SystemCoDesigner employs behavioral synthesis (Forte’s Cynthe-

sizer product) to synthesize hardware for coarse-grained dataflow actors expressed in SystemC

with the SysteMoC library [47]. Inter-actor communication is done through FIFOs taken from a li-

brary [67]. Janneck et al. synthesize networks from Cal [45]: a rich, functional-inspired language

for expressing dataflow process actors and networks. They have a hardware synthesis system

for these networks [12, 71, 72], although little has been published about its internals. Thavot et

al. [123] instead synthesize hybrid hardware/software systems from Cal; they are unique in that

all of their actors are nondeterministic, going against the typical desire to retain determinism

14

List of Tables

across all dataflow actors and the network itself.

Our dataflow networks depart from each of the aforementioned works. We provide data-

dependent actors that can make choices, which cannot be modeled in the typical SDF framework,

and include a single nondeterministic actor to share resources and help implement recursion in

hardware. Our actors are fairly lightweight due to our use of latency-insensitive buffers, making

simple actors like adders and multiplexers practical. Finally, our actors are compositional: each

actor becomes a circuit that may be connected to others with or without buffering, and combina-

tional cycles arise only from a completely unbuffered cycle. We formalize our networks, present

our actor implementations, and argue for their correctness in Chapter 5.

2.3 Parallelizing Divide-and-Conquer Algorithms

Divide-and-conquer (“DAC”) algorithms are intuitively simple to parallelize: after breaking down

a task into distinct subtasks, execute the subtasks in parallel before merging the final result.

Depending on the implementation of the algorithm, though, it can be difficult for a compiler to

automatically find and enable this parallelism. Much work has been done to solve this issue,

mostly in purely software-facing frameworks, although a few others have specifically leveraged

specialized hardware to parallelize DAC algorithms. Here, I first list some of the techniques the

software community has devised; then, I discuss how previous work on memory partitioning can

be applied to DAC parallelization, even if that was not the main motivation for the work; finally,

I present how others have parallelized DAC algorithms with the help of specialized hardware,

which most closely resembles the work I present in Chapter 6.

2.3.1 Software Techniques

Many software techniques rely on the use of specialized language constructs to find and exploit

DAC parallelism. Language extensions like Cilk [53] (C++), Satin [127] (Java), and Tapir [114]

(LLVM) add extra primitives to express “fork-join” parallelism: spawn indicates that a function

call can operate in parallel with surrounding statements (or be assigned to a dedicated core), while

sync specifies where execution must stall in a given function until all spawned processes have

terminated. Multiple recursive calls in a DAC function can use spawn to execute in parallel, and

sync can merge their results. Morita et al. [94] take a significantly different tack: they parallelize

DAC algorithms on lists, but only if the algorithm is expressed with a pair of sequential functions

15

List of Tables

that perform computation by scanning the list leftwards and rightwards. Their programs are

written in a restricted language that forces the user to express DAC functions with this list-

scanning paradigm, from which they generate parallel C++ code to run on a distributed system.

Collins et al. [28] also generate parallel C code for DAC algorithms. Their Huckleberry tool

takes in DAC functions written with a special API, and produces code that distributes data for

independent subtasks across multiple cores.

Other software techniques automatically parallelize DAC functions by relying on the compiler

to find subtasks that may safely execute in parallel. For example, both Gupta et al. [62] and Rugina

and Rinard [109] focus on automatically parallelizing recursive DAC algorithms in C programs.

As a result of C’s mutable memory model, both of these works rely on complex pointer analysis

and other data-dependence compiler algorithms to verify that no two subtasks of a DAC function

ever write or read the same section of an array simultaneously. Otherwise, if the subtasks were

executed simultaneously, a data race could occur and break the program’s functionality.

Our technique deviates from these works in two ways. First, it eschews special language

constructs to find DAC parallelism; it instead finds this parallelism by analyzing the structures

of general Haskell programs. Second, our compiler’s immutable memory model prohibits the

overwriting of any live data; we can exploit more parallelism than Gupta et al. or Rugina and

Rinard by copying shared data to different memory partitions without fear of races.

2.3.2 Memory Partitioning

In general, the HLS community has focused less on DAC function parallelization specifically,

and more on how to partition on-chip memory so multiple segments of a (typically statically-

sized) data structure can be accessed in parallel. Such on-chip memory partitioning can exploit

memory-level parallelism in DAC functions; I discuss some notable work on this subject here.

Most of the previous work on memory partitioning in HLS frameworks has focused on ac-

celerating highly regular, loops-over-arrays programs [25, 29, 31, 90, 130]. If a loop nest ac-

cesses an array and does not exhibit loop-carried dependencies, then the loop may be unrolled

to reveal more independent accesses per iteration and enable instruction-level parallelism. The

memory system exploits this parallelism with banking: the array is distributed across multiple

memory banks such that the multiple elements accessed on a given iteration reside in separate

banks; this leverages the high memory bandwidth provided by modern FPGAs. If there are data-

dependencies in the original loop nest, various linear algebraic transformations may be applied

16

List of Tables

to restructure the array’s access pattern into a form that is more amenable to memory banking.

These techniques rely on the array residing in contiguous memory and a highly regular access

pattern; my dissertation specifically targets programs operating on dynamic data structures that

may be distributed throughout the address space and accessed in an irregular fashion.

Others have applied memory partitioning to programs with less regular access patterns. Zhou

et al. [143] use a trace-driven technique to exploit memory-level parallelism in loops with non-

affine access patterns, i.e., the addresses used to access the array are not affine functions of the

loop’s iteration variable. Instead of performing static analysis and applying linear algebraic trans-

formations to loops over arrays, they instrument the program to obtain a memory access trace

and use important address bits in the trace to guide their banking and array segmentation. Ben-

Asher and Rotem [11] present a similar trace-based method that applies to both array and dy-

namic data structure accesses. For the dynamic data structures, they rely on the assumption that

the structures are created with custom memory allocators that always place the data structures

at consistent, structure-aligned addresses. This lets them treat any data structure as an array

of C structs, simplifying their partitioning algorithm. In our partitioning scheme, we make no

assumptions on addresses of the dynamic data structures generated by the input program.

2.3.3 HLS for Divide-and-Conquer

Four specific prior works are closest to ours; they parallelize DAC functions either with special-

ized hardware support or as part of a full HLS toolchain. Luk et al. [87] parallelize DAC functions

with a software/hardware co-design technique: a CPU divides input data into partitions, the par-

titions are passed to an FPGA-based accelerator that “conquers” the data with a homogeneous

network of tightly-coupled functional units, and the results are passed back to the CPU for merg-

ing. They use a functional language to present their strategy. Our work is completely hardware

based (i.e., our synthesized hardware does not communicate with a general-purpose processor),

and we use loosely-coupled, heterogeneous dataflow networks to perform parallel computation.

Two works on exploiting “dynamic parallelism” in HLS flows can be directly applied to DAC

functions. Margerm et al. present TAPAS [89], an HLS framework that synthesizes parallel accel-

erators coded in Chisel from Tapir programs (the LLVM IR extended with instructions for fork-

join parallelism). Their synthesized architecture is based on a task-level abstraction: a program

becomes a collection of “task units” that can operate in parallel and pass data between each other

through shared memory. The key feature of these task units is their ability to spawn new tasks

17

List of Tables

at runtime through a message-passing system. The spawned tasks are implemented with fully

pipelined dataflow networks that use a handshaking protocol like ours; buffering every channel

in their networks leads to higher pipeline parallelism but increases the latency of their designs.

They show that their architecture can parallelize a recursive mergesort algorithm operating on

an array, with the recursive calls being spawned into distinct task units.

Chen et al.’s ParallelXL system [22] is similar to TAPAS: they also target dynamically parallel

programs for acceleration and use a task-based computational model. They are novel in their

use of “continuation-passing style”: when a task is spawned, it receives a special continuation

argument that indicates where the spawned task’s return value will be sent. This model naturally

supports recursion: recursive calls spawn tasks whose continuations point to the task that will

merge their results. Chen et al. also diverge from TAPAS in their use of “work-stealing”, where

idle task units can randomly steal work from other units, perform the stolen computation, and

send the results back to the original unit. This allows their architecture to exploit parallelism

in DAC functions with load-balancing issues. They use multiple caches to exploit memory-level

parallelism, assigning one to each task unit (instead of TAPAS’s single cache shared among all

units). We also use multiple caches, but allow cache sharing across our networks.

Winterstein et al.’s work [134, 135, 139] is by far the closest to our contribution, as they focus

on an HLS scheme for parallelizing DAC functions that operates on dynamic data structures. We

adopt their cache sizing algorithm (Section 6.2) but operate in a different domain: they analyze

loop-based C++ programs, while we deal with recursive Haskell programs. They make copies of

a DAC function’s subloop if the compiler can determine that memory referenced in one subloop

is never referenced in another, after which they give each loop copy and type a dedicated cache.

Due to the mutable memory model of C++, their analysis relies on a complex “separation logic”

to determine if two subloops do not conflict. Conversely, the recursive functional programs we

implement need only trivial dependency checks; we use a type-based scheme to duplicate and

assign data to distinct caches, which, combined with our immutable memory model, ensures that

function copies (operating on different but structurally identical types) never share caches. We

also assign multiple types to each cache to enable larger cache sizes and reduce capacity cache

misses.

18

List of Tables

2.4 Optimizing Recursive Data Structures

The irregular algorithms we target for hardware compilation heavily involve recursive data types

like lists and trees. We are thus interested in optimizing their representation in hardware to im-

prove our circuits’ performance. While we are the first to consider optimizing recursive types in

hardware (to my knowledge), others have considered a similar goal in software. These previous

works usually involve “packing” recursive data types (typically, just lists) to hold more data per

cell, which entails two major benefits: the additional data in each cell enables data-level paral-

lelism, and fewer cells are required to implement a packed structure.

Shao et al. [116] present a compile-time analysis that uses “refinement types” to pack lists

in (functional) ML programs. Although they claim that they can pack k elements into each list

cell, their presentation and experiments only use k = 2 and rely on list parity: even-length lists

are packed into cells of two elements, while odd-length lists add a single extra element to the

front of an even-length list. Our experiments explore the impact of higher values of k , and extra

elements that cannot be packed into a larger cell may appear anywhere within our transformed

data structures (not just at the front). Their code transformation uses a refinement type infer-

ence algorithm to determine the parity of lists at compile-time, and transforms functions to have

three entry points: one for even lists, one for odd lists, and one for lists of unknown parity. Con-

versely, our algorithm inserts compiler-generated functions into a program to convert between

the original and packed versions of a recursive type, then moves calls to these functions around

in a semantics-preserving manner to yield a program that only uses the packed version. Their al-

gorithm produces similar code growth numbers as ours when we pack lists to store two elements

per cell; it is unclear whether their work is applicable to more general recursive types like trees,

which ours can handle.

Hall’s [64] work focuses less on the packing process itself and more on determining where the

packed versions of a list should be used. Hall assumes multiple variants of each list function in a

standard library: the original operates on “simple” lists (the original type), while others replace

one or more of the list types in their type signature with a “compressed” list (identical to how

we pack list types to store two elements per cell; we leverage Hall’s type in our work). Hall then

adds a polymorphic type variable to the original list type throughout the program, whichHindley-

Milner type inference [91] may resolve to either a compiler-defined Simple type (indicating that

the original list type should be used) or a type variable (indicating that the compressed list type

may be used). After running the type inference algorithm, the type signatures of each function

19

List of Tables

indicate which kind of list representation may be used for that function. Our algorithm changes

all list types to their packed version, generates the packed versions of functions automatically,

and extends Hall’s focus to other recursive types like trees.

The list compaction methods presented by both Braginsky and Petrank [15] and Platz et

al. [103] focus on exploiting spatial locality while providing concurrent operations on lists. They

collect list elements into chunks, where each chunk is a block of memory containing multiple

subsequent list entries. This improves spatial locality, as a single cache line is guaranteed to con-

tain multiple list elements, but insertion and deletion may require splitting or merging chunks,

leading to more memory accesses and higher execution time. Furthermore, their implementa-

tion requires extras bits to implement concurrent operations, further increasing the size of each

list cell. Our algorithm does not introduce any extra instructions to modify a packed structure at

runtime, and our structures admit safe, concurrent accesses automatically (i.e., with no additional

bits) due to our immutable memory model.

Fegaras and Tolmach [48] present a vector representation for lists: the vectors are imple-

mented as arrays, eliminating all space overhead due to pointers. However, they can only trans-

late list functions into vectorized form if the function expresses a common computation pattern

called a “catamorphism”; our algorithm can transform any list function to operate on packed

lists. The functionality of their algorithm resembles ours, though: apply a series of semantics-

preserving transformations to generate code that operates on vectors instead of lists (we generate

code that operates on packed lists instead of unpacked lists). Compared to ours, their technique

can completely eliminate inter-cell pointers, but it adds more runtime checks and cannot handle

functions that share pointers, e.g., a function that appends two lists together.

Inlining to eliminate inter-object pointers also benefits object-oriented languages. Dolby’s

algorithm [41] reduces pointer overhead in objects containing other objects by inlining the latter

in the definition of the former. Compared to our work, Dolby requires more analysis to ensure

inlining is safe, and even if so, he must maintain aliasing information and field references to

preserve semantics. Our pure functional setting is far simpler.

A key step in our packing algorithm inlines recursive function calls to produce a structure

mimicking the packed types we generate. This inlining step is similar to the “recursion unrolling”

algorithm of Rugina and Rinard [110], which inlines calls to recursive C functions implementing

divide-and-conquer functions. Their goal is to generate larger, more efficient base cases that

operate on more data per recursive call; we instead focus on modifying recursive functions to

traverse larger cells in dynamic data structures. Their inlining may introduce multiple, identical

20

List of Tables

conditional statements in a function; a main contribution of their work is a method of detecting

that these statements are identical and fusing them into one statement to prevent unnecessary

conditional computation. We perform a similar optimization in our algorithm after our inlining

step terminates.

21

Chapter 3

An Overview of Our Compiler

This chapter provides an overview of our compiler, which translates pure functional programs

into hardware dataflow networks. The compiler is designed as a sequence of abstraction-lowering

program transformations. Most of these transformations are rewriting steps: they take a program

written in the compiler’s main intermediate representation (IR); modify, remove, or add code in

a semantics-preserving manner; and produce a transformed program written in the same IR or a

more restricted dialect. The final transformations are direct translations, first from a functional

IR to a dataflow IR, then from the dataflow IR to SystemVerilog code.

I first present the compiler’s main IR, “Core” (Section 3.1); this presentation introduces func-

tional language concepts and summarizes all the language features that our compiler can handle.

I then walk through the compilation of a simple example program, outlining the steps that trans-

form it from Haskell to hardware (Section 3.2). Many of these steps remove Core features that

would otherwise complicate optimizations and later translations in the compiler; I finish this

chapter by detailing these steps (Section 3.3), which together bridge the gap between Core and

its more restricted dialect, “Floh.”

3.1 Our Main IR: a Variant of GHC Core

Our compiler uses a strongly typed, pure functional language called “Core” as its main IR. Core

is a pared down version of GHC’s External Core IR [124]; Figure 3.1 depicts its abstract syntax.

The rest of this section describes this syntax, its connection to the lambda calculus [24], and how

this connection entails purity.

A Core program begins with a possibly empty sequence of algebraic data type (ADT) defi-

nitions (type-def). ADTs are a powerful feature of modern functional languages that subsume

records, enumerations, and union types. An ADT is named with a type constructor (Tcon) and

defines one or more variants (con-def) that specify how to construct values of this new type. Each

22

List of Tables

program ::= type-def ∗ var-def +

type-def ::= data Tcon tvar∗ = con-def (| con-def)∗ Type Definition

con-def ::= Dcon type∗ Variant Definition

var-def ::= vid = expr Variable Definition

expr ::= vid Variable Identifier
lit Integer Literal
Dcon Data Constructor (capitalized)
expr expr Application
λ vid+ → expr Lambda
let (vid = expr)+ in expr Variable binding
case expr of (pattern→ expr)+ Conditional

pattern ::= Dcon (vid | _)∗ Constructor Pattern
lit Literal Pattern
_ Default

type ::= Tcon Algebraic type constructor (capitalized)
tvar Polymorphic type variable
type→ type Function type
type type Type application

Figure 3.1: The abstract syntax of the compiler’s main IR: a variant of GHC’s Core [124]. We
augment this grammar with the regular expression meta-operators * (zero or more), | (choice),
and + (one or more). Note that the | token in the type-def rule is actual Core syntax, not the
choice meta-operator.

variant has a globally unique name called a data constructor (Dcon) followed by zero or more type

fields. Type fields are either concrete (composed only of type constructors that name other ADTs

or primitive types) or polymorphic (containing one or more type variables). Any type variable

(tvar) used in a variant must appear as an argument to its type definition. If type T has a con-

structor C with a type field referring to T, then the type, constructor, and type field are all said to

be “recursive.”

ADTs capture both traditionally “primitive” types and more complex data structures. The

familiar Boolean type is built into our standard library as an ADTwith two variants, each defining

a constant data constructor with no type fields:

data Bool = True | False

23

List of Tables

Two other common (polymorphic) examples are singly-linked lists and binary trees. Here, the

type variable a represents an arbitrary type, allowing for lists of, say, 8-bit integers:

data List a = Nil | Cons a (List a)
data Tree a = Leaf | Node (Tree a) a (Tree a)

These are both examples of recursive types, e.g., a list is either an empty Nil cell or a Cons cell

containing a value of polymorphic type and a reference to the rest of the list. The polymorphic

type variable is resolved to a concrete type based on the data stored in the list, e.g., a list of

integers would have type List Int, while a list of integer lists would have type List (List Int). The

tree type is similar (either empty or carrying a polymorphic value), but its recursive Node variant

has two recursive fields corresponding to a left and right branch.

Along with Boolean, our standard library provides 8-, 16-, and 32-bit signed and unsigned

integers, polymorphic lists, and the polymorphic Maybe type that captures optional values:

data Maybe a = Nothing | Just a

Variable definitions (var-def) include functions and comprise the rest of a program. Each

binds an expression to a variable name vid throughout the program. A program must contain a

main variable definition; running the program amounts to evaluating the main expression.

Core expressions are terms from the typed lambda calculus augmented with a few additional

language constructs. The untyped lambda calculus has just three terms: variable names, lambda

expressions, and function application. Lambda expressions are unnamed (sometimes called “anony-

mous”) functions, e.g, “λ x→ x + 1” is a function that takes a single argument, names it “x,” and

returns the result of incrementing it. Function application is written as left-associative juxtapo-

sition, e.g., “(λ x y→ x + y) 3 5” is the application of a two-argument function to 3 and 5. To

evaluate this application expression, we replace any occurrence of the lambda’s parameters (x

and y) in its body with the two arguments (3 and 5), yielding the simple addition “3 + 5.” This

form of evaluation via substitution is fundamental to Core’s semantics and the notion of purity.

In the formal untyped lambda calculus, named functions like “+” and literal constants like “1”

do not exist; in Core, integer literals are primitive expressions and lambda expressions may be

bound to variable names, which may then be referenced in other expressions, e.g.,

24

List of Tables

f = λx → x + 1 −−f now refers to the increment function

f 3 −−equivalent to applying the lambda directly

The typed lambda calculus simply adds type information to all the terms in an expression.

The above function f would assign the type Int to x and 1, and the entire function would have

type “Int→ Int,” read as “the type of a function that takes a single Int argument and returns an

Int.” Similarly, the two-argument addition function would have type “Int → Int → Int.” These

types are explicit in the typed lambda calculus’s syntax; I omit them in Core examples, as they

typically clutter the code and are inferred anyway. When helpful, I will include type signatures

for variable definitions using the “::” or “type of” operator, e.g., “f :: List a -> Int” means “f has

the type of a function that takes a polymorphic List argument and returns an Int.” In general, the

number and type of arguments given to each function call must be consistent with that function’s

type, which is inferred from its definition.

Core extends this basic calculus with four additional expression forms: integer literals (lit),

data constructors (Dcon), let, and case. A data constructor behaves like a function that creates

objects: if type Tcon has a variant defined as Dcon t1 . . . tk , the expression Dcon e1 . . .ek , where

expression ei is of type ti , creates an object of typeTcon. Higher-order constructors and functions

are prohibited, i.e., a variant cannot have a type field of function type, and functions may not take

other functions as arguments or return them as results. This means partial function application

is also prohibited.

A let expression introduces local variables by binding one or more expressions to names; each

name is then in scope in the let’s body (the expr following the in keyword). Local functions may

be defined this way, and local names can shadow the same name in outer scopes:

g = let f = λx y → x + y −− local function definition

g = 7 −− shadows the outer g

in f g 6 −− this g refers to 7; the outer g names the result , 13

A case expression is a multi-way conditional that selects an expression to evaluate according

to a matching pattern. It first evaluates its “scrutinee” expression (the expr between the case and

of keywords), then compares the form of the result to a set of one or more alternatives in order

(top-to-bottom). Each alternative comprises a pattern and an expression; the first pattern that

matches the scrutinee is selected, and the associated expression is evaluated.

25

List of Tables

A set of patternsmay either be literals or constructors (they cannotmix). Thewildcard pattern

“_” matches anything, and may be used as the whole pattern or to ignore fields of a constructor.

For example, the factorial function pattern matches on its scrutinee x, returning 1 if x evaluates

to 0 and otherwise multiplying x against the result of a recursive call:

factorial = λx → case x of

0 → 1
_ → x ∗ factorial (x−1)

When matching against data constructor patterns, the case extracts the fields of the data con-

structor expression associated with its scrutinee; each field is either ignored with the wildcard

pattern or bound to a new local variable. For example, the length function below scrutinizes its

list argument list, returns 0 if list is empty, and otherwise adds 1 to the result of recursing on the

rest of the list. We use the wildcard pattern to ignore the data field of a Cons, and the variable

pattern xs to name its recursive field so we can use it in the alternative’s expression:

length = λ list → case list of

Nil → 0
Cons _ xs → 1 + length xs

At the start of this section, I described Core as a pure language; I now define this term and

how it affects the language and our compiler. A function is pure if it fulfills two conditions:

1. The function always returns the same result when called with the same set of arguments.

2. Evaluating the function has no side effects.

Likewise, an expression is pure if it always evaluates to the same value and has no side effects. A

function or expression has a side effect if, when evaluated, it modifies some aspect of the program’s

state (e.g., mutating a global variable).

By defining Core to be a pure language, we ensure that every expression and function in a

Core program is pure, which has the following implications:

26

List of Tables

Haskell inferred types, general pattern matching, lots of syntactic sugar

GHC Core §3.1 explicit types, case, recursion, polymorphism, lambdas

Simplified Core top-level named lambdas, monomorphic

Optimized Core packed recursive data types, duplicated
functions and types

Floh §4.1 tail-recursion, explicit memory operations, Go-
triggered constants, restricted expression forms

DF §5.5 parametric dataflow networks

SystemVerilog Synthesizable RTL:
registers, multiplexers, arithmetic

GHC:
type inference

desugaring

Simplification §3.3

DAC Pass §6

Packing Pass §7

Conversion to Floh §3.3

Translation to

Dataflow §4.3
Code Generation §5.2

Figure 3.2: Overview of our compilation flow: we rewrite Haskell programs into increasingly
simpler representations until we can perform a syntax-directed translation into SystemVerilog.

• All variables are immutable.

• Core expressions are referentially transparent: an expression can always be replaced with

its corresponding value without affecting the program’s result. If a name is bound to an

expression, the name and expression can replace one another freely in the name’s scope.

• If there are no data dependencies between two expressions, they can be evaluated in parallel

without worry of interference or data races.

We rely on these properties throughout the compilation process; purity simplifies our transla-

tions, provides opportunities for optimizations specifically catered to the irregular programs my

dissertation concerns, and makes our programs inherently parallel.

3.2 The End-to-End Compilation Flow

Figure 3.2 visualizes our compiler as a sequence of abstraction-lowering transformations that con-

vert a Haskell program into a SystemVerilog circuit specification. Here, I apply these transforma-

27

List of Tables

tions to a simple example, only showing the portions affected by each step. As more abstractions

are removed, the example will get larger, so I will focus in on smaller portions to avoid over-

loading the reader. The point is to convey the general compilation process and present the key

aspects of transformations applicable to this example. In later chapters (denoted in Figure 3.2), I

provide the full treatment of both the transformations and the IRs they generate.

Consider this Haskell program, which computes the length of a list of integers:

data List = Nil | Cons Int List

length :: List → Int
length Nil = 0
length (Cons _ xs) = 1 + length xs

main :: Int
main = length (Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))))

This length function is semantically equivalent to the one shown at the end of Section 3.1,

but specifically operates on integer lists and uses syntactic sugar: instead of an explicit lambda

and case expression, a programmer can define a function with multiple bodies, each correspond-

ing to a different input pattern. As in Core, a main definition names the result of the program,

which here is the length of a four-element list. While Haskell provides strong type inference

mechanisms, we present explicit type signatures above the definitions in this example for clarity.

Our compiler’s front-end passes this programoff to theGlasgowHaskell Compiler (GHC) [100],

which parses, typechecks, optimizes, and transforms it into the External Core IR [124]; we pare

this IR down to our version of Core (Section 3.1) before linking it with a subset of Haskell’s

standard libraries, also in Core form. We use an older version of GHC (7.6.3) since later versions

removed the ability to dump External Core files. This choice prevents the use of some of Haskell’s

newer features (thus our omission of some of its standard libraries), but has no bearing on this

dissertation’s goal to show that irregular functional programs can be compiled into specialized

hardware and optimized for parallelism.

The Core version of this example program has the same main and List definitions, but length

has been desugared to reveal its underlying implementation with a lambda and case:

28

List of Tables

length :: List → Int
length = λ list → case list of

Nil → 0
Cons _ xs → 1 + length xs

The compiler next transforms the program to simplify its form. Polymorphic constructs

are replaced with specialized, monomorphic forms, all variable names are made unique, and a

“lambda lifting” pass names every unbound lambda expression. Here, the lambda lifting pass

removes length’s lambda and moves its parameter to the other side of the equals sign:

length list = case list of · · ·

The program is now ready for two optional optimizations which serve as two of this disser-

tations major contributions. One optimization applies to divide-and-conquer algorithms (Chap-

ter 6), and thus is not applicable in this example. The other, detailed in Chapter 7, packs recursive

types to store more data per cell and modifies functions to operate on these packed types:

data PList = PNil | UCons Int PList | PCons Int Int PList

length :: PList → Int
length list = case list of

PNil → 0
UCons _ xs → case xs of

PNil → 1
UCons _ ys → 2 + length ys
PCons _ y ys → 2 + length (UCons y ys)

PCons _ _ xs → 2 + length xs

main :: Int
main = length (PCons 1 2 (PCons 3 4 PNil))

The PList data type comes in three flavors: PNil and UCons capture the original list’s base

and recursive variants, while a packed PCons contains two integers and a reference. The length

function can now count two elements at once (when given a PCons), and the input to length has

been packed into two PCons cells instead of fourCons cells. The packing algorithm also introduces

a new, nested case expression, which the reader can ignore for now; Chapter 7 will provide the

full details to explain where this case came from. For the rest of this example, I assume that the

packing optimization is turned off.

29

List of Tables

The next section of the compiler further simplifies Core programs on two fronts: we remove

recursive language constructs that are difficult to translate directly into hardware, and add new

features that simplify our translation into dataflow. Wemotivate the removal of general recursion

in Section 3.3; here, we simply show how this removal affects our example.

Here is some terminology to help define this recursion removal pass:

• If a function f contains a call to f, that call is directly recursive.

• If a function f calls some function g that in turn calls f, then the call to g is indirectly

recursive. This extends to chains of function calls, e.g., if f calls g, which calls h, which then

calls f again, the first call to g is still indirectly recursive.

• A function call is a tail call if it is the last expression evaluated in a function’s definition.

• A function is tail-recursive if it contains one or more directly or indirectly recursive calls,

all of which are tail calls.

The length function (as it stands) is not tail-recursive: it contains a directly recursive call, but

it is not a tail call since the result is passed to length’s addition operation. Our recursion removal

pass [141] transforms length into a collection of tail-recursive functions with an explicit stack:

data Stack = K0 | K1 Stack

length :: List → Int
length list = callLength list K0

callLength :: List → Stack → Int
callLength list stack = case list of

Nil → retLength 0 stack
Cons _ xs → callLength xs (K1 stack)

retLength :: Int → Stack → Int
retLength arg stack = case stack of

K0 → arg
K1 nextStack → retLength (1 + arg) nextStack

This transformation reimplements the recursive lengthwith two new tail-recursive functions,

callLength and retLength. When length is called, it simply passes its argument list to callLength

along with a new data constructor K0 encoding the “bottom” of a stack data structure. CallLength

30

List of Tables

traverses the list in a tail-recursive fashion, “pushing” a K1 constructor onto the stack for each

Cons seen.

Once the list has been traversed, callLength calls retLength, which takes an accumulator ar-

gument (starting at 0, the value returned in the base case of the original length function), and the

stack built up by callLength. On each call, retLength “pops” the stack by pattern matching on it,

adding one to its accumulator for each K1 popped. Once retLength pops the bottom of stack (K0),

computation has completed and the final accumulator arg is returned.

The next two compiler passes add constructs that simplify our eventual translation from a

functional IR to abstract dataflow networks: explicit memory operations and pointers, and a

special type to handle constants in our dataflownetworkmodel. To simplify the current example’s

presentation, I focus on how these transformations affect the callLength function and its types.

In hardware, we implement recursive data types (here, List and Stack) with type-specific

pointers and a heap, so we first introduce explicit pointer types to replace recursive type fields

and read/write functions that convert between pointers and the types they capture. For example,

the new type definition of a List is

data List = Nil | Cons Int ListPointer

and List objects are stored and recovered from a heap via two functions with type signatures

listWrite :: List → ListPointer
listRead :: ListPointer → List

We then insert calls to these type-specific memory access functions; a read occurs whenever

a case expression pattern matches on a recursive data type, while a write occurs whenever a new

variant of such a type is constructed. This changes callLength to

callLength :: ListPointer → StackPointer → Int
callLength lp sp = case listRead lp of

Nil → retLength 0 sp
Cons _ xs → callLength xs (stackWrite (K1 sp))

Constants (here, numeric literals and the Nil data constructor) can lead to scheduling diffi-

culties in hardware dataflow networks, so we modify them to act like single-argument functions.

Unlike true functions, the argument passed to these “constant functions” should not correspond

to any actual data; receiving the argument should simply generate the constant value.

31

List of Tables

To that end, we introduce a special, single-valued type called “Go” whose sole purpose is

to trigger constant generation. A single Go object is passed around the whole program as an

additional argument (in hardware, it’s supplied by the environment), each constant expression of

type T in the program becomes a function call of type Go→ T, constant constructors are given a

Go type field, and constant patterns are modified to ignore this new field with a wildcard:

data Stack = K0 Go | K1 StackPointer
data List = Nil Go | Cons Int ListPointer

callLength :: ListPointer → StackPointer → Go→ Int
callLength lp sp g = case listRead lp of

Nil _ → retLength (0 g) sp g
Cons _ xs → callLength xs (stackWrite (K1 sp)) g

This example only requires one more transformation to convert it into the more restricted

Core dialect, Floh: lifting subexpressions. In Floh, all function arguments, data constructor ar-

guments, and case scrutinees must be simple variable expressions. We thus lift any non-variable

subexpressions into local let bindings, yielding the Floh version of callLength:

callLength :: ListPointer → StackPointer → Go→ Int
callLength lp sp g = let t0 = listRead lp in

case t0 of

Nil _ → let t1 = 0 g in

retLength t1 sp g
Cons _ xs → let t2 = K1 sp in

let t3 = stackWrite t2 in

callLength xs t3 g

From a Floh program, the compiler next performs a mostly syntax-directed translation to pro-

duce a dataflow network. A dataflow network is composed of computational actors that execute

in parallel and communicate via sequences of tokens passed over unbounded FIFO channels. We

use dataflow networks to bridge the gap between Floh and hardware because they are inher-

ently distributed, parallel, and latency-insensitive: they schedule themselves dynamically with a

light-weight protocol that handles the long latencies we expect from modern memory systems.

Figure 3.3 depicts the dataflow network generated from callLength. When a list pointer token

arrives on input channel lp, a merge actor passes it off to the listRead actor and reports its input

selection to two multiplexers, which steer the other two inputs (sp and g) into the network. The

32

List of Tables

lp sp g

listRead

Nil Cons

discard

Cons

discard

Nil Cons Nil Cons

K1

stackWrite

sp

0

t1 g

Figure 3.3: A dataflow graph for the callLength function. This walks an input list, pushing K1

onto the stack for each element traversed. Upon reaching the end of the list, the stack pointer, an
accumulator, and a Go value are passed to the subnetwork implementing retLength.

list cell output by listRead is forked to the select input of three demultiplexers (and the data input

of the leftmost one). If the cell is Nil (the base case), the stack pointer and Go token are sent to

the network implementing retLength, along with a Go-triggered constant (the three outputs at

the bottom of Figure 3.3).

If listRead instead produces a Cons, the network uses a destruct actor to extracts the Cons’s

pointer field (discarding its data field), pushes a K1 onto the stack to obtain a new stack pointer,

and passes these two new tokens along with the Go token back into the network along feedback

loops. Once the list pointer field arrives at the merge actor, the above process repeats.

This dataflow network is internally represented with another IR, DF, which serves as the input

to the compiler’s final translation into SystemVerilog (it can also be dumped by the compiler for

debugging or design-space exploration). Each dataflow actor becomes a small block of logic,

augmented with a handshaking protocol to retain the network’s patience. Channels are either

the two-place buffers of Cao et al. [18] (which are implemented with the handshaking protocol

in mind) or direct wires.

The handshaking protocol uses two extra bits on each channel. A valid bit is bundled with

data, indicating if a token is present on the data wires. A downstream block sends a ready bit

upstream to indicate it is able to consume a token being proffered by the upstream block. A token

33

List of Tables

/∗ demux ∗/

logic [1:0] onehot;
always_comb

if ((select [0] && in[0]))
unique case (select [1:1])
1′d0 : onehot = 2′d1;
1′d1 : onehot = 2′d2;
default: onehot = 2′bx;

endcase

else onehot = 2′d0;
assign nilOut = { in [65:1], onehot [0]};
assign consOut = { in [65:1], onehot [1]};
assign select_r = | (onehot & {consOut_r, nilOut_r });
assign in_r = select_r ;
assign nilOut_r = 1;

/∗ destruct ∗/

assign x = {consOut [33:2], consOut [0]};
assign xs = {consOut [65:34], consOut [0]};
assign consOut_r = &({xs [0], x [0]} & {xs_r , x_r });

Figure 3.4: SystemVerilog for a two output demultiplexer, with one output feeding into a destruct
actor that dismantles a Cons cell into its respective fields.

is transferred from the upstream block to the downstream block (or “consumed”) when both valid

and ready are asserted.

Memory access actors are an exception in our translation; they become channels that route

memory requests and results between the network and either a robust, cycle-accurate memory

simulator (Section 6.3) or a collection of tiny, simply managed on-chip memories (Section 5.6.5).

The user can decide which to use via a compiler flag.

As with any compiler, the final code generated is much larger than the original program. I

thus only show the generated code in Figure 3.4 for the leftmost demultiplexer and the destruct

actor that dismantles a Cons cell into its constituent fields. To represent, say, an 8-bit channel c, I

use a nine-bit vector c for data (c[8:1]) and valid (c[0]), and a wire named c_r for ready. The List

type is realized as a 66-bit vector: 1 bit for valid, 1 tag bit to indicate if the vector encodes a Nil

or a Cons, 32 bits for a Cons’s integer data, and 32 bits for a Cons’s pointer.

The two-output demultiplexer copies its input data (in) to all outputs (nilOut and consOut). If

34

List of Tables

both the in port and select port have valid tokens, a one-hot decoder uses the value of the select

token to indicate that exactly one of the output ports has a valid token. Both inputs are consumed

if the selected output is ready. Note that the nilOut_r signal is always high; this means that any

Nil tokens are always consumed but not passed to any actor downstream.

When a Cons token arrives at the demultiplexer, it is passed to the downstream destruct actor

on the consOut wire. The contents of the token are split into two signals, x and xs, which are both

valid if the input is valid. The input token is consumed when both outputs are valid and ready.

Given the SystemVerilog specification of a circuit, we can simulate it for performance mea-

surements or, if it doesn’t use memory or uses the tiny on-chip memories mentioned earlier,

synthesize it using Intel’s Quartus software for area or timing estimates. Most of the experi-

mental evaluation in this dissertation is done via cycle-accurate simulation, which is sufficient to

support my thesis’s claim that hardware synthesized from irregular functional programs can be

optimized for parallelism.

3.3 Lowering Core

The Core IR provides various abstractions that simplify the specification of irregular algorithms,

but make direct translation to hardware difficult. Our compiler thus performs a number of inde-

pendent, abstraction-lowering passes that together transformCore into itsmore restricted dialect,

Floh, which admits a (mostly) syntax-directed translation from a functional language to dataflow

networks. This section describes these “lowering” passes in detail, following the order of their

application in the compiler.

3.3.1 Removing Polymorphism

We first remove polymorphic constructs from a Core program. This pass specializes and renames

each polymorphic function, type, and data constructor based on their concrete type arguments,

which are explicit in the code (but omitted from the syntax presented in Figure 3.1). Our imple-

mentation follows the description of the MLton compiler’s monomorphise pass [49].

The pass first walks over the program to construct a symbol table mapping each polymorphic

construct’s name to a “type map.” Every time we see a given polymorphic construct applied to

a new set of concrete types during this walk, we create an entry in its type map that associates

35

List of Tables

those types with a fresh name. The name will refer to a monomorphic version of the construct,

specialized to the corresponding concrete type arguments.

For example, say we have a program that calls a polymorphic length function on a list of

booleans bools and a list of integers ints (explicit types are included to aid this discussion):

data List a = Nil | Cons a (List a)

length :: List a → Int
length = · · ·

main = let bools :: List Bool = Cons True (Cons False Nil)
ints :: List Int = Cons 1 (Cons 2 Nil)

in length bools + length ints

The symbol table would have entries for the List type, length function, and both of List’s data

constructors. The List entry’s type map would associate the concrete types Bool and Int with new

names List_Bool and List_Int; the other constructs would have similar type maps.

After populating the symbol table, we walk over the program again, replacing names of poly-

morphic constructs with the monomorphic ones found in its type map. This can reveal new sets

of concrete types applied to a polymorphic construct, which adds new entries to the symbol table;

the process then repeats. The process is complete once no new entries are found.

Finally, a monomorphised version of each polymorphic definition is created for each entry in

its type map, with all names changed to capture the monomorphised versions; this translates our

polymorphic length example into

data List_Int = Nil_Int | Cons_Int Int List_Int
data List_Bool = Nil_Bool | Cons_Bool Bool List_Bool

length_Int :: List_Int → Int
length_Int = · · ·

length_Bool :: List_Bool → Bool
length_Bool = · · ·

main = let bools :: List_Bool = Cons_Bool True (Cons_Bool False Nil_Bool)
ints :: List_Int = Cons_Int 1 (Cons_Int 2 Nil_Int)

in length_Bool bools + length_Int ints

36

List of Tables

3.3.2 Making Names Unique

All variable identifiers in the program are made globally unique (type names and data constructor

names are already globally unique); this is a classical compiler technique that simplifies further

program analyses. This pass only changes the program if top-level identifiers are shadowed with

let expressions or if two identical names are in different scopes, e.g.,

x = let y = 2 −−shadows the global y

z = 3 in 1 + y + z
y = let z = 4 −−z already used in x′ s definition

in z

becomes

x = let y1 = 2
z1 = 3 in 1 + y1 + z1

y2 = let z2 = 4
in z2

The compiler runs this pass whenever new names are introduced due to other program trans-

formations, so all subsequent passes may assume that names are globally unique.

3.3.3 Lambda Lifting

Our lambda lifting [74] pass, implemented by Lizzie Paquette, eliminates anonymous functions

from a Core program by lifting any unnamed lambda expressions into the top-level, assigning

them fresh names, and using the names in place of the original expression. It also lifts locally

defined functions into the global scope. Any free variables used by the local/anonymous functions

(i.e., variables that are not named as that function’s arguments or defined in its body) are added

as additional parameters in the process.

sum = λn→ case n of

1 → 1
_ → let f = λx → n + x in

f (sum ((λy → y − 1) n))

37

List of Tables

The contrived example above contains both a local function f and an anonymous function.

The local function is given an additional argument to capture its free variable n, the anonymous

function is bound to a fresh name g, and both functions are lifted into global definitions:

f = λx n → n + x

g = λy → y − 1

sum = λn→ case n of

1 → 1
_ → f (sum (g n)) n

Since lambda expressions only occur at the top-level now, we eliminate them from the syntax

and instead write a function definition’s arguments next to its name:

f x n = n + x

g y = y − 1

sum n = case n of

1 → 1
_ → f (sum (g n)) n

3.3.4 Removing Recursion

This is the most complex lowering pass, and the algorithm it implements was a main contribu-

tion in the first paper describing our compiler [141]. The transformations involved have strong

implications on the final hardware produced, so I present the full motivation and details of the

recursion removal algorithm here. Kuangya Zhai implemented and described the original algo-

rithm; I modified the implementation to handle corner cases that have cropped up since then,

and largely reuse Zhai’s presentation from [141] here.

First, I use an example to explain why general recursive (i.e., not tail-recursive) functions can

pose problems for hardware translation, presenting the concepts leveraged by the algorithm. I

then present the actual algorithm, using small snippets of code to help explain how it works.

38

List of Tables

Illustrative Example: Fibonacci

The example below implements the familiar recursive Fibonacci number function: it compares

the integer argument n with constants 1 and 2 to determine whether it has reached a base case,

for which it returns 1, or needs to recurse on n−1 and n−2. After applying our pass, this function

is realized with a trio of tail-recursive functions that use an explicit stack, together implementing

the general recursion here.

fib n = case n of 1 → 1
2 → 1
_ → fib (n−1) + fib (n−2)

Translating this recursive function into hardware is difficult because of the two recursive

function calls. The usual technique of inlining calls (e.g., typical for HLS tools) would attempt

to generate an infinitely large circuit unless we limited the recursion depth. Interpreting the

structure of this program literally would produce a circuit with multiple combinational loops

(multiple ones from each recursive call), but it would likely oscillate unpredictably. Inserting

registers in the feedback loops would prevent the oscillation, but since this is not simply tail-

recursion, it is not obvious how to arbitrate between the two call sites or how to “remember”

the remaining computation that should occur after a recursive call returns. Instead, our compiler

restructures this program into a semantically equivalent form that is straightforward to translate

into hardware using the technique I present in Section 4.3.

Since Core is a pure language, the evaluation of fib (n–1) and fib (n–2) can occur in any order

without changing the function’s result. To avoid arbitration circuitry to decide which call to eval-

uate first, we impose a particular order on them by transforming the function into continuation-

passing style [52, 120], or CPS. In CPS, each function is given an extra “continuation” argument

(traditionally named “k”) that captures what to do with the result of the function. A continuation

is a single-argument function; when a CPS function computes its result, it applies its continuation

to that result.

Many functional compilers rewrite entire programs into CPS form for control-flow analysis;

we only use it on recursive functions to order multiple recursive calls. Specifically, we use a CPS

helper function call to do fib’s actual work, and modify fib to invoke call with a continuation that

returns the result to the outside, non-CPS world:

39

List of Tables

call n k = case n of 1 → k 1
2 → k 1
_ → call (n−1) (λn1→

call (n−2) (λn2→
k (n1 + n2)))

fib n = call n (λx → x)

The structure of call now represents the control flow explicitly: recurse on (n-1), name the

result n1, recurse on (n-2), name its result n2, compute n1 + n2, and finally pass the result to the

continuation k. As a specific example, consider evaluating fib 3:

fib 3 = call 3 (λx → x)
= call 2 (λn1→ call 1 (λn2→ (λx → x) (n1 + n2)))
= (λn1→ call 1 (λn2→ (λx → x) (n1 + n2))) 1
=β call 1 (λn2→ (λx → x) (1 + n2))
= (λn2→ (λx → x) (1 + n2)) 1
=β (λx → x) (1 + 1)
=β 2

The first call to fib simply passes the argument 3 to call with the identity continuation. Since

3 doesn’t match 1 or 2, this first call evaluates to the expression call 2 (λ n1→ . . .). Evaluating this

call applies the whole continuation (λ n1→ . . .) to 1; every instance of n1 in the continuation’s

body is replaced with the argument 1 (this process is called “β-reduction”, referenced with the

β subscripts). The rest of the steps follow similarly (either evaluating a tail-recursive call or

performing β-reduction).

The CPS transformation has scheduled the two original fib calls (now captured in the call

function) and transformed the program to use only tail-recursion, which we implement in hard-

ware as buffered feedback loops in a dataflow network. Two issues remain before we can directly

translate this function into hardware, though: the second continuation (λ n2→ . . .) references n1,

which is defined by the first continuation, not the second; andmore seriously, lambda expressions

(our continuations) are being passed as arguments, which our IR’s semantics prohibits.

We perform lambda lifting again (Section 3.3.3) to address these issues. First, any variables

that are not defined within their continuation (here, n and k in the first continuation, n1 and k in

the second) are added and passed as additional arguments to that continuation. For example, the

expression (λn2→ k (n1 + n2)) becomes ((λn1 k n2→ k (n1 + n2)) n1 k).

40

List of Tables

call n k = case n of 1 → k 1
2 → k 1
_ → call (n−1) ((λ n k n1 →

call (n−2) ((λ n1 k n2 →
k (n1 + n2)) n1 k))

n k)
fib n = call n (λx → x)

Second, each lambda expression is extracted and named as a top-level fuction:

call n k = case n of 1 → k 1
2 → k 1
_ → call (n−1) (k1 n k)

k1 n k n1 = call (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = call n k0

Here, k0 is the identity function, k1 evaluates the second recursive call, and k2 produces a

result (to pass to the next continuation) by adding n1 to n2. Each of these continuations is passed

as a partially applied function, e.g., k1 takes three arguments, but is only given n and k when

passed to call. The third argument is passed to k1 when it is called, either in one of call’s base

cases or in the body of k2. With the lambda lifting step complete, fib 3 would be evaluated as:

fib 3 = call 3 k0
= call 2 (k1 3 k0)
= (k1 3 k0) 1
= call 1 (k2 1 k0)
= (k2 1 k0) 1
= k0 (1 + 1)
= 2

Partially-applied functions do not have a clear hardware representation, so we eliminate them

via defunctionalization [37]. An algebraic data type Cont encodes the continuations (one variant

for each), and a helper function ret “applies” a continuation k to a result r (using a case expression

to identify the continuation):

41

List of Tables

data Cont = K0 | K1 Int Cont | K2 Int Cont

call n k = case n of 1 → ret k 1
2 → ret k 1
_ → call (n−1) (K1 n k)

ret k r = case k of K1 n k′ → call (n−2) (K2 r k′)
K2 n1 k′ → ret k′ (n1 + r)
K0 → r

fib n = call n K0

This is now much closer to a hardware implementation. No partially applied or higher-order

functions remain, and the k argument functions like a top-of-stack: creating a continuation effec-

tively pushes onto the stack; scrutinizing the continuation in ret pops the stack (with k′ serving

as the new top-of-stack).

Each recursive function transformed in this way gets its own dedicated Cont type, and our

eventual translation to hardware realizes such recursive types with type-specific pointers and a

heap. This means that two recursive functions could use independent memories for their respec-

tive Cont types to improve memory-level parallelism. We leverage this idea in our specialized

memory system to exploit potential parallelism (discussed in Section 6.2).

The Actual Algorithm

The previous example introduced the concepts underlying our recursion removal procedure; I

now present the actual procedure, which applies to more general cases and eschews the intro-

duction of constructs that would then have to be removed (e.g., higher-order functions). It starts

from any collection of functions, which may contain recursion of any form, and produces an

equivalent collection of functions that are at most tail-recursive. This procedure assumes that a

lambda-lifting pass has occurred (e.g., that all functions called are named directly) and that no

higher-order functions are present (including partially applied functions).

Our procedure operates by identifying groups of mutually recursive functions, merging each

group into a single recursive function, explicitly scheduling the recursive calls, splitting apart

each function at recursive call sites, inserting continuation control with tail-recursive helper

functions, and encoding continuations with a stack-like data type. I detail these steps below.

42

List of Tables

CombiningMutuallyRecursive Functions Webegin by combiningmutually recursive func-

tions into a single function. We build a static call graph of all the functions in the program; each

strongly connected component (SCC) is a group of mutually recursive functions to be merged.

Each function in an SCC can have different argument and return types, so to merge the func-

tions, we need to merge their types. Consider two mutually recursive functions f and g that

return variables ff and gg of respective types T and U :

f :: X→ T
f x = . . . g a . . . ff

g :: Y → U
g y = . . . f b . . . gg

To merge f and g’s return types, we define an algebraic data type that can hold either T or U,

data Ret = Ret_f T | Ret_g U

introduce variants of f and g that return this new type bywrapping their results in the appropriate

data constructor,

f ′ :: X→ Ret
f ′ x = . . . g a . . . (Ret_f ff)

g′ :: Y → Ret
g′ y = . . . f b . . . (Ret_g gg)

and re-implement f and g to call their variants and extract the wrapped results

f :: X→ T
f x = case f ′ x of Ret_f r → r
g :: Y → U
g y = case g′ y of Ret_g r → r

Inlining f and g in the definitions of their variants leaves only f ′ and д′, which are still mu-

tually recursive but each return the same type.

43

List of Tables

f ′ :: X→ Ret
f ′ x = . . . (case g′ a of Ret_g r → r) . . . (Ret_f ff)
g′ :: Y → Ret
g′ y = . . . (case f ′ b of Ret_f r → r) . . . (Ret_g gg)

We next unify the argument types of f ′ and д′. Again, we introduce an algebraic type that

can represent either:

data Arg = Arg_f X | Arg_g Y

andmerge the bodies of f ′ andд′ into a new function fg, which uses a case expression to determine

which body to evaluate (based on the input of type Arg). We also replace calls to f ′ and д′ by

wrapping the calls’ arguments in the appropriate Arg variant and passing the argument to an fg

call instead of f ′ or д′. We make similar modifications to f and g.

fg :: Arg→ Ret
fg a = case a of

Arg_f x → . . . (case fg (Arg_g a) of Ret_g r → r) . . . (Ret_f ff)
Arg_g y→ . . . (case fg (Arg_f b) of Ret_f r → r) . . . (Ret_g gg)

f :: X→ T
f x = case fg (Arg_f x) of Ret_f r → r
g :: Y → U
g y = case fg (Arg_g y) of Ret_g r → r

After these transformations, each group of nmutually recursive functions is fused into a single

recursive function with n non-recursive “wrapper” functions that interface with the new, fused

function. This procedure resembles Danvy’s defunctionalization [37], which introduces an apply

function that takes a function identifier as the first argument; our fg function is the apply, and

the Arg variant is the function identifier.

Sequencing Recursive Call Sites To prepare for the final transformation into CPS, we rewrite

all recursive functions so that each recursive call appears only in a let with a single binding. This

effectively imposes a linear order on all the recursive calls, and the body of each let binding is

exactly the code to be executed after the call returns, i.e., its continuation. We will later slice the

function at these points.

Our algorithm lifts out the scrutinee of any case expression and the arguments of any function

call and binds each such subexpression to a new temporary. Next, our algorithm flattens groups

44

List of Tables

of nested let expressions to yield a simple sequence of lets. To illustrate, consider the following

recursive function f, which contains several directly recursive calls along with calls to h and g.

f arg = · · ·
case h arg of

_ → let a = f (g (f b)) in c · · ·

We first bind the result of f ’s inner call to a new temporary t1:

f arg = · · ·
case h arg of

_ → let a = f (let t1 = f b in g t1) in c · · ·

Next, we lift the scrutinee of the case expression and the argument to the outer f call and bind

them to new temporaries (t3 and t2, respectively).

f arg = · · ·
let t3 = h arg in

case t3 of

_ → let a = (let t2 = (let t1 = f b in g t1)
in f t2)

in c · · ·

Finally, we use the equivalence

let v1 = (let v2 = e2 in e1) in e

== let v2 = e2 in let v1 = e1 in e

to flatten all nested let expressions, giving

f arg = · · ·
let t3 = h arg in

case t3 of

_ → let t1 = f b in

let t2 = g t1 in

let a = f t2 in c · · ·

45

List of Tables

Dividing Functions into Continuations After the last step, recursive calls are in a linear

sequence and located in the local bindings of simple let expressions. Our ultimate goal is to

replace these recursive calls with tail-recursive calls that manipulate continuations on a stack.

Rather than use lambda expressions, which we would ultimately have to eliminate in a hard-

ware implementation, we directly introduce both an algebraic data type “Cont” that represents

partially applied continuations (each is missing the value returned by the recursive call), and a

continuation-handling function “ret” that takes a continuation and a result from a recursive call

and evaluates each continuation in a case expression. We create dedicatedCont and ret definitions

for each recursive function in the program.

There is always a single continuation implying a return of the result to the environment. We

call this K0, giving us

data Cont = K0

ret k r = case k of K0→ r

The original recursive function (here called “g”) is renamed call and given an additional ar-

gument k to represent the continuation that will receive the result. We then reuse g to name a

wrapper function that calls the new entry point with K0:

call x1 · · · xn k = · · ·

g x1 · · · xn = call x1 · · · xn K0

The bodies of the let expressions with recursive calls are exactly the continuations for those

calls, so we divide up the function by applying the following steps to each of these let expressions:

1. Replace the whole let expression with the recursive call it named.

2. Add a variant to the Cont type that captures all the free variables in the body of the let

(effectively performing lambda lifting).

3. Pass this new variant as an argument to the recursive call, including any free variables as

its fields.

4. Add the body of the let to a new branch of the case in the ret function. This branch matches

on the newly introduced Cont variant.

For example, if from the last step we have

46

List of Tables

call · · · = let v1 = · · · in

· · ·

let vn = · · · in

let z = call a1 · · · am in · · · v1 · · · vn · · ·

we turn it into the fragment

call · · · = let v1 = · · · in

· · ·

let vn = · · · in

call a1 · · · am (K1 v1 · · · vn)

and extend the Cont type and ret function (assuming variable vi has type Ti , for 1 ≤ i ≤ n):

type Cont = K0
K1 T1 · · · Tn
· · ·

ret k r = case k of

K0→ r
K1 v1 · · · vn → let z = r in · · · v1 · · · vn · · ·

Once this is completed, each recursive function g is converted into a simple wrapper func-

tion that interfaces between external callers of g and a pair of mutually tail-recursive functions

callд and retд that manipulate a function-specific stack typeContд. This has eliminated (non-tail)

recursion from all functions in the program; we next deal with recursive data types.

3.3.5 Tagging Memory Operations

A software program executing on a general-purpose processor usually requires up to four seg-

ments of memory: code to store the program’s instructions, data for global or static variables,

stack to store local variables and implement function calls, and heap for dynamically-allocated

data (e.g., “malloced” data in C, objects in Java, thunks in Haskell). Since our compiler targets

specialized hardware, we may organize and interact with memory in whatever way we choose.

Our hardware dataflow networks use a simple memory model: variants of recursive data

types and their fields are the only things written to or read from memory (all other live values

flow through the dataflow network directly or reside in registers). Values of non-recursive type

47

List of Tables

are thus stored in memory only if they exist as a field in a recursive type’s variant, e.g., the Int

field of a Cons cell.

We encode non-recursive types as statically-sized (i.e., bounded) bit vectors in hardware; un-

fortunately, a recursive type cannot be bounded at compile time, in general. We thus model recur-

sive data types with type-specific pointers and a heap. Here, we use a compiler pass to introduce

abstract pointer types and memory access functions that indicate where memory operations will

need to occur.

This pass begins by introducing three new polymorphic definitions: a Pointer data type that

holds a value of recursive type, a write function that wraps values in the new Pointer type, and a

read function that unwraps them:

data Pointer a = Pointer a

write :: a → Pointer a
write value = Pointer value

read :: Pointer a → a
read pointer = case pointer of

Pointer value → value

The pass then performs three simple transformations:

1. If type T is recursive, replace any type field T found in a variant definition with Pointer T.

2. Replace every data constructor expression e of recursive type with write e.

3. If expression e is a case scrutinee (i.e., case e of . . .) of recursive type, replace e with read e.

After this pass, we run the monomorphise pass again to specialize the Pointer type and read

and write functions. Once complete, all recursion in type definitions is captured with type-

specialized Pointer types, and type-specific read and write functions denote the only code loca-

tions where values of recursive type can be inspected and generated, respectively. These invari-

ants both simplify our translation to dataflow networks and provide optimization opportunities

for memory operations at the functional language level, i.e., since all memory operations are

strongly typed and pointers cannot be generated by the user, memory-focused compiler analy-

ses are made much simpler than, say, those required in C-like languages where one pointer may

point to different types of data during execution, including garbage values.

48

List of Tables

The above implementations of the abstract Pointer, read, and write constructs are ignored

by the translation to dataflow (they are used to maintain semantic correctness throughout the

lowering compiler passes). Instead, the translation modifies pointers to carry actual addresses,

and type-specific read and write functions are treated as language primitives, i.e., they cannot be

implemented directly and are treated specially by the compiler.

For example, the translation would realize a binary tree of integers with types

data Btree = Branch Bptr Int Bptr | Leaf
data Bptr = Bptr Int

where Btree is an algebraic type with two variants: Branch, with pointers to two Btrees and an

integer; and Leaf representing an empty tree. A Bptr carries an address that points to a Btree

object on the heap.

Such Btree objects are stored and recovered from a heap via two functionswith type signatures

treeWrite :: Btree → Bptr
treeRead :: Bptr → Btree

TreeWrite takes a Btree object, writes it to the heap, and returns a Bptr that, when given to

treeRead, returns the written object.

Providing memory operations in a parallel programming language usually introduces data

races and nondeterminism; we avoid these problems with a simple but profound limitation: only

memory write functions can create pointers (e.g., only treeWrite may construct Bptr objects).

This restriction, paired with a heap following the standard heap discipline (i.e., live data is never

overwritten), ensures that our IR remains deterministic with explicit memory operations. Thus,

given any object x with type-specificmemory operations read andwrite, read(write(x)) = x always

holds. We give more details on this treatment in Section 4.2 and Section 4.3.

3.3.6 Simplifying Case

The Floh dialect of Core maintains a number of syntactic invariants that simplify its translation

to dataflow networks. The next three compiler passes modify Core programs so they adhere to

these invariants, thus finishing the translation from Core to Floh.

This pass imposes a restriction on case expressions: a case can only pattern match on data

constructor expressions (or variables bound to those expressions), and if it is matching on a value

49

List of Tables

of type T, every constructor of type T must be matched explicitly. We thus remove literal pattern

matching and default patterns with this pass.

We first remove any cases pattern matching on literals (here called a “literal case”), replacing

them with equality checks and matchings on booleans. A literal case always matches on a finite

number of integer literals explicitly, then has a final default pattern to handle all other integers,

i.e., we perform the following transformation:

case e of (lit1→ e1)...(litk → ek) (_→ ede f ault)

= case e == lit1 of (True → e1) (False → ...

case e == litk of (True → ek) (False → ede f ault) ...)

A casematching on a single default pattern is unnecessary, as it always evaluates to the default

alternative’s expression. We replace the whole case with that expression:

case e of (_→ ede f ault) = ede f ault

The only other situation breaking our desired invariant is a case that matches on some data

constructors but uses a default pattern to handle all others. We add an extra alternative for each

data constructor that wasn’t matched, and have them all evaluate to the expression used by the

original default pattern, e.g., for a case matching on a scrutinee whose type has n > k variants

(here we use Ci to represent the ith data constructor pattern):

case e of (C1→ e1)...(Ck → ek) (_→ ede f ault)

= (C1→ e1)...(Ck → ek) (Ck+1→ ede f ault)...(Cn→ ede f ault)

3.3.7 Adding Go

In our dataflow network semantics, computation can only occur when an actor in the network

is provided with one or more inputs, after which the actor “fires,” consuming its inputs and pro-

ducing some number of outputs. As will be shown in Section 4.3, each expression in a program

is translated into a collection of dataflow actors, so each expression should have some notion of

“input” to respect the actor firing semantics.

Constant expressions, though, do not have any inputs at this stage in the compiler. To avoid

50

List of Tables

the need for “source” actors that generate constant data without being prompted (which lead to

scheduling headaches), this compiler pass introduces a special type called “Go,” defined as data

Go = Go, and re-implements each numeric literal in a program with a function that takes a single

Go argument and produces the appropriate constant. An object of the Go type functions as a

trigger: it does not carry a value, similar to the void type in C-like languages and the unit type in

many functional languages. As a result, Go-triggered literal functions ignore their sole argument

(and are the only kind of function in Floh that may do so).

The goal of this pass is to transform all constant expressions into single-argument functions

that simply take a Go-valued argument and produce the original constant value. As a first step,

we inline all top-level constant definitions to prevent parallelism-hindering sharing: our transla-

tion into dataflow creates a single sub-circuit for each function, which is then shared among its

callers, so inlining will yield more opportunities for these simple constant-generating functions

to operate in parallel.

Consider the below example, which is contrived to capture all the effects of this pass. The

initial inlining step transforms it from

−−top−level constant definitions

nil = Nil
zero = 0

v :: List → Int
v l = case l of Nil → zero

Cons x _ → f zero x

f :: Int → Int → Int
f n x = zero

main = v nil

into

51

List of Tables

v :: List → Int
v l = case l of Nil → 0 −−zero inlined

Cons x _ → f 0 x −−zero inlined

f :: Int → Int → Int
f n x = 0 −−zero inlined

main = v Nil −−nil inlined

Next, each constant data constructor expression is given a Go field; each constant literal be-

comes a function call that, when given a Go-valued argument, produces the original constant

value; and the special main definition (that names the program’s result) is redefined to bind a Go

value to a variable. A program cannot produce a Go object except in themain definition, and this

single Go object is passed around the program as an additional function argument. Specifically,

any function that produces a constant value, either in its own definition or via a call to another

function, will take an additional Go argument.

Continuing with the previous example, Nil is redefined to have a Go field, each use of 0 be-

comes a call to a unique function (to prevent sharing), v and f receive a Go-valued argument to

pass to their (no longer constant) subexpressions, and main produces a single Go value to thread

through the program:

data List = Nil Go | Cons Int List

zero1 go = 0
zero2 go = 0
zero3 go = 0

v :: Go→ List → Int
v go l = case l of Nil _ → zero1 go

Cons x _ → f go (zero2 go) x

f :: Go→ Int → Int → Int
f go n x = zero3 go

main = let go = Go in v go (Nil go)

All constant literals have now been abstracted into single-argument functions, and no con-

stant data constructors exist anywhere in the program. Furthermore, main is the only remaining

52

List of Tables

top-level variable definition; if other top-level variable definitions exist, we inline them at their

use sites, leaving only function and data type definitions at the top-level.

While ourGomachinery clutters our programs, it simplifies our eventual translation to dataflow.

The Go type is an algebraic type like any other and the Go-valued variables behave like all other

variables; our translation does not need any special rules for triggering literals.

3.3.8 Lifting Expressions

Our dataflow translation requires one more invariant that we now introduce in our programs: all

arguments to function calls and data constructors and all case scrutinees must be simple variable

expressions. Any non-variable subexpressions in these code locations are lifted and named with

local let expressions. This pass simply traverses the program and, at each of the listed expression

forms, lifts any non-variable subexpressions into freshly named let expressions.

As an example, this pass would transform

buildList :: Go→ Int → Int → List
buildList go x y l = case x > y of

True _ → Nil go
False _ → Cons x (buildList go (x+1) y)

into

buildList :: Go→ Int → Int → List
buildList go x y l = let t1 = x > y in

case t1 of

True _ → Nil go
False _ → let t2 = x + 1 in

let t3 = buildList go t2 y
in Cons x t3

After this pass, the program has been transformed into the Floh dialect of Core, which we

discuss in detail in Section 4.1. We perform one simple optimization to improve memory-level

parallelism before hitting the actual translation to dataflow in our compiler.

53

List of Tables

3.3.9 Optimizing Reads

Memory accesses that appear in the same scope have a high chance of being parallelized in our

dataflownetworks. We partition on-chipmemory by type (e.g., lists might be in a distinctmemory

from trees), so simultaneous memory accesses for different types can be serviced in parallel.

However, the form of an expression can hinder this parallelism, e.g., if a, b, c are each pointers of

different types, then

case x of

X a b c → let a ′ = read a in case a ′ of

A′ · · · → let b′ = read b in case b′ of
B′ · · · → let c ′ = read c in case c ′ of

C′ · · · → · · ·

will incur three serialized memory accesses, since the result of each is needed before the sub-

sequent case expression can evaluate its scrutinee. However, we have access to all the different

pointers after the top-level case scrutinizes x . We can thus "lift" the second two reads into the

same scope as the first:

case x of

X a b c → let a ′ = read a
b′ = read b
c ′ = read c

in case a ′ of

A′ · · · → case b′ of
B′ · · · → case c ′ of

C′ · · · → · · ·

enabling potential parallelism among the three reads to disjoint memories.

This pass searches each function for independent, potentially speculative read operations (i.e.

accesses a and b might not both occur on every execution path in the function, but a is not a field

in the object pointed to by b and vice versa), and lifts them all into the same scope to enable more

memory-level parallelism. We only perform this optimization on reads, since speculative writes

generate additional garbage.

54

Chapter 4

From Functional Programs to Dataflow Networks

The compiler passes discussed in Section 3.3 transform a Core program into a more restricted

dialect called Floh. In this chapter, I present the next compilation step, which forms one of my

major contributions: a largely syntax-directed translation of Floh programs into abstract dataflow

networks that exhibit pipeline and other forms of parallelism. As another contribution, I infor-

mally describe a technique for implementing these abstract networks in hardware with limited,

bounded buffering. In the next chapter, I formalize our network model and show that our hard-

ware implementation upholds this formalism. Taken together, these two chapters support the

first half of my thesis: functional programs exhibiting irregular memory access patterns can be

compiled into specialized hardware.

We specifically selected functional programs and dataflow networks as the endpoints of our

compilation process to reveal new opportunities for parallelism in irregular algorithms. We tar-

get dataflow networks because they are modular, inherently parallel, naturally “patient” about

the long, varying latencies associated with today’s memories, and they can yield high-speed

hardware implementations [18]. We start from what is effectively a pure functional language

to provide inherent parallelism and high-level abstractions to the designer, making it simple to

correctly express and reason about irregular algorithms [85]. These abstractions also present op-

timization opportunities in our compiler that may otherwise be infeasible due to side effects or

direct control over pointers; we discuss these optimizations in Chapter 6 and Chapter 7.

To simplify the analysis of programs with irregular memory accesses, our Floh IR uses an

immutable memory model. In particular, we maintain referential transparency while admitting

the potential for data duplication across multiple memories (to enable parallel computation), all

without having to maintain coherence. We assume the presence of automatic garbage collection,

which we have not yet implemented, but it can be done: Bacon et al. [9] show that real-time

garbage collection is practical in hardware, incurring only modest increases in logic and memory

at high clock frequencies.

A novelty of our approach is howdesigners “ask for” pipeline parallelism through tail-recursion

55

List of Tables

with non-strict functions. A tail-recursive call can begin execution immediately after its first ar-

gument arrives. When such a call occurs, multiple invocations of the function run in parallel.

The rest of this chapter is structured as follows, drawing from our earlier publication of this

work [125]. Section 4.1 describes our translation’s starting point, the Floh IR; Section 4.2 intro-

duces our target, an abstract dataflow model with unbounded buffers. Our translation operates

in two steps: Section 4.3 presents the translation from Floh to dataflow networks; Section 4.4

explains how to practically implement such networks in hardware (I cover the full details of our

hardware implementation in Chapter 5). Section 4.5 presents some experimental results, which

show that our compiler-generated networks exploit pipeline parallelism and cope with varying

memory latency.

4.1 A Restricted Dialect of Core: Floh

Our synthesis process begins from the Floh (“Functional Language On Hardware”) intermediate

language, a restricted dialect of our compiler’s initial Core IR (Section 3.1). The compiler uses the

same data structure to represent Floh and Core programs internally; Floh programs simply have

a more limited syntax to simplify its translation into dataflow. By retaining the core components

of Core, we attain a simple but rich IR with inherent parallelism.

Most of Floh’s syntactic restrictions were presented in Section 3.3; this list summarizes them:

1. Functions are all defined at the top-level (Section 3.3.7) and may only contain tail-recursion

(Section 3.3.4).

2. Recursive data types are implementedwith type-specific pointers and a heap (Section 3.3.5).

3. A case’s scrutinee is bound to a data constructor expression, the case provides exactly one

pattern for each variant of that constructor’s data type, and every argument of a pattern’s

data constructor is explicitly named or ignored with a wildcard pattern (Section 3.3.6).

4. Constant literals are implemented with Go-triggered functions, and all data constructors

have at least one type field (e.g., previously constant constructors now have a single Go

type field) (Section 3.3.7).

5. Function call arguments, data constructor arguments, and case scrutinees are simple vari-

able expressions (Section 3.3.8).

Some additional syntactic restrictions are imposed on Floh programs. Functions must use

all of their specified parameters somewhere in their body (primitive literal functions are the ex-

56

List of Tables

ception). Let-bound variables are visible only within the let’s body; no definition in a given let

can refer to another variable defined by that let. This restriction provides a simple source of

parallelism: since definitions within a let have no inter-dependencies, we can evaluate their ex-

pressions in parallel. We insist that each variable bound in a let be referenced at least once in the

let’s body. This simplifies the translation process and prevents the definition of unused variables.

Unlike Haskell, Floh uses different strictness policies for data constructors and function calls

to balance simplicity with performance. Data constructors and non-recursive functions are strict:

they evaluate all their arguments before producing a result, which simplifies thememory system’s

semantics, prevents potential deadlock in the targeted dataflow networks, and eliminates the

bookkeeping overhead of Haskell’s lazy evaluation scheme. Tail-recursive functions in Floh are

only strict in their first argument: a tail-recursive call may begin evaluation after the first argument

is available, but will not return a final result until all other arguments have arrived, even if some

are unused (e.g., if an argument is used in a case alternative that was not selected). Starting before

all arguments are available facilitates pipeline parallelism; insisting on ultimately having all the

arguments simplifies the translation. We elaborate on our non-strict functions in Section 4.3.

4.1.1 An Example: Map

As a running example for this chapter, Figure 4.1 shows how the classical map function can be

coded in Floh. It takes a list of integers and produces a second list by applying some function f

to each element of the first list.

In Haskell, we code map recursively:

map list = case list of

Nil → Nil
Cons x xs → Cons (f x) (map xs)

When the list is empty, the result is empty. Otherwise,map splits the list into its head (x) and tail

(xs), recurses on the tail, and prepends the result of the call f x to the result of the recursive call.

This function operates in two phases. In the first phase, it traverses the source list and pushes

each element (x) on the stack. In the second phase, it pops each element from the stack, applies

f, and prepends this new list cell to the result list.

Our compiler performs the passes described in Section 3.3 to translate the recursive Haskell

function into the tail-recursive Floh program in Figure 4.1. It transforms recursive functions into

57

List of Tables

data ListPtr = ListPtr Int
data List = Cons Int ListPtr | Nil Go

data ContPtr = ContPtr Int
data Continuation = K1 Int ContPtr | K0 Go

map g lp = let k0 = K0 g in

let sp = stackWrite k0 in

call g lp sp

call g lp sp = let le = listRead lp in

case le of

Cons x xs → let nc = K1 x sp in

let nsp = stackWrite nc in

call g xs nsp
Nil _ → let nil = Nil g in

let lpn = listWrite nil in

ret sp lpn

ret sp lp = let se = stackRead sp in

case se of

K1 x nsp → let fx = f x in

let nle = Cons fx lp in

let nlp = listWrite nle in

ret nsp nlp
K0 _ → lp

Figure 4.1: The map function implemented in Floh. The call function walks the input list and
pushes each element on a stack of continuations (replacing function activation records) encoded
with a list-like data type; the ret function pops each element x from the stack, applies f to it, and
prepends the result to the returned list.

58

List of Tables

continuation-passing style, performs lambda lifting to name each continuation as a global func-

tion, creates a recursively defined continuation type (Continuation) to encode these new functions

(K1 and K0), and finally builds a pair of functions that operate on the new type to handle the calls

(call) and continuations (ret) of the map function. Since the Continuation type is recursive in

Core, Floh implements it with type-specific pointers and a heap (as described in Section 3.3.5).

In Floh, a transformed function’s continuations behave like stack activation records, so we use

stack terminology (i.e., “push” and “pop”) to refer to their interactions with heap memory.

In Figure 4.1, the map function receives a list pointer (lp) and a Go object (g) as arguments,

pushes an initial terminal continuation (K0) on the stack to obtain an initial stack pointer (sp),

and then starts call. The call function reads a cell of the input list and either pushes its contents

in a K1 continuation onto the stack before tail-recursing or writes an empty list to the heap and

invokes ret. The ret function pops a continuation off the stack and either applies f, prepends

a new list cell to the result list, writes it to the heap, and tail-recurses, or returns the final list

pointer. If f is a high-latency, pipelined function and the continuations are stored in fast, on-chip

memory, ret’s non-strictness can exploit pipeline parallelism across tail-recursive calls: each call’s

first argument (nsp) will be available before the second (nlp, which depends on f x), so we can

recurse multiple times and fill f’s pipeline with data from the popped continuations.

4.2 Dataflow Networks

We translate a Floh program into an idealized dataflow network with unbounded buffers, which

we ultimately convert into hardware with finite buffers. This intermediate step enables the ex-

ploration of alternative hardware implementations (e.g., trading area for clock speed) without

complicating the translation from the higher-level language. Here, I give an informal introduc-

tion to our abstract network model; a formal treatment is provided in Chapter 5.

We use a dataflow representation to bridge the gap between a functional software language

and hardware because it is inherently distributed, parallel, and “patient”: infinitely buffered

dataflow networks can handle long, unpredictable latencies from complex, hierarchical mem-

ory systems without requiring any kind of costly global synchronization. Modeling hardware

with streams [54, 141] does not accommodate delays as readily.

A dataflow network consists of a collection of actors connected via unbounded point-to-point

FIFO channels that convey typed, data-carrying tokens. All tokens on a particular channel have

59

List of Tables

primitive Cons destruct fork demux

write read
Memory
operations

“and” firing rules

mux

merge

mergeChoice

Figure 4.2: Our menagerie of dataflow actors. Those left of the line require data on every input
channel to fire.

the same Floh type. When an actor fires, it consumes one or more tokens from at least one of its

input channels, performs computation on their contents, and produces tokens on zero or more

output channels. An enabled actor has sufficient input tokens to fire.

The state of a dataflow network consists of the tokens on each channel. At any point, this

state may evolve by firing any or all enabled actors (i.e., those with sufficient tokens on their

input channels). The choice of which actors actually fire is nondeterministic.

At this level, our networks resemble Kahn Process Networks (KPNs) [76]: a KPN comprises a

set of deterministic actors that communicate via tokens passed along unbounded FIFOs. Since we

use a nondeterministic merge (arbiter) actor in our networks, we do not exactly follow the KPN

model and thus cannot rely on Kahn’s proof of determinism. However, the networks produced

by our compiler are intuitively deterministic: we use nondeterministic merges around pure (i.e.,

side-effect free) blocks and “correct” for the nondeterminism by splitting merged streams accord-

ing to the nondeterministic choices (see Section 4.3, Section 5.1.4, and Section 5.2.4 for further

explanation). We formalize our network behavior (with the help of the KPN model) in Chapter 5.

Figure 4.2 lists the types of actors in our networks; each has its own firing policy. Because

each channel is an unbounded FIFO that can always accept another token, an actor’s ability to

fire solely depends on the presence of tokens on its input channels.

Each actor on the left part of Figure 4.2 has “and” firing rules: each requires exactly one token

per input to fire. A primitive actor models a constant, simple arithmetic or Boolean function,

or data constructor, and produces a single output token when it fires. A destruct actor takes a

constructed object (e.g., Cons) and produces an output token for each of the object’s fields on a

60

List of Tables

dedicated output channel. A fork actor consumes a single input token and copies it to each of its

output channels.

A demux actor routes an input token (from the top) to one of its output channels depending

on the value of a “choice” token (from the side). The “choice” token is a data constructor (just like

the input to a destruct) of some type T, and the demux has an output channel for each variant

of T. It routes its input token to the output channel corresponding to the variant received on the

side channel.

Memory read and write actors behave like primitive actors with single inputs, but deserve

special mention anyway. As in Floh, our dataflow networks assume an immutable, garbage-

collected memory model. As such, a write actor takes a data token as input and generates an

address token as output; a read actor does the opposite. Together, these actors maintain the

deterministic memory operation invariant discussed in Section 3.3.5.

Our translation treats read and write actors abstractly: as independent and non-interfering,

but their eventual implementation is more subtle. The memory system must ensure that it never

generates an address token from a write before it is prepared to respond when that address is

passed to a read. The system should also partition memory into multiple regions to improve

memory-level parallelism. In Chapter 6, I present such a system that handles these concerns.

The actors on the right half of Figure 4.2 only require tokens on a subset of their inputs to fire.

A mux actor is the opposite of the demux: it takes a choice token (from the side) and a token on

the input corresponding to the choice (on the top), and transfers the input token to the output.

Amerge actor is an arbiter: it consumes a token from one of its inputs (if tokens are available

on more than one input channel, this selection is nondeterministic) and routes it to its output.

MergeChoice actors have an additional choice output (drawn on the right) that generates a token

indicating which input channel provided the selected token. This choice output often drives

a demux that, together with a mergeChoice, manages access to a shared resource, e.g., a non-

primitive functionwithmultiple callers. In the rest of this chapter, I usually say “merge” to refer to

either merge or mergeChoice actors since their only difference is the extra output reporting their

selected input (otherwise, they have identical behavior). Where necessary, I make the distinction

for clarity.

61

List of Tables

x

x

Figure 4.3: Translating a reference to a variable x : a connection
is made to the fork actor that distributes its value.

4.3 Translation from Floh to Dataflow

In this section, I describe the translation procedure that transforms a Floh program into a dataflow

network. Overall, each function definition is transformed into a subgraph of the network with at

least one input channel per argument and one output channel. When one function calls another,

additional inputs and outputs are added as described below.

Running a program amounts to supplying a single token to each argument input channel of a

distinguished “main” function and waiting for a single output token to be produced in response.

The “main” function typically takes a single Go-valued argument (representing the Go object

bound in a Floh program’s main definition), but may take other values from the environment.

4.3.1 Translating Expressions

The dataflow subgraph we generate for each Floh expression behaves like a function: the sub-

graph has a non-zero number of input ports, one per live variable in the expression, and a single

output channel (tail-recursive calls are the exception). Delivering a single token on each input

channel of the subgraph will trigger the evaluation of the expression, which will produce a single

token on the output.

Our translation maintains an invariant that each live variable has its own fork actor; each

reference to a variable in an expression adds an output port and channel from that variable’s

fork, as shown in Figure 4.3 (this may produce unary fork actors, which we optimize away). This

implicitly assumes every reference to a variable in an expression will be consumed, which Floh’s

syntax and our translation rules enforce.

A call to a data constructor or a built-in, constant-generating, or memory access function

is converted into a single primitive actor. As shown in Figure 4.4, we add a new connection

from each argument’s fork (each argument is necessarily a variable) to the appropriate input

port. The result channel from such an expression is the output channel from the primitive actor.

Although constant-generating and abstract memory access functions are defined in the input

program, their definitions are ignored by our translation; the memory access function calls are

62

List of Tables

f or Dcon

x y

f x y or Dcon x y

(primitive)

Figure 4.4: Translating a data constructor or a primi-
tive, constant-generating, or memory access function
call: each argument (one or more variables) is taken
from a new connection to that variable’s fork actor
and the result is the output of the primitive actor.

e1 e2

x y

e

let x = e1
y = e2

in e

Figure 4.5: Translating a let construct: Each
of the newly-bound variables is evaluated
and connected to fork actors thatmake their
values available to the body.

realized with the dedicated read and write actors from Section 4.2, while constant-generating

functions are implemented as primitive actors that take a singleGo-valued argument and produce

the appropriate constant.

Translating a let construct, depicted in Figure 4.5, consists of translating the expression for

each new variable, connecting the output of each to a new fork, and then translating the body of

the let to produce the final result.

Our translations of case expressions and general function calls (i.e., those not implemented

with primitive actors), especially tail-recursive calls, are context-dependent; I describe them in

the next sections.

4.3.2 Translating Simple Functions and Cases

We divide Floh functions into two groups for translation: simple and clustered. A simple function

has no tail-recursive calls; a group of one or more mutually (tail-) recursive functions is a cluster.

Simple functions are easily pipelined; function clusters often exhibit pipelines internally, but

pipelining external calls to clusters is difficult because the subgraph for a cluster may return

results from multiple calls out of order. While externally pipelining clusters would be possible

by tagging tokens and adding reorder buffers, we have not yet attempted to do so. Instead, we

internally pipeline them by implementing Floh’s non-strict semantics for tail-recursive calls; we

discuss how the translation implements this and why the same translation scheme does not work

63

List of Tables

(arg1, arg2) (arg1, arg2)

s0 s1

(x, y)

x y

f ’s body expression

Result of f x y

s0 s1

Figure 4.6: Translating a simple two-
argument function f with two external call
sites, s0 and s1. Data constructor actors im-
pose strictness by bundling a caller’s argu-
ments in a tuple; a destruct actor disman-
tles the tuple back into the constituent argu-
ments. A mergeChoice actor selects which
caller’s tuple will access the function, while
a demux routes the result to the caller.

for simple functions in Section 4.3.3.

Figure 4.6 shows how each simple function becomes a collection of actors surrounding the

translation of the function’s body. To implement Floh’s strict semantics for simple functions, a

primitive data constructor actor bundles a caller’s arguments in a tuple; every argument must

arrive before the actor can output its tuple token. The tuple token then goes through a merge

that generates a choice token indicating which call site provided the (now bundled) arguments.

A destruct actor extracts the arguments from the selected tuple, and the choice token is sent to a

demux that routes the result of the body expression back to the appropriate caller. Each argument

extracted by the destruct actor is fed into a dedicated fork that distributes the argument wherever

it is used within the expression. Each additional call site for a simple function adds another tuple

construction actor, a merge input for the arguments, and an output to the demux.

Although nondeterministic merge actors break Kahn’s semantics (and thus prevent a simple

proof of determinism), they let us avoid a global scheduler to arbitrate access to shared functions.

Such a scheduler would be inefficient, as Kahn’s semantics would prevent it from doing any kind

of dynamic load balancing across the shared resources.

The merge actors also enable pipeline parallelism across multiple callers. As soon as a caller’s

tuple arrives on one of the merge actor’s inputs, the merge can pass it into the function’s body

(arbitrating if multiple tuples arrive simultaneously), even if the tokens corresponding to another

caller are still flowing through the function. The FIFO channels connecting dataflow actors pre-

vent out-of-order execution among these multiple function calls, and the choice token passed

64

List of Tables

A B

w

A B A B

eA eB

A B

x y p z p q

BA

p q
data T = A T1 T2

B T3

case w of

A x y → eA
B z → eB

Figure 4.7: Translating a case construct: a demux actor routes input w to the destruct actor corre-
sponding to w’s data constructor. Each destruct splits the token into fields: x and y for A or z for
B. The data constructor from w also serves as a choice token that drives both the mux that selects
the case’s result and the demuxes that steer the values of live variables p and q to the alternatives
that use them. The omitted demux output for q means eA does not reference that variable.

from the merge to the demux ensures that results are passed back to the appropriate callers.

Figure 4.7 illustrates how a case construct is translated in general (some caseswithin clustered

functions require special treatment). The case is implemented with a demux actor and a set of

destruct actors, one for each of the case’s data constructor patterns. A data constructor token

(the case’s argument) is forked to both inputs of the demux, which routes it to the destruct actor

matching its data constructor. The destruct then forks that constructor’s fields out (if they are

referenced) to its alternative expression as newly bound variables. If none of the fields of the

matched data constructors are used in any alternatives (e.g., a case matching on a Boolean), the

demux and destruct actors are unnecessary; the data constructor token is simply fed into a set of

demuxes and a mux, explained below.

The data constructor token is used to steer local variables to different alternatives. Its fork

distributes this token to a demux for each free variable that is live in some alternative. If the

token encodes an alternative that does not need a given free variable, that variable’s demux sim-

ply consumes its inputs without producing an output; the demux for q in Figure 4.7 does this

when alternative A is selected. This ensures that no extraneous tokens are produced, and that all

produced tokens will be consumed.

The output of the case is selected by a mux according to which alternative was evaluated. By

65

List of Tables

A B C

w

· · · f · · · eB eC

A B C

tail-recursive call

f a b = · · · case w of

A x y → · · · f · · ·

B z → · · · eB
C v → · · · eC

Figure 4.8: Translating a case construct
containing tail-recursive calls. Values
produced by the alternatives are col-
lected at a merge actor; arguments for
intra-cluster tail calls are fed to each
function’s internal call site machinery.
Not shown are the demuxes for live
variables, which are treated the same
as in Figure 4.7.

definition, a simple function may not contain a tail-recursive call, so every alternative expression

will produce a value. This invariant does not hold within clusters, necessitating an alternate

translation scheme.

4.3.3 Translating Clustered Functions and Cases

A function containing a tail-recursive call—a clustered function—presents a wrinkle in our trans-

lation scheme. Unlike all the expressions presented so far, a tail-recursive call within a cluster

does not generate a subgraph with an output channel; it induces a cycle in the network that feeds

arguments to a function within the same cluster. These cycles necessitate a different approach

for translating calls within and to a cluster. Before presenting this new scheme, we first discuss

how to deal with tail-recursive calls produced by case constructs.

Our original translation of case constructs assumed an output channel for every alternative;

case alternatives ending in tail-recursive calls (which can only occur in a cluster) violate this

assumption, since they induce cycles instead of providing a new output channel. Note that these

types of cases cannot occur within let-bound expressions, even in a cluster; any recursive call

within such a case would require more computation after the call returned, i.e., such a call is not

tail-recursive.

Figure 4.8 illustrates our solution to this problem; two of the case’s alternatives return results

while a third yields a tail-recursive call. A demux still examines and routes the algebraic data type

66

List of Tables

(arg1, arg2) (arg1, arg2)

s0 s1

(x, y)

1 2 3 1 2 3

x y

f body

4 5 4 5

a b

g body

s0 s1

Figure 4.9: Translating function clus-
ters. Functions f and g comprise the
cluster since they call one another re-
cursively. Any values produced by
members of a cluster are merged to-
gether to form the cluster’s output
channel; using a mux instead could
lead to deadlock. We omit local de-
muxes for clustered functions for the
same reason. A layer of mux actors
below the argument tuple’s destruct
actor act as a “lock” by preventing
multiple external calls from overlap-
ping within a cluster; the presence of
a token on the cluster’s output chan-
nel triggers the “unlocking” of these
muxes, allowing another external call
to access the cluster.

to destruct actors that dismantle it into fields, and the data type token still steers live variables (not

shown in Figure 4.8), but alternatives ending in a tail-recursive call do not produce a value and

thus are not assigned a dedicated output channel. A more significant change is the replacement

of the case’s mux with a merge; we use a merge actor because tail-recursive calls make it difficult

to determine where a result will ultimately come from.

We translate a cluster of functions as a whole since they tail call each other (by definition).

Each cluster is assumed to have only one entry point (i.e., we do not handle clusters where more

than one member of the cluster is called from the outside); we add a destruct, merge, and tuple

constructor actors for the arguments to the sole entry point and a demux for the cluster’s result

as in the simple function case. Functions within the cluster are translated differently, however.

Figure 4.9 shows how we translate a cluster of two functions, f and g, that recursively tail call

each other and themselves. Each function within a cluster receives its arguments via merge and

67

List of Tables

mux actors, which manage the intra-cluster calls to the function; the first (leftmost) argument

goes through a merge that generates a choice token indicating which call site provided the ar-

gument. Every other argument comes from a mux that uses the choice token to select the input

channel corresponding to the same call site. As with simple functions, each argument—the output

of either the merge or one of the mux actors—is fed into a dedicated fork that distributes it across

the function’s body. Unlike simple functions, additional (tail) call sites to a clustered function

adds another input to each of the merge and mux actors for the arguments, not an additional

tuple constructor actor. As another change, the results of each function are passed to a single

merge actor for the cluster (i.e., rather than the per-function demuxes used in our translation of

simple functions). Again, our use of a merge actor is motivated by the presence of tail-recursion.

The other substantial difference in translating a cluster is a layer of “locking” mux actors that

block multiple external calls from accessing the cluster (seen below the tuple destruct actor in

Figure 4.9). The interior of a function cluster does not behave like a simple pipeline: intra-cluster

tail calls turn into data-dependent feedback paths. If we allowed n external calls to access a cluster,

the network for the cluster would still produce n result tokens, but not in any pre-determined

order. Rather than adding tags to every token and a reorder buffer to guarantee in-order delivery

of results, we instead opt to limit each cluster to one external call at a time.

The locking layer of mux actors allows exactly one external function call to execute within

the cluster at any given time. These actors accept one token on each (top) input channel and

block any additional inputs until the cluster signals it has produced its result, which is indicated

by duplicating the result token with the fork near the bottom of Figure 4.9 and passing it as an

“unlock” token to the muxes.

Here, we make an important choice that separates us from similar dataflow translations: tail-

recursive function calls are not strict. In particular, the actors comprising a clustered function’s

body may start firing before every function argument is available; once the first argument from

a given recursive call site passes through the merge actor, the other arguments from that call

site can arrive in any order, allowing computation to proceed in a data-dependent manner and

enabling pipeline parallelism across multiple calls. Since our translation does not reorder argu-

ments, the programmer can enable parallelism by ordering function arguments appropriately.

Our asymmetric handling of arguments is key to this non-strict policy: if each argument had

its own merge, for example, each might make a different choice when faced with simultaneous

calls, effectively permuting the arguments among multiple recursive call sites. We avoid this

problem with a single merge actor that dictates which call site to service.

68

List of Tables

In an earlier iteration of our compiler, simple function calls were also non-strict [125], but

it turns out that this may cause a subtle form of deadlock. Consider the Floh example below

comprised of a simple function f and two tail-recursive functions f1 and f2 that all call some

other simple function g:

f x = · · · g (f1 · · ·) (f2 · · ·)
f1 y = · · · g (f1 · · ·) (f1 · · ·)
f2 z = · · · g (f2 · · ·) (f2 · · ·)

If f is called first, it will eventually call f1 and f2, triggering their simultaneous execution.

Assume f1 produces a result before f2 is done, i.e., f2 still needs to call g again before it can

produce its result. The result from f1 will be returned to f, which will then pass it as the first

argument to g. If g were non-strict, this first argument would pass through a merge actor which

would then inform the mux for g’s second argument to wait for a token from the same call site

(in f). But this second argument is the result of the initial call to f2, which will not arrive until f2

gets access to g (since it has not finished executing). This will never happen, and thus a deadlock

has formed.

We thus impose a strict policy on simple function calls to prevent this form of deadlock. If a

simple function only has a single caller, though, this situation cannot occur, so we optimize away

all of the actors surrounding the function body’s subnetwork (they are only needed to arbitrate

between multiple callers).

4.3.4 Putting It All Together: Translating the Map Example

Figure 4.10 shows the dataflow network our procedure generates for themap example introduced

in Figure 4.1. As described in Section 4.1.1, this walks an input list and pushes each value on

a stack, then repeatedly pops the stack, removing each element, applying the function f, and

prepending the result to a new list.

Call and ret contain tail-recursive calls but are not mutually recursive, so each is treated

as a cluster. Thus, each has a layer of “locking” muxes on their inputs to ensure they will not

accept another outside call until they have generated an output. Since each function has only

one caller, the strictness-inducing tuple constructor and destruct actors are all optimized away

by the compiler.

69

List of Tables

map

call

ret

g

K0

stackWrite

splp

lp

g

listRead

Nil Cons

Cons

Nil ConsNil Cons

1

Nil

listWrite
K1

4
x xs

2

stackWrite

3

stackRead

K0 K1 K1 K0

K1
x

f

Cons

listWrite

sp lp

nsp

5 6

Figure 4.10: A dataflow graph formap from Figure 4.1. This initializes the stack (map); walks the
input list, pushing each element on the stack (call); then pops each element off the stack, applies
f, and places the result at the head of the new list (ret). Tail calls to call and ret are not strict,
decoupling loops 1, 2, and 3, and more importantly, loops 5 and 6, to enable pipelining.

70

List of Tables

This example illustrates how tail-recursion coupled with non-strict functions and buffering

enables pipeline parallelism. The tail-recursive call in the call function induces three separate

loops—1, 2, and 3—which operate largely independently. In particular, loop 2, which reads the

input list, can race ahead (since it only has towait for loop 1, which has no long-latency operations

on it), producing data tokens on channel 4. These tokens are eventually consumed by loop 3,

which places them on the stack as a series of “K1” objects. Although fast, loop 2 is a bit wasteful:

it waits and releases a Go token when the end of the list is reached, triggering the creation of the

result list.

A strict implementation of the call function would force all three loops to operate in lock-step,

i.e., the next element of the list could not be read before the stack was pushed.

Pipelining is even more effective in the ret function. Loop 5 pops data off the stack so that

f can be applied to it. If f is a long-latency function, loop 6 will be slow because it will have

to wait for f to complete, write the new list element, and recurse. But the tail-recursive call to

ret is non-strict so loop 5 can race ahead, perhaps even filling f’s pipeline to greatly improve

parallelism.

In Section 4.5, I quantify how well our technique exposes parallelism in this example and

others.

4.4 Dataflow Networks in Hardware

We take a structural, distributed approach to implementing dataflow networks in hardware: each

actor becomes a small block of combinational logic, these blocks use a handshaking protocol to

implement latency-insensitivity, and each buffer is bounded as a finite bank of flip-flops. A large,

central memory could simulate unbounded buffers, but such an approach would likely require

additional throttling mechanisms, such as Arvind and Nikhil [3] found. Our approach thus main-

tains the parallelism of the dataflow network model while enabling high-speed hardware, since

far-flung parts of the circuit do not need to communicate with a global memory or each other.

Bounded buffers complicate actor firing rules, which must also take into account the avail-

ability of space downstream. Since this “availability information” flows upstream, a naïve transla-

tion may generate an excessively slow circuit due to long combinational paths or a broken circuit

plagued with combinational cycles. Cao et al. [18] present a solution to these issues by imple-

menting each channel as a two-token buffer. This technique breaks any potential cycle or long

71

List of Tables

u
p
stream

d
o
w
n
stream

data

valid

ready

valid ready Meaning

0 − No token to transfer
1 1 Token transferred
1 0 Token valid, but not consumed (i.e., held upstream)

Figure 4.11: A point-to-point link and its flow control protocol, after Cao et al. [18]. Data and
valid bits flow downstream, with valid indicating the data lines carry a token; ready bits flow
upstream, indicating that downstream is willing to consume a token.

combinational path with a flip-flop but hinders throughput, as tokens can only cross up to one

actor per cycle. Since some actors do more work than others, grouping simple actors into a single

cycle would reduce latency without affecting clock speed.

We adopt a variant of Cao et al. in which channels are either two-place buffers or direct

wires. Having two choices allows us to control the work per clock cycle by “fusing” multiple

actors together. Our circuits use the flow control protocol shown in Figure 4.11, which presents

a danger of a combinational cycle (and hence deadlock) if the valid signal depends on the ready

signal and vice versa. Below, I discuss our implementation technique for avoiding these cycles.

4.4.1 Evaluation Order

Establishing a fixed, constructive evaluation order for valid and ready signals prevents deadlock

in the flow control logic. We choose a three-phase evaluation order starting from the buffers of

Cao et al. [18]: the valid and ready outputs from every buffer are defined at the beginning of each

cycle and do not depend on any inputs. In the second phase, valid bits propagate downstream,

unaffected by ready bits. Finally, ready bits are propagated upstream and may depend on valid

bits. For this arrangement to work, the valid outputs of an actor may never depend on its ready

inputs in the same cycle, which turns out to be a delicate property to guarantee.

4.4.2 Stateless Actors

Under our valid-then-ready evaluation order, actors that produce a single token when fired have

fairly straightforward flow control logic. Primitives actors are simple: the output is valid if all

the inputs are valid; the inputs are ready if the output is valid and ready. A demux is similar: the

chosen output is valid if both the inputs are valid; the inputs are ready if the chosen output is

valid and ready. A mux is slightly more complicated: the output is valid if the choice (side) input

72

List of Tables

and the chosen input are valid; the choice input and chosen input are ready if the output is valid

and ready. The merge is still more complicated: we currently use a priority-based arbitration

scheme in which the output is valid if at least one input is valid; the leftmost valid input is ready

if the output is valid and ready.

4.4.3 Stateful Actors

Actors such as fork that generate multiple tokens when they fire present a challenge to our eval-

uation scheme. Tokens could be erroneously duplicated if we used the obvious rules for fork, i.e.,

all the outputs are valid if the input is valid and the input is ready if all the outputs are ready.

Under these rules, if one of the outputs was not ready when the fork fired, that output would not

consume the token but the others would; a duplicate token would then be presented to all the

outputs again on the next cycle, even though some already consumed it. It might seem possible

to address this by making the outputs valid only if all the outputs are ready, but this violates our

evaluation order policy and can cause deadlock.

Our solution, credited to Andrea Lottarini, is to add a few bits of state to actors that can

generate multiple tokens: fork, destruct, and mergeChoice. Specifically, each output is given a

state bit that indicateswhether a token has been generated from that output in the current “round”

of firing. When sufficient tokens are available on the inputs to produce outputs, an output’s bit is

set if its channel is not ready. If any output bits are set, the input is not consumed; it is proffered

again on the next cycle, but the actor only produces tokens on the outputs that have an unset

state bit. Once tokens have been generated on all the outputs in a given round (i.e., all state bits

are set), all the bits are reset and the next round can begin in the next cycle.

With this policy, a state bit can disable a valid output, preventing erroneous token duplication,

but a valid signal never immediately depends on a ready signal, satisfying our scheduling criteria.

4.4.4 Inserting Buffers

As stated above, we implement certain channels in our dataflow graph with the two-token buffers

described in Cao et al. [18] and the rest as simple wires, leaving them unbuffered. We insert

buffers primarily to avoid deadlock, although additional ones are often desirable to balance both

per-cycle computation and pipelined paths.

Choosing appropriate buffer sizes (i.e., the number of buffers to place on a channel) can range

from straightforward to undecidable. Unfortunately, the optimal buffer insertion problem for a

73

List of Tables

dataflow network with arbitrary topology is undecidable: Buck [17] showed that a very simple

subset of actors such as ours (which include data-dependent mux and demux) is Turing complete,

rendering undecidable the question of whether arbitrary networks of our actors and buffers can

runwithout deadlocking. However, a dataflow network generated from a syntax-directed transla-

tion of a structured program (e.g., Dennis [39]) never requires the accumulation of an unbounded

number of tokens to run, so inserting buffers according to a simple policy suffices to prevent these

networks from deadlocking. We have a number of such policies explained below; numerous au-

thors have proposed other approaches [10, 55, 56, 57, 58, 66, 93, 97, 121].

Before applying one of our several buffering heuristics to prevent deadlock, we buffer the

“locking” layer of a function cluster for correctness. The muxes in this layer each receive a single

buffer on their select input; each buffer is initialized with a Go token, which “unlocks” the muxes

for the first call to the cluster. The output token produced by the cluster is converted into a Go

token (to match the type the muxes expect on their select input), forked to these buffers, and

passed to the muxes to unlock them for the next call. Without these initialized buffers, the muxes

would stay locked and prevent any callers from accessing the cluster.

We provide three different heuristics to determine where to place additional buffers for dead-

lock prevention; the user may select which heuristic to apply. Each heuristic has two goals: buffer

each cycle in the dataflow network (to eliminate combinational cycles) and prevent “reconver-

gent deadlock.” Multiple paths in a network are reconvergent if they share the same source and

destination actors but no others. These paths necessarily originate at multi-output actors and

terminate at multi-input actors. Two such paths are mismatched if exactly one is buffered.

As an example of reconvergent deadlock, consider the dataflow graph shown in Figure 4.12,

but without buffers 3 and 4; two mismatched reconvergent paths originate at the fork and ter-

minate at g. If a token is in buffer 1 when the fork first fires, f will consume both inputs and

produce a token in buffer 2. However, g cannot consume the fork’s right output token yet, so the

fork does not consume its input token. In the next cycle, buffer 2 and the right output of the fork

will both supply a token to g, which would normally enable it to fire, but f is blocked because it

does not have a new token from above. This will in turn block g, creating a deadlock.

Our first heuristic is the simplest: place one buffer on every channel. This buffers every

cycle in the network and prevents mismatched reconvergent paths by definition, but is highly

inefficient; the excessive buffering hinders throughput and increases overall network latency.

We only use this heuristic to test our networks for functional correctness.

The second heuristic targets channels corresponding to a function’s inputs and outputs; it

74

List of Tables

read f g
1

2

34

Figure 4.12: An example of our buffer allocation scheme (using our third heuristic). We insert
buffers to break cycles in the network (e.g., 2) and prevent reconvergent deadlock (e.g., 3).

assigns less buffers than the first heuristic (improving network performance) but is not formally

guaranteed to prevent reconvergent deadlock (although none of our networks using this heuristic

have deadlocked in practice). Simple functions receive buffers on the inputs of their argument-

bundling data constructor actors and the outputs of the final demux routing the function’s results

to its callers. Clustered functions get buffers on the inputs of the merge and mux actors imple-

menting non-strict tail-recursive calls (below the layer of “locking” mux actors). Buffering clus-

tered functions’ inputs eliminates unbuffered cycles in our networks, since cycles only arise due

to our translation of tail-recursive calls. The other buffering in this heuristic intuitively prevents

reconvergent deadlock: reconvergent paths often contain a function’s input or output channel,

so buffering these channels should preclude mismatched paths. We use this second heuristic to

buffer all the example networks in the experiments of Section 6.3 and Section 7.3, and it is the

default heuristic used in the compiler’s current implementation.

The second heuristic relies on our specific translation scheme, which dictates where cycles

can occur and where mismatched reconvergent paths tend to appear. Our final heuristic instead

focuses on general network topology; the rest of this section describes this third heuristic, and

we use it to buffer the networks used in the experiments of Section 4.5 and Section 5.6.

Figure 4.12 shows part of a network after buffer insertion using our third heuristic. The first

part of this heuristic ensures that cycles have been brokenwith bufferswith the following process:

find the shortest unbuffered cycle in the graph (we modify Dijkstra’s shortest-paths algorithm to

solve this); find an actor on the cycle with the largest number of outputs; place a buffer on the

output that belongs to the cycle. We repeat this process until all cycles are buffered. This heuristic

targets actors with multiple outputs to prevent throughput degradation on the other outputs that

are not part of the cycle. In Figure 4.12, buffer 2 was inserted to break the cycle.

The second part of the heuristic finds and buffers mismatched reconvergent paths after break-

ing cycles (since the latter may buffer some mismatched paths implicitly). Although finding all

75

List of Tables

such paths is tractable in DAGs [108], it is NP-hard in general, requiring a heuristic solution.

We leverage an approximation algorithm for counting reconvergent paths [131] between

nodes i and j. We convert our network into a weighted graph by assigning a 0 to unbuffered

edges and a 1 to buffered edges. We find a shortest path on this graph between i and j (termi-

nate if no such path exists), remove it from the graph, and repeat. The set of removed paths

comprises a set of reconvergent paths from i to j. Let outi and inj be the out-degree of i and

in-degree of j, respectively; then min(outi ,inj) is an upper bound on the number of searches re-

quired. Using Dijkstra’s algorithm on a graph withm edges and n nodes, this algorithm runs in

O (min(outi ,inj) (m+n logn)) time.

Our third heuristic applies this algorithm to each pair (i, j) of multi-output (i) and multi-input

(j) actors, keeps any mismatched sets of paths, and returns the unbuffered members of each set.

We walk over this set of unbuffered paths, selecting the first edge from each (unless a selected

edge from a previous path is also on the current path), and assign a buffer to each edge in the

resulting set, updating their weights in the graph. Letd =min(outmax,inmax), where outmax (inmax)

is the largest out-degree (in-degree) of any node in our set of p node pairs. Then this heuristic

algorithm runs in O (pd (m+n logn)) time.

Although this scheme successfully prevents reconvergent deadlock, its overly conservative

nature yields unnecessary buffers. As shown in Figure 4.12, the heuristic will first allocate buffer 3

to balance the reconvergent paths terminating at g. The placement of this buffer means that the

reconvergent paths from the fork to f are nowmismatched, whichwill cause the heuristic to place

buffer 4. However, this buffer is unnecessary, as buffers 2 and 3 together prevent the deadlock.

These excessive buffers may improve performance by providing implicit pipelining, but some

topologies are hurt by these buffers, since they can increase overall completion time without

increasing throughput.

This final heuristic algorithm adds some nondeterminism to our translation: permuting the

heuristic’s input can lead to different buffer allocations for the same topology. However, this only

affects the performance of the resulting circuit, not its correctness; we present an argument for

this correctness in the face of arbitrary buffering in the next chapter.

76

List of Tables

4.5 Experimental Evaluation

To evaluate the quality of the dataflow networks produced by this compilation pass, I simulated

several examples. I analyze the impact of non-strict evaluation on network performance, the

importance of argument order, and sensitivity to memory latency.

All experiments in this section used an earlier version of the compiler that had a slightly

different translation scheme (described in [125]). The specific differences are as follows:

• Case constructs were directly implemented with a special case dataflow actor. We realized

this actor’s behavior could be implemented with other actors we had already created (a

demux and several destruct actors), and thus removed it from our translation.

• A special lock actor prevented multiple external callers from sharing a cluster simultane-

ously. As with the case actor, we determined that the same behavior could be achieved with

a layer of “locking” muxes.

• All non-primitive function calls used a non-strict evaluation policy.

While the first two differences have negligible effects on the experimental results (the under-

lying implementations of the case and lock actors are comparable to the sets of actors now used),

our use of strictness for simple function calls could inhibit pipeline parallelism across our net-

works and thus reduce performance. While we currently apply strictness to all simple functions

to prevent the deadlock issue discussed in Section 4.3.3, none of the examples in the following

experiments experience this form of deadlock, even without the strictness rule applied. This

suggests that a heuristic could be developed to determine where strictness is truly required; the

following results thus give an idea of how our compiler may generate networks when such a

heuristic is applied.

4.5.1 Methodology

Simulator To evaluate the performance of our generated dataflow networks, I wrote a simula-

tor that executes a network on a set of inputs and reports both the final output token (to compare

against the output of the original Floh program) and the number of clock cycles required.

In one mode, my simulator runs a cycle-accurate model of a hardware implementation that

employs the finite buffers of Cao et al. [18]. In particular, it models their single cycle latency.

In the other mode, my simulator calculates a lower bound on the number of cycles hardware

would take by assuming ideal buffering. Here, buffers are modeled as unbounded, but in each

77

List of Tables

cycle, each actor is limited to firing at most once. This captures an ideal buffering assignment

where every buffer is “big enough” to never cause backpressure; the resulting cycle count provides

a lower bound on the cycles a particular network requires to process the input.

Test Programs I compiled six recursive Haskell programs into dataflow networks for evalua-

tion. Append, Filter, and Map each traverse a list and perform computation on each element: Ap-

pend prepends each element to a new list, Map applies a function f, and Filter applies a Boolean-

producing function g whose result determines if an element is kept or discarded. I assume f and

g are both fully pipelined and each have a latency of 10 cycles. Treemap functions the same as

Map but operates on a tree.

The DFS and Mergesort tests are more complicated. DFS applies depth-first search to a binary

tree, producing a preordering of its elements. At each tree node it recurses on the left and right

subtrees, appends the results, and prepends the node’s element to the final list.

Mergesort is the well-known sorting algorithm with four tail-recursive functions: evens and

odds together partition a list into its even- and odd-indexed elements,merge combines two sorted

lists into a single sorted list, and mergeSort drives the other three functions. The translated

dataflow graph consists of seven clusters: the call and ret components of mergeSort are mutu-

ally recursive and thus share a cluster, while the components of the other functions each have

their own cluster. This application represents the types of real-world programs our work targets:

memory-intensive algorithms implemented with multiple interactive recursive functions.

Input Data Each dataflow network is fed a Go token that triggers the construction of an input

data structure. This structure is either a 100 element list or 100 element balanced binary tree,

according to the test program. This structure is then processed by the rest of the network.

4.5.2 Strict vs. Non-strict Tail Recursive Calls

My first experiment measures the performance impact of our non-strict function evaluation pol-

icy intended to enable pipelining. I generated each test’s dataflow network under three differ-

ent policies: non-strict function calls with infinite FIFOs on each channel, non-strict with finite

buffering, and strict with finite buffering. I also varied the order of function arguments under

each policy; a “good” ordering implies that the first argument routinely arrives before the others

(like the first argument to call and ret in Figure 4.10), which enables the function to start being

78

List of Tables

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
om

pl
et

io
n

C
yc

le
s

(R
el

at
iv

e
to

 S
tr

ic
t)

Non-Strict (with good argument order)
Non-Strict (with bad argument order)

Infinite FIFOs

TreeMapMergeSortMapFilterDFSAppend

Figure 4.13: Non-strict evaluation is gen-
erally superior to strict. When combined
with a good function argument ordering,
the finite, non-strict implementations yield
a 1.3–2× speedup over strict.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
yc

le
s

to
 C

om
pl

et
io

n
(R

el
at

iv
e

to
 S

tr
ic

t)

Memory Latency (Clock Cycles)

Append
DFS
Filter
Map

MergeSort
TreeMap

Figure 4.14: Mitigating increasing memory
latency with non-strict function evaluation.

evaluated; a “bad” ordering entails one or more arguments arriving at muxes before the first ar-

rives at its merge, meaning the function waits longer to start than absolutely necessary. These

orderings are dictated by the Floh program’s syntax, i.e., neither our translation nor our buffering

scheme affects this ordering.

Figure 4.13 shows the fraction of cycles each test took relative to a strict policy with the same

argument order. For reference, the baseline for Append (i.e., under a strict policy) was 1107 and

1308 cycles with good and bad argument orders; Mergesort was the longest at 14324 and 16973

cycles.

Figure 4.13 shows non-strictness with proper argument ordering yields faster completion

times, which I attribute to the successful exploitation of pipelining. Under “bad” ordering, non-

strict does slightly better than strict in most cases (the anomalous performance loss in DFS is due

to our heuristic making poor buffering choices); combining non-strictness with effective ordering

leads to approximate speedups from 1.3× (DFS, Filter, Treemap) to 2× (Append, Map, Mergesort).

The infinite FIFO policy gives roughly twice the performance with non-strict functions under a

good ordering, suggesting improved buffering can substantially improve performance.

4.5.3 Sensitivity to Memory Latency

Above, I modeled memory optimistically, taking only a single cycle; in reality, memory is rarely

this fast. I conducted additional experiments to see how well our generated networks coped with

79

List of Tables

higher memory latencies.

Figure 4.14 shows how long it took each program to run under increasing memory latency.

Again, I used strict functions as the baseline and calculated the improvement under a non-strict

policy (under “good” argument ordering throughout).

The initially negative slopes in Figure 4.14 show that our non-strict evaluation policy does

do an increasingly better job with small memory latencies (e.g., under 5 cycles) than a strict

policy does, but the differences become negligible after that, i.e., while the non-strict policy is

consistently better, its advantage levels off at a constant improvement factor. After inspecting

the execution traces for these workloads, I attribute these results to unbalanced buffer capacities

along reconvergent paths in our networks.

To explain, consider two reconvergent paths originating at some actor n, such that one path

has more buffers (i.e., has higher capacity) than the other. Depending on the frequency of n’s

firing, the smaller capacity path can fill up before the longer path, preventing n from filling the

longer path’s pipeline. If the buffer capacity on the short channel matched the long channel’s

pipeline length, n could continue firing and potentially fill up both channels’ pipelines, yielding

higher throughput and lower completion times. Although our buffering heuristic can find these

reconvergent paths, determining how to distribute buffers along these paths remains a difficult

problem that requires further study.

4.5.4 Sensitivity to Function Latency

I also conducted an experiment designed to illuminate how our networks deal with varying func-

tion latency. Specifically, the function applied to each element in Map, Filter, and Treemap may

take longer than 10 cycles to execute.

I varied this function’s latency in these three tests from 1 to 50, keeping the memory latency

at a single cycle. Not surprisingly, the resulting trends are nearly identical to those seen in Fig-

ure 4.14: after a slight widening of the gap between non-strict and strict, non-strict completion

cycles rise before plateauing off. This further supports the previous conclusions that our buffer

allocation scheme is not mature enough to fill up long pipelines, be they functional or memory-

related.

80

Chapter 5

Realizing Dataflow Networks in Hardware

The previous chapter introduced the dataflow network model targeted by our compiler. I de-

scribed the behavior of these networks informally, as the main purpose was to show how a func-

tional program could be translated into an abstract dataflow network.

In this chapter, I formally define the semantics of our dataflownetworks, provide the hardware

implementations for the actors comprising our networks, and show that these implementations

maintain the formal semantics. The hardware implementations and the argument for their cor-

rectness were primariliy developed by Stephen A. Edwards. I also present the final IR used by

the compiler, DF; this IR is the textual output of the previous chapter’s translation. DF enables

design space exploration at the dataflow level, and serves as the input to the compiler’s final code

generation phase.

As a running example for this chapter, Figure 5.1 illustrates a dataflow network we can im-

plement with our actors, i.e., our actors may be used for manual hardware design outside of our

T F T F

a b

gcd(a,b) =
if a = b
a

else if a < b
gcd(a,b −a)

else
gcd(a−b,b)

=

T F

T F

T F

T F

fork

gcd(a,b)
discard

<

T

initial
token

T F T F

mux

demux

− −

Figure 5.1: A recursive definition of Euclid’s greatest common divisor algorithm and a dataflow
network implementing it. The tail-recursion is implemented with feedback loops.

81

List of Tables

compiler. This example uses Euclid’s algorithm to compute the greatest common divisor of pairs

of tokens arriving on the two input channels. For example, if channel a receives tokens 100 and 56

and channel b receives 45, 49, and 3, the output will be 5= gcd(100,45) followed by 7= gcd(56,49).

The 3 on b is ignored because no mating token ever arrives on a.

In this network, an initial “T” token is fed to the top row of multiplexers, instructing each to

steer a token from an input to the primitive equality actor (“=”). Because the channels from the

multiplexers fork (we just use diverging channels for forks here instead of the triangles from the

previous chapter), the first row of demultiplexers also receive copies of these tokens. If the tokens

are equal (the base case for the algorithm), the equality actor emits a T, causing the demultiplexers

to emit the a token as the result and discard the b token. The T from the comparator is also fed

back to both input multiplexers, prompting them to accept a new pair of tokens from the inputs.

In the recursive case, the tokens differ, prompting the demultiplexers to send copies of the

tokens to the primitive less-than actor (<) and to the second row of demultiplexers. The output

of the less-than actor flows to the second demuxes and bottom multiplexers, which together

control whether a is subtracted from b or b is subtracted from a. Since the equality actor emitted

an F, the outputs from the bottom multiplexers are fed around and flow back through the top

multiplexers and the process repeats.

Given aDF program specifying this network (a fragment of which is shown in Figure 5.11), our

compiler synthesizes it into hardware by transforming each actor into a small block of logic and

replacing each channel with a mixture of point-to-point connections, buffers, and fork circuitry.

In the rest of this chapter, I present:

• the formal semantics of our unbounded dataflow networks (Section 5.1);

• circuits for a small, rich family of data-dependent dataflow actors, which can be composed

without buffering yet are safe from spurious combinational cycles (Section 5.2);

• a novel way to implement a nondeterministic merge actor that reports its choices, allowing

it to safely manage shared resources (Section 5.2.4);

• an approach to breaking long combinational paths and loops that uses two distinct types

of buffers: one for the data network and one for backpressure (Section 5.3);

• a typed “assembly language” for describing our networks with polymorphic actors and

algebraic data types that we can compile into SystemVerilog (Section 5.5); and

• experiments that show how buffering may be added to explore the design space without

changing functionality (Section 5.6).

82

List of Tables

5.1 Specifications: Kahn Networks

Our goal is a hardware implementation of a dataflow network. Here, we describe our specifi-

cations: a restricted class of Kahn networks with unbounded buffers. These specifications are

deliberately more abstract than our implementations to allow buffers to be added and removed

(e.g., to adjust pipeline depth) as part of the implementation process.

This section is largely review: Kahn [76] provides the framework, Lee and Matsikoudis [81]

show how to model firing rules, and our model of nondeterministic merge is due to Broy [16].

5.1.1 Kahn Networks

A Kahn network consists of Kahn processes that pass around tokens. Kahn networks are deter-

ministic because the processes are continuous, meaning that supplying additional input tokens

can only produce additional output tokens; a Kahn process cannot “change its mind” once it has

decided to emit a token. Below, we formalize such networks.

A Kahn network passes around tokens drawn from a set Σ. This set is typically finite and

often includes 32-bit binary integers, but its structure is irrelevant for the semantics we present

in this section; see Section 5.5 for how we construct sets of tokens in practice. Our networks do

not necessarily terminate, so we consider both finite and infinite sequences of tokens flowing on

channels and write S = Σ∗∪Σω for the set of such sequences. Note that the empty sequence ϵ is

included in this set (ϵ ∈ Σ∗). Juxtaposition will denote concatenation, e.g., for two tokens x ,y ∈ Σ,

xy represents the two-token sequence consisting of x followed byy. We also use juxtaposition for

concatenation of sequences: if a ∈ Σ∗ is a finite sequence and b ∈ S , ab is the sequence a followed

by b.

We use prefix ordering on sequences. We write a ⊑ b if a is a prefix of b or a is equal to b.

It follows that ⊑ is a partial order. Technically a ⊑ b iff a = b or ∃c ∈ S s.t. ac = b. We extend

this ordering elementwise to n-tuples of sequences (written in bold): if a1, . . . ,an,b1, . . . ,bn ∈ S ,

a = (a1, . . . ,an) ∈ S
n, and b = (b1, . . . ,bn) ∈ S

n, we write a ⊑ b iff a1 ⊑ b1, . . . , an ⊑ bn. Juxtaposition

of n-tuples of sequences denotes elementwise concatenation: ab = (a1b1, . . . ,anbn).

AKahn process is a continuous function P : Sn→ Sm that takes a tuple ofn input sequences and

produces a tuple ofm output sequences. Continuitymeans P is monotonic, so a⊑ b implies P (a) ⊑

P (b). Equivalently, providing P with additional tokens may produce more output tokens, but

tokens that have already been produced cannot be changed or rescinded. Continuity also means

83

List of Tables

a process cannot produce an output only after an infinite time. See Lee and Matsikoudis [81] for

a formal discussion of continuity.

As an example, consider a process that adds two input sequences to produce an output se-

quence. Assume integer-valued tokens, i.e., Σ = Z. This process computes the pairwise sum of

the two sequences up to the end of the shorter sequence, i.e.,

P (x1x2 · · ·xn,y1y2 · · ·ym) =w1w2 · · ·wmin(m,n) (5.1)

wherewi = xi +yi and sequence lengthsm and n may be zero, finite, or infinite.

A Kahn network is a collection of Kahn processes whose input sequences are supplied through

channels, each of which is either supplied by the environment or the output of some process. A

Kahn network N = (P,e,M) is a triple consisting of a vector of r Kahn processes P = {P1, . . . ,Pr },

a number e ∈ {0,1, . . .} of input channels from the environment, and a “wiring matrix” function

M : {1, . . . ,r } × {1, . . .} → {1, . . . ,e} ∪ ({1, . . . ,r } × {1, . . .}) that maps each process input (a process

number and input index) to either one of the e environment channels or the output of some

process (a process number and output index). The M function is pure bookkeeping: it merely

encodes the connectivity of the network (i.e., a graph) by specifying the source of each input to

each process.

Let ci,j be output j from process i , ck be environmental channel k ,mi be the number of outputs

from process i , and let

c = (c1, . . . ,ce
︸ ︷︷ ︸
e inputs

, c1,1, . . . ,c1,m1
︸ ︷︷ ︸
process 1 outputs

, c2,1, . . . ,c2,m2
︸ ︷︷ ︸
process 2 outputs

, . . . , cr ,1, . . . ,cr ,mr
︸ ︷︷ ︸
process r outputs

)

be the vector of all channels in the system. The behavior of a Kahn network for input (c1, . . . ,ce)

is the least c satisfying

(c1,1, . . . ,c1,m1) = P1
(

cM (1,1), . . . ,cM (1,n1)

)

...

(cr ,1, . . . ,cr ,mr
) = Pr

(

cM (r ,1), . . . ,cM (r ,nr)

)
(5.2)

where nk is the number of inputs on the kth process and cM (k,l) is the channel feeding the lth

input of the kth process: either an environment channel (i.e., 1 ≤M (k,l) ≤ e) or a specific output

channel of a specific process (i.e.,M (k,l) = i, j, where k,i ∈ {1 . . .r }, 1 ≤ l ≤ nk , and 1 ≤ j ≤mi).

Channels may “fork”: each channel has a single source (either a process output or the envi-

84

List of Tables

ronment) but may have multiple receivers. I.e., M (k1,l1) =M (k2,l2) may hold for some (k1,l1) ,

(k2,l2).

Kahn showed [76] that his networks are deterministic: there is exactly one least c that satisfies

(5.2) for each tuple of input sequences provided the Pi are continuous.

5.1.2 Dataflow Actors

The Kahn formalism describes our networks; we follow Lee and Matsikoudis’s formalism for

actors [81] for describing processes. Actors react to input tokens according to firing rules; a rule

is a tuple of empty or singleton token sequences. When an actor’s input matches a rule, the

actor consumes the matched tokens and produces a single token on certain outputs. Lee and

Matsikoudis use sequences in their firing rules and reactions; we use only singletons because we

target hardware.

Formally, an n-input,m-output dataflow actor is a pair (R, f) where R ⊂ (Σ∪ϵ)n are the firing

rules, f : R → (Σ∪ϵ)m is the firing function, and for any a,b ∈ R with a , b, there is no c such

that a ⊑ c and b ⊑ c. This “no-common-prefix” constraint on R ensures the actor behaves as a

continuous process: in particular, once an actor can fire on a given rule it cannot fire on another,

even if additional tokens arrive.

The process for an actor simply fires repeatedly according to its firing rules. Formally, the

Kahn process P for the dataflow actor (R, f) is

P (s) =



f (r)P (t) when ∃r ∈ R such that s = rt;

ϵm otherwise,
(5.3)

where ϵm is them-tuple of empty sequences and juxtaposition represents the pointwise concate-

nation of sequences. Lee and Matsikoudis [81] showed that P is a continuous function (and thus

a Kahn process) provided the firing rules R obey the no-common-prefix rule described above.

Note that (5.3) matches the usual recursive definition of the map function familiar to functional

programmers (e.g., the Haskell definition we gave in Section 4.1.1).

Our networks allow channels with “initial tokens” to break deadlocks in loops. For example,

the top multiplexers in Figure 5.1 would deadlock without the initial token provided. We model

such tokens by allowing processes to emit initial tokens before entering their periodic firing

behavior. A dataflow actor with initial output is a triple (R, f , i) where R and f are as before and

85

List of Tables

i : (Σ∗)m is the initial output from the actor. The Kahn process for such an actor is

P ′(s) = iP (s). (5.4)

5.1.3 Unit-rate, Mux, and Demux Actors

We construct our networks from three stateless actors. The first, a unit-rate actor, waits for a

single token on each of its inputs before producing a single output token on each of its outputs.

Using this definition, the primitive, destruct, write, and read actors from Section 4.2 are all for-

mally unit-rate.

For example, a two-input process that adds its two integer token inputs is a unit-rate actor.

Again, let Σ = Z. The actor (R, f) has

R= {(x ,y) : x ,y ∈ Z}

f
(

(x ,y)
)

= (x +y),
(5.5)

i.e., the actor can fire on any pair of integer tokens (R) and, given such a pair of tokens x and y,

the actor produces a single token whose value is x +y (f). It is easy to show that this R follows

the no-common-prefix rule. Furthermore, an inductive argument shows that applying (5.3) to the

R and f in (5.5) gives the P function in (5.1). In Figure 5.1, the equality (=), less-than (<), and

subtractor (−) actors are each unit-rate.

Our second building block is the mux actor (Figure 5.1 uses four), which consumes a token

from its control input to determine from which of its inputs to consume a further token that it

then emits on its output channel. For example, a two-way mux actor that takes a 0 or a 1 on its

select input has

R= {(0,x ,ϵ) : x ∈ Σ} ∪ {(1,ϵ,y) : y ∈ Σ}

f
(

(0,x ,ϵ)
)

= (x)

f
(

(1,ϵ,y)
)

= (y).

(5.6)

Our third fundamental type of actor is the demux (Figure 5.1 uses four): each input token is

86

List of Tables

routed to an output channel based on a select input token. For a two-output demux,

R=
{
(x ,y) : x ∈ {0,1},y ∈ Σ

}

f
(

(0,y)
)

= (y,ϵ)

f
(

(1,y)
)

= (ϵ,y).

(5.7)

5.1.4 Nondeterministic Merge

A nondeterministic merge process produces its output sequence by interleaving two or more in-

put sequences. That is, each token of each input sequence appears exactly once and in order in the

output sequence, but successive tokens from an input sequence are not necessarily successive in

the output. Practically, nondeterministic merge processes expose the timing of a dataflow system

implementation by interleaving sequences according to when tokens arrive at their inputs, and

thus are used to improve performance or break a deadlock by avoiding the need to wait. For ex-

ample, in the dataflow networks produced by our compiler (Section 4.3), we use nondeterministic

merge processes to share resources as shown in Figure 5.5; Section 5.2.4 explains this in detail.

By this definition, a nondeterministic merge process is not a Kahn process (it does not com-

pute a function), so to introduce them into our framework we use a mathematical trick due to

Broy [16]: each nondeterministic merge process is one of many different Kahn processes, one for

each possible interleaving. The behavior of a system, then, is the set of behaviors produced by

the system under every choice of interleaving.

Equivalently, each nondeterministic merge process can be thought of as just a (deterministic)

mux actor whose control input is fed from a nondeterministic environment that directs the in-

terleaving of the mux’s data inputs. One way to implement a nondeterministic merge process is

to have, say, an arbiter decide how to interleave input sequences, and treat the decisions of that

arbiter as the control “input” from the environment. While we provide such merge processes, we

also provide a merge process with an explicit control stream generated not by the environment,

but by the merge process itself (i.e., the mergeChoice node of Section 4.2). Knowing how a non-

deterministic merge interleaved streams is helpful for knowing how to later deinterleave them,

which I discuss more in Section 5.2.4.

87

List of Tables

5.2 Hardware Dataflow Actors

In this section and the next, I describe how we implement our dataflow networks in hardware

(recapping some of the ideas introduced in Section 4.4 for cohesion). Our compiler’s code genera-

tion phase uses these implementations to perform a syntax-directed translation from an abstract

dataflow specification (e.g., written in our DF IR) to a SystemVerilog circuit description.

Our circuits facilitate design space exploration because inserting or removing buffering does

not affect what is computed, but removing buffering can introduce deadlock. Multiple actors may

be chained together directly to avoid latency (with the danger of increasing the critical path) or

buffers may be added to break frequency-robbing critical paths with pipelining.

To implement a dataflow network, each dataflow actor becomes a block of logic with hand-

shaking communication ports, one for each input and output. Each channel in the network be-

comes a small communication network of wires potentially augmented with fork and buffering

circuity (Section 5.3); each cycle must be buffered to prevent combinational cycles, and the user

(or our compiler) may freely buffer channels to modify the frequency, area, and latency of the

synthesized circuit.

In general, the datapath of each actor implements its firing function f and the flow control

logic implements its firing rules R. Although we do not have formal proofs that show each circuit

faithfully implements its specification, we argue for the correctness of our circuits in Section 5.4.

Paired with our hardware implementations of channels, the limited, core group of actors pre-

sented here are rich enough to implement any program written in our Floh IR (Section 4.1). Our

framework could support additional actor types, as long as they follow the Kahn rule of blocking

on exactly one input at a time to avoid nondeterministic behavior.

5.2.1 Communication and Combinational Cycles

Actors, buffers, and forks in our implementation communicate through unidirectional point-to-

point links. We use the bundled-data protocol with handshaking inspired by Carloni’s latency-

insensitive design [19] and Carmona et al’s elastic circuits [21] shown in Figure 4.11. This is

a bundled data protocol in which the valid bit indicates a token is present on the data wires.

The downstream block sends the ready signal upstream to indicate it is able to consume a token

being proffered by the upstream block. A token is transferred from the upstream block to the

downstream block in each cycle in which both valid and ready are asserted.

88

List of Tables

We chose this protocol because it is fast (able to transfer one token per clock cycle indef-

initely), patient (both transmitter and receiver can wait indefinitely with no loss of data), and

simple (to reduce overhead). We are unaware of other protocols that meet these criteria.

This seemingly simple protocol poses a potentially perilous problem: combinational cycles

inadvertently induced by the ready signals, which flow backwards through the network. For

example, it would be easy to produce a cycle if a valid signal depended instantaneously on a

ready at an output port while a ready instantaneously depended on a valid at an input port.

We avoid combinational cycles by insisting each cycle in the dataflow network have at least

one data and one control buffer (see Section 5.3) and by insisting no block has a combinational

path from a ready to a valid signal. The data buffer rule eliminates combinational cycles in the

data/valid network; the control buffer rule similarly breaks cycles in the ready network; and

prohibiting combinational paths from ready to valid means no combinational cycle can include

a signal that crosses between the two networks. Intuitively, these rules mean the flow control

network can be scheduled statically: the valid network can be computed first (it is acyclic, with

inputs from data buffers and the environment) followed by the ready network, which may take

inputs from the valid network, control buffers, and the environment.

We provide a fragment of synthesizable RTL SystemVerilog for each block of logic imple-

menting an actor. To represent, say, an 8-bit channel c, we use a nine-bit vector c for data (c[8:1])

and valid (c[0]), and a wire named c_r for ready. In our schematics, we label all wires of this port

just with the name c. We also provide a DF specification (Section 5.5) for each block; given that

DF specification, the compiler produces the logic block shown.

5.2.2 Unit-Rate Actors

Figure 5.2 shows how we implement single-output unit-rate actors such as a two-input adder.

First, note that the datapath of this actor is just the combinational function f ; our technique

merely adds two AND gates for flow control to the valid and ready networks. The flow control

logic waits for a valid token on both inputs before asserting the output is valid. The actor indicates

it is willing to consume both its inputs when they are both valid and the downstream is also

ready to consume the output token. Additional inputs can be added to the circuit of Figure 5.2 by

widening the AND gate for the valids; the ready logic remains the same but fans out more widely.

An n-output actor can be implemented by n single-output actors with their inputs connected in

parallel, although doing so requires forks feeding the input channels. For example, the destruct

89

List of Tables

in0

in1 out

f

out = op_add Int < in0 in1 ;

assign out =
{ f (in0[W:1], in1[W:1]), // f(in0, in1)

in0 [0] && in1[0] }; // out valid

assign in0_r = out_r && out[0]; // in0, in1 ready =

assign in1_r = in0_r ; // out valid and ready

Figure 5.2: A unit-rate actor that computes a combinational function f of twoW -bit inputs (bit 0
of each port carries the “valid” flag) once both arrive. Depicted is the circuit, a sample DF spec-
ification of the actor (assuming f is a primitive addition function), and the corresponding Sys-
temVerilog.

actor from Section 4.2 is implemented as a fork distributing a token for a data constructor with n

fields to n unit-rate actors; the ith unit-rate actor extracts the ith field from the input token.

5.2.3 Mux and Demux Actors

Mux and demux are not unit-rate actors because they use the value of a select token to determine

on which input or output to communicate. A mux uses the value of a selection token to route a

token on one selected input to the output. The select token and the token on the selected input

must be valid to produce a valid output; input and select tokens are consumed when the output

is ready.

The demux is complementary: it directs an input token to a single output depending on the

value of a select token. Both the select and input tokens must be valid before a token is proffered

on the selected output; that output must be ready before the two tokens are consumed.

Figure 5.3 shows a three-input mux that routesW -bit tokens. The datapath is a multiplexer

that routes one of the inputs to the output depending on the value of the select input. A standard

one-hot decoder also takes the select input and transforms it into a vector that indicates which

input should be consumed. We implement the decoder (along with the multiplexer) in the “case”

block of the SystemVerilog code: when the select value is 0, 1, or 2, the decoder sends 001, 010, or

100 (3’d1, 3’d2, 3’d4), respectively, to the onehot vector to select one of the inputs.

The output valid bit is the AND of the valid from the selected input and the valid bit of select.

Select and the selected input are ready when the output is valid and ready.

Figure 5.4 shows a three-output demultiplexer. The datapath is simply fanout that sends the

input to all outputs. If both the in port and the select port have valid tokens, the one-hot decoder

90

List of Tables

in0

in1

in2

select out

muxed

decoder

onehot[0]

onehot[1]

onehot[2]

out = mux Tri Int < select in0 in1 in2 ;

logic [2:0] onehot; // One per input

logic [W:0] muxed;
always_comb

unique case (select [2:1])
2′d0 : {onehot, muxed} = {3 ′d1, in0 };
2′d1 : {onehot, muxed} = {3 ′d2, in1 };
2′d2 : {onehot, muxed} = {3 ′d4, in2 };
default: {onehot, muxed} =

{3 ′bx, {{W{1′bx }}, 1′d0 }};
endcase

assign out =
{ muxed[W:1], muxed[0] && select[0] };

assign select_r = out[0] && out_r;
assign { in2_r , in1_r , in0_r } =

select_r ? onehot : 3′d0;

Figure 5.3: A three-inputW -bit multiplexer; select is 2 bits.

select

in

out2

out1

out0

decoder

onehot[2]

onehot[1]

onehot[0]

out0 out1 out2 = demux Tri Int < select in ;

logic [2:0] onehot; // One per output

always_comb

if (select [0] && in[0]) // Inputs valid?

unique case (select [2:1])
2′d0 : onehot = 3′d1;
2′d1 : onehot = 3′d2;
2′d2 : onehot = 3′d4;
default : onehot = 3′bx;

endcase

else onehot = 3′d0;
assign out0 = { in[W:1], onehot [0]};
assign out1 = { in[W:1], onehot [1]};
assign out2 = { in[W:1], onehot [2]};
assign select_r =

| (onehot & {out2_r , out1_r , out0_r });
assign in_r = select_r ;

Figure 5.4: A demultiplexer with a two-bit select input and threeW -bit outputs.

91

List of Tables

f f f
Share with

merge/demux

merge

f

demux

select

Figure 5.5: A merge used to share a unit-rate subnetwork.

uses the value of the select token to indicate which one of the output ports is given a valid token.

Both in and select tokens are consumed if that selected output is ready.

5.2.4 Merge Actors

Our implementation of the nondeterministic merge actor is novel: as mentioned in Section 5.1.4 it

is essentially a mux actor whose select “input” is electrically an output. In our formalism, a merge

actor is a mux with a nondeterministic select input; in our implementation, the merge actor itself

generates the tokens on the select channel rather than receiving them.

Figure 5.5 illustrates how we use our merge actor to share a stateless block or subnetwork

f that produces one output token per input; if f maintained state across tokens, sharing would

change f ’s functionality. The merge nondeterministically chooses a token from one of its three

inputs to route to the shared f and reports its choice in the form of a token on the select channel.

When f produces its result, the demux routes the result to the output corresponding to the chosen

input. As seen in Section 4.3, our compiler uses this merge to enable dynamic load balancing

across the users (callers) of a shared resource (function) and to simplify the mapping of recursive

design specifications onto our networks.

Figure 5.6 shows a two-input merge actor, which has two possible behaviors. If only one data

input (in0 or in1) provides a token, it is routed onto the out port. If both data inputs provide tokens

in a given cycle, only one is routed onto out by the arbiter, whose implementation can vary (thus

our modeling of the merge as nondeterministic). In both cases, the merge reports which input

was selected via the sel port.

As I described in Section 5.1.4, Broy [16] models nondeterministic merge as a mux driven by

a nondeterministic input that controls how the input streams are interleaved; our merge actor

emits this selection sequence.

92

List of Tables

in0

in1

out

sel

emtd[0]

done[0]

emtd[1]

done[1]

0
1

A
rb
iter

won[0]

won[1]

win[0]

win[1]

fired

sel out = mergeChoice Bool Int < in0 in1 ;

logic [1:0] won, win; // 2 input arb. bits

assign win = | won ? won : // Decided

in0 [0] ? 2′d1 : // in0 wins

in1 [0] ? 2′d2 : // in1 wins

2′d0; // No winner

initial won = 2′d0; // No winner initially

always_ff@(posedge clk)
won <= fired ? 2′d0 : win;

logic [1:0] emtd, done; // One per output

assign done = emtd |
({ sel [0], out [0]} & { sel_r , out_r });

initial emtd = 2′d0; // Nothing yet emitted

always_ff@(posedge clk)
emtd <= fired ? 2′d0 : done;

assign fired = & done;
assign { in1_r , in0_r } = fired ? win : 2′d0;
assign out = win[0] && !emtd[0] ? in0 :

win[1] && !emtd[0] ? in1 :
{ {W{1′bx }}, 1′d0 } ;

assign sel = win[0] && !emtd[1] ? 2′b01 :
win[1] && !emtd[1] ? 2′b11 :

2′bx0 ;

Figure 5.6: A two-input nondeterministic merge that reports its arbitration decisions on the 1-bit
output sel.

The circuit in Figure 5.6 is complex because it generates tokens on two output channels when

it fires and needs to cope with only one channel being ready. The naïve approach of insisting

both outputs be ready for the actor to fire leads to circuits with combinational cycles; our circuit

avoids this by allowing firing across multiple cycles and thus needs state. The fork described in

Section 5.3.2 is similar.

An n-input merge has n+2 state bits: n one-hot “won” bits that indicate which input won the

arbitration and two emtd bits that indicate the out and sel outputs have already emitted tokens

in this firing and should not emit any more. All of these bits reset to 0 between firings.

Our merge actor is built around an arbiter that, with a simple priority-encoding scheme, se-

lects a valid input and declares it the winner through the one-hot win vector. This vector controls

the multiplexers that route the winning input to out and its identity to sel. While our generated

93

List of Tables

in0

in1

out

A
rb
iter

won[0]

won[1]

win[0]

win[1]

out = merge Int < in0 in1 ;

logic [1:0] won, win; // 2 input arb. bits

assign win = | won ? won : // Decided

in0 [0] ? 2′d1 : // in0 wins

in1 [0] ? 2′d2 : // in1 wins

2′d0; // No winner

initial won = 2′d0; // No winner initially

always_ff@(posedge clk)
won <= out_r ? 2′d0 : win;

assign { in1_r , in0_r } = out_r ? win : 2′d0;
assign out = win[0] ? in0 :

win[1] ? in1 :
{ {W{1′bx }}, 1′d0 } ;

Figure 5.7: A two-input nondeterministic merge that does not report its selection.

circuits are technically deterministic at the cycle level, changing the buffering on the channels

may affect the behavior of the merge actor because it responds to the cycle-level timing behavior

of input sequences. As such, it is effectively nondeterministic at the level of the Kahn network.

If both out and sel are ready and valid and the emtd bits are at 0, then both done signals become

true, fired becomes true, the winning input’s ready is asserted, all thewon and emtd registers stay

at 0, and the arbiter can handle another token in the next cycle.

When an output is not ready, it sets the emtd bit for the other output, suppressing that output’s

valid signal in the next cycle. Furthermore, because fired is not asserted, the win vector will be

loaded into the won register. In the next cycle, since the won register is non-zero, the arbiter will

maintain the identity of the winner and ignore any new input tokens.

In cycles after the initial arbitration, thewin vector holds its value and maintains a valid token

on the output that has not yet been consumed. When both outputs have finally been consumed

(i.e., when each is either emitted or ready), fired will be asserted, the winning input token is finally

consumed, and the merge actor’s state resets to fire again in the next cycle.

While having a nondeterministic merge that reports which input token won the arbitration

is useful for resource sharing (e.g., as in Figure 5.5) the select output is not always needed. We

also provide a merge actor with no additional select output (shown in Figure 5.7), whose imple-

mentation is much simpler than that in Figure 5.6: the emtd, fired, and done signals are removed,

out solely depends on which input was selected by the arbiter, and the winning input’s ready is

asserted when out is ready.

94

List of Tables

in out

0
1

out = dbuf Int < in ;

initial out = { {W{1′bx }}, 1′b0 }; // Start empty

assign in_r = out_r || !out [0]; // Will we have space?

always_ff@(posedge clk)
if (in_r) out <= in ; // If so, save the token

Figure 5.8: A data (pipeline) buffer, after Cao et al. [18]. This breaks combinational paths in the
data/valid network.

5.3 Channels in Hardware

In our specifications, a channel is an abstractmechanism that conveys a sequence of tokens gener-

ated by a process or supplied by the environment to one or more processes. Our technique allows

such channels to be implemented in a variety of ways, providing various speed/area tradeoffs.

A point-to-point channel can be implemented with a direct connection, as shown in Fig-

ure 4.11. Such a link is the fastest and consumes the fewest resources but may produce a long

combinational path that limits clock frequency. It also couples the two process’ firings.

Adding a buffer to a point-to-point link decouples the firing of the upstream and downstream

actors. Such buffering is mandatory on loops in the network and on channels with initial tokens

(see Section 5.1.2). Buffering can also improve performance by breaking long combinational paths

in the generated circuit, effectively pipelining them to improve throughput and clock frequency.

We provide fork blocks for implementing channels with fanout. The datapath of a fork is

trivial (simply wires that fan out); the flow control logic (i.e., for valid and ready) turns out to be

fairly complicated to avoid a combinational path from ready to valid.

Choosing an optimal channel implementation is outside the scope of this dissertation. How-

ever, we can correctly implement any channel in our specification as a single-source, feed-forward

network comprised of forks, buffers, and point-to-point connections.

Below, I describe how we implement buffers and forks.

5.3.1 Data and Control Buffers

We provide two buffer types, based on the designs of Cao et al. [18]: a data buffer breaks a

combinational path (or cycle) on the data/valid network; a control buffer does so on the ready

network. Each type of buffer can hold a single data token, but their implementations differ.

95

List of Tables

in
out

0
1

0
1 0

10

out = rbuf Int < in ;

initial buffer = {{W{1′bx }}, 1b′ 0}; // Empty

always_ff@(posedge clk)
if (out_r && buffer [0]) //Will send?

buffer <= { {W{1′bx }}, 1′d0 }; // then clear

else if (! out_r && !buffer [0]) //Must hold?

buffer <= in ; // then save

assign out = buffer [0] ? buffer : in ;
assign in_r = ! buffer [0];

Figure 5.9: A control buffer, after Cao et al. [18]. This breaks combinational paths in the (up-
stream) ready network.

A data buffer (Figure 5.8) is a traditional pipeline register: it breaks the combinational path on

data/valid signals, stores a single data token, and adds a clock cycle of latency. The downstream

ready signal acts like a latch enable when the buffer holds a valid token; an upstream token is

always latched when the buffer is empty. Note that a data buffer’s ready path is combinational.

The control buffer in Figure 5.9 performs the more challenging task of breaking the combi-

national path on the ready network. By design, the upstream ready signal (in_r) depends only

on a flip-flop output—the valid bit of a “spill buffer.” Complementary to a data buffer, a control

buffer induces a cycle of latency on the ready network, but not necessarily any on the data/valid

network.

The control buffer intercepts and stores any valid token that the downstream cannot accept.

The buffer in Figure 5.9 starts empty: its valid bit is false, any valid token flows directly from in

to out, and in_r is asserted. If out_r remains true, the buffer remains empty (holds its previous

contents); however, if out_r goes false, the downstream will not consume any valid token, so

instead any valid token on in is “spilled” into the buffer.

When the buffer holds a token, no token is accepted from upstream because in_r is false, the

buffered token is proffered downstream, and out_r controls whether the token will continue to

be held or advanced in the next cycle.

Connecting control and data buffers back-to-back in either order breaks any combinational

path that would pass through them, allowing them to be chained arbitrarily without reducing

peak clock frequency. Back-to-back, these buffers behave like the latency-insensitive relay sta-

tions of Li et al. [83].

96

List of Tables

in

out2

out1

out0

emtd[0]

done[0]

emtd[1]

done[1]

emtd[2]

done[2]

out0 out1 out2 = fork Int < in ;

logic [2:0] emtd, done; // Per output

initial emtd = 3′d0; // Start clear

assign out0 = { in[W:1], in[0]&& !emtd [0]};
assign out1 = { in[W:1], in[0]&& !emtd [1]};
assign out2 = { in[W:1], in[0]&& !emtd [2]};
assign done =
emtd | ({ out2 [0], out1 [0], out0 [0]} &

{out2_r , out1_r , out0_r });
assign in_r = & done;

always_ff@(posedge clk)
emtd <= in_r ? 3′d0 : done;

Figure 5.10: A three-way fork. An output port’s emtd flip-flop is set when the input token has
been consumed on that port. All are reset after a token is consumed on every port.

5.3.2 Forks

To implement channels with fanout, we use “fork” circuits that handle the flow control logic (i.e.,

valid and ready signals) without introducing combinational cycles when blocks are connected.

The obvious way to implement fork—a block that waits for all its downstream actors to be

ready before firing—would introduce combinational cycles when composed because such a policy

requires a combinational path from ready to valid. A block that considered a downstream block’s

ready inputs to control whether its outputs were valid would not be compositional.

Our implementation of fork avoids combinational cycles by introducing a limited amount of

state. By using one flip-flop per output, a valid token may pass through a fork and be consumed

downstream before it is consumed upstream. The amount of state in a fork block depends only on

how much it fans out and not on the width of the data tokens (unlike control and data buffers).

Figure 5.10 illustrates our solution, which uses one flip-flop per output in a vector called emtd

(for “emitted”). Each emtd bit indicates whether the downstream consumer previously consumed

the current token. If an output’s emtd bit is set, the fork suppresses that output’s valid signal to

avoid sending a second copy of the token to the consumer.

Initially all emtd bits are zero. If there is no input token, the state is unchanged. If an input

token arrives it is proffered on all downstream ports. If all consumers are ready, done is all ones,

the upstream ready is asserted, and the emtd flip-flops remain cleared.

If any consumer is not ready, the input token is not consumed (the upstream ready is not

97

List of Tables

asserted) and the ready consumers’ emtd bits are set to one to prevent any further tokens being

proffered on the outputs before the current token is consumed.

When some emtd bits are set, the upstream ready is not asserted, the input token is held, and

an output token is proffered on output channels whose emtd bits are zero. Each output’s done bit

is asserted if the proffered token was consumed in this or a previous cycle. Once all done bits are

true, the emtd bits are reset, the upstream token is consumed, and the process repeats.

5.4 The Argument for Correctness

In this section, we argue that our circuits faithfully implement the specifications in Section 5.1 in

that anything the hardware implementation can do is permitted by the specification. However,

the reverse is not true: the hardware may deadlock because of (finite) buffer overflow where the

specification would proceed. Specifically, the sequence of tokens that can be observed passing

through any channel in a hardware implementation is a prefix of (but often equal to) the sequence

of tokens that the Kahn fixed point semantics implies would pass through the channel.

Pingali and Arvind [102] show this in the Kahn formalism (our argument is for the hardware

realization of this formalism). To impose demand-driven scheduling on a Kahn network, they

introduce demand streams that run opposite each communication channel. Such streams model

buffer capacity: each process is forced to consume (and thus potentially wait for) an incoming

demand token before it sends a token on the corresponding output channel. Similarly, after a

process consumes a normal input token, it immediately emits a corresponding demand token.

Pingali and Arvind show that a network augmented with such streams produces on each channel

a prefix of the stream of tokens that would be produced in the original network. Geilen and

Basten [56] present an alternative proof.

Our argument for circuit correctness relies on our hardware behaving according to the formal

notion of an actor firing. According to (5.3), when a process finds tokens on its input sequences

that match a firing rule r, it produces tokens on its output sequences according to its firing func-

tion f , and then advances past (“consumes”) the tokens identified in the firing rule by recursing

on the tuple of sequences t, which skips the tokens in the firing rule r.

We use the valid signal to indicate the “next” token in sequence; a block indicates it is willing

to consume a tokenwhen it asserts the ready signal on the port. An upstream blockmust continue

to provide the same valid token until the downstream block is ready.

98

List of Tables

We argue that each block maintains the following inductive invariant between clock cycles:

on each port, if valid is true, the data wires carry the token value that appears “next” in the

sequence given by the underlying Kahn network behavior; the “previous” token value was con-

sumed during the last cycle in which both valid and ready were true (or no such token existed

because the circuit was reset). Furthermore, once valid has been asserted, it must stay asserted

until the next cycle in which ready is asserted. Thus, valid indicates the correct next token value

is present; when it is accompanied by ready the token has been consumed. A corollary is that ob-

serving the data values on a port in cycles where both valid and ready were true gives a prefix of

the sequence on that port. For the sequence of data values . . . , ct−1, ct , ct+1, . . . , we might observe

clock cycles with the following data (here, “X” represents garbage data):

data: · · · ct−1 ct−1 ct−1 X ct ct ct+1 · · ·

valid: · · · 1 1 1 0 1 1 1 · · ·

ready: · · · 0 0 1 X 0 1 0 · · ·

The highlighted columns are token-transfer cycles. The environmental inputs must also fol-

low this protocol and hold valid data until it is ready to be consumed.

We also assume that when the circuit is reset, any and all initial tokens on the channels

required by the specification are residing in the appropriate data or control buffers.

The unit-rate actor (Figure 5.2) preserves the invariant. If all its inputs are valid, each carries

the value of the next token on their respective sequences, the function block computes the next

token in sequence on the output, which is made valid. If, additionally, the output is ready, the

inputs are also made ready, indicating the input tokens have been consumed.

For the multiplexer (Figure 5.3), if the select input is valid, it must carry the next token in

sequence. The value of the select token routes the data/valid signals from the appropriate input

port to the muxed signal internally. If muxed is valid, the output carries the proper value (next

token in sequence) and is set valid. If, additionally, the output is ready, both the select input and

the selected input are made ready and no others.

For the demultiplexer (Figure 5.4), only if both the input and select inputs have a valid token

is the decoder activated and the appropriate output made valid. If, furthermore, that output is

also ready, only then are both the input and select inputs marked ready.

The nondeterministic merge block (Figure 5.6) must ensure that once it decides what the

next tokens on its output should be, these values persist. When the emtd and won registers are

all zero, the arbiter decides which one, if any, of the valid inputs wins the arbitration. This causes

99

List of Tables

correct, valid tokens to appear on both the output and select ports. If both ports are ready, fired

is asserted, the winning input is also marked ready, and the emtd and won registers stay zero. If

only one output port is ready, fired will remain low, the ready output port will set its emtd bit

and the won register will record the arbitration winner. In future cycles the token, if any, from

the winning input port will continue to be routed to the output port and the corresponding value

will be sent on select, but the emtd register will suppress the valid signal on the already-ready

port. Note that the environment must sustain the valid token on the winning input port. If ready

is asserted on the non-emitted port, fired will be asserted, the winning input will be made ready,

the registers cleared, and the process repeats.

Only buffers can hold tokens. Consider when the data buffer (Figure 5.8) is empty. The

output is invalid and the ready output is asserted. If a valid token is proffered, the token will be

stored in the buffer at the end of the cycle, consistent with the invariant. When the data buffer is

full, valid is asserted. If the downstream ready is false, the upstream ready is false and the register

will hold the token. When the downstream ready is true, the upstream ready will be asserted and

the token in the buffer will be overwritten. If a valid token was proffered, the buffer will store it.

If the control buffer (Figure 5.9) is empty, the input token/valid signal is simply copied to

the output and the upstream ready is asserted. If the downstream does not assert ready, the valid

upstream token, if any, will be stored in the buffer for the next cycle. If the buffer is full, the

upstream ready is false and the valid token is proffered on the output. If the downstream ready

is true, the buffer will be emptied in the next cycle.

The fork block (Figure 5.10) relies on the upstream block sustaining a valid token until it is

consumed. When the emtd register is zero, a valid token on the input becomes a valid token on

each of the outputs. Any output that is also ready asserts its respective done signal. If all the done

signals are set, the upstream ready is asserted and the emtd registers are all reset. Otherwise, each

ready output sets its emtd bit in the next cycle. These bits suppress the valid signal on each of

the outputs that had already asserted ready with the current input token. Each done bit becomes

true if its emtd bit is true or if a valid token has been consumed by a ready on the output. When

all the done bits are true, the block consumes the current input token and resets all the emtd bits.

100

List of Tables

5.5 Our Dataflow IR: DF

To bridge the gap between our abstract dataflow networks and their hardware implementations,

we developed an additional IR for our compiler: a typed dataflow assembly language called DF.

Similar to a software assembly language DF admits a one-to-one translation scheme: each line in-

stantiates one dataflow actor by generating the SystemVerilog code presented earlier (modifying

the number of input and outputs, and setting their bitwidths appropriately). A DF program de-

scribes a dataflow network, which our compiler type-checks before generating the corresponding

SystemVerilog following our procedure (Section 5.2).

Compared to coding dataflow networks directly in SystemVerilog, DF provides the usual ad-

vantages of a higher-level language: it makes good designs easier to express and prohibits many

bad designs. It is much more succinct than the equivalent SystemVerilog would be, making it

easier to write and read. It provides higher-level types: signed and unsigned binary vectors plus

algebraic data types provide both abstraction to more succinctly express ideas and opportunities

to catch design errors early. The network is checked for types and structure: each actor specifies

constraints on the types of its input and output ports, each channel is required to have exactly

one writer and one reader, and the types of the ports on a channel must match.

We use DF as a textual IR to both simplify debugging and give a more modular compilation

flow than a pure binary representation would. Although we would have preferred to express our

actors as a SystemVerilog library, SystemVerilog’s polymorphism does not permit modules with

a varying number of inputs or outputs (e.g., merge and fork). Furthermore, although the 2012

SystemVerilog standard includes tagged unions for implementing algebraic data types, none of

the SystemVerilog tools we use (e.g., Quartus and Verilator) supports them.

Figure 5.11 shows a complete DF program that expresses a fragment of the GCD example from

Figure 5.1. It starts with channel type definitions (DF has no built-in types) and type definitions

for the various actors, then instantiates the actors (on the right-hand side of Figure 5.11).

Figure 5.12 shows the syntax for DF. A program consists of channel type definitions, actor

type definitions, and actor instances. I describe each below.

5.5.1 Channel Type Definitions

Each channel in a DF specification has a type indicating the type of tokens it conveys. A channel

type must be defined with the data keyword before it can be used in a DF program, and its name

101

List of Tables

// Type definitions

data Int signed 32 ;
data Bool = F | T;
// Actor type definitions

source a : > a ;
sink a : a > ;
fork a : a > a+ ;
op_eq a : a a > Bool ;
demux a b : a b > b∧(variants a) ;
mux a b : a b∧(variants a) > b ;
initbuf a (b : a) : a > a ;
rbuf a : a > a ;

T F T F

aIn
aFB

bIn
bFB

=
a1 b1

T F T F
ee2 e3

a2

a

b2

b

aF bFresult discard

T
c1 c2

e1e1b

c

// Actor instances

aIn = source Int <;
bIn = source Int <;
aFB = source Int <;
bFB = source Int <;
e1b = rbuf Bool < e1;
c = initbuf Bool T < e1b;
c1 c2 = fork Bool < c ;
a = mux Bool Int < c1 aIn aFB;
a1 a2 = fork Int < a;
b = mux Bool Int < c2 bIn bFB;
b1 b2 = fork Int < b;
e = op_eq Int < a1 b1;
e1 e2 e3 = fork Bool < e ;
result aF = demux Bool Int < e2 a2;
_ bF = demux Bool Int < e3 b2;

= sink Int < result ;
= sink Int < aF;
= sink Int < bF;

Figure 5.11: A DF program describing the topology and channel types for a portion of GCD from
Figure 5.1.

must begin with an uppercase letter. Our compiler implements all types as fixed-width bit vectors

in SystemVerilog.

DF’s channel types are either primitive integers or algebraic data types. An integer type

definition names either a binary (unsigned) or two’s complement (signed) fixed-width bit vector:

data Int signed 32; // 32-bit signed (two’s complement) integer

data Char unsigned 8; // 8-bit unsigned integer

data Uint14 unsigned 14; // 14-bit unsigned integer

DF’s algebraic types mirror those from our Core IR (Section 3.1). An algebraic type in DF

consists of one or more variants; each variant has a name (“tag”) starting with an uppercase

letter and a payload of zero or more data fields of specific types:

102

List of Tables

program ::= [typedef | actordef | instance]∗

typedef ::= data type-id [signed | unsigned] int-lit ; Primitive sized integer type
| data type-id = tag-id type-id∗ [| tag-id type-id∗]∗ ; Algebraic type definition

actordef ::= actor-id [var-id | (var-id : type)]∗ : type∗ > type∗ ; Actor type definition

instance ::= channel-id∗ = actor-id [type-id | int-lit]∗ < channel-id∗ ; Actor instance

type ::= type-id Named type
| tag-id Tag name (variant)
| var-id Type variable/function name
| type + One or more
| type ∧ type Prescribed number of
| type type Type function application
| (type) Grouping

Type (type-id) and tag (tag-id) names start with an uppercase letter.
Actor (actor-id), channel (channel-id), and type variable (var-id) names start with a lowercase
letter or an underscore (_).
Integer literals (int-lit) may be negative.

Figure 5.12: Syntax of DF. Brackets [], bar |, and asterisk ∗ are meta-symbols denoting grouping,
choice, and zero-or-more. Bold characters, including parentheses (), bar |, and caret ∧, are
tokens.

data Bool = F | T; // A succinct Boolean type

data Pair = Pair Int Int ; // A pair of integers

Whereas an integer token carries a numeric value, a token of an algebraic type carries one

variant and its associated payload data, which may be other algebraic types and integers. Our

compiler encodes algebraic types as a tagged union: a tag field indicates the variant followed by

enough bits to hold the largest payload.

As in Floh (Section 4.1), hierarchy is allowed in algebraic types, but not recursion; recursive

types may be expressed with pointers encoded as integers:

data Tree = Branch Uint14 Uint14 // Binary tree with 14-bit pointers.

| Intleaf Int // Leaves may be 32-bit integers

| Boolleaf Bool // or Booleans

103

List of Tables

5.5.2 Actor Instances and Type Definitions

An actor instance adds a new actor to the network and consists of a list of output channels, an

actor name, a list of zero or more arguments to be passed to that actor’s type definition, and a list

of input channels:

output-channel . . . = actor-name type/literal-argument . . . < input-channel . . . ;

Unlike other network specification languages such as Verilog, DF does not need to name

each actor instance; the names of an instance’s channels uniquely identify that instance since

connecting two actors to exactly the same inputs and outputs is nonsensical (and illegal).

An actor type definition specifies the type and number of ports for an actor by providing a

unique actor name, a list of parameters, and lists of input and output port types:

actor-name parameter . . . : input-port-type . . . > output-port-type . . . ;

Our actors support parametric polymorphism by taking zero or more named parameters,

which are typically used to specify the type and number of ports for that actor. A parameter

with just a name (e.g., “a”) is a type variable that ranges over channel types. A parameter may

also be constrained to constants of a particular channel type (e.g., “a : Int”) or variant tags of an

algebraic type (e.g., “a : tag Bool”). Actor instances provide concrete type and constant arguments

to resolve any parametricity in a definition.

We use a regular-expression-like syntax inspired by Hosoya et al.’s type system [68, 69] to

specify the number and type of an actor’s input and output ports. A type name (e.g., “Bool”)

denotes a single port of that type, while a type variable (e.g., “a”) represents a single port of poly-

morphic type. The ∧ and + operators let us assign types to multiple ports at once: an expression

of the form t ∧n means n ports of type t (where n is an integer expression), and the postfix +

operator denotes one or more ports of a given type (e.g., “Bool+”). To avoid ambiguity, the +

operator may only be used once in the input channels and once in the output channels.

Below are some actor type definition examples. A source is an input connection from the

environment that supplies tokens of a given type. It adds input ports to the SystemVerilogmodule

generated for the network. An op_eq is a two-input polymorphic comparator (Section 5.2.2) that

emits True when its inputs are equal and False otherwise. An op_add takes two objects of the

same type, sums their bits, and returns an object of the same type. A buf is a data/control buffer

pair that can buffer any type of token (Section 5.3.1). An initbuf is a buf that starts with an initial

104

List of Tables

token whose value is the second parameter. A fork is a polymorphic single-input actor that can

have one or more outputs (Section 5.3.2).

source a : > a; // Actor with a single output of any type

op_eq a : a a > Bool; // Two inputs of the same type and a Bool output

op_add a : a a > a; // Two inputs and an output, all the same type

buf a : a > a; // Single input and single output ports are of the same type

initbuf a (b : a) : a > a; // Second parameter is a constant of type a

fork a : a > a+; // One input; one or more outputs, all the same type

We also provide three built-in type functions that actor definitions may use to help define

channel types. The variants function returns the number of variants of a channel type. This is

used with the ∧ operator to specify a number of ports, e.g., for a multiplexer, which uses the

variant sent to it on a select input to choose an input. Below, because the multiplexer’s select

input takes the three-variant type Tri, the mux has three inputs.

data Int signed 32;
data Tri = One | Two | Three;
mux a b : a b∧(variants a) > b;
output = mux Tri Int < select input1 input2 input3 ;

The tag and variant_fields functions work in tandem to let us define a variant actor that

assembles the payload fields of an algebraic type object to produce an instance of that type (cor-

responding to a primitive data constructor node from Section 4.2). Specifically, the tag function

specifies that a parameter should be a variant of a given type, and passing that parameter to the

variant_fields function yields a list of channel types corresponding to that variant’s type fields.

For example, the following fragment constructs both variants of an OptPair type:

data Int signed 32;
data OptPair = Pair Int Int | Null ;
source a : > a;
variant a (b : tag a) : (variant_fields b) > a;
i1 = source Int < ;
i2 = source Int < ;
p = variant OptPair Pair < i1 i2 ; // Pair is a variant of OptPair, payload of two Ints

n = variant OptPair Null < ; // Null is a variant of OptPair, no payload

The destruct actor works in reverse, extracting the payload from the given variant:

105

List of Tables

destruct a (b: tag a) : a > (variant_fields b);
o1 o2 = destruct OptPair Pair < p; // o1 and o2 will be Ints

5.5.3 Checking DF Specifications

The back-end of our compiler takes in a DF program (produced by the Floh-to-dataflow trans-

lation of Section 4.3) and performs two main tasks: it verifies that the DF program is correctly

typed and translates it into SystemVerilog. Section 5.2 and Section 5.3 describe the translation to

SystemVerilog; here I discuss the rules our compiler uses to check types.

The first set of checks concerns name usage. A DF program has four global namespaces: type

names, tag names, actor names, and channel names. Type and tag names must start with an up-

percase letter, while actor and channel names start with a lowercase letter or an underscore. Each

type, tag, and actor defined must have a globally unique name within its respective namespace

(e.g., we can define a type and a tag of the same name).

To enforce the point-to-point nature of communication channels, the DF compiler requires

that each named channel appear exactly twice in a network: once as an output, and once as an

input. It may be possible to relax this requirement and allow a channel to be connected as an

input to multiple actors; we explicitly specify fork actors instead.

Once all names have been checked, the compiler first validates each data type definition in-

dividually by checking that each variant’s payload only carries defined types, followed by an

overall check that no type is recursively defined.

To validate an actor type definition, the compiler ensures that both its parameters and channel

types follow various rules. Each parameter name must be unique, but only for the actor being

defined. Constraints on parameter types can only refer to earlier parameters for that actor (e.g.,

“a : b” is only valid if “b” was defined earlier in the parameter list), and such constraints must

resolve to either a channel type or the tags of a type.

The channel types for an actor type definition must be consistent. Each must resolve to either

a named type, a type variable, or the + or ∧ operators applied to one of these. At most one +

operator may appear among the inputs and at most one may appear in the outputs. The right

argument of each ∧ operator must resolve to an integer. The variants and tag functions may only

be applied to a type, while the variant_fields may only be applied to a tag.

106

List of Tables

The compiler checks each actor instance in two steps: first, actual arguments are bound to

each of the actor’s parameters; second, types are assigned to each channel (both inputs and out-

puts). Binding arguments to parameters is done in the usual way: the nth argument is bound

to the nth parameter provided its type is consistent, i.e., a parameter that is a type variable only

accepts a concrete type (name), a parameter constrained to a channel type must be passed a literal

of that type, and a parameter constrained to be a tag of a particular channel type must be given

such a tag.

If binding arguments to parameters succeeds, the second step is a matching process that as-

signs types to input and output channels. Parameters are used to resolve the type (and number,

in the case of the ∧ operator) of expressions without a + operator, but the presence of an expres-

sion with a + operator complicates things. With a + operator, our procedure assigns the channels

before the + to the channels at the beginning of the input or output list, the channels after the +

to those at the end of the list, and the remainder to the range denoted by the +. Multiple + oper-

ators in a list of channels would introduce ambiguity, so we prohibit them. Multiple ∧ operators,

however, are allowed because they prescribe a specific number of channels when resolved.

Finally, we verify that the type assigned to each channel when it appears as an output is the

same as the type assigned to the channel when it appears as an input.

5.6 Experimental Evaluation

A designer can use our blocks to implement a dataflow network and adjust buffering to affect area

and performance without changing functionality, although insufficient buffering may introduce

deadlock. To verify this, I created dataflow networks (both manually with DF and automatically

with Haskell programs fed into our compiler), buffered them both randomly and manually, sim-

ulated the resulting circuits to check that each functioned correctly, and calculated the circuits’

highest clock rate when synthesized on an FPGA.

I both simulated the function of each circuit with Verilator 3.874 to verify that the circuits

operated correctly andwere free of combinational cycles and synthesized each circuit using Intel’s

Quartus 15.0, targeting a modest-performance Cyclone V 5CGXFC7C7F23C8 FPGA with 56480

ALMs (Adaptive Logic Modules), to estimate the maximum operating frequency and resource

usage of the design.

107

List of Tables

1 0 1 0

discard

<

in
s

=

1 0

lt eq out

Figure 5.13: The splitter component of a Conveyor. This
network partitions tokens arriving on the input stream in

by comparing each input value against a “split” value (the
initial token s). Each input token is sent out on one of
three ports depending on whether it is less than (lt), equal
to (eq), or greater than (out) the split value.

0
1

1
0

0
1

1
0

a

b

<

gt

lt

Figure 5.14: Bitonic sorting: the network on
the left routes the larger of two input to-
kens to the top output and the smaller to
the bottom. These are the vertical lines in
the eight-element bitonic sorting network
on the right (after Cormen et al. [33]).

5.6.1 Experimental Networks

I experimented with the five applications described below. I manually coded the first three net-

works in our dataflow language; the last two networks were synthesized from small Haskell

programs using the lowering passes and translation described in Section 3.3 and Section 4.3.

GCD This is Figure 5.1’s network made to compute gcd(100,2) with 32-bit integers.

Conveyor This network performs range partitioning [137]. The design chains n splitters (Fig-

ure 5.13) to partition an input stream into 2n+ 1 output streams (e.g., 10 splitters yield a 21-way

Conveyor design). Each splitter routes tokens to its outputs depending on how each token com-

pares to the splitter’s value. I fed the Conveyor an input sequence of 32-bit numbers (1, . . . ,10000)

and set the ith splitter value to 10000/(i + 1). To limit I/O pins, I merged the Conveyor’s outputs

with a chain of merge actors to produce a single (nonsensical) 32-bit output stream.

Bitonic Sorting Network (BSN) This sorts a fixed number of values with two-input com-

parators that operate in parallel. Figure 5.14 shows the dataflow network for a comparator and

an eight-input BSN. Each comparator takes in a pair of tokens and routes the smaller to its lower

output and the larger to its upper, either by passing the tokens straight through or swapping

108

List of Tables

 0

 2

 4

 6

 2 4 6 8 10

(7 buffers)C
om

pl
et

io
n

T
im

e
(µ

s)

Number of buffer pairs

GCD(100,2)

 0

 750

 1500

 2250

 2 4 6 8 10

(80 buffers)

21-way Conveyor

 0

 1

 2

 3

 2 4 6 8 10

(96 buffers)

BSN

Figure 5.15: Completion times under random buffer placement. Horizontal lines labeled with a
buffer count indicate the completion time of the best manual design.

them. I executed this network on ten sets of eight 8-bit values and merged the sorted numbers

with an 8-input adder (again, to limit I/O pins).

Mergesort and Treesort These are recursive sorting algorithms that use memories (on-chip

BRAMs) to store their data structures (lists and trees) and the continuation objects that implement

their recursion. I fed each network a list of 20 32-bit integers. I limited the input size because

the circuits generate a large number of intermediate structures, and our synthesizable on-chip

memories are not currently garbage collected.

5.6.2 Random Buffer Allocation

I first employed random buffer allocation, not because it produces efficient designs, but to show

that buffers may be added arbitrarily without affecting functionality thereby facilitating design

space exploration. Given unbuffered GCD, BSN, and 21-way Conveyor networks, I assigned data

buffers to store the initial tokens from their specifications (GCD and Conveyor) and placed a

control buffer on the same channels to break a combinational cycle.

I next assigned between two and ten control/data buffer pairs on randomly chosen channels,

discarding any implementation that produced premature deadlock or left a combinational cycle.

All remaining implementations computed the same result. Figure 5.15 shows the completion time

of each of these implementations in microseconds: cycles divided by maximum frequency (MHz).

109

List of Tables

GCD 5-Way Conveyor Bitonic Sorting Network (BSN)

Figure 5.16: Buffering our networks. Red bars represent control buffers; black for data. Each cycle
requires both buffers.

5.6.3 Manual Buffer Allocation

In Figure 5.15, I also plot the completion time for the best design I could devise manually (the

horizontal lines). Naturally, these are much better than what random buffering produced.

Figure 5.16 depicts my best manual buffer placements. Each black bar represents a data buffer;

red represents a control buffer. Due to its redundant nature, I only depict two representative

splitters (of ten) in the Conveyor.

I manually implemented 6-stage and 20-stage BSN and Conveyor networks, respectively. Each

stage adds only a single additional cycle to the total execution (since no stalls occur) while sub-

stantially increasing the clock frequency (103 MHz for BSN; 109 MHz for Conveyor) to reduce

completion time.

I found separating data and control buffers improved performance for the GCD example. I

initially placed the two buffer types together at the bottom of the network, but found splitting

and moving them as shown in Figure 5.16 improved the frequency from 79 MHz to 109 MHz.

5.6.4 Pipelining the Conveyor

Over Conveyors with 4 to 64 splitters, I experimented with the three pipelining strategies shown

in Figure 5.17: two splitters per stage, one splitter per stage, and two stages per splitter.

The graphs show that the two stages/splitter design provides the best overall performance on

our workload, followed closely by the one stage/splitter. For one stage/two splitters, the barely

noticeable reduction in the number of cycles required is swamped by the 40% reduction in maxi-

mum clock frequency.

110

List of Tables

 80

 100

 120

 140

 160

 4 8 16 32 64C
om

pl
et

io
n

tim
e

(µ
s)

Splitters

2 splitters/stage

 10000

 10050

 10100

 10150

 4 8 16 32 64

C
yc

le
s

1 splitter/stage

 50

 75

 100

 125

 4 8 16 32 64

M
H

z

2 stages/splitter

Figure 5.17: Three Conveyor pipelining strategies: doubling the number of stages has only a small
effect on total completion time.

5.6.5 Memory in Dataflow Networks

My goal is to use our dataflow networks to implement realistic algorithms with irregular memory

access patterns. Mergesort and Treesort both meet these criteria: sorting is a ubiquitous problem

and these algorithms employ pointer-based data structures.

We can incorporate memories in our networks with block RAM (“BRAM”) actors along with

actors that maintain an address pointer (one per BRAM) and route memory requests and results

to and from the rest of the network. I employed a separate BRAM per object type, allowing me

to tailor its width to the size of the object.

I modified the translation of Section 4.3 to insert memory actors into the Mergesort and

Treesort networks and translate them to SystemVerilog. Each BRAM actor becomes a bit vec-

tor array with 8-bit addresses, which we access with a basic memory model: given an address

and an optional write enable signal with data, the array produces the data at that address before

writing in new data if the write enable signal is high. I place two data/control buffers around

each BRAM to impose a two-cycle latency per Quartus’s recommendations.

The Treesort circuit operates at a higher frequency but uses more memory because its (two-

pointer) tree objects are wider than (one-pointer) list objects: it completes in 94.8 µs, operates

at 54 MHz, and uses 3330 ALMs and 8.7 kB of memory, while Mergesort takes 82.9 µs, running

111

List of Tables

Frequency (MHz) Area (ALMs) Registers

Application Manual DF Ratio Manual DF Ratio Manual DF Ratio

GCD 139 109 0.784 107 234 2.19 67 161 2.4
Conveyor (1 stage) 223 115 0.515 68 61 0.9 165 79 0.48
Bitonic sort 194 103 0.531 327 1212 3.71 434 1944 4.45
Mergesort 137 52 0.38 206 3160 15.3 354 5564 15.7

Table 5.1: Comparing manually-coded RTL SystemVerilog with that generated from DF.

at 52MHzwith 3160 ALMs and 5.9 kB. These are meant to demonstrate that our formalism readily

accommodates memory and are not high-performance sorters.

5.6.6 Overhead of Our Method

Table 5.1 lists some statistics on a subset of my designs; I compare the output of our compiler

to RTL SystemVerilog coded by Martha Barker (another member of our research group). The

numbers I report here come from Quartus running as described earlier.

These measurements attempt to quantify the costs of using our distributed buffering strategy,

but are not so simple because they often compare different designs due to the differences between

dataflow and combinational logic. The GCD example mostly reflects the cost of additional buffers.

While the manual implementation can operate with just two 32-bit data buffers, the DF version

requires four: two on the data network, and two on the control network. The number of buffers is

directly correlated to registers used, which is shown in the 2.4 ratio betweenmanual and dataflow.

This also affects the area due to the extra logic required for the handshake protocols.

Both versions of the Conveyor example use almost the same area, but this time extra buffers

were placed around the inputs and outputs of the manual implementation, which is why in this

case the dataflow has half as many registers as the manual implementation.

The Bitonic sort example is much larger and slower than the manual implementation because

of the insertion of more buffers than necessary and the additional flow control logic to handle

when only certain outputs are ready to accept data. Themanual implementation does not support

backpressure on the outputs.

The Mergesort example diverges most widely, but this is because the two implementations

take a very different approach to implementing the algorithm. The manual implementation as-

sumes the data arrives in an array and uses random access to that array; the DF implementation is

112

List of Tables

synthesized from a Haskell program that recursively sorts two linked lists. The different speeds,

areas, and registers of the two implementations reflect the overhead of handling lists and recur-

sion.

113

Chapter 6

Optimizing Irregular Divide-and-Conquer Algorithms

High-level synthesis tools rely on compiler optimizations to improve the performance, area,

and/or energy usage of synthesized circuits. Most of the standard HLS optimizations cater to

regular-loops-on-arrays programs, and struggle to improve the circuitry implementing pointer-

based data structures. New optimizations and synthesis frameworks have been proposed to han-

dle such structures, but most are realized as add-ons to commercial synthesis tools like Xilinx’s

Vivado, which cannot synthesize specifications containing recursive functions or dynamic mem-

ory allocation [138].

In this chapter and the next, I narrow this gap in the HLS research community with two

compiler optimizations that together support the second part of my thesis: specialized hardware

synthesized from irregular functional programs can be optimized for parallelism. Both optimiza-

tions leverage properties of functional languages to cleanly support irregularity.

The first optimization, presented in this chapter, is applicable to recursive divide-and-conquer

algorithms that operate on irregular pointer-based data structures, an important class of algo-

rithms that challenge standard HLS techniques. Our optimization improves performance of these

memory-bound algorithms by partitioning on-chip caches to increase memory bandwidth and

transforming programs to duplicate computational resources; the duplicates can operate in par-

allel by exploiting the additional bandwidth. Others have proposed HLS architectures for pointer-

based data structures [84, 122, 142], and even considered divide-and-conquer algorithms [134],

but none have proposed our safe and easy-to-apply fusion of memory architecture synthesis and

parallelizing program transformations.

Figure 6.1 illustrates how we transform a divide-and-conquer algorithm to improve its per-

formance. In the unoptimized implementation (Figure 6.1a), a recursive function map applies a

function f to each element of a tree. When translated to hardware, our recursion removal com-

piler pass introduces a recursive type to model map’s stack (Section 3.3.4); both this stack type

and the recursive Tree type are held in a single cache backed by off-chip DRAM.

In Figure 6.1b, our technique has split the cache into four independent blocks (total capacity

114

List of Tables

map Shared Cache

f

map :: Tree → Tree
map tree = case tree of

Leaf → Leaf
Node l x r →
Node (map l) (f x) (map r)

(a)

mapS :: Tree → Tree
mapS tree = case tree of

Leaf → Leaf
Node l x r →
Node (map l) (f x) (fromC (mapC (toC r)))

mapC :: TreeC→ TreeC
mapC tree = case tree of

LeafC → LeafC
NodeC l x r →
NodeC (mapC l) (fC x) (mapC r)

map

f

mapC

fC

toC

fromC

HeapStack

HeapC

StackC(b)

Figure 6.1: (a) A divide-and-conquer function synthesized into a single block connected to a
monolithic on-chip cache. (b) Our technique duplicates such functions and partitions the cache
to enable task- and memory-level parallelism.

is unchanged) to improve memory bandwidth and duplicated computational resources to run in

parallel (copies mapC and fC). The parallel copies also exploit the increased bandwidth. While

the cache can be split evenly, our technique often finds a better partition after profiling.

In this optimized form, a top-level function mapS splits the input Tree in half: one half is

stored in the Heap cache and passed to the original map, while toC converts the other half into a

distinct but structurally identical type TreeC; the transformed half is stored in the separate HeapC

cache and passed to a distinct function copy mapC . Due to the recursion removal pass, both map

and mapC also have their own stack types, which are assigned to distinct caches. When mapC

terminates, fromC converts a TreeC object back into a Tree to be combined with map’s output as

the result from mapS . If the input Tree is well-balanced, map and mapC can operate largely in

parallel, leading to performance improvements in the synthesized circuit.

Our compiler’s use of pure functional programs benefit divide-and-conquer algorithms. The

strong type system lets us specialize memories to particular types and easily verify that memory

operations in separate tasks do not interfere. For example, in Figure 6.1b, mapC and fC operate

exclusively on the copy TreeC of the tree type Tree and thus do not compete with map and f for

115

List of Tables

memory bandwidth. Types similarly motivate the toC and fromC conversion functions and make

it easy to argue that our technique produces correct results.

The purity of our language entails an immutable memory model, which benefits parallel com-

putation. Immutability eliminates the danger of races when tasks run in parallel because shared

data cannot have write-after-read hazards. Furthermore, copying data never results in a missed

update (e.g., our caches never have to snoop). Many consider these problems central to paral-

lelizing divide-and-conquer algorithms [62, 109, 134].

I present the following technical contributions over the rest of this chapter:

• a code transformation algorithm that enables more parallelism in functional divide-and-

conquer programs operating on pointer-based data structures (Section 6.1);

• a type-based on-chipmemory partitioning scheme that exploits this parallelism (Section 6.2);

and

• experimental results indicating that our methodology can enable up to 1.8×more memory-

level parallelism and exploit that parallelism to attain speedups of 1.4× to 1.9× across five

representative divide-and-conquer programs (Section 6.3).

6.1 Transforming Code

Our code transformation enables more parallelism in programs expressed with our compiler’s

Core IR (Section 3.1). It identifies recursive functions to parallelize, duplicates and transforms

them and their memory-resident types to enable parallel execution, and inserts type conversion

functions that move data structures between caches for memory-level parallelism. As seen in

Figure 3.2, the input to this transformation is a simplified Core program, i.e., it has no polymor-

phism, variable names are globally unique, and lambda lifting has removed local and anonymous

functions; general recursion in functions and types still remains.

In the rest of this section, I use italics to refer to general functions and types, and typewriter

font to specify actual functions and types from concrete examples.

6.1.1 Finding Divide-and-Conquer Functions

The algorithm starts by identifying recursive divide-and-conquer (“DAC”) functions operating

on recursive types. A function f is DAC if it has at least one argument of recursive type and its

116

List of Tables

(a)

e

f

g

h

(b)

e

fSf fC

g gC

hSh hC

Figure 6.2: A call graph (a) before and (b) after transformation. Divide-and-conquer (DAC) func-
tions f and h are copied to form fC and hC ; fS and hS are additional versions that split the work
between the originals and their copies. Non-DAC functions called from DAC functions are also
copied (gC). “Copied” types flow along dotted red arrows.

body contains an expression of the form (д . . . (f . . .) . . . (f . . .) . . .) where д is some function or

data constructor distinct from f . In Figure 6.1a, map and Node are f and д.

Many recursive divide-and-conquer functions contain this simple expression form: two (or

more) recursive calls to f operate on distinct halves (or smaller divisions) of an input data struc-

ture, and a combining function gmerges the results of these calls to produce a final structure. This

form is not only commonplace, it also presents a parallelism opportunity; the pairs of recursive

calls are not sequentially dependent on one another and can thus be executed in parallel.

The recursive calls in a DAC may operate on shared data, but this does not pose the danger

of a data race because of our immutable data model. Immutability guarantees that even if the

functions share data, data can be copied without fear of one task missing an update from the

other because updates are not possible.

6.1.2 Task-Level Parallelism: Copying Functions

To enable task-level parallelism, we copy every function involved in a divide-and-conquer algo-

rithm, create an additional “splitting” version of each DAC function to run the original and copied

versions in parallel, and duplicate and rename types to prevent sharing between tasks. Figure 6.2

shows this procedure applied to an example. DAC functions are rectangles in the call graph, while

non-DAC functions are circles. Each copied function has a C subscript; splitting functions have

an S .

From the static call graph of the program, we first determine R, the set of all functions reach-

able from DAC functions (which includes the recursive DAC functions themselves). In Figure 6.2,

f and h are DAC, so R = {f, g, h}.

117

List of Tables

Next, we create a new function fC for every f ∈ R: we copy f ’s body and, in the copied body,

replace every call to a function д (including any recursive calls) with a call to дC . In Figure 6.2,

this creates fC , gC , and hC , each rewritten to call themselves as shown. In Figure 6.1, this creates

mapC (which still operates on the original Tree type at this point) and fC .

Next, we create a splitting function fS for every DAC function f by copying f ’s body and

replacing both the second recursive call to f with a call to fC and any calls to DAC functions

h , f with calls to hS . In Figure 6.2, this adds fS and hS with their calls as shown. Note that the

call of the non-DAC function g from f is copied unchanged. In Figure 6.1 this step adds mapS

without the conversion functions toC and fromC.

Finally, if a function e <R calls a DAC function f , we make it instead call the splitting function

fS . E.g., e calls fS in Figure 6.2b.

6.1.3 Memory-Level Parallelism: Copying Types

Above, we copied functions to enable task-level parallelism between a DAC function f and its

copy fC ; we now copy types to enable memory-level parallelism between these functions while

ensuring type correctness. Each recursive type is stored in exactly one cache, so f and fC must

operate on different recursive types to avoid cache-sharing bottlenecks. We can prevent these

bottlenecks by creating a copy TC of any recursive type T passed to or returned by a function in

R (the set of functions reachable from a DAC function) and modify fC to only use TC . However,

this can break type correctness, e.g., if some function f uses a non-recursive tuple type to carry

pairs of T values:

data Tuple = Tuple T T

then its copy, fC , cannot use the same Tuple type to carry its TC values.

We thus make a set Γ of all recursive types passed to or returned by a function f ∈ R, then

add to Γ the types of all expressions in R that have a variant with a type field that is already in Γ

and repeat until we reach a fixed point. For example, if some f ∈ R returns a value of recursive

type T and some expression in R has the above Tuple type, Γ will initially contain T; Tuple will

then be added to Γ since T ∈ Γ is a type field for one of its variants.

Next, we duplicate each type in Γ to obtain a new set ΓC (each duplicated type also has du-

plicated data constructors). As with function calls in the copied functions, we modify the type

definitions in ΓC such that if a typeTC ∈ ΓC has a type field S ∈ Γ, we replace it with its copied type

118

List of Tables

SC ∈ ΓC . Thus, no type defined in Γ refers to any defined in ΓC and vice versa. This step produces

the TreeC type from Figure 6.1b.

6.1.4 New Types and Conversion Functions

Finally, we introduce the ΓC types into our function copies. First, we replace any data constructor

for a typeT ∈ Γ in a function copy fC with a data constructor for the corresponding typeTC ∈ ΓC . In

Figure 6.1, this introduces LeafC and NodeC into the body of mapC . Next, we introduce conversion

functions that correct the types passed to and returned by the call of fC in each fS . For each

recursive type T ∈ Γ, we create two recursive functions: toC converts an object of type T to an

equivalent object of type TC , while fromC converts an object of type TC back to type T . Each

pair of conversion functions is uniquely named (e.g., we may have list_toC and tree_toC to

produce List and Tree copies). We then add these conversion functions to the call of fC in fS :

any argument x of type T passed to fC is wrapped in a toC call, and if fC returns a value of type

TC then any call to fC is wrapped in a fromC call. E.g., if x is of type T then (fC . . . x . . .) in fS

becomes (fC . . . (toC x) . . .); if fC returns a typeTC , (fC . . .) becomes (fromC(fC . . .)). In Figure 6.1,

this final step of the code transformation introduces the calls to toC and fromC in mapS .

6.2 Partitioning On-Chip Memory

I now present this chapter’s second contribution: a type-based scheme for partitioning on-chip

memory into multiple, independent caches to increase memory parallelism. This scheme pro-

duces a different memory system than the actor-based one described in Section 5.6.5; a compiler

flag lets the user decide which memory system to use.

We apply this partitioning technique after the compiler has generated a dataflow network

from the program (in DF form; see Section 5.5). By design, our memory partitioning dovetails

with our code transformation to provide additional memory bandwidth to the parallel tasks; I

confirm this experimentally in Section 6.3.

The first step of our technique converts each (type-specific) read or write actor in the dataflow

network into a pair of point-to-point links that interface the dataflow network to the on-chip

memory system. One link passes data to write (or an address to read) from the network out to

the memory system, the other returns the resulting address (or data) back into the network. We

119

List of Tables

treat each pair of links as a single bundle called a “channel”, and partition memory such that each

channel is connected to exactly one on-chip cache.

Our code transformation makes a copy fC of each function f reachable from a DAC function,

and the compiler generates independent hardware blocks for both f and fC . The f block can

have two sets of memory channels: heap channels that access data of any recursive type found in

Γ, and stack channels that access the explicit stack types introduced for f (if it is recursive). The

block for fC connects to similar but distinct memory channels for types in ΓC and the stack for

fC . It is not uncommon for the two blocks to generate simultaneous requests for all four types.

We thus partition on-chip memory into four caches. The stack and heap channels from f

are connected to two independent caches; those from fC are connected to two others. Parti-

tioning stack and heap channels maintains the pipeline parallelism inherent in our generated

dataflow networks (Section 4.3), while partitioning f ’s channels from fC ’s exploits memory-level

parallelism between the two sets. While we could go further and create a distinct cache for each

memory channel type, this would likely decrease performance: wemaintain a fixed on-chip cache

memory budget, so the caches would be smaller and their miss rates would increase. Restricting

the cache count to four also drastically shrinks the search space of our cache sizing algorithm

(discussed below), increasing its runtime efficiency in practice.

While this scheme has so far connected each memory channel in functions reachable from

DAC functions to caches, channels from other functions are still unconnected. We again partition

these channels into stack and heap sets, but then split each set randomly in half and associate

each half with one of the two heap or stack caches created previously. While assigning the “extra”

types randomly would seem unwise, I verified experimentally (see Section 6.3.2) that doing so has

only a negligible effect on performance, so we did not try any further optimizations.

We determine cache sizes through profiling. We divide a power-of-two amount of on-chip

memory (1 MB in our experiments) into four equal-sized caches, connect them to the dataflow

circuit, and simulate with a representative input to obtain a trace of memory accesses. We feed

this trace to a variant of Winterstein et al.’s cache sizing algorithm [135], which searches for

cache partitions with the maximum aggregate hit rate under the constraints that the caches’ total

capacity is within the on-chip budget and that every cache size is a power of two. This narrows

the search space and conserves resources. Our algorithm generally preferred 1/2–1/4–1/8–1/8 to

uniform (1/4–1/4–1/4–1/4) partitioning. Winterstein et al. assumed direct-mapped caches; our

caches are two-way set associative, so we check both ways for a cached address and model an

LRU policy with timestamps.

120

List of Tables

6.3 Experimental Evaluation

I compiled and simulated five algorithms, evaluating both how much memory parallelism our

code transformation could expose by itself and how effectively our memory partitioning could

exploit it to improve performance. Our techniques exposed up to 1.8× more memory-level par-

allelism that usually translated into similar performance improvements, provided we both dupli-

cated functional units and partitioned the cache. Not surprisingly, performance improvements

also depended on balanced task-level parallelism.

I implemented our code transformation as an optional pass in the compiler, situated between

the lambda lifting (Section 3.3.3) and recursion removal (Section 3.3.4) passes. After applying

the code transformation, the compiler performs the other, previously discussed translations to

synthesize the final program into a dataflow network expressed in SystemVerilog. I then used

Verilator 3.874 to convert our SystemVerilog specification into a C++ behavioral model for sim-

ulation. An additional run by our compiler produces an application-specific C++ testbench that

interfaces the Verilator-generated code with a memory simulator that I wrote.

My cycle-accurate memory simulator implements an immutable heap model; this prevents

race conditions, as only new objects may be written. The dataflow network presents write data

to the memory system, which chooses a new address, writes the data, and only then returns the

address to the network. Reads operate in the usual manner: the dataflow network passes an

address to the memory system, which responds with the data at that address. The network itself

never creates or modifies addresses. The memory simulator does not model garbage collection,

but because others have done it efficiently in hardware [9], our results would not be affected

greatly by the addition of garbage collection.

The memory simulator operates in two modes (Table 6.1). The “oracle” mode measures po-

tential memory parallelism independent of cache or latency effects, but is physically unrealizable.

This mode is similar to the simulated memories used in our initial dataflow network experiments

from Section 4.5. The “realistic” mode is designed to estimate more realistic performance im-

provements and considers multiple on-chip caches that operate on 32-bit words, all backed by a

single unbounded off-chip DRAM.

As test cases, I selected fivememory-dominated divide-and-conquer algorithms using pointer-

based structures, ranging from simple (sorting) to complex (K-means clustering). These are the

kinds of algorithms our technique is designed to improve.

Mergesort sorts a list of integers using divide-and-conquer. It uses one helper function to split

121

List of Tables

Table 6.1: Simulated Memory Parameters

Oracle Realistic

On-chip Cache Off-chip DRAM

Latency 1 cycle 1 50
Word length n bits† 32 32
Capacity ∞ 1 MB‡ ∞

† For an n-bit object. ‡ Total capacity; may be partitioned.

Cache is 2-way associative, write-back, LRU, with a 16-entry miss queue.

the input list in half and another to merge the results after recursing. Note that this is a different

implementation than the Mergesort evaluated in Section 4.5: the single splitting function used

here takes a list as input, splits it in half recursively, and returns a tuple of the two halves.

Treesort and RBsort sort a list of integers by transforming it into a binary search tree then flat-

tening the tree into a sorted list via an in-order tree traversal. The flattening function recurses on

the left and right children of the root, then inserts the root’s data between the two resulting lists,

calling an append function twice. Treesort naïvely constructs a binary tree; RBsort constructs a

balanced red-black tree. Both start from an empty tree then insert elements one at a time.

RBmap constructs a red-black tree from a list of integers then calls a variant of themap func-

tion from Figure 6.1 (i.e., the Node variant has another field indicating its color) on it ten times,

each time applying a function that adds a constant to each node’s data. Normally, each call of

map would have to convert the tree into a parallel form and then back, but I manually rewrote

the generated code so that a conversion happens once before all the map operations and once

after. Automating this optimization constitutes future work.

Kdfilter implements Kanungo et al.’s K-means clustering algorithm [77], which is used in

machine learning, image processing, and other fields. A function first recursively constructs a

K-d tree from a list of 2D points, usingmergeSort on each recursive call to balance the remaining

points across the tree. The final tree is then passed to the filtering algorithm: a DAC function

that frequently calls another version of mergeSort to sort smaller lists of points. The K-d tree

construction,mergeSort, and filtering functions are each DAC and transformed by our technique.

Each test first generates a list of 16384 random integers (except Kdfilter, which generates a

list of random 2D points), then passes the list to the functions described above. I omit the time

taken to generate the inputs when reporting performance numbers, since this portion of each

test is identical in both the original and transformed versions. I also ran each experiment on

122

List of Tables

 0.5

 1

 1.5

 2

Treesort RBsort RBmap Kdfilter Mergesort

A
ve

ra
ge

 A
cc

es
se

s/
C

yc
le

R
el

at
iv

e
to

 u
nt

ra
ns

fo
rm

ed

 0.5

 1

 1.5

 2

(a)

(b)R
el

at
iv

e
P

er
fo

rm
an

ce
(d

ec
re

as
e

in
 c

yc
le

s)

Partitioned-Cache
Transformed-Code

Transformed+Partitioned

Figure 6.3: (a) Our code transformation consistently increases the number of memory accesses
per cycle—a proxy for memory-level parallelism (oracle memory model). (b) Under the realistic
memory model, cache partitioning and the code transformation each produce modest improve-
ments; their combination is best because parallel tasks can exploit extra memory bandwidth.

input lists of sizes 256, 512, 1024, . . . , 8192 but found input size had little effect on the results, so I

present results only for the largest inputs. Each test’s four cache sizes, shown in Table 6.2, were

determined by simulating the test on an input size of 4096 and passing the resulting trace to our

implementation of Winterstein et al.’s cache sizing algorithm. The shorter trace ensured that the

exhaustive algorithm terminated in a reasonable amount of time.

6.3.1 Exposing Memory-Level Parallelism

I estimated how much memory-level parallelism (MLP) our technique exposes by generating cir-

cuits from the example programs with and without our code transformation applied and compar-

ing their average number of parallel memory accesses. To measure MLP independent of memory

latency and caching, I ran these experiments under our oracle memory model, which performs

one memory access per cycle per type; multiple accesses to the same type must queue.

For each example, I applied 20 randomly generated inputs to both the original network and the

network produced after applying our code transformation. For each run, I calculated the average

123

List of Tables

number of memory accesses per cycle (the “access rate”) by counting every (single-cycle) memory

access made by an example’s dataflow network and dividing by its cycles to completion.

These examples demand memory bandwidth. Across all 20 inputs, before our transformation,

the network for the Treesort example averaged 0.37 memory accesses per cycle; RBsort averaged

0.37; RBmap, 0.33; Kdfilter, 0.27; and Mergesort averaged 0.37.

Figure 6.3a shows our technique increases MLP as measured by the access rate. For each ex-

ample, this plot shows the distribution of the ratio between the access rate for a particular input

fed to the original network and the transformed network. A ratio of 2means our code transforma-

tion doubled the access rate, suggesting the generated circuit could benefit frommultiple, parallel

memories; a ratio of 1 would suggest parallel memories would rarely be used simultaneously, so

a single large memory would perform equally well.

The varying sizes of the bars in Figure 6.3a indicate that the benefit of our transformation for

potential MLP depends on the algorithm and sometimes the input data. Our code transformation

technique works best when the first divide leads to equal amounts of work to conquer. Treesort,

RBsort, and RBmap each walk a binary tree, so the balance and hence available parallelism de-

pends on the structure of the input tree. Treesort constructs a tree whose structure can range

from completely unbalanced to perfectly balanced depending on input, leading to the extreme

variation shown in Figure 6.3a. RBsort also builds and walks a tree to sort its input, but exhibits

less variation because it uses a red-black tree, which remains roughly height-balanced regardless

of input. RBmap builds a similar red-black tree, but performs just a constant amount of work per

node and is thus less affected by imbalance than RBsort’s append operation, where the amount

of work per node depends on its number of children.

Kdfilter and Mergesort vary little across inputs because they split their inputs nearly per-

fectly in half, avoiding performance-robbing load imbalance. Mergesort performs a perfect split

followed by identical work for both halves of the list, allowing it to produce a consistent 1.8× im-

provement in MLP. Kdfilter includes many calls to Mergesort, but also performs other operations

that do not partition so perfectly, giving a slightly lower improvement of 1.7×.

6.3.2 Exploiting Memory-Level Parallelism

I analyzed how well our circuits exploited the MLP exposed by our code transformation by mea-

suring their performance under a more realistic memory model. Specifically, to tease apart the

effects of code transformation from cache partitioning, I ran the circuits from the previous exper-

124

List of Tables

Table 6.2: Heap and Stack Partition Assignments for the Transformed & Partitioned Examples

Test 512K 256K 128K 128K

Mergesort HeapC Heap Stack StackC
Treesort Heap StackC HeapC Stack
RBsort Heap HeapC Stack StackC
RBmap Heap HeapC Stack StackC
Kdfilter Heap HeapC Stack StackC

iments (Section 6.3.1) with both a single monolithic cache and the multiple caches generated by

our partitioning scheme. The sizes and roles of each cache assigned to our transformed circuits

are listed in Table 6.2; the cache assignments for the untransformed circuits are less meaningful

given the lack of duplicated types (i.e., dividing heaps from stacks is the most important aspect).

I again simulated the four configurations on 20 random inputs (expect Kdfilter: I simulated

it on four random inputs of 8192 points due to excessive simulation time). I limited total cache

capacity to 1 MB and backed them by a single, large, slow off-chip DRAM (our “realistic” memory

model; see Section 6.3).

Figure 6.3b shows the distribution of speedups (in cycles, relative to the untransformed, mono-

lithic cache case) for each example after partitioning the cache, transforming the code, and both.

Partitioning the cache without transforming the code to increase MLP (left bars) produces only

modest benefits, likely due to functions that occasionally access stack and heap caches in parallel.

In these cases, the varying test inputs have little effect on the circuit’s performance since the total

amount of work is roughly the same across all inputs for a given unoptimized test.

Applying our code transformation without cache partitioning (middle bars) can take advan-

tage of overlapping memory accesses from parallel tasks, but degraded performance for some

inputs to Treesort and RBsort. An unlucky input to these examples can direct a large load to

the “copied” task; the copying overhead introduced by the toC and fromC conversion functions

dominates any speedup from parallel tasks. This occurs less in RBmap due to my optimization:

I convert the structure before performing a much lengthier computation (traversing the whole

tree ten times), so the overhead is proportionally smaller.

Overall, our code transformation performs best when it can exploit the increased memory

bandwidth of a partitioned cache (right bars in Figure 6.3b), often achieving the performance

gains predicted by the increased MLP observed in my first experiments (Section 6.3.1). RBmap,

Mergesort, and Kdfilter exhibit the highest increases in MLP and the biggest speedups when

125

List of Tables

given partitioned caches. Kdfilter exhibits a fairly consistent 1.7× speedup; Mergesort a similarly

consistent 1.9×, and RBmap falls somewhere between the two. RBmap’s performance variesmore,

however, even exceeding 2× on certain inputs. Such an extreme speedup is due to a significant

reduction in aggregate miss rate across the partitioned caches. To test this hypothesis, I re-ran

RBmap with a different memory allocation policy (I doled out address 0,3,6,. . . instead of 0,1,2,. . .)

and found the cache miss rate increased (but still entailed a speedup of 1.7×).

I feared nondeterministic assignment of a program’s “extra” types to caches could affect these

experimental results, but found experimentally it did not matter. Our cache partitioning policy

assigns the stacks and heaps of each DAC function (and those reachable from it) to distinct caches,

but assigns all remaining heap (stack) types to one of the two heap (stack) caches at random, i.e.,

each additional heap type may be assigned to either of the heap caches; a similar assignment

is done for excess stack types. There were usually too many assignments to test exhaustively,

so I randomly sampled enough to give us a 90% confidence level. I found only a 2% variance in

completion time with a 5% margin of error, so the assignment of “extra” types did not affect these

experiments.

Compared to their behavior under an idealized memory model, unbalanced workloads (e.g.,

in Treesort and RBsort) perform worse under a realistic memory model, again because the con-

version overhead (i.e., inter-cache copying) overshadows the meager benefit of task-level par-

allelism with unbalanced workloads. In extreme cases (e.g., certain input patterns to Treesort),

the increase in memory bandwidth from partitioning the cache goes unused because of the load

imbalance, and conversion overhead exceeds any benefit of parallelism, leaving the performance

worse than the baseline.

I conclude that our technique works best when the divide-and-conquer operation produces

nearly balanced workloads that can take advantage of a partitioned cache’s additional bandwidth.

126

Chapter 7

Packing Recursive Data Types

The previous chapter discussed the first major optimizing pass in our compiler, which enables

more parallelism in circuits implementing irregular divide-and-conquer algorithms. This chapter

covers the second: an algorithm that packs recursive data types to increase data-level parallelism

and reduce trips to off-chip memory. For example, our algorithm can transform a program that

operates on linked lists with a single data element per cell into one that performs the same oper-

ations on lists with two or more elements per cell. Our algorithm also works on trees and similar

recursive data types. While presented as operating on Core, this algorithm may be applied to any

pure functional program containing recursive data types.

Running this optimization as part of the compilation process produces equivalent circuits that

make fewermemory accesses and complete their work in fewer clock cycles: across eleven bench-

mark programs, our algorithm reducedmemory operations by 1.5× to 4×; nine of the benchmarks

also experienced speedups of 1.2× to 2.5×.

In effect, our algorithm improves the spatial locality of data structures without relying on

cache blocks. Since our technique stores the same data in fewer cells, it reduces the number of

distinct memory accesses (i.e., the number of cells that need to be read) and may also reduce the

overall memory traffic since fewer inter-cell pointers are needed to represent the same structure.

Of course, a programmer could manually perform such a transformation, but doing so is a de-

tailed, error-prone process that requires the programmer to consider many edge cases—a perfect

task for a compiler.

To my knowledge, this algorithm is the first to automatically pack arbitrary recursive data

types (i.e., not just lists) and transform functions to operate on them; we are the first to apply

such an algorithm in a hardware synthesis setting. Furthermore, most high-level synthesis tools

balk at pointer operations and recursive functions; our algorithm not only works in such a setting,

it improves the quality of results.

After outlining how it operates on a simple list example (Section 7.1), I present a detailed de-

scription of our algorithm (Section 7.2). I finish by presenting experimental results that show our

127

List of Tables

algorithm consistently reduces memory operations and can often improve the memory footprint

and overall running time of our compiler-generated dataflow networks (Section 7.3).

7.1 An Example: Appending Lists

In this section, I illustrate how our algorithm packs the lists in the append function, which con-

catenates two lists. Our algorithm operates on Core programs after polymorphism, duplicate

names, and local and anonymous functions have been removed, but before recursive functions

and data types have been replaced with tail-recursion and pointers.

This example involves the List type first presented in Chapter 3, which has two alternatives:

Nil, the empty list, and Cons, a cell holding an integer and a reference to the rest of the list:

data List = Nil
| Cons Int List

We code append with pattern matching and recursion: when the first list is empty, append

returns the second list, otherwise, it splits the first list into a head element (x) and a tail (xs), calls

itself recursively on the tail, and calls Cons on the result and the head to construct a new cell:

append :: List → List → List
append z y = case z of

Nil → y
Cons x xs → Cons x (append xs y)

Our algorithm transforms append into an equivalent function that operates on groups of list

elements. The user sets a parameter called the packing factor to specify how many times a recur-

sive type should be inlined to bring more data into each cell. For this example, we use a packing

factor of 1, so our algorithm begins by inlining the recursive List type once, resulting in a packed

list type that can be an empty cell, an unpacked cell holding a single integer (needed, e.g., for lists

with an odd number of elements), or a packed cell holding two integers:

data PList = PNil −− Empty list

| UCons Int PList −− Unpacked cell

| PCons Int Int PList −− Packed cell

128

List of Tables

Our algorithm then generates functions pack and unpack that convert between ordinary and

packed lists:

pack :: List → PList −− Pack a list

pack arg = case arg of Nil → PNil
Cons a as → case as of

Nil → UCons a (pack as)
Cons b bs → PCons a b (pack bs)

unpack :: PList → List −− Unpack a list

unpack arg = case arg of PNil → Nil
UCons c cs → Cons c (unpack cs)
PCons d e es → Cons d (Cons e (unpack es))

By construction, these function are inverses: unpack ◦pack and pack ◦unpack are each the iden-

tity function.

Next, our algorithm transforms append to consume and produce packed lists by wrapping

pack around the body of append and unpack around the recursive call, replacing appearances

of its arguments z and y with unpack z and unpack y, and applying pack to the arguments of

append’s recursive call. This produces a correct, but inefficient program:

append :: PList → PList → PList
append z y = pack (case unpack z of

Nil → unpack y
Cons x xs → Cons x (unpack (append (pack xs) (pack (unpack y)))))

Because, pack and unpack are inverse functions, “pack (unpack y)” is just “y.” Our algorithm

performs this simplification, giving

append z y = pack (case unpack z of

Nil → unpack y
Cons x xs → Cons x (unpack (append (pack xs) y)))

To eliminate pack and unpack calls, our algorithm first inlines the unpack function in the case

scrutinee unpack z:

129

List of Tables

append z y = pack (case (case z of −− unpack function inlined

PNil → Nil
UCons c cs → Cons c (unpack cs)
PCons d e es → Cons d (Cons e (unpack es))) of

Nil → unpack y
Cons x xs → Cons x (unpack (append (pack xs) y)))

This enables Jones and Santos’s [101] “case-of-case” and “case-of-known-constructor” simpli-

fications, giving

append z y = pack (case z of

PNil → unpack y
UCons c cs → Cons c (unpack (append (pack (unpack cs)) y))
PCons d e es → Cons d (unpack (append (pack (Cons e (unpack es))) y)))

Next, we perform our central trick: we inline all recursive calls of the append function to

produce a structure mimicking that of the now-packed PList type (e.g., both manipulate pairs of

values). Such inlining exposes expressions of the form unpack (pack . . .) that we can eliminate.

The packing factor controls how many times we repeat this step (once in this example).

append z y = pack (case z of

PNil → unpack y
UCons c cs → Cons c (unpack (pack (case cs of

PNil → unpack y
UCons f fs → Cons f (unpack (append fs y))
PCons g h hs → Cons g (unpack (append (pack (Cons h (unpack hs))) y)))))

PCons d e es → Cons d (unpack (pack (case pack (Cons e (unpack es)) of

PNil → unpack y
UCons f fs → Cons f (unpack (append fs y))
PCons g h hs → Cons g (unpack (append (pack (Cons h (unpack hs))) y))))))

Now, we push all functions applied to each case expression through to its alternatives and

eliminate adjacent pack and unpack calls:

130

List of Tables

append z y = case z of PNil → y
UCons c cs → case cs of

PNil → pack (Cons c (unpack y))
UCons f fs → pack (Cons c (Cons f (unpack (append fs y))))
PCons g h hs → pack (Cons c (Cons g (unpack (append (pack (Cons h (unpack hs))) y))))

PCons d e es → case pack (Cons e (unpack es)) of

PNil → pack (Cons d (unpack y))
UCons f fs → pack (Cons d (Cons f (unpack (append fs y))))
PCons g h hs → pack (Cons d (Cons g (unpack (append (pack (Cons h (unpack hs))) y))))

Finally, we inline the pack calls and, as before, apply the case-related simplifications and

remove adjacent pack and unpack calls to give the final version of append, now free of calls to

pack and unpack:

append z y = case z of

PNil → y
UCons c cs → case cs of

PNil → UCons c y
UCons f fs → PCons c f (append fs y)
PCons g h hs → PCons c g (append (UCons h hs) y)

PCons d e es → PCons d e (append es y)

When realized in hardware, this new function runs faster because it makes fewer memory

accesses (assuming the input list is comprised of PCons cells). But this performance gain is not

without cost: the code of the new function is bigger, primarily due to recursive inlining, and thus

requires more hardware resources. More selective recursive inlining would limit code growth,

but then certain packable structures produced by recursive functions might remain unpacked,

nullifying the advantages of our algorithm. I discuss some heuristics that explore these tradeoffs

in Section 7.2.5.

7.2 Packing Algorithm

While a programmer could probably manually devise the packed version of append shown above,

our algorithm—a series of semantics-preserving rewrites that rely on pack and unpack being

inverse functions—derives this mechanically and works on arbitrary recursive functions. Here, I

describe it in detail.

131

List of Tables

Throughout this section, I make the lambda expressions implementing functions explicit, i.e.,

a function’s arguments are shown on the right-hand side of its definition between the “λ” and

“→” symbols. This is done to convey how function inlining actually works in the algorithm;

although inlining steps introduce anonymous functions, they are always eliminated by the end

of the algorithm, maintaining the invariant that Core programs only contain top-level, named

functions at this point in the compiler.

7.2.1 Packed Data Types

The first step of our algorithm identifies each packable data type: an algebraic type with exactly

one recursive variant. As explained later, this restriction simplifies the algorithm, reduces the

code growth incurred by function inlining, and captures the ubiquitous list and tree types that

implement numerous data structures, e.g., stacks, dictionaries, and K-d trees [77]. Thus, we pack

recursive types of the form

data T = B t

| R s T1 · · · Tk

Here, t and s are non-recursive fields (although they could be some other recursive type S, T) and

R has one or more recursive fields T1 . . . Tk . We call B the base variant and R the recursive variant

of the packable type T. We use the form above for clarity; in general, T may have more than one

base variant, all variants may have zero or more non-recursive fields, and R’s non-recursive and

recursive fields may be interspersed in its definition.

The corresponding singly packed type, P, is of the form

data P = B′ t
| U s P1 · · · Pk
| P s s1 P11 · · · P1k · · · sk Pk1 · · · Pkk

where the B′ and U variants are analogous to the B and R variants in the unpacked type T. P is

the packed variant, consisting of k +1 copies of the “payload” s and k ×k recursive instances. The

P variant of a singly packed type can be expressed more succinctly as P s (s Pk)k .

Both our generation of packed variants and the definition of a packable type (a type with

exactly one recursive variant) seem restrictive at first glance, but are motivated with the goal of

reducing exponential code growth. We obtained the packed variant by inlining each recursive

132

List of Tables

field in the recursive variant U, but we could have generated other “less-packed” variants by

selectively inlining sets of fields. However, for a variant with a set of k recursive fields, there are

2k −1 non-empty subsets of fields (each corresponding to an inlining choice), so the most general

packed type would have 2k −1 packed variants. As seen in Section 7.1, our algorithm introduces

case expressions that pattern match on each variant of the packed type, so such a general scheme

would entail code growth exponential in k. A similar case would occur if we defined packable

types to have j ≥ 1 recursive variants; a variant with k recursive fields would entail jk packed

variants (since there are j inlining choices for each field). By limiting our packable types and the

form of a packed variant, we ensure that our case expressions will always match on a constant

number of variants.

However, exponential growth is still possible. P’s definition depends on a user-defined integer

n called the packing factor. This value determines how many times we inline the recursive fields

in U’s definition to obtain P. Here we assumed a packing factor of n = 1: each of U’s recursive

fields Pi was inlined once to yield si Pi1 . . . Pik . Increasing the packing factor gives exponentially

larger cells when k > 1:

Packing Factor P variant

(unpacked) 0 P s Pk

1 P s (s Pk)k

2 P s (s (s Pk)k)k

3 P s (s (s (s Pk)k)k)k

To generate completely packed cells, the algorithm inlines all recursive function calls n times.

If the function has k recursive calls (typical when traversing a recursive structure), this can cause

exponential code growth, leading to exponential resource usage in hardware; in Section 7.2.5 I

discuss heuristics that help retard this growth.

7.2.2 Pack and Unpack Functions

Our algorithm next defines conversion functions pack and unpack that convert between types T

and P. For a packing factor of 1, we construct the bodies of these functions from the following

templates.

133

List of Tables

pack :: T → P
pack = λw→ case w of

B x → B′ x

R x (R y zk)k → P x (y (pack z)k)k

R x zk → U x (pack z)k

unpack :: P → T
unpack = λw→ case w of

B′ x → B x

P x (y zk)k → R x (R y (unpack z)k)k

U x zk → R x (unpack z)k

The recursive pack function takes a T and produces an equivalent P. There are three cases.

A base variant B is simply renamed to a B′; any payload is copied. The second case generates a

packed variant P from a “fully populated” R variant, that is, one whose recursive references are

all to R variants. The third case handles all the other cases (e.g., a binary tree node with only

one branch) by generating an unpacked variant U. As we mentioned above, for something like a

binary tree we could consider additional variants (e.g., left branch only and right branch only),

but we handle all of these variants with a single catch-all variant to minimize code complexity.

By design, the recursive unpack function is the inverse of pack through symmetry: the pat-

terns and expressions swap roles to make unpack exactly reverse the work of pack. These two

functions satisfy the packing identity: pack (unpack p) = p and unpack (pack u) = u.

Simple structural induction shows the packing identity holds; for example, here is the proof

that applying unpack after pack leaves the original structure unchanged:

Theorem 1. For all u of packable type T, unpack (pack u) = u.

Proof. By induction over the packable data type u. All equalities shown are by definition unless

stated otherwise.

Base Case: u = B x . Then we have

unpack (pack u)
= unpack (pack (B x))
= unpack (B′ x)
= B x
= u

134

List of Tables

Inductive Case 1: u = R x zk , where at least one z is not a recursive variant. Assume that

our theorem holds for each z. Then we have

unpack (pack u)

= unpack (pack (R x zk))

= unpack (U x (pack z)k)

= R x (unpack (pack z)) k

= R x zk

= u

where the penultimate equality is due to the inductive hypothesis.

Inductive Case 2: u = R x qk , where each q is itself a recursive variant R y zk . Assume that

our theorem holds for each z. Then we have

unpack (pack u)

= unpack (pack (R x (R y zk)k))

= unpack (P x (y (pack z)k)k)

= R x (R y (unpack (pack z)) k)k

= R x (R y zk)k

= u

where the penultimate equality is due to the inductive hypothesis. �

For higher packing factors, the second case alternative of each function grows more com-

plicated because it needs to work with multiple fully-populated tree levels. In general, these

alternatives are

R x (R y1 (· · · (R yn zk)k · · ·)k)k →

P x (y1 (· · · (yn (pack z)k)k · · ·)k)k

P x (y1 (· · · (yn zk)k · · ·)k)k →

R x (R y1 (· · · (R yn (unpack z)k)k · · ·)k)k

7.2.3 Injection and Hoisting

After creating packed data types, our algorithm transforms functions by first injecting seemingly

redundant (but semantics-preserving) calls to pack and unpack throughout the program, then

“hoisting” certain calls so functions take and return the packed types. After this step, the bodies

135

List of Tables

of the functions continue to operate on unpacked data; later (Section 7.2.4) we will also transform

the function bodies to operate directly on packed data by inlining and simplifying.

To inject the packed type in the program, we first surround every expression of packable type

T with calls to pack and unpack, i.e.,

if e :: T, e becomes (unpack (pack e))

where pack :: T→ P and unpack :: P→ T are the complementary functions described above. Since

unpack ◦ pack :: T→ T is the identity function (by Theorem 1) and we apply it to expressions of

type T, it follows that injection leaves a well-typed program’s meaning unchanged.

Next, we apply three “hoisting” rules that move around the injected calls to pack and unpack

to make the program’s functions take and return packed types.

Top-LevelDefinitions thatReturnTypeT There are two kinds of top-level definitions: func-

tions and variables.

After injection, every definition of a function f that returns type T and every call to that

function will have the form

f :: · · · → T
f = λ · · · → unpack (pack e) −− Definition of f

· · · unpack (pack (f · · ·)) · · · −− Call of f

where e is an arbitrary expression of type T. Referential transparency (a property of our pure

language) dictates that a call to some function f may be replaced with its body (after substituting

in its arguments); thus, applying another function д to the result of every f call is equivalent to

simply applying д once to f ’s body instead. Our hoisting rules leverage this property; the first

hoists the call to pack from each of f ’s call sites to its definition, which changes f ’s return type

to P:

f :: · · · → P
f = λ · · · → pack (unpack (pack e)) −− Definition of f

· · · unpack (f · · ·) · · · −− Call of f

Now we remove the redundant unpack/pack pair:

136

List of Tables

f :: · · · → P
f = λ · · · → pack e −− Definition of f

· · · unpack (f · · ·) · · · −− Call of f

We apply a similar procedure to (top-level) variables of type T to transform them to variables

of type P. These go from

v :: P
v = unpack (pack e) −− Definition of v

· · · unpack (pack v) · · · −− Use of v

to

v :: P
v = pack e −− Definition of v

· · · unpack v · · · −− Use of v

Function Argument of Type T When a function f has an argument x of type T, injection

wraps references to x in f ’s definition with unpack/pack pairs. Similarly, wherever f is called,

the expression passed as x is also wrapped, i.e., if x is f ’s first argument, this looks like

f :: T → · · ·
f = λx · · · → · · · (unpack (pack x)) · · · −− Argument x of type T

· · · f (unpack (pack e)) · · · −− Passing argument e of type T

We hoist the unpack call enclosing the argument into the body of the lambda term to change the

type of the argument:

f :: P → · · ·
f = λx · · · → · · · (unpack (pack (unpack x))) · · ·

· · · f (pack e) · · ·

and simplify

137

List of Tables

f :: P → · · ·
f = λx · · · → · · · (unpack x) · · · −− Have argument of type P

· · · f (pack e) · · · −− Passing argument of type P

Unpacked Types in Other Types The hoisting rules remove the unpacked type from the

program (the definitions of pack and unpack are the exception; they still use the unpacked type

by definition). The first two rules transform functions that operate on unpacked types; the third

transforms other types that include unpacked types.

When a type S , T has a variant defined as C . . . T . . . , calls to the C constructor will have

a corresponding argument of type T. Pattern matching on an object of type S will thus yield an

alternative for C that binds an argument v of type T. After injection, such terms will be of this

form:

data S = C · · · T · · · −− Another type that contains T

· · · C · · · (unpack (pack e)) · · · −− Call of constructor

· · · case x of −− Pattern v of type T

C · · · v · · · → · · · (unpack (pack v)) · · ·

This hoisting transformation treats the pattern match like the body of a function: the type

field and its use are modified:

data S = C · · · P · · · −− P replaced with packed type T

· · · C · · · (pack e) · · · −− Argument is packed

· · · case x of −− Pattern v now of type P

C · · · v · · · → · · · (unpack v) · · · −− Unpack field

7.2.4 Simplification

After injection and hoisting, many pack and unpack calls remain scattered throughout the pro-

gram. This version would run more slowly than the original since these calls perform redundant

138

List of Tables

computation. Following work on deforestation [59, 129], we perform semantics-preserving trans-

formations to remove these calls and produce a program that operates directly on packed types.

These transformations are largely standard in the functional language community [101]. We

follow Jones and Launchbury’s descriptions [98].

Variable Inlining If a variable or function v names an expression e, any reference to v may be

replaced with e provided variable names are changed to avoid collisions. If v is a local variable,

inlining can only occur within its local scope.

Beta Reduction After inlining a function, we have a lambda (λv1 . . .vn → e) applied to argu-

ments a1 . . .an; beta reduction replaces every free instance of vi in e with ai . We use the notation

e[y/x] to indicate y replaces all occurrences of x in e .

(λv1...vn→ e) a1...an = e[a1/v1, ...,an/vn]

Case-of-Case A case expression that scrutinizes another case can be pushed to each of the

inner case’s alternatives.

case (case e of (p1→ e1)...(pk → ek)) of alts

= case e of (p1→ case e1 of alts)...(pk → case ek of alts)

Case-of-Pattern If a case expression scrutinizes a constructor expression, we replace the case

with the appropriate alternative expression and perform a pattern substitution.

case c v1...vk of ... (c v
′
1...v

′
k → ei) ...

= ei[v1/v
′
1, ...,vk/v

′
k]

Our simplification procedure has six steps, described below. After each step of the simplifi-

cation process, we clean up the program by repetitively applying the Case-of-Case and Case-of-

Pattern transformations and the packing identity until reaching a fixed point.

For illustration, we use the following function, which traverses a binary tree of integers, in-

crementing each element by 1. We assume that injection and hoisting have occurred.

139

List of Tables

data T = B Int | R Int T T
f = λarg → pack (case (unpack arg) of

B x → B (x+1)
R x z1 z2 → R (x+1) (unpack (f (pack z1)))

(unpack (f (pack z2))))

Step 1 Inline any unpack call scrutinized by a case expression, renaming all variables and

patterns within the inlined expression to avoid conflicts. In our example, case (unpack arg) of

fulfills this condition, so we rewrite it to

case ((λp → case p of

B′y → B y
P y1 y2 k1 k2 y3 k3 k4 → R y1 (R y2 (unpack k1) (unpack k2))

(R y3 (unpack k3) (unpack k4))
U y k1 k2 → R y (unpack k1) (unpack k2)) arg) of · · ·

Beta reduction applies the inlined function to its argument (arg), and the “cleanup” phase per-

forms a Case-of-Case and three Case-of-Pattern transformations, giving a function that pattern

matches on packed binary trees:

f = λarg → pack (case arg of

B′y → B (y+1)
P y1 y2 k1 k2 y3 k3 k4 → R (y1+1)

(unpack (f (pack (R y2 (unpack k1) (unpack k2)))))
(unpack (f (pack (R y3 (unpack k3) (unpack k4)))))

U y k1 k2 → R (y+1) (unpack (f k1)) (unpack (f k2)))

When a function pattern matches on both an argument v of a packable type and on any of v’s

pointer patterns, we have to reapply this step multiple times. Consider a function g that pattern

matches on a list and on the list’s tail. After injection, hoisting, and the application of our packing

identity we could have, e.g.,

g = λv → · · · case unpack v of

Nil → · · ·

Cons x xs → · · · case xs of · · ·

After performing Step 1 once, we would then have

140

List of Tables

g = λv → · · · case v of

PNil → · · ·

PCons x1 x2 xs → · · · case unpack xs of · · ·

UCons x xs → · · · case unpack xs of · · ·

We thus apply this step until no unpack calls are scrutinized; if the original function had n

nested cases, each scrutinizing a pointer pattern from a previous case, we will have to apply this

step n times.

Step 2 Inline all recursive function calls (again renaming variables and patterns), beta re-

ducing each time. We perform this step multiple times according to the packing factor before

applying the cleanup phase. Applying a packing factor of 1 to our f example (i.e., inline every

call of f once), we get

f = λarg → pack (case arg of

B′y → B (y+1)
P y1 y2 k1 k2 y3 k3 k4 → R (y1+1) (case pack (R y2 (unpack k1) (unpack k2)) of

B′ · · · ; P· · · ; U· · ·)
(case pack (R y3 (unpack k3) (unpack k4)) of

B′ · · · ; P· · · ; U· · ·)
U y k1 k2 → R (y+1) (case k1 of B′ · · · ; P· · · ; U· · ·)

(case k2 of B′ · · · ; P· · · ; U· · ·))

where B′ · · · ; P· · · ; U· · · are the patterns and expressions in the body of f from step 1, i.e.,

B′y → B (y+1) ; P y1 y2 k1 k2 y3 k3 k4 → · · · .

Step 3 Push functions and data constructors being passed a case argument into the case. We

repeat this until we reach a fixed-point, and also apply it to arguments that are let expressions.

E.g.,

f e (case s of C→ a
D→ b) g

to case s of C→ f e a g
D→ f e b g

In our example, expressions of the form R e (case· · ·) (case· · ·) reside in the P and U alter-

natives of the top case. This step will push the R, e , and second case down to each alternative of

the first, then the R and its first two arguments will be further pushed into each of the second

case’s alternatives. Finally, the outer pack call will be pushed down to every alternative. We only

present the full alternatives that will produce fully packed cells after the last step of the algorithm:

141

List of Tables

f = λarg → case arg of

B′y → pack (B (y+1))
P y1 y2 k1 k2 y3 k3 k4 → case pack (R y2 (unpack k1) (unpack k2)) of

B′ · · · ; P· · · ; U w m1 m2 → case pack (R y3 (unpack k3) (unpack k4)) of

B′ · · · ; P· · · ; U z n1 n2 → pack (R (y1+1)
(R (w+1) (unpack (f m1)) (unpack (f m2)))
(R (z+1) (unpack (f n1)) (unpack (f n2))))

U y k1 k2 → case k1 of

B′ · · · ; P· · · ; U w m1 m2 → case k2 of

B′ · · · ; P· · · ; U z n1 n2 → pack (R (y+1)
(R (w+1) (unpack (f m1)) (unpack (f m2)))
(R (z+1) (unpack (f n1)) (unpack (f n2))))

Step 4 If we have a variable v that defines a packed constructor expression at the top-level

v = pack (c . . .), inline v wherever it is used. This step has the same goal as step 3: repositioning

expressions to maximize the number of packed variants generated when we finally inline our

pack calls.

For example, say we have two variables defined as

v1 = pack (R y (unpack z1) (unpack z2))
v2 = pack (R x (unpack v1) (unpack v1))

Inlining v2’s pack call would generate a U variant instead of P. However, if we first inline v1 and

apply our packing identity via the cleanup pass, v2 becomes

v2 = pack (R x (R y (unpack z1) (unpack z2))
(R y (unpack z1) (unpack z2)))

Step 5 If we have a let-binding let v = unpack e in e’ and all uses of v in e′ are of the form

(pack v), apply our packing identity by removing these conversion calls. The binding becomes

let v = e in e’ and each (pack v) in e′ becomes v.

Step 6 Inline pack calls, apply beta reduction, and perform the cleanup pass. We repeat this

step until no pack calls remain.

142

List of Tables

f = λarg → case arg of

B′y → B′ (y+1)
P y1 y2 k1 k2 y3 k3 k4 →

P (y1+1) (y2+1) (f k1) (f k2)
(y3+1) (f k3) (f k4)

U y k1 k2 → case k1 of B′ · · · ; P· · · ;
U w m1 m2 → case k2 of B′ · · · ; P· · · ;
U z n1 n2 → P (y+1) (w+1) (f m1) (f m2)

(z+1) (f n1) (f n2)

Here, the unpacked alternative still contains the nested case expressions introduced by the

pushing of step 3. While contributing to the overall code growth issue pervasive in any inlining-

based optimization, these extra cases can help produce packed structures, as seen above when an

unpacked cell has unpacked cells as its children. This additional code helps improve performance

at the cost of increased area in the final circuitry (detailed in Section 7.3).

7.2.5 Heuristics to Limit Code Growth

Our algorithm’s recursive inlining (step 2 of the simplification phase) is key for functions to

produce packed data types directly: it introduces additional data constructor operations (e.g.,

Cons) that are consolidated into packed variants. Unfortunately, this inlining leads to a potentially

exponential increase in code size (and hence hardware resources) for tree-like types and functions.

To retard this increase, we employ heuristics to selectively inline functions whose form leads to

packed results and small functions that are cheap to inline.

First, we select functions that generate packable data: those that return a data constructor

with an argument that is a recursive call. The append function (Section 7.1) has this form:

append z y = · · · Cons x xs → Cons x (append xs y)

To minimize code growth from inlining such functions, we also insist that either the recursive

call does not take any packable arguments (so no unpack calls are scrutinized and thus inlined

by Step 1 of Section 7.2.4) or at least one of its arguments is a pointer pattern, e.g., the xs pattern

above. The second requirement is designed to select smaller functions for inlining: if recursive

function f takes packable arguments, but none of the arguments passed to its recursive call are

pointer patterns, then the call’s arguments of packable type must be generated by additional calls

143

List of Tables

to other functions. These additional calls clutter f ’s body; inlining f would thus lead to copies of

these calls, contributing to its overall growth.

In addition to examples such as append (Section 7.1) and the simple tree map (Section 7.2.4),

we find this heuristic identifies more subtle functions that make good candidates, such as this

split function used by a mergesort implementation to split a list into a pair of lists of even and

odd-numbered elements:

split w = case w of −− Match on input

Nil → (Nil , Nil)
Cons x xs → case xs of −− Match on pointer pattern

Nil → (w, Nil)
Cons y ys → case split ys of −− Recurse on pointer pattern

(a , b) → (Cons x a , Cons y b) −− Return data constructor

Our first heuristic does not consider functions that merely traverse packed types (e.g., list

length) or tail-recursive functions that accumulate a packable type. To capture these, we also in-

line functions below a certain “size” according to a variant of the metric employed by the Glasgow

Haskell Compiler [99]. We compute a function’s size by traversing all of its body’s subexpres-

sions, adding 1 to a running total for each of the following constructs encountered: variable,

literal, or data constructor expressions (except for variable expressions scrutinized by a case);

local variable definitions; and data constructor patterns.

7.3 Experimental Evaluation

I tested our algorithm on eleven programs (Table 7.1) and evaluated the speed and size of the

circuits that were eventually produced from its output. As was our intent, our algorithm consis-

tently reduced the number of memory accesses (by up to a factor of two at a packing factor of 1).

This usually reduced execution times (around 25% for a packing factor of 1) and total memory

traffic (bits transferred) at the cost of an increase in circuit area, which follows the size of the

generated code.

For list-like data structures, our algorithm is practical at higher packing factors that generate

list cells with three or more elements. For tree-like data structures, however, packing factors

of 2 or more lead to impractically large circuits (e.g., ten times larger than the baseline) and in

some cases overwhelmed the downstream tools used in our experimental framework. This result

144

List of Tables

is understandable since data and code size increases exponentially for tree-like types but only

linearly for lists.

7.3.1 Testing Scheme

I implemented our algorithm as a pass in our compiler and set the “size” threshold for our second

code growth heuristic (Section 7.2.5) to 25. I used Verilator to generate a C++ simulator from the

SystemVerilog output by the compiler and linked it to my memory simulator to gather perfor-

mance measurements such as the number of simulated cycles and memory accesses. I ran my

memory simulator in its “realistic” mode for all experiments (see Section 6.3 for the cache and

DRAM parameters simulated).

I ran Intel’s Quartus 15.0 on the generated SystemVerilog for area estimates (Table 7.1). As a

result, the area estimates do not consider the area of any memory system, just the core datapath

and controller. The area units are ALMs for a midrange Cyclone V 5CSXFC6D6F31C8ES FPGA.

Recall that the compiler implements each recursive type as a bit vector including tag bits

to encode the variant and type-specific pointers for recursive references. This implementation

covers both our packable types and the compiler-generated types for recursive functions’ con-

tinuations. Larger functions tend to need larger continuations to store more free variables; our

results here reflect this trend.

Table 7.1 lists the benchmark applications. Append, Length, Filter, and Foldl each traverse a

list of integers and, respectively, concatenate it to another list, count the elements, remove even

elements, or sum elements. Transpose performs matrix transpose on a list of lists. Life executes

100 steps of the “gridless” version of the Game of Life (from RosettaCode.com). Mergesort sorts a

list of integers by splitting, recursing, and merging; Treesort does so by building a binary search

tree then building a sorted result from an in-order traversal. DFS searches a binary tree for a

value; Treeflip swaps the branches of each node of a tree. Kdfilter is Kanungo et al.’s K-means

clustering algorithm [77], used in machine learning and image processing.

Each test generates its own inputs with a recursive function, which our algorithm transforms

to produce packed structures. Transpose builds a 16× 128 matrix; Life takes a list of points en-

coding a “glider”; DFS, Treesort, and Treeflip each build a complete binary search tree of 16384

integers; Kdfilter builds a K-d tree from a list of 8192 random 2D points; the remaining tests

operate on lists of 16384 random integers.

145

List of Tables

Test Size Runtime Traffic Area Area Increase

(LoC) (cycles) (KB) (ALMs) 1 2 3

Append 25 1200k 1400 2500 2.3× 3.2× 4.3×
Length 29 710 790 1700 1.5 2.0 2.8
Foldl 28 690 790 1700 1.5 2.1 3.0
Filter 25 960 1100 2200 2.7 6.9 18
Mergesort 36 19000 27000 6000 5.6
Transpose 43 240 320 5100 4.7 21
Life 117 3700 5100 21000 4.6
DFS 42 1200 1300 2000 3.4 20
Treesort 39 6100 7500 3500 2.8 13
Treeflip 44 2300 2900 2600 6.8
Kdfilter [77] 377 100000 150000 37000 5.2

Table 7.1: Baseline measurements for my benchmarks and area increases with packing factor. Size
is lines of code in Haskell source; Runtime is simulated execution time of the circuit (in thousands
of cycles); Traffic is the total amount of memory read and written (in kilobytes); Area is the area
(in adaptive logic modules for a Cyclone V FPGA). Area Increase is the fractional increase under
packing factors 1, 2, and 3 (2× is doubling).

7.3.2 Experimental Results

I evaluated the impact of our algorithm on our compiled circuits by constructing a packed version

of each benchmark and comparing that to the unpacked (original) baseline. I swept the packing

factor from 1 to 3, but the compiler was unable to produce circuits for the larger examples at high

packing factors because our algorithm generated functions with more than 64 recursive calls, sur-

passing a limit imposed by the compiler. Table 7.1 lists baseline numbers (the area measurements

were computed with Paolo Mantovani’s help); Figure 7.1 shows performance improvements.

I measured the total number of each circuit’s cycles to completion, memory accesses, and bits

accessed. Memory accesses represent the number of memory requests from the circuit to the

memory system; memory bits counts the total number of bits transferred (request sizes vary).

Figure 7.1 depicts these results; smaller bars are better. Each cluster of bars represents a

particular metric for a given benchmark; results are normalized to the original, unpacked version

of each benchmark. For memory and bit accesses, each bar is partitioned into reads (solid) and

writes (open); higher packing factors use darker colors.

The results are promising: packing consistently reduces memory accesses, with reductions

from 1.5× to 2× under a packing factor of 1. Increasing the packing factor leads to reductions

as high as 4×, but only the simplest list tests achieve this reduction with comparable increases

146

List of Tables

 0

 0.25

 0.5

 0.75

 1

M
em

or
y

A
cc

es
se

s
(n

or
m

al
iz

ed
)

Pack=0 Pack=1 Pack=2 Pack=3

 0

 0.25

 0.5

 0.75

 1

M
em

or
y

T
ra

ffi
c

(b
its

, n
or

m
al

iz
ed

)

 0

 0.25

 0.5

 0.75

 1

A
ppend

Length

F
oldl

F
ilter

T
ranspose

M
ergeS

ort

Life

D
F

S

T
reeS

ort

T
reeF

lip

K
dF

ilter

C
om

pl
et

io
n

T
im

e
(c

yc
le

s,
 n

or
m

al
iz

ed
)

Figure 7.1: Performance under various degrees of packing (shorter is better): total number of
memory accesses, total memory traffic in bits, and completion time in cycles. The numbers for
each benchmark are normalized to its unpacked case (Table 7.1 lists baselines). For accesses and
traffic, solid bars denote reads; open bars are writes.

in area; a packing factor greater than 1 only makes sense if there are few recursive calls and the

types being packed are list-like. Regardless, packing also generally reduces the number of bits

transferred and cycles to completion.

For Append, Length, Foldl, and Filter, a packing factor of n decreases reads by a factor of

n+ 1. This is the maximum expected: the number of list elements the algorithm must consider

remains unchanged, yet each packed list cell contains n + 1 elements and the input list is com-

pletely packed.

Filter performs almost as well, but writes some unpacked cells after traversing its input list,

reducing the improvement. Increasing the packing factor reduces the likelihood that Filter can

generate a fully packed cell, reducing the potential gain.

Packing also decreases the overall number of bits transferred and completion time of these

tests, but by a smaller factor than memory traffic. Since packing does not affect the total amount

of data (integers) the benchmark must process and store, any reductions in the total number of

bits transferred due to packing arises from the elimination of certain pointers in the packed data

147

List of Tables

structures. Because Filter is unable to completely pack its results, packing Filter reduces the total

number of bits transferred less than, say, packing Append.

The other, more complex list tests produce more unpacked cells and thus experience smaller

performance gains. Mergesort splits its input list recursively, eventually reaching single-element

lists which must be stored in unpacked cells, but the subsequent merge procedure builds packed

cells (using the nested case expressions in the function’s unpacked alternative, discussed at the

end of Section 7.2.4). Unpacked cells reduce Mergesort’s gains by 10% compared to the simplest

list tests.

Given a list of lists representing a matrix, Transpose uses one function to build a new row

comprising the head of each nested list, another to build a newmatrix from the tail of each nested

list, and a third to prepend the new row to the new matrix. Although the head and tail collection

functions are fully packed, our heuristic from Section 7.2.5 does not select the new row construc-

tion function for inlining, leading to more unpacked cells. A similar issue occurs in Life due its

use of nested lists; both tests deal with more unpacked cells than Mergesort, leading to more bits

accessed and higher completion times. However, both tests still achieve speedups of 1.3×, and

experience less growth than Mergesort, showing that our heuristic can trade performance gains

for area savings.

The Kdfilter test is our most complex, yet it still achieves memory reductions similar to our

list tests even though only some of its data structures are ultimately packed. It consists of two

main recursive functions: one constructs a K-d tree from an input list of points, using amergesort

function to balance the points across the tree; the other performs Kanungo et al.’s “filtering” vari-

ant of the K-means clustering algorithm on the tree. While our algorithm successfully packs the

lists passed to themergesort function, our heuristic rejects for inlining both the tree construction

function (because it is the wrong form) and the K-d tree filtering algorithm (because it is too

large). Nevertheless, our algorithm still achieves nearly a 2× reduction in memory accesses and

a 1.3× reduction in memory traffic and completion for this benchmark.

The tree benchmarks vary the most because, ironically, higher packing factors can lead to

fewer fully packed tree nodes. The capacity of packed tree nodes grows exponentially with the

packing factor: if each node holds a single data element unpacked, they hold three elements at

a packing factor of 1, seven at 2, and fifteen at 3. As such, there may be many exceptional cases

near the leaves.

Packing trees does reduce the number of cells traversed (and hence the number of accesses),

but DFS and Treeflip access more total bits when packed once because the nodes (and continu-

148

List of Tables

ations implementing the functions’ recursion) are much larger and are always read completely.

DFS does see a reduction in total bits and execution cycles at a packing factor of 2 (the element

being searched for in the tree is found with significantly fewer accesses), but this comes at a

massive increase in circuit area.

Treeflip is not so lucky. Under any packing factor, every packed tree cell is read and written

by the main recursive flipping function, whose continuations are large and numerous enough

that more bits are accessed under packing.

Treesort reads every tree node as it builds a (packed) result list. The list cells and continuations

are small enough to yield overall reductions in cycles and bits accessed.

Although these results confirm that our algorithm can improve performance, both memory

and absolute time, they are only truly meaningful if the circuit generated is of reasonable size.

Table 7.1 shows that all tests comprise a reasonable amount of area under a packing factor of 1,

but any higher packing factor onlymakes sense for the simplest list tests. The exponential growth

caused by inliningmake tests like Transpose andDFS infeasible at higher packing factors; inlining

always has this potential affect when used as an optimization.

149

Chapter 8

Conclusions and Further Work

8.1 Conclusions

As stated in Chapter 1, my thesis is that pure functional programs exhibiting irregular memory

access patterns can be compiled into specialized hardware and optimized for parallelism. This

thesis has been supported with the following contributions:

• Program transformations that (1) remove language constructs precluding direct hardware

translation and (2) bring pure functional programs closer to a hardware representation.

• A (mostly) syntax-directed translation from a functional IR into patient dataflow networks.

• Compositional dataflow circuits that correctly implement our abstract networks.

• A nondeterministic merge actor enabling pipeline parallelism across recursive calls.

• Buffering heuristics to prevent deadlock in our compiler-generated networks.

• A type-based partitioning scheme for on-chip memory.

• Optimizations for irregular functional programs realized as hardware dataflow networks.

These contributions have been implemented in a working compiler, which translates Haskell pro-

grams into latency-insensitive dataflow circuits. The compiler demonstrates that irregular func-

tional programs can be synthesized into hardware circuits; the two optimizations from Chapter 6

and Chapter 7 show how we can enable and exploit more parallelism in these circuits.

This work has thus extended the state-of-the art in high-level synthesis, showing how to

synthesize hardware in the face of recursion, dynamic data structures, and irregular memory

access patterns.

150

List of Tables

8.2 Further Work

The rest of this chapter considers how our work could be strengthened and extended to further

support my thesis.

8.2.1 Formalism

Most of our contributions concern program transformations or translations between different

models of computation. Although we have empirical evidence of their correctness, formal proofs

are required to rigorously claim that they do not affect the functionality of the program being

modified. We could use the traditional compiler researcher’s proof scheme for the compiler passes

of Section 3.3 and code transformations in Chapter 6 and Chapter 7: present the operational or

denotational semantics for the input language, cast the transformation as rules within the seman-

tic formalism, and show that applying these rules leaves the output of a program unchanged for

a given input.

The correctness of our translation from software to dataflow (Section 4.3) is harder to prove,

since it connects one model of computation (pure functions) to another (abstract dataflow net-

works). While formal systems exist to define both ends of the translation (denotational/opera-

tional semantics for the source; Kahn Process Networks for the target), it is not obvious how to

connect the two mathematically without a new formalism capturing both models.

My intuition suggests that we can prove that our compiler-generated networks are deadlock-

free and deterministic. Proving deadlock-freedom for arbitrary dataflow networks is undecid-

able [17], but we generate specific parameterized subnetworks for each language construct found

in a Floh program. It seems likely that our networks are deadlock-free when every channel has

at least one buffer on it.

As explained in Chapter 5, our use of a nondeterministic merge node prevents the use of

Kahn’s formalism to claim determinism for our overall network behavior. Empirically, we have

not witnessed any functional nondeterminism in a network’s behavior for a given input and

buffering scheme, i.e., feeding the same input into a well-buffered network (enough buffers to

prevent deadlock) always produces the same output. To prove that a such a network is func-

tionally deterministic, we either require a different, non-Kahn formalism to describe network

behavior (perhaps using the Colored Petri Net model [73]) or a way to circumvent the need for a

nondeterministic merge node in our networks.

151

List of Tables

8.2.2 Extending the Compiler

Our compiler currently operates on a subset of modern Haskell; future work could extend it to

handle more language features. The clearest extension is to admit higher-order functions, one

of the key constructs in Haskell that enables higher programmer productivity. Defunctionaliza-

tion [37] translates these functions into first-order form, which our compiler already handles.

A preliminary defunctionalization pass exists in our compiler (implemented by Lizzie Paquette)

and can successfully transform some simple higher-order functions like map and foldl, but addi-

tional work is necessary to handle arbitrary higher-order functions and higher-order (or partially

applied) data constructors.

Compiling some Haskell features like exceptions and I/O introduces built-in primitive func-

tions with no clear hardware analogue. Since most of the benchmarks in Haskell’s standard

“nofib” testsuite are driven with I/O functions, we are unable to compile any of them directly,

severely limiting our ability to test our compiler on complex, peer-approved programs. Our com-

piler should be extended to recognize these constructs and either replace them with hardware-

facing components (e.g., change a function that waits for user input to a dataflow actor waiting

for an input token from the environment) or ask the user to provide a set of constant values to

feed into the circuit whenever it expects input from the environment.

8.2.3 Synthesizing a Realistic Memory System

The compiler has two memory systems that it can target, but neither is wholly preferable. The

first, presented in Section 5.6.5, associates each recursive type with an on-chip bit vector ar-

ray memory; each memory has the same number of slots (each tailored to the associated type’s

bit-width), a private address space, and operates without a backing store or the ability to free

memory. This system is synthesizable, but severely limits the size of the data structures gener-

ated by a network (due to the lack of off-chip backing storage). The second system is our default

cache-based hierarchy (Section 6.2), which admits much larger data structures but uses a uniform

memory representation for heap objects and only operates in simulation.

We envision a pairing of these two systems with further augmentations to take advantage of

an FPGAs customizability and high memory bandwidth. This ideal memory system would pro-

vide type-based on-chip memories with object-specific bit-widths (e.g., a 66-bit list object would

be stored in a 66-bit memory slot, instead of a 96-bit slot aligned to uniform 32-bit values) and

avoid the energy-intensive logic required by traditional cache implementations. Instead, static

152

List of Tables

analysis paired with profiling would guide the transfer of data between on- and off-chip memory

to minimize high-latency trips off-chip (Dominguez et al. [42] propose a similar technique), and

we would marshal the irregularly sized data in each on-chip memory into a uniform representa-

tion for off-chip DRAM.

Throughout this work, we assume the presence of a garbage collector (GC) in hardware for

our memory system. Others in our research group are currently developing a hardware imple-

mentation of a stop-the-world mark-and-sweep collection [132]: it uses special dataflow buffers

to pass any pointers floating in a network off to the collector when GC is triggered, follows these

pointers to determine which memory objects are reachable (marking any reached), sweeps the

system to free any memory storing unmarked data, and sends a signal to the special buffers that

allows them to continue firing as before.

8.2.4 Improved and Additional Optimizations

The two optimizations presented in this thesis vary in their effectiveness across different kinds

of programs; they both have potential for improvement.

The results in Section 6.3 suggest that our divide-and-conquer optimization works best on al-

gorithms that evenly divide their workloads (e.g., splitting a list in half or traversing the branches

of a balanced binary tree). If the workload is unbalanced, we waste the extra memory bandwidth

provided by our partitionedmemory system and introduce excessive overhead with our type con-

version functions. A new architecture based on task-level abstraction (e.g., similar to that of the

ParallelXL [22] or TAPAS [89] systems discussed in Chapter 2) could remove these inefficiencies

by dynamically load balancing the data structure across independent dataflow networks, remov-

ing any need for the type conversion functions. This would require a significant change to our

translation algorithm, though, which would no longer be syntax-directed (additional machinery

would be added to pass data between independent networks).

Our packing algorithm has the potential to increase a tree-based program’s memory traffic

and exponentially increase its area requirements at higher packing factors. If the original pro-

gram did not traverse every tree node (e.g., as in depth-first search), the packed versionwill access

more data (usually unnecessarily) than the original; a preprocessing step could be added to the

algorithm to detect these kinds of functions statically (e.g., by determining whether all branches

are passed to recursive calls), and avoid selecting them for packing. When the full structure is

traversed, the packed heap accesses should not increase memory traffic (same amount of data,

153

List of Tables

fewer pointers), but the continuations implementing function recursionmay get excessively large.

These continuations store the free variables found in a function, even if they refer to the same

value. Sometimes they also hold multiple values which are eventually combined with an arith-

metic or boolean operation. These issues could be solved by modifying the recursion removal

pass (Section 3.3.4) to find common values bound to different variables and remove them, or ap-

ply any combining operations to free variables earlier to decrease the size of the continuations

and lower the overall memory footprint.

The exponential area increase caused by higher packing factors is a more difficult problem

to solve. Any optimization involving inlining is guaranteed to yield code growth, which corre-

sponds to larger circuits. A more selective packing scheme could alleviate this issue, e.g., when

packing a nested structure like a list of lists, only pack one level of the structure. For structures

with multiple recursive references like trees, we could employ a “linear” packing scheme where

only one branch is packed; this would lead to only one recursive call being inlined and should

entail linear area increases as the packing factor grows. Unfortunately, such a scheme would in-

volve load-balancing issues similar to those present in our divide-and-conquer algorithm; further

research is needed to determine how to tackle these issues.

Evenwith thementioned issues, the two optimizations presented in this dissertation generally

improve our networks’ performance; further gains could be achieved with additional optimiza-

tions. Our buffering heuristics only target network correctness; a new heuristic could addition-

ally improve performance by exploiting more pipeline parallelism. This heuristic could leverage

a formalism to estimate the maximum throughput potential of a network, and assign buffers to

specific channels to realize that potential. Collins and Carloni [26] usedmarked graphs to achieve

this goal for their latency-insensitive systems, but we cannot use their technique due to our use

of data-dependent and nondeterministic actors found in our networks. Regardless, their method

could be a starting point for future work on more performance-focused buffering.

Our compiler-generated dataflow networks can only service a single call to a recursive func-

tion at a time. We could enable more pipeline parallelism by servicing multiple calls simulta-

neously, but the network would need to distinguish tokens from different calls to avoid erro-

neous computation. One possible solution could leverage the work of Dennis [39] and Zebelein

et al. [140]: colored tokens allow multiple simultaneous invocations of a function and allow to-

kens of different colors to overtake each other. Since two calls may finish out-of-order, we would

need reorder buffers to ensure the functional correctness of the network. This solution would

increase the area overhead of our circuits, but could entail significant performance increases.

154

Bibliography

[1] Mythri Alle, Antoine Morvan, and Steven Derrien. Runtime dependency analysis for loop pipelining in high-
level synthesis. In Proceedings of the 50th Design Automation Conference. ACM, 2013.

[2] ARM. AMBA 4 AXI4-Stream Protocol Specification Version 1.0, March 2010. ARM IHI 0051A (ID030510).

[3] Arvind and R.S. Nikhil. Executing a program on theMIT tagged-token dataflow architecture. IEEE Transactions
on Computers, 39(3):300–318, March 1990.

[4] Arvind, R.S. Nikhil, D.L. Rosenband, and N. Dave. High-level synthesis: an essential ingredient for designing
complex ASICs. In Proceedings of the International Conference on Computer Aided Design (ICCAD), pages 775–
782, San Jose, California, November 2004.

[5] Christiaan Baaij. Clash.tutorial, 2017. [Online; accessed 08-April-2019].

[6] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, andMarco Gerards. Cλash: Structural descrip-
tions of synchronous hardware using Haskell. In Proceedings of the Euromicro Conference on Digital System

Design (DSD), pages 714–721, Lille, France, September 2010.

[7] Christiaan Baaij and Jan Kuper. Using rewriting to synthesize functional languages to digital circuits. In
Proceedings of Trends in Functional Programming (TFP), volume 8322 of Lecture Notes in Computer Science,
pages 17–33, Provo, Utah, 2014. Springer.

[8] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a scala embedded language. In Pro-

ceedings of the 49th Annual Design Automation Conference, DAC ’12, pages 1216–1225, New York, NY, USA,
2012. ACM.

[9] David F. Bacon, Perry Cheng, and Sunil Shukla. Parallel real-time garbage collection of multiple heaps in
reconfigurable hardware. In Proceedings of the International Symposium on Memory Management (ISMM),
pages 117–127, Edinburgh, United Kingdom, 2014. ACM.

[10] Twan Basten and Jan Hoogerbrugge. Efficient execution of process networks. In Alan Chalmers, Majid
Mirmehdi, and Henk Muller, editors, Communicating Process Architectures (CPA), pages 1–14, Bristol, UK,
September 2001. IOS Press.

[11] Yosi Ben-Asher and Nadav Rotem. Automatic memory partitioning: Increasing memory parallelism via data
structure partitioning. In Proceedings of the International Conference on Hardware/Software Codesign and Sys-

tem Synthesis (CODES+ISSS), pages 155–162, Scottsdale, Arizona, 2010. ACM.

[12] Endri Bezati, Marco Mattavelli, and Jörn W. Janneck. High-level synthesis of dataflow programs for signal
processing systems. In Proceedings of the International Symposium on Image and Signal Processing and Analysis

(ISPA), pages 750–755, Trieste, Italy, September 2013. The Institute of Electrical and Electronics Engineers
(IEEE).

[13] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in Haskell. In Proceedings
of the International Conference on Functional Programming (ICFP), pages 174–184, Baltimore, Maryland, 1998.

155

List of Tables

[14] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–77, May 2011.

[15] Anastasia Braginsky and Erez Petrank. Locality-conscious lock-free linked lists. In Marcos K. Aguilera,
Haifeng Yu, Nitin H. Vaidya, Vikram Srinivasan, and Romit R. Choudhury, editors, Distributed Computing

and Networking, volume 6522 of Lecture Notes in Computer Science, pages 107–118. Springer Berlin Heidel-
berg, 2011.

[16] Manfred Broy. Nondeterministic data flow programs: How to avoid the merge anomaly. Science of Computer

Programming, 10(1):65–85, February 1988.

[17] Joseph Tobin Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory using the Token Flow Model.
PhD thesis, University of California, Berkeley, 1993. Available as UCB/ERL M93/69.

[18] Bingyi Cao, Kenneth A. Ross, Martha A. Kim, and Stephen A. Edwards. Implementing latency-insensitive
dataflow blocks. In Proceedings of the International Conference on Formal Methods and Models for Codesign

(MEMOCODE), pages 179–187, Austin, Texas, September 2015. The Institute of Electrical and Electronics En-
gineers (IEEE).

[19] Luca P. Carloni. The role of back-pressure in implementing latency-insensitive systems. Electronic Notes in
Theoretical Computer Science, 146(2):61–80, 2006.

[20] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli. Theory of latency-insensitive
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(9):1059–1076,
September 2001.

[21] Josep Carmona, Jordi Cortadella, Mike Kishinevsky, and Alexander Taubin. Elastic circuits. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 28(10):1437–1455, Oct 2009.

[22] Tao Chen, Shreesha Srinath, Christopher Batten, and G Edward Suh. An architectural framework for accel-
erating dynamic parallel algorithms on reconfigurable hardware. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 55–67. IEEE, 2018.

[23] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. Diannao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the 19th

International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, pages 269–284, New York, NY, USA, 2014. ACM.

[24] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):346–366, April
1932.

[25] Alessandro Cilardo and Luca Gallo. Improving multibank memory access parallelism with lattice-based par-
titioning. ACM Transactions on Architecture and Code Optimization (TACO), 11(4):45, 2015.

[26] R. L. Collins and L. P. Carloni. Topology-based optimization of maximal sustainable throughput in a latency-
insensitive system. Technical Report CUCS–008–07, Columbia University, Department of Computer Science,
New York, New York, USA, February 2007.

[27] Rebecca L. Collins and Luca P. Carloni. Topology-based performance analysis and optimization of latency-
insensitive systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(12):2277–2290, December 2008.

[28] Rebecca L. Collins, Bharadwaj Vellore, and Luca P. Carloni. Recursion-driven parallel code generation for
multi-core platforms. In Proceedings of Design, Automation, and Test in Europe (DATE), pages 190–195, Dresden,
Germany, March 2010. EDAA.

156

List of Tables

[29] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. Automatic memory partitioning and scheduling for throughput
and power optimization. In Proceedings of the International Conference on Computer Aided Design (ICCAD),
pages 697–704, San Jose, California, November 2009.

[30] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. Automatic memory partitioning and scheduling for throughput
and power optimization. ACM Transactions on Design Automation of Electronic Systems, 16(2), March 2011.
Article No. 15.

[31] Jason Cong, Peng Li, Bingjun Xiao, and Peng Zhang. An optimal microarchitecture for stencil computation
acceleration based on non-uniform partitioning of data reuse buffers. In Proceedings of the 51st Design Au-

tomation Conference, pages 1–6, San Francisco, California, 2014. ACM.

[32] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. High-level syn-
thesis for FPGAs: From prototyping to deployment. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 30(4):473–491, April 2011.

[33] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill, New York, 2001.

[34] Jordi Cortadella, Marc Galceran-Oms, and Mike Kishinevsky. Elastic systems. In Proceedings of the Interna-

tional Conference on Formal Methods and Models for Codesign (MEMOCODE), pages 149–158, Grenoble, France,
July 2010. The Institute of Electrical and Electronics Engineers (IEEE).

[35] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. Self: Specification and design of synchronous elastic
circuits. In ACM International Workshop on Timing Issues in the Specification and Synthesis of Digital Systems,
San Jose, California, February 2006. Association for Computing Machinery.

[36] Steve Dai, Ritchie Zhao, Gai Liu, Shreesha Srinath, Udit Gupta, Christopher Batten, and Zhiru Zhang. Dynamic
hazard resolution for pipelining irregular loops in high-level synthesis. In Proceedings of the International

Symposium on Field-Programmable Gate Arrays (FPGA), pages 189–194. ACM, February 2017.

[37] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings of Principles and Practice of

Declarative Programming (PPDP), pages 162–174, New York, NY, USA, 2001. ACM.

[38] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous, and Andre R. LeBlanc.
Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits,
9(5):256–268, October 1974.

[39] Jack B. Dennis. First version of a data flow procedure language. In Programming Symposium, volume 19 of
Lecture Notes in Computer Science, pages 362–376, Paris, France, April 1974. Springer.

[40] Giorgos Dimitrakopoulos, Anastasios Psarras, and Ioannis Seitanidis. Microarchitecture of Network-on-Chip

Routers: A Designer’s Perspective. Springer, Heidelberg, Germany, 2015.

[41] Julian Dolby. Automatic inline allocation of objects. In Proceedings of Program Language Design and Imple-

mentation (PLDI), pages 7–17, New York, New York, May 1997. Association for Computing Machinery.

[42] Angel Dominguez, Sumesh Udayakumaran, and Rajeev Barua. Heap data allocation to scratch-pad memory
in embedded systems. Journal of Embedded Computing, 1(4):521–540, 2005.

[43] Stephen A. Edwards, Richard Townsend, Martha Barker, and Martha A. Kim. Compositional dataflow circuits.
ACM Transactions on Embedded Computing Systems, 18(1):5, February 2019.

[44] Stephen A. Edwards, Richard Townsend, and Martha A. Kim. Compositional dataflow circuits. In Proceedings

of the International Conference on Formal Methods and Models for Codesign (MEMOCODE), pages 175–184,
Vienna, Austria, September 2017. Association for Computing Machinery.

157

List of Tables

[45] Johan Eker and Jörn W. Janneck. CAL language report: Specification of the CAL actor language. Technical
Report UCB/ERL M03/48, EECS Department, University of California, Berkeley, December 2003.

[46] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug Burger. Dark silicon
and the end of multicore scaling. In Proceedings of the International Symposium on Computer Architecture

(ISCA), pages 365–376, San Jose, California, June 2011.

[47] Joachim Falk, Christian Haubelt, and Jürgen Teich. Efficient representation and simulation of model-based de-
signs in systemc. In Forum on Specification and Design Languages (FDL), volume 6, pages 129–134, Darmstadt,
Germany, September 2006. ECSI.

[48] Leonidas Fegaras and Andrew Tolmach. Using compact data representations for languages based on catamor-
phisms. Technical Report 95-025, Oregon Graduate Institute, 1995.

[49] Matthew Fluet. Monomorphise, January 2015. http://mlton.org/Monomorphise [Online; accessed 23-January-
2015].

[50] Simon Frankau. Hardware synthesis from a stream-processing functional language. Technical Report UCAM–
CL–TR–824, Cambridge University, 2012.

[51] Simon Frankau and Alan Mycroft. Stream processing hardware from functional language specifications. In
Proceedings of the Hawaii International Conference on System Sciences. The Institute of Electrical and Electronics
Engineers (IEEE), 2003. 10 pp.

[52] Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages. MIT Press, third edition, 2008.

[53] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5 multithreaded
language. In Proceedings of Program Language Design and Implementation (PLDI), pages 212–233, FIXME, June
1998.

[54] Peter Gammie. Synchronous digital circuits as functional programs. ACM Computing Surveys, 46(2):article 21,
November 2013.

[55] G. R. Gao, R. Govindarajan, and Prakash Panangaden. Well-behaved dataflow programs for DSP computation.
In Proceedings of the International Conference on Acoustics, Speech, & Signal Processing (ICASSP), volume 5,
pages 561–564, San Francisco, California, March 1992. The Institute of Electrical and Electronics Engineers
(IEEE).

[56] Marc Geilen and Twan Basten. Requirements on the execution of Kahn process networks. In Proceedings of

the European Symposium on Programming (ESOP), volume 2618 of Lecture Notes in Computer Science, pages
319–334, Warsaw, Poland, April 2003. Springer.

[57] MarcGeilen, TwanBasten, and Sander Stuijk. Minimising buffer requirements of synchronous dataflowgraphs
with model checking. In Proceedings of the 42nd Design Automation Conference, pages 819–824, Anaheim,
California, 2005. ACM.

[58] Marc Geilen and Sander Stuijk. Worst-case performance analysis of synchronous dataflow scenarios. In
Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 125–134, Scottsdale, Arizona, October 2010. ACM.

[59] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation. In Proceedings of

Functional Programming Languages and Computer Architecture (FPCA), pages 223–232, Copenhagen, Denmark,
June 1993.

[60] Andy Gill, T. Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and B. Werling. Introducing Kansas Lava. In
Proceedings of the International Symposium on Implementation and Application of Functional Languages, volume
6041 of Lecture Notes in Computer Science, November 2009.

158

List of Tables

[61] Andy Gill, Tristan Bull, Andrew Farmer, Garrin Kimmell, and Ed Komp. Types and associated type families for
hardware simulation and synthesis: The internals and externals of Kansas Lava. Higher-Order and Symbolic

Computation, pages 1–20, 2013.

[62] Manish Gupta, Sayak Mukhopadhyay, and Navin Sinha. Automatic parallelization of recursive procedures.
International Journal of Parallel Programming, 28(6):537–562, 2000.

[63] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous data flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[64] Cordelia V. Hall. Using Hidley-Milner type inference to optimise list representation. In Proceedings of the

ACM Symposium on LISP and Functional Programming (LFP), pages 162–172, Orlando, Florida, June 1994.

[65] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katuya Ishii. CHStone: A benchmark
program suite for practical C-based high-level synthesis. In iscas, pages 1192–1195, Seattle, Washington, May
2008.

[66] Pieter H. Hartel, Theo C. Ruys, and Marc C. W. Geilen. Scheduling optimisations for SPIN to minimise buffer
requirements in synchronous data flow. In Formal Methods in Computer-Aided Design (FMCAD), pages 161–
170, Portland, Oregon, October 2008. The Institute of Electrical and Electronics Engineers (IEEE).

[67] Christian Haubelt, Joachim Falk, Joachim Keinert, Thomas Schlichter, Martin Streubühr, Andreas Deyhle, An-
dreas Hadert, and Jürgen Teich. A SystemC-based design methodology for digital signal processing systems.
EURASIP Journal on Embedded Systems, 2007(1), 2007. Article ID 47580.

[68] Haruo Hosoya and Benjamin Pierce. Regular expression pattern matching for XML. ACM SIGPLAN Notices,
36(3):67–80, 2001.

[69] HaruoHosoya and BenjaminC. Pierce. XDuce: A statically typedXMLprocessing language. ACMTransactions

on Internet Technology (TOIT), 3(2):117–148, May 2003.

[70] Intel Corporation, Santa Clara, California. 8008 8-Bit Parallel Central Processor Unit Users Manual, November
1972.

[71] Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier, and Matthieu Wipliez Mickaël Raulet.
Synthesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study. Journal of

Signal Processing Systems, 63(2):241–249, July 2009.

[72] Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier, Matthieu Wipliez, and Mickaël Raulet.
Synthesizing hardware from dataflow programs. Journal of Signal Processing Systems, 63(2):241–249, May
2011.

[73] Kurt Jensen. Coloured petri nets. In Petri nets: central models and their properties, pages 248–299. Springer,
1987.

[74] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Proceedings of Functional
Programming Languages and Computer Architecture, volume 201 of Lecture Notes in Computer Science, pages
190–203, Nancy, France, 1985. Springer.

[75] Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically scheduled high-level synthesis. In Proceedings

of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 127–136. ACM,
2018.

[76] Gilles Kahn. The semantics of a simple language for parallel programming. In Information Processing 74:

Proceedings of IFIP Congress 74, pages 471–475, Stockholm, Sweden, August 1974. North-Holland.

159

List of Tables

[77] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y
Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(7):881–892, July 2002.

[78] Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Gladigau, Christian Haubelt, Jür-
gen Teich, and Michael Meredith. Systemcodesigner—an automatic esl synthesis approach by design space
exploration and behavioral synthesis for streaming applications. ACM Transactions on Design Automation of

Electronic Systems, 14(1):1:1–1:23, January 2009.

[79] Morihiro Kuga, Kansuke Fukuda, Motoki Amagasaki, Masahiro Iida, and Toshinori Sueyoshi. High-level
synthesis based on parallel design patterns using a functional language. In Proceedings of the 8th International

Symposium onHighly Efficient Accelerators and Reconfigurable Technologies, HEART2017, pages 23:1–23:6, New
York, NY, USA, 2017. ACM.

[80] Milind Kulkarni, Martin Burstcher, Călin Caşcaval, and Keshav Pingali. Lonestar: A suite of parallel irregular
programs. In Proceedings of the International Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 65–76, Boston, Massachusetts, April 2009.

[81] Edward A. Lee and Eleftherios Matsikoudis. The semantics of dataflow with firing. In From Semantics to

Computer Science: Essays in memory of Gilles Kahn, chapter 4, pages 71–94. Cambridge University Press, Cam-
bridge, UK, 2008.

[82] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773–801, May
1995.

[83] Cheng-Hong Li, Rebecca Collins, Sampada Sonalkar, and Luca P. Carloni. Design, implementation, and val-
idation of a new class of interface circuits for latency-insensitive design. In Proceedings of the International

Conference on Formal Methods and Models for Codesign (MEMOCODE), pages 13–22, Nice, France, May 2007.
The Institute of Electrical and Electronics Engineers (IEEE).

[84] Feng Liu, Soumyadeep Ghosh, Nick P Johnson, and David I August. CGPA: Coarse-grained pipelined accel-
erators. In Proceedings of the 51st Design Automation Conference, pages 1–6, San Francisco, California, 2014.
ACM.

[85] H-W Loidl et al. Comparing parallel functional languages: Programming and performance. Higher-Order and
Symbolic Computation, 16(3):203–251, 2003.

[86] Zhonghai Lu, Ingo Sander, and Axel Jantsch. A case study of hardware and software synthesis in ForSyDe. In
Proceedings of the International Symposium on System Synthesis (ISSS), pages 86–91, Kyoto, Japan, 2002. ACM.

[87] Wayne Luk, TeddyWu, and Ian Page. Hardware-software codesign of multidimensional programs. In Proceed-
ings of the Symposium on FPGAs for CustomComputingMachines (FCCM), pages 82–90, Napa Valley, California,
April 1994. IEEE, IEEE.

[88] Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. High-level synthesis of accelerators in em-
bedded scalable platforms. In Proceedings of the Asia South Pacific Design Automation Conference (ASP-DAC),
pages 204–211. The Institute of Electrical and Electronics Engineers (IEEE), 2016.

[89] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman, and Gilles Pokam. TAPAS: Generat-
ing parallel accelerators from parallel programs. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 245–257. IEEE, 2018.

[90] Chenyue Meng, Shouyi Yin, Peng Ouyang, Leibo Liu, and ShaojunWei. Efficient memory partitioning for par-
allel data access in multidimensional arrays. In Proceedings of the 52nd Annual Design Automation Conference,
page 160. ACM, 2015.

160

List of Tables

[91] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
17(3):348–375, December 1978.

[92] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–117, April 19
1965.

[93] Orlando Moreira, Twan Basten, Marc Geilen, and Sander Stuijk. Buffer sizing for rate-optimal single-rate
dataflow scheduling revisited. IEEE Transactions on Computers, 59(2):188–201, 2010.

[94] Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. Automatic
inversion generates divide-and-conquer parallel programs. Proceedings of Program Language Design and Im-

plementation (PLDI), 42(6):146–155, 2007.

[95] Alan Mycroft and Richard W. Sharp. Hardware synthesis using SAFL and application to processor design. In
Proceedings of Correct Hardware Design and Verification Methods (CHARME), volume 2144 of Lecture Notes in
Computer Science, pages 13–39, Livingston, Scotland, September 2001.

[96] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson,
and K. Bertels. A survey and evaluation of FPGA high-level synthesis tools. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 35(10):1591–1604, Oct 2016.

[97] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of California, Berkeley,
1995. Available as UCB/ERL M95/105.

[98] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-strict functional
language. In J. Hughes, editor, Proceedings of the Conference on Functional Programming and Computer Archi-

tecture, pages 636–666, Cambridge, Massachussets, USA, 26–28 August 1991. Springer-Verlag LNCS523.

[99] Simon L. Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler inliner. Journal of

Functional Programming, 12:393–434, September 2002.

[100] Simon L. Peyton Jones and André L.M. Santos. Compilation by transformation in the Glasgow Haskell Com-
piler. In Kevin Hammond, DavidN. Turner, and PatrickM. Sansom, editors, Functional Programming, Glasgow

1994, Workshops in Computing, pages 184–204. Springer London, 1995.

[101] Simon L. Peyton Jones and André L.M. Santos. A transformation-based optimiser for Haskell. In Science of

Computer Programming, pages 3–47. Elsevier, 1998.

[102] Keshav Pingali and Arvind. Efficient demand-driven evaluation. part 1. ACM Transactions on Programming

Languages and Systems, 7(2):311–333, 1985.

[103] Kenneth Platz, Neeraj Mittal, and Subbarayan Venkatesan. Practical concurrent unrolled linked lists using
lazy synchronization. In MarcosK. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Principles of
Distributed Systems, volume 8878 of Lecture Notes in Computer Science, pages 388–403. Springer International
Publishing, 2014.

[104] Rafael Trapani Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Fluid pipelines: Elastic circuitry
meets out-of-order execution. In Proceedings of the IEEE International Conference on Computer Design (ICCD),
pages 233–240. The Institute of Electrical and Electronics Engineers (IEEE), October 2016.

[105] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil,
Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason
Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-scale datacenter
services. In Proceeding of the 41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages
13–24, Piscataway, NJ, USA, 2014. IEEE Press.

161

List of Tables

[106] Ingmar Raa. Recursive functional hardware descriptions using CλaSH. Master’s thesis, University of Twente,
The Netherlands, November 2015.

[107] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-YeonWei, and David Brooks. Machsuite: Benchmarks
for accelerator design and customized architectures. In Proceedings of the International Symposium onWorkload

Characterization (IISWC), pages 110–119. The Institute of Electrical and Electronics Engineers (IEEE), 2014.

[108] M. W. Roberts and P. K. Lala. Algorithm to detect reconvergent fanouts in logic circuits. IEE Proceedings E -

Computers and Digital Techniques, 134(2):105–111, March 1987.

[109] Radu Rugina and Martin Rinard. Automatic parallelization of divide and conquer algorithms. In Proceedings

of Principles and Practice of Parallel Programming (PPoPP), pages 72–83, Atlanta, Georgia, 1999. ACM, ACM.

[110] Radu Rugina and Martin Rinard. Recursion unrolling for divide and conquer programs. In Proceedings of

the Workshop on Languages and Compilers for Parallel Computing (LCPC), volume 2017 of Lecture Notes in
Computer Science, pages 34–48, Yorktown Heights, New York, August 2000.

[111] Xavier Saint-Mleux, Marc Feeley, and Jean-Pierre David. SHard: a Scheme to hardware compiler. In Proceedings
of the Scheme and Functional Programming Workshop (SFPW), pages 39–49, Portland, Oregon, September 2006.
University of Chicago technical report TR–2006–06.

[112] Ingo Sander. System Modeling and Design Refinement in ForSyDe. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden, April 2003.

[113] Ingo Sander and Axel Jantsch. System synthesis based on a formal computational model and skeletons. In
Proceedings of the IEEE Computer Society Workshop on VLSI, pages 32–39, Orlando, Florida, April 1999. The
Institute of Electrical and Electronics Engineers (IEEE).

[114] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding fork-join parallelism into
LLVM’s intermediate representation. In Proceedings of Principles and Practice of Parallel Programming (PPoPP),
PPoPP ’17, pages 249–265, New York, NY, USA, 2017. ACM.

[115] Charles L. Seitz. System timing. In Carver Mead and Lynn Conway, editors, Introduction to VLSI Systems,
chapter 7, pages 218–262. Addison-Wesley, Reading, Massachusetts, 1980.

[116] Zhong Shao, John H. Reppy, and Andrew W. Appel. Unrolling lists. In Proceedings of the ACM Symposium on

LISP and Functional Programming (LFP), pages 185–195, Orlando, Florida, June 1994.

[117] Richard W. Sharp and Alan Mycroft. The FLaSH compiler: Efficient circuits from functional specifications.
Technical Report tr.2000.3, AT&T Laboratories Cambridge, 2000.

[118] RichardW. Sharp and Alan Mycroft. A higher-level language for hardware synthesis. In Proceedings of Correct
Hardware Design and Verification Methods (CHARME), pages 228–243. Springer, 2001.

[119] Mary Sheeran. µFP, an algebraic VLSI design language. In Proceedings of the ACM Symposium on LISP and

Functional Programming (LFP), pages 104–112, Austin, Texas, August 1984.

[120] Guy L. Steele. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, MIT Press, 1978.

[121] Sander Stuijk, Marc C.W. Geilen, and Twan Basten. Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Transactions on Computers, 57(10):1331–1345, 2008. Special section
on Programming Models and Architectures for Embedded Systems.

[122] Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru Zhang. ElasticFlow: A complexity-effective ap-
proach for pipelining irregular loop nests. In Proceedings of the International Conference on Computer Aided

Design (ICCAD), pages 78–85, Austin, Texas, November 2015. IEEE.

162

List of Tables

[123] Richard Thavot, Romuald Mosqueron, Julien Dubois, and Marco Mattavelli. Hardware synthesis of complex
standard interfaces using CAL dataflow descriptions. In Proceedings of Design and Architectures for Signal and

Image Processing (DASIP), pages 127–134, Sophia Antipolis, France, October 2009. ECSI.

[124] Andrew Tolmach, Tim Chevalier, and The GHC Team. An external representation for the GHC core language
(for GHC 6.10), April 2010.

[125] Richard Townsend, Martha A. Kim, and Stephen A. Edwards. From functional programs to pipelined dataflow
circuits. In Proceedings of Compiler Construction (CC), pages 76–86, Austin, Texas, February 2017. ACM.

[126] Stavros Tripakis, Rhishikesh Limaye, Kaushik Ravindran, and Guoqiang Wang. On tokens and signals: Bridg-
ing the semantic gap between dataflow models and hardware implementations. In Proceedings of the Inter-

national Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV),
pages 51–58, Samos, Greece, July 2014. The Institute of Electrical and Electronics Engineers (IEEE).

[127] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Satin: Efficient parallel divide-and-conquer in java.
In European Conference on Parallel Processing (Euro-Par), volume 1900 of Lecture Notes in Computer Science,
pages 690–699, Munich, Germany, August 2000. Springer.

[128] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-
Martinez, Steven Swanson, and Michael Bedford Taylor. Conservation cores: Reducing the energy of ma-
ture computations. In Proceedings of the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 205–218, Pittsburgh, Pennsylvania, March 2010.

[129] Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science,
73(2):231–248, June 1990.

[130] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason Cong. Memory partitioning for multidimensional
arrays in high-level synthesis. In Proceedings of the 50th Design Automation Conference, Austin, Texas, June
2013. ACM.

[131] Douglas R. White and Mark Newman. Fast approximation algorithms for finding node-independent paths in
networks. Technical Report 01–07–035, Santa Fe Institute, New Mexico, 2001.

[132] Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and Jacques Cohen, editors,
Memory Management, volume 637 of Lecture Notes in Computer Science, pages 1–42. Springer Berlin Heidel-
berg, 1992.

[133] Felix Winterstein, Samuel Bayliss, and George A Constantinides. High-level synthesis of dynamic data struc-
tures: A case study using Vivado HLS. In Proceedings of Field-Programmable Technology (FPT), pages 362–365.
The Institute of Electrical and Electronics Engineers (IEEE), 2013.

[134] Felix Winterstein, Kermin E Fleming, Hsin-Jung Yang, and George A Constantinides. Custom multicache
architectures for heap manipulating programs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 36(5):761–774, 2017.

[135] Felix Winterstein, Kermin E. Fleming, Hsin-Jung Yang, John Wickerson, and George A. Constantinides.
Custom-sized caches in application-specific memory hierarchies. In Proceedings of the International Conference
on Field-Programmable Technology (FPT), pages 144–151, Queenstown, New Zealand, 2015. IEEE.

[136] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross. Q100: The architecture
and design of a database processing unit. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 255–268, Salt Lake City, Utah, March 2014.

[137] Lisa Wu, Orestis Polychroniou, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. Energy analysis of
hardware and software range partitioning. ACM Transactions on Computing Systems, 32(3):8, August 2014. 24
pages.

163

List of Tables

[138] Xilinx Corporation. Vivado Design Suite: User Guide, 2018. UG902 (v2018.3).

[139] Hsin-Jung Yang, Kermin E. Fleming, Michael Adler, Felix Winterstein, and Joel Emer. Scavenger: Automating
the construction of application-optimized memory hierarchies. In 2015 25th International Conference on Field

Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2015.

[140] Christian Zebelein, Christian Haubelt, Joachim Falk, Tobias Schwarzer, and Jürgen Teich. Model-based actor
multiplexing with application to complex communication protocols. In Proceedings of Design, Automation,

and Test in Europe (DATE), pages 216–219, Dresden, Germany, March 2014. The Institute of Electrical and
Electronics Engineers (IEEE).

[141] Kuangya Zhai, Richard Townsend, Lianne Lairmore, Martha A. Kim, and Stephen A. Edwards. Hardware
synthesis from a recursive functional language. In Proceedings of the International Conference on Hardware/-

Software Codesign and System Synthesis (CODES+ISSS), pages 83–93, Amsterdam, The Netherlands, October
2015. IEEE.

[142] Ritchie Zhao, Gai Liu, Shreesha Srinath, Christopher Batten, and Zhiru Zhang. Improving high-level synthesis
with decoupled data structure optimization. In Proceedings of the 53rd Design Automation Conference, Austin,
Texas, June 2016. ACM.

[143] Yuan Zhou, Khalid Musa Al-Hawaj, and Zhiru Zhang. A new approach to automatic memory banking using
trace-based address mining. In Proceedings of the International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 179–188, Monterey, California, February 2017. ACM.

164

