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Abstract

Initial evidence is presented that explicitly parallel� ma�
chine�independent programs can automatically be trans�
lated into parallel machine code that is competitive in per�
formance with hand�written code�

The programming language used is Modula���� an ex�
tension of Modula��� which incorporates both data and
control parallelism in a portable fashion� An optimiz�
ing compiler targeting MIMD� SIMD� and SISD machines
translates Modula��� into machine�dependent C code�

The performance of the resulting code is compared to
that of equivalent� carefully hand�coded and tuned pro�
grams� On a MasPar MP�� �SIMD machine with up to �	k
processors
 the Modula��� programs typically achieve ��
of the performance of the hand�coded parallel versions�
When targeting sequential processors� the Modula��� pro�
grams reach �� of the performance of hand�coded se�
quential C� �There are no MIMD results yet�


The e�ects of two major optimization techniques� syn�
chronization point elimination and data�process alignment
are also quanti�ed�

� Introduction

E�ective programmability of parallel machines is one of
the most pressing problems in parallel computing� The key
aspect of this problem is e�ciency�preserving portability�

The �rst major concern� portability� is as essential
for parallel computing as it is for sequential computing�
one simply cannot a�ord to rewrite parallel programs for
each machine� Portability can be achieved with machine�
independent programming languages that allow clear ex�
pression of parallel algorithms and are free of hardware
quirks that may di�er from one computer to the next�

The second major concern is e�ciency� Programs ex�
pressed in a high�level� portable language must be compi�
lable into parallel machine code of satisfactory e�ciency
on a wide range of architectures� E�ciency is satisfactory
if the compiled code approaches the performance of hand�
tuned machine�dependent code�

This paper is primarily concerned with e�ciency� It
provides a quantitative evaluation of the code produced by
a compiler for a high�level� portable programming language

with explicit parallelism� The language is Modula���� an
extension of Modula��� The extensions are small and could
be incorporated into other imperative languages� including
Fortran� At present� the compiler targets the MasPar MP�
� series �large scale SIMD systems
� LANs �medium scale
MIMD systems
� and sequential workstations �SISD sys�
tems
� Measurements of a set of benchmarks support the

Hypothesis� Explicitly parallel and machine�independ�
ent programs can automatically be translated into
machine�dependent parallel code that is competitive
in performance with optimized hand�written code�

This result is important for writing explicitly parallel pro�
grams and for converting existing sequential programs to
parallel ones� With good compilers� the manual conversion
of a sequential program can concentrate on �nding paral�
lel algorithms� while ignoring machine�dependent details�
The necessary mapping to a given machine architecture
is performed completely automatically� The advantage of
this separation of concerns is not only that it simpli�es
the conversion process� but it also assures that the result
of the conversion is a machine�independent program that
can be run on di�erent machines after recompilation�

Furthermore� we present evidence that a compiler can
also produce highly e�cient sequential code from paral�
lel programs� Sequential e�ciency is important for sev�
eral reasons� First� it allows programmers to use parallel
language constructs even when targeting sequential ma�
chines� Parallel constructs free programmers from the task
of manually sequentializing an algorithm where parallel ex�
pression is more natural� Second� parallel programs can
be developed and tested on sequential machines without
incurring unjusti�able overhead� Finally� the fact that a
compiler for parallel machines produces e�cient sequential
code when setting the number of processors to unity pro�
vides a good indication about the generality and scalability
of the code generation techniques employed�

In section �� we brie�y introduce Modula��� while the
main features of our Modula��� System �compiler� debug�
ger� libraries� runtime system
 are described in section ��
We present the benchmarks� experiments� and their results
in section � and conclude with a discussion of the quanti�
tative e�ects of two major optimization techniques�



� Modula���

The programming language Modula��� was developed
to allow for high�level� problem�oriented and machine�
independent parallel programming� As described in �����
it provides the following features�

� An arbitrary number of processes operate on data in
the same single address space� Note that shared mem�
ory is not required� a single address space merely per�
mits all memory to be addressed uniformly� but not
necessarily at uniform speed�

� Synchronous and asynchronous parallel computations
as well as arbitrary nestings thereof can be formulated
in a totally machine�independent way�

� Procedures may be called in any context �sequential�
synchronous� or asynchronous
 and at any nesting
depth� Furthermore� additional parallel processes can
be created inside procedures �recursive parallelism
�

� All the abstraction mechanisms of Modula�� are avail�
able for parallel programming�

Modula��� extends Modula�� with the following two lan�
guage constructs�

�� The FORALL statement� which has a synchronous and
an asynchronous version� is the only way to introduce
parallelism into a Modula��� program�

�� The distribution of array data is optionally speci�ed
by allocators� e�g� SPREAD� CYCLE� They do not have
any semantic meaning and are just layout hints for
the compiler�

Because of the compactness and simplicity of the exten�
sions� they could easily be incorporated into other imper�
ative programming languages� such as Fortran� C� or Ada�
In Modula��� the syntax of the FORALL statement is�

ForallStatement �

FORALL ident ��� SimpleType IN �PARALLEL � SYNC�

�VarDecl	 BEGIN


StatementSequence

END�

SimpleType is an enumeration or a possibly non�static
subrange� i�e� the boundary expressions may contain vari�
ables� The FORALL creates as many �conceptual
 processes
as there are elements in SimpleType� The identi�er intro�
duced by the FORALL statement is local to it and serves as a
runtime constant for every process created by the FORALL�
The runtime constant of each process is initialized to a
unique value of SimpleType� The FORALL statement pro�
vides an optional section for the declaration of variables
local to each process� These local variables lead to better
source code structuring� thus greatly increasing the read�
ability and e�ciency of parallel code�

Each process created by a FORALL executes the state�
ments in StatementSequence� The END of a FORALL state�
ment imposes a synchronization barrier on the participat�
ing processes� termination of the whole FORALL statement

is delayed until all created processes have �nished their
execution of Statement�Sequence�

The version of the FORALL statement �synchronous or
asynchronous
 determines whether the created processes
execute StatementSequence in lock�step or concurrently�

Hence� for non�overlapping vectors X� Y� and Z the fol�
lowing asynchronous FORALL statement su�ces to imple�
ment the vector addition X �� Y � Z�

FORALL i � ����N
 IN PARALLEL

X�i
 �� Y�i
 	 Z�i


END

In contrast to the above� parallel modi�cations of overlap�
ping data structures may require synchronization� Thus�
irregular data permutations can be implemented as follows�

FORALL i � ����N
 IN SYNC

X�i
 �� X�p�i�


END

This program permutes the vector X according to the per�
mutation function p� The semantics of the synchronous
FORALL ensure that all rhs elements X�p�i�� are read and
temporarily stored before any lhs variable X�i� is written�

The behavior of branches and loops inside synchronous
FORALLs is de�ned with an MSIMD �multiple SIMD
 ma�
chine in mind� This means that Modula��� does require
any synchronization between di�erent branches of syn�
chronous CASE or IF statements� The exact synchronous
semantics of all Modula��� statements are de�ned in �����

The synchronous version of this FORALL operates much
like the HPF FORALL� except that it is fully orthogonal to
the rest of the language� Any statement� including condi�
tionals� loops� other FORALLs� and subroutine calls may be
placed in its body� Thus� the language explicitly supports
nested and recursive parallelism� There is no concept of
asynchronous parallelism in HPF�

� The Modula��� System

The Modula��� System currently targets the MasPar MP�
� series of massively parallel processors �SIMD
� heteroge�
nous LANs of Unix workstations �MIMD
� and single stan�
dard Unix workstations �SISD
� The Modula��� System
consists of

�� an optimizing and restructuring compiler�

�� a machine�dependent runtime system�

�� libraries of scalable parallel operations �enumeration�
reduction� scan� etc�
�

�� a parallel debugger�

Below� we describe each part of the Modula��� System in
some detail�



��� Compiler

General Architecture� To keep major parts of the
compiler machine�independent� Modula��� programs are
translated to a general intermediate representation� Based
on a study of di�erent parallel machines� we decided to
use C augmented with a set of macros as an intermediate
language ����� Macros are expanded using target�speci�c
include �les yielding the appropriate parallel C derivate�
Thus� retargeting the compiler only requires the exchange
of the macro package and some libraries�
Optimizations� On parallel machines� optimizations
tend to improve program runtime dramatically� There�
fore� the Modula��� compiler performs various optimiza�
tions and code restructurings summarized below �for more
details see ����
� In the following subsections� we brie�y
sketch the main optimizations that are implemented in our
Modula��� compilers� In section ��� we show the quanti�
tative e�ects of these techniques�

Automatic Data and Process Distribution

On distributed memory machines� the distribution� i�e�
alignment and layout of data and processes over the avail�
able processors is a central problem�

Alignment is the task of �nding an appropriate trade�
o� between the two con�icting goals of ��
 data locality
and ��
 maximum degree of parallelism� Our automatic
alignment algorithm is descibed in ��	� and brie�y sketched
below by means of an example� Layout is the assignment
of aligned data structures and processes to the available
processors� Desirable goals are ��
 the exploitation of spe�
cial hardware supported communication patterns and ��

simple address calculations� We use an automatic mapping
���� of arbitrary multidimensional arrays to processors and
thus exploit grid communication if available and achieve
e�cient address calculations�

To align arrays A and B of the following example� array
A is enlarged and shifted to the left� All index expressions
involved are transformed accordingly�

VAR A� ARRAY �����
 SPREAD OF INTEGER�

B� ARRAY �������
 SPREAD OF INTEGER�

FORALL i������
 IN SYNC

A�i
 �� B�i��
�

B�i
 �� �

END

�

VAR A�B � ARRAY �������
 SPREAD OF INTEGER�

FORALL i������
 IN SYNC

A�i��
 �� B�i��
�

B�i
 �� �

END

The shift leads to the same index expressions on a per
statement basis� The enlargement decouples alignment
and layout� Since the resulting arrays have the same size�
the layout algorithm maps corresponding elements of the

array to the same processor� We allow for moderate stor�
age waste because the primary goal is execution speed�

Up to now we have only dealt with the data alignment�
Process alignment is also achieved by means of a source�
to�source transformation� During this transformation� the
FORALLs are attributed with an ALIGNED WITH clause that
directs the code generator to allocate each process where
the corresponding data element resides�

VAR A�B � ARRAY �������
 SPREAD OF INTEGER�

FORALL i������
 IN SYNC ALIGNED WITH A�i


A�i
 �� B�i


END�

FORALL i������
 IN SYNC ALIGNED WITH B�i


B�i
 �� �

END

The original FORALL has been split into two parts� In both
FORALLs the process with index i will be executed where
data element B�i� resides� resulting in local accesses� Lo�
cal accesses could not be achieved with a single FORALL�

Elimination of Synchronization Barriers

The semantics of synchronous FORALLs in ���� require a vast
number of synchronization barriers� Most real synchronous
FORALLs� however� only need a fraction thereof to ensure
correctness ���� Redundant synchronization barriers can
be detected with data dependence analysis ���� ���

To understand the techniques of automatic synchroniza�
tion barrier elimination consider the synchronous FORALL

statement below� followed by two possible translations�

FORALL i� ����N
 IN SYNC

Z�i
 �� Z�i	�
�

X�i
 �� X���i
�

Y�i
 �� Y�p�i�
�

END

FORALL i�����N
 IN PARALLEL FORALL i�����N
 IN PARALLEL

H��i
 �� Z�i	�
 H��i
 �� Z�i	�
�

END� H��i
 �� X���i
�

FORALL i�����N
 IN PARALLEL H��i
 �� Y�p�i�


Z�i
 �� H��i
 END�

END� FORALL i�����N
 IN PARALLEL

FORALL i�����N
 IN PARALLEL Z�i
 �� H��i
�

H��i
 �� X���i
 X�i
 �� H��i


END� Y�i
 �� H��i


FORALL i�����N
 IN PARALLEL END�

X�i
 �� H��i


END�

FORALL i�����N
 IN PARALLEL

H��i
 �� Y�p�i�


END�

FORALL i�����N
 IN PARALLEL

Y�i
 �� H��i


END

The translation on the left shows an equivalent program�
in which all synchronization points appear at the end of
asynchronous FORALLs� The compiler detects that four of
the six synchronizations are redundant and restructures
the code accordingly� The optimized result is shown on
the right�



Known Weaknesses

Currently� the compiler does not exploit the possibility of
grid communication on the MasPar� Non�local data is ac�
cessed with general communication� Although the neces�
sary information is present in the compilation process this
is not yet implemented�

On MIMD machines with high latency networks the
following optimizations� which are not implemented yet�
will improve performance� The combination of messages
that have the same source or destination will lead to larg�
er packets and less total latency� With pre�fetch or post�
store analysis Computation and communication can be
overlapped to hide remaining latency�

Furthermore� there are some performance problems
when translating nested parallelism� Work on better
scheduling strategies is in progress�

��� Runtime System

The Modula��� runtime system performs the initialization�
maintenance� and cleanup of code sections executed in par�
allel� Runtime system functions are provided by e�ciently
implementable� machine�independent macro interfaces�

The MasPar MP�� series runtime system makes use of
the MasPar system library� The LAN runtime system is
built on top of p� ���� a message passing parallel program�
ming system available for a variety of machines� Therefore�
we are able to target heterogenous LANs� The use of p�
should also make our LAN compiler a sound basis for a
future MIMD Modula��� compiler�

��� Parallel Libraries

The Modula��� parallel libraries comprise reductions�
scans and enumerations� They aim at scalability� porta�
bility� and e�ciency of frequently used parallel operations�
Scalability means that the library routines operate on open
array parameters of arbitrary size� We ensure portability
by providing the same interfaces on all target machines�
To achieve e�ciency� we exploit low�level features of each
target machine in the di�erent library implementations�

Another interesting feature of these libraries is their
functional diversity� Wherever possible� normal� masked�
segmented� and universal �masked plus segmented
 ver�
sions of the parallel operations are provided�

��� Parallel Debugger

The Modula��� source�level debugger ��� allows for visual
interactive debugging under X�Windows� The central con�
cepts of debugging parallel Modula��� programs are pro�
cess and data visualization� The debugger enables users
to trace activities executed in parallel by providing ab�
straction mechanisms like grouping� parallel call trees� and
simultaneous source code views in di�erent windows� For

data visualization� �D�slices of multidimensional distribut�
ed arrays can be displayed graphically in so�called �visu�
alizer windows�� Furthermore� the debugger is able to col�
lect rudimentary pro�ling data by counting statement or
subroutine invocations�

� Benchmarks and Results

At the moment� our benchmark suite consists of thirteen
problems collected from the literature ��� 	� ��� �� ��� For
each problem� we implemented the same algorithms in
Modula���� in sequential C� and in MPL�� Then we mea�
sured the runtimes of our implementations on a �	K Mas�
Par MP�� �SIMD
 and a SparcStation�� �SISD
 for widely
ranging problem sizes� Measurements for LANs are not
yet available because the tedious and error�prone task of
implementing hand�coded versions is still in progress�
Modula��� Programs� In Modula��� we employ our
libraries wherever possible� A technical de�ciency in our
current Modula��� compiler forced us to manually �unroll�
two�dimensional arrays into one�dimensional equivalents�
This will no longer be necessary in the near future�
MPL Programs� In MPL we implemented the same al�
gorithms as in Modula��� and carefully hand�tuned them
for the MasPar MP�� architecture� The MPL programs
make extensive use of local access� neighborhood commu�
nication� standard library routines� and other documented
programming tricks� To ensure the fairness of the compar�
ison� the resulting MPL programs are as generally scalable
as their Modula��� counterparts� Since scalability is not
restricted to multiples of the number of processors� bound�
ary checks are required in every virtualization loop�
Sequential C Programs� The sequential C programs
implement the parallel algorithms on a single processor�
We use optimized sequential libraries wherever possible�

In the following� we �rst compare the resource con�
sumption of these three program classes� Then we dis�
cuss their overall performance and present each problem
together with its speci�c performance results in some de�
tail� In section ��� we show the quantitative e�ects of the
optimization techniques�

��� Resource Consumption

The comparison is based on the criteria program space�
data space� development time� and runtime performance�
Program Space� Our compiler translates Modula���
programs via C plus macros to MPL or C� The result�

� MPL ���� is a data�parallel extension of C designed for
the MasPar MP�� series� In MPL� the number of available pro�
cessors� the SIMD architecture of the machine� its 	D mesh�
connected processor network� and the distributed memory are
visible� The programmer writes a SIMD program and a sequen�
tial frontend program with explicit interactions between the
two� MPL provides special commands for neighborhood and
general communication� Virtualization loops and distributed
address computations must be implemented by hand�



ing programs consume slightly more space than the hand�
coded MPL or C programs� Regarding source code length�
Modula��� programs are typically half the size of their cor�
responding MPL or C programs�

Data Space� The memory requirements of the Modula�
�� programs are typically similar to those of the MPL and
C programs� Memory overhead� i�e� variable replication
into temporaries� occurs during synchronous assignments�
This replication� however� most often is also required in
hand�coded MPL� Furthermore� there is some additional
overhead involved in controlling synchronous� nested� and
recursive parallelism ��	 bytes per FORALL
�
Development time� Due to compiler errors detected
while implementing the benchmarks� we cannot give ex�
act quantitative �gures on implementation and debugging
time� However� we estimate that the implementation e�ort
in Modula��� is a �fth of the MPL e�ort�

��� Runtime Performance

MPL versus Modula���� The general relative perfor�
mance of Modula��� is quite stable over all problem sizes
and averages to ��� Modula��� typically achieves ���
��� with peaks at ��� of the MPL performance�
Sequential C versus Modula���� The general relative
performance of Modula��� is again quite stable over all
problem sizes and averages to ��� Modula��� typically
achieves ����� of the sequential C performance� with
peaks at ����
For widely varying problem sizes we measured the run�
time of each test program on a �	K MasPar MP�� and a
SparcStation��� We used the high�resolution DPU timer
on the MasPar and the UNIX clock function on the Sparc�
Station �sum of user and system time
� Below� tm�� rep�
resents the Modula��� runtime on either a �	K MasPar
MP�� or a SparcStation�� �as appropriate
� tmpl gives the
MPL runtime on a �	K MasPar MP��� tc stands for the
sequential C runtime on a SparcStation���

We de�ne performance as problem size per time unit
and focus on performances size

tm��

� size
tmpl

� tmpl�tm�� and
size
tm��

� size
tc

� tc�tm�� �
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The overall distribution of relative performances proves to
be encouraging� The above histogram provides the number
of relative performance values falling into one of the classes
����
� �����
� � � �� ��������� The numbers are
the accumulated sums over all problems and problem sizes
�all data points
�

��� Benchmarks

The benchmark suite consists of thirteen problems collect�
ed from the literature ��� 	� ��� ��� The problems �������
����� and ����� have been de�ned in ��� to test the ex�
pressive power of parallel programming languages� Some
problems ������� ������ ������
 are chosen from text books
on parallel programming ��� 	� ���� The problem of �nding
the longest common subsequence ������
 is well known in
text processesing and computational biology ����� The re�
maining problems have been introduced by other authors
and compiler groups ���� �� ���� The benchmark suite does
not contain standard numeric operations since we are con�
vinced that these routine will require low level library im�
plementation which is unlikely to be done by an end user
in Modula����

In the problem descriptions below n is used as problem
size that occurs in the graphs�

����� Root Search

Problem� Determine the value of x � �a� b� such that
f�x
 � �� given that f is monotone and continuously dif�
ferentiable�
Approach I� The problem is solved with multisection�
The interval �a� b� is equally divided over n processes�
If f has a root in �a� b� then there is exactly one pro�
cess p with f�xp��
 � f�xp
 � �� Update the interval
�a�� b�� �� �xp��� xp�� Iterate until the error b� � a� � ��
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t(mpl)/t(m2*)
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The main reason for the better runtimes of the hand�codedMPL
program is the way neighboringdata elements are accessed� The
MPL program exploits the hardware supported XNET commu�
nication� whereas the Modula�	
 compiler currently uses the
much slower general communication� Global communication
becomes slower with an increasing number of data packets in
the network� whereas XNET performance is independent of the



load� Thus� the performance ratio drops initially� until general
communication is saturated� With growing virtualization ratio
�� 	���� an increasing number of accesses to neighboring da�
ta elements is local in both the MPL implementation and the
Modula�	
 translation� Since the fraction of the overall run�
time spent in communication shrinks� the performance of the
Modula�	
 program improves to ���

Approach II� Again� the interval �a� b� is divided evenly
over all processes� Then each process performs Newton s
iteration� The algorithm terminates when a process �nds
the root�
Note� This problem occurs frequently in science and en�
gineering applications ����

0.25

0.5

0.75

1

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24
problem size

Problem RootSearchII

t(mpl)/t(m2*)
t(c)/t(m2*)

Since the implementationshave total locality the performance is
better than that of approach I� The Modula�	
 compiler uses a
general translation scheme for the FORALL statement that allows
for nested parallelism� This generality� however� is more costly
than the straightforward implementation of virtualization loops
in the MPL program� For problem sizes � 	�� the loops are
iterated only once� For growing virtualization ratios� the loop
overhead becomes smaller compared to the work done in all
iterations� leading to growing performance of Modula�	
�

����� Doctor�s O�ce

Problem� A set of n patients� a set of doctors� and a
receptionist are given� The task is to model the following
interactions� Initially� all patients are well and all doctors
are in a FIFO queue awaiting sick patients� Then patients
become sick at random and enter a FIFO queue for treat�
ment by one of the doctors� The receptionist handles the
two queues� assigning patients to doctors in FIFO manner�
As soon as a doctor and patient are paired� the doctor diag�
noses the illness and treats the patient in a random amount
of time� After �nishing with a patient� the doctor rejoins
the doctor s queue to await another patient� The output
of the problem is intentionally unspeci�ed �from ���
�

Approach� The random amounts of time that patients
are well and that doctors need to treat illnesses are counted
down in parallel� The FIFO assignments of doctors to
patients is done in parallel� too� The output is a list of
timestamps� indicating when patients became ill� and list
of pairings �doctor� patient� treatment time
�
The curve of the MasPar performance is shaped similar to that
of problem ����� �approach I�� However� the amount of compu�
tation dominates the e�ect of communication operations�
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����� Longest Common Subsequence

Problem� Two strings A � a�a� � � �al and B �
b�b� � � � bm are given� Find a string C � c�c� � � � cp such
that C is a longest common subsequence of A and B� �C
is a subsequence of A if it can be constructed by removing
elements from A without changing their order� A common
subsequence must be constructible from both A and B�

Approach� The solution uses a wave�front implemen�
tation of dynamic programming� It causes intensive ac�
cess to neighboring data elements� The problem size is
n �max�l�m
�
Note� The problem is presented in detail in ����� The
parallel solution is based on ����
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The curve of the MasPar performance is shaped similar to that
of problem ����� �approach I�� The e�ect of global versus XNET
communication is smaller when few packets are sent �problem
size � 	��� Due to limited memory� only problem sizes small�
er than ��k are considered� Thus� the expected performance
growth for bigger problem sizes is not visible�

����� Red	Black Iteration

Problem� Implement a red�black iteration� i�e�� the ker�
nel of a solver for partial di�erential equations�
Approach� The implementation is straightforward� See



for example ���� It almost exclusively references neighbor�
ing data elements ina n � n�matrix�
Note� This problem often serves as a case study for imple�
mentors of automatically parallelizing compilers� e�g� �����
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See the explanation for problem ����� �approach I�� The
Red�Black problem is quadratic� Problem size 	� requires 	��

matrix elements and therefore corresponds to the machine size
of the MasPar ���k��

����
 List Rank

Problem� A linked list of n elements is given� All ele�
ments are stored in an array A����n�� Compute for each
element its rank in the list�
Approach� This problem is solved by pointer jumping�
Note� Ranking the elements of a list is one of the elemen�
tary list processing tasks �����
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The good result on the MasPar is caused by the fact that both
MPL and Modula�	
 must use general communication�

����� Pairs of Relative Primes

Problem� Count the number of pairs �i� j
 with � � i �
j � n that are relatively prime� i�e� the greatest common
divisor of i and j is ��
Approach� The solution is based on a data�parallel imple�
mentation of the GCD algorithm followed by an add�scan�
Note� The problem was suggested by Hatcher ����
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The parallel invocation of a GCD procedure with its parallel
while construct is the dominant cost producer in this exam�
ple� Since this is implemented almost identical in MPL and the
Modula�	
 version on the MasPar� the same runtimes can be
measured�

����� Transitive Closure

Problem� The adjacency matrix of a directed graph with
n nodes is given� Find its transitive closure�
Approach� Process the adjacency matrix according to the
property that if nodes x and m as well as nodes m and y
are �transitively
 adjacent� then x and y are �transitively

adjacent� The algorithm is due to Warshall �����
Note� The problem was suggested by Hatcher ����
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The good result on the MasPar is caused by the fact that both
MPL and Modula�	
 must use general communication�

���� Hamming�s Problem

Problem� A set of primes fa� b� c� � � �g of arbitrary size
and an integer n are given� Find all integers of the form
ai�bj �ck �� � � � n in increasing order and without duplicates�
Approach� For each given prime p compute the power set
fpijpi � ng� Combine any two power sets to a new one�
while enforcing that the products remain � n� Repeat the
combination for all power sets�
Note� The problem has been suggested in ����
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t(mpl)/t(m2*)
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����� Mandelbrot Set

Problem� Compute the well�known Mandelbrot set�
Approach� Perform all iterations in parallel�
Note� Performance is excellent due to the absence of com�
munication�
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The good result on the MasPar is caused by the fact that both
MPL and Modula�	
 rely on total locality�

������ Estimation of Pi
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Problem� Compute � using the equation � �
R �
�

�

��x�
�

Approach� Approximate the solution by computing
�

n

Pn��

i��

�

��x�
i

�rectangular rule
� where n is the problem

size parameter and xi � �i ! �

�

�n is the midpoint of the

ith interval�
Note� In ����� Karp employs this problem to study parallel
programming environments�
For problem sizes � machine size �	���� the hand implementa�
tion of the reduction in MPL is slightly more e�cient than the
library function used in the Modula�	
 program�

������ Para�ns Problem

Problem� Given an integer n� output the chemical struc�
ture of all para�n molecules for i � n� without repetition
and in order of increasing size� Include all isomers� but no
duplicates �from ���
�
Approach� The algorithm is partially based on ���� and
has similarities to the approach used by Andrews in ����
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The scan� enumeration� and reduction library functions used
in Modula�	
 are more general than necessary for this problem�
This generality causes performance to degrade for problem sizes
� machine size�

������ Point in Polygon

Problem� A simple polygon P with n edges and a point
q are given� Determine whether the point lies inside or
outside the polygon� �A polygon is simple if pairs of line
segments do not intersect except at their common vertex�

Approach� Draw a line from q that is parallel to the ver�
tical axis� Count the number of intersections with P � The
point q lies inside P if and only if this number is odd�
Note� This well�known algorithm from computational ge�
ometry appears in many text books�
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t(mpl)/t(m2*)
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See explanation for problem �������



������ Prime Sieve

Problem� Compute all prime numbers in ����n��
Approach� We implemented the classical prime sieve�
However� rather than using a virtual process per candi�
date� the algorithm assigns a segment of candidates to each
processor� This adaptive version works much faster since
division can be replaced by indexing within each segment�
Note� The problem was suggested by Hatcher ����
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The MPL implementation of the parallel adaptive work loops
can take advantage of parallel register variables� Access to them
is much faster than memory access� The Modula�	
 compiler
does not place the same variables into registers� Hence� for
growing adaptive work loops �problem size � 	��� the perfor�
mance curve degrades�

��� E�ect of the Optimizations

Alignment and Layout

Data locality obviously pays o� since data access involving
communication is slower than access to local memory�
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Problem average

MP-1: t(no align opt)/t(align opt)

In the above diagram we compare the runtimes of two ver�
sions� The �rst version �tno�align�opt
 has no ALIGNED

WITH clause in the program text� The compiler produces
code that detects dynamically at runtime whether adresses
are local or not� In the second version �talign�opt
� align�
ment optimization in the compiler has produced ALIGNED

WITH information� The code generator thus statically
knows about locality� The diagram shows the arithmetic

average of the ratios over all problems� Positive errect of
the alignment is indicated by the curve above unity� For
example� a curve around � shows that the optimization
halves the runtime�

On the MasPar� this optimization improves runtime
performance by �� on average� The advantage of stat�
ically determined locality grows with the amount of data
accessed� No di�erences could be measured on a sequential
workstation� since all accesses are local�

Elimination of Synchronization Barriers

The elimination obviously pays o� for machines without
synchronization hardware� Most MIMD machines� for ex�
ample� synchronize by message passing� which can be two
or three orders of magnitude slower than instruction execu�
tion� However� synchronization barrier elimination is even
bene�cial on SIMD machines� because it reduces virtual�
ization overhead and the number of temporary variables
needed� Furthermore� it may improve register usage�

In the following diagram� we show the performance ra�
tio between runs without and with elimination of synchro�
nization barriers �tno�sync�opt�tsync�opt 
�
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SUN4: t(no sync opt)/t(sync opt)

Synchronization barrier elimination improves runtime by
over �� on a MasPar and by over a factor of � on sequen�
tial workstations� Originally� the benchmark programs had
��� synchronization barriers which were reduced to ��� by
applying the optimization technique�

On SISD and MIMD machines� the performance im�
provement stems from the fact that fewer virtualization
loops and fewer temporaries are needed� On a workstation�
loop control and computation is done by the same proces�
sor� Without the elimination of synchronization barriers
more than �� of the runtime is used for loop control and
memory access for additional temporaries� On the MasPar
MP��� loop control is performed by the fast frontend pro�
cessor whereas the computation is done by the much slower
parallel processors� Since the optimization technique only
a�ects the frontend part the relative performance gain is
smaller than that achieved on a single workstation�



� Conclusion

We presented evidence that compilers for explicitly paral�
lel machine�independent programs can produce competi�
tive code� The results were obtained by comparing com�
piled code with hand�written and hand�optimized code�
Our Modula��� compiler presently produces code for the
MasPar MP�� series that� on average� reaches �� of the
performance of equivalent hand�coded programs� With ad�
ditional optimization techniques this ratio is likely to im�
prove even further�

High�level language compilers for parallel machines not
only provide portability for parallel programs� They al�
so simplify the task of converting sequential programs to
parallel ones because the machine mapping is done by the
compiler while the programmer can concentrate on �nding
machine�independent parallel algorithms�

A SPARC�SunOS ����� binary version of the Modula�	

compiler� the documentation� and the benchmarks are
available via anonymous ftp from iraun��ira�uka�de under
pub�programming�modula	star� In order to keep track of the
Modula�	
 community� we ask retrievers of our Modula�	
 com�
piler to send us their full names and addresses� Send all corre�
spondence to msc�ira�uka�de�
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