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Compiling Polymorphism Using Intensional Type Analysis*

Robert Harper?

Greg Morrisett?

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract

Traditional techniques for implementing polymorphism use
a universal representation for objects of unknown type. Of-
ten, this forces a compiler to use universal representations
even if the types of objects are known. We examine an al-
ternative approach for compiling polymorphism where types
are passed as arguments to polymorphic routines in order to
determine the representation of an object. This approach
allows monomorphic code to use natural, efficient represen-
tations, supports separate compilation of polymorphic defi-
nitions and, unlike coercion-based implementations of poly-
morphism, natural representations can be used for mutable
objects such as refs and arrays.

We are particularly interested in the typing properties
of an intermediate language that allows run-time type anal-
ysis to be coded within the language. This allows us to
compile many representation transformations and many lan-
guage features without adding new primitive operations to
the language. In this paper, we provide a core target lan-
guage where type-analysis operators can be coded within the
language and the types of such operators can be accurately
tracked. The target language is powerful enough to code a
variety of useful features, yet type checking remains decid-
able. We show how to translate an ML-like language into
the target language so that primitive operators can analyze
types to produce efficient representations. We demonstrate
the power of the “user-level” operators by coding flattened
tuples, marshalling, type classes, and a form of type dynamic
within the language.

1 Introduction

Many compilers assume a universal or “boxed” represen-
tation of a single machine word if the type of a value is
unknown. This allows the compiler to generate one simple
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piece of code to manipulate the value. But boxed represen-
tations often require more space and provide less efficient
access than natural representations. For example, an array
of small unknown objects, such as booleans or characters,
is represented as an array of words, wasting the majority of
the space. An object larger than a word, such as a double-
precision floating-point value, is allocated and a pointer is
used in place of the value. Consequently, accessing the value
requires an additional memory access. As word sizes in-
crease from 32 to 64-bits, and memory latencies increase, it
becomes increasingly important to minimize boxing.

In modern programming languages such as Modula-3,
Standard ML (SML), and Haskell, unknown types and thus
boxed representations arise because of two key language fea-
tures: types imported from a separately compiled program
unit and types within polymorphic routines. Polymorphic
values are particularly troublesome because we can simulta-
neously view them as having any one of an infinite number
of monomorphic types. For example, a polymorphic routine
that maps a function across the elements of an array can
be simultaneously seen as a function that works on boolean
arrays and a function that works on real arrays. The routine
can thus be used in place of a function that was compiled
knowing whether the argument array contains booleans or
reals. Consequently, monomorphic routines are forced to
use the same representations as polymorphic routines and
the entire program pays the price of the increased space and
execution-time overheads of the universal representations.

1.1 Coercion Implementations

The problem with polymorphism stems from the assumption
that viewing a polymorphic value as a monomorphic value
should have no computational effect. Recent work by Leroy
[30] and others [41, 24, 43] has suggested that the instantia-
tion of a polymorphic value should correspond to a run-time
coercion from the universal representation to the appropri-
ate specialized representation. At function types, this re-
quires the dual coercion (for the function argument) that
converts specialized representations to the universal repre-
sentation. For example, when the identity function of type
Ya.a — « is instantiated to have type int — int, a coer-
cion is generated that takes an integer argument, boxes it,
passes it to the identity function, and unboxes the result.
This approach allows monomorphic code to use the natural,
efficient representations.

Leroy’s coercions produce an isomorphic copy of a data
structure. For example, to coerce a tuple, we project the



components of the tuple, box/unbox them, and then form a
new tuple. Unfortunately, copying coercions are impractical
for large data structures since the cost of making the copy of-
ten outweighs the benefits of the unboxed representation (as
pointed out by Leroy [30, page 184]). More problematically,
copying coercions do not work for mutable data structures
such as arrays. If we make a copy of the value to box the
components then updates to the copy will not be reflected
in the original array and vice versa.

1.2 Type Passing

An alternative approach to coercions, first suggested by the
Napier 88 implementation [37], is to pass the types that are
unknown at compile-time to primitive operations at link-
time or even run-time. Then the primitive operations can
analyze the type in order to select the appropriate code to
manipulate the natural representation of an object. For ex-
ample, a polymorphic subscript function for arrays might be
compiled into the following pseudo-code:

sub = Aa.typecase o of
bool = boolsub
| real = realsub
| 7 = boxedsub|r]

Here, sub is a function that takes a type argument (), and
does a case analysis to determine the appropriate special-
ized subscript function that should be returned. For exam-
ple, sub[bool] returns the boolean subscript function that
expects an array of bits, while sub[real] returns the floating
point subscript function that expects a double-word aligned
array of floating point values. For all other types, we assume
the array has boxed components and thus return the boxed
subscript function.

If the sub operation is instantiated with a type that is
known at compile-time (or link-time), then the overhead of
the case analysis can be eliminated by duplicating and spe-
cializing the definition of sub at the appropriate type. For
example, the source expression “sub(z,4) + 3.14” will be
compiled to the target expression “sub[real](z,4) + 3.14”
since the result of the sub operation is constrained to be
a real. If the definition of sub is inlined into the target
expression and some simple reductions are peformed, this
yields the optimized expression “realsub(z,4)+3.14”. Thus,
parameterizing the primitive operations by type provides a
single, consistent methodology for type analysis at compile-
time, link-time, and run-time.

In languages where polymorphic definitions are restricted
to “computational values” (essentially constants and func-
tions), polymorphic definitions can always be duplicated and
specialized or even inlined. Lazy languages such as Haskell
satisfy this constraint, and Wright has determined empir-
ically that such a restriction does not effect the vast ma-
jority of SML programs [52]. Languages like core-SML and
Haskell only allow polymorphic values to arise as the result
of a “let” binding and restrict the type of such values to
be prenex-quantified. That is, the type must be of the form
VYai,...,a,.T where 7 contains no quantifier. Thus, the only
thing that can be done to a polymorphic value is to instan-
tiate it. Since the scope of a let is closed, it is possible to
determine all of the instantiations of the polymorphic value
at compile time and eliminate all polymorphism through du-
plication andd specialization. Such an approach is used, for
instance, by Blelloch et al. in their NESL compiler [6] and

more recently by Jones to eliminate Haskell overloading [27].
Furthermore, Jones reports that this approach does not lead
to excessive code-blowup.

Unfortunately, eliminating all of the polymorphism in a
program is not always possible or pratical. In particular,
there is no way to eliminate the polymorphism when sepa-
rately compiling a definition from its uses because it is im-
possible to determine the types at which the definition will
potentially be used. This prevents us from separately com-
piling polymorphic libraries or polymorphic definitions en-
tered at a top-level loop. Furthermore, in languages that al-
low polymorphic values to be “first-class” such as XML [21]
and Quest [9], it is impossible to eliminate all polymorphism
at compile-time. Therefore, we view duplication and spe-
cialization as an important optimization, but consider some
run-time type analysis to still be necessary for practical lan-
guage implementation.

1.3 Type-Checking Type Analysis

In this paper, we show how to compile ML-like polymorphic
languages to a target language where run-time type anal-
ysis may be used by the primitive operations to determine
the representation of a data structure. We are particularly
interested in the typing properties of a language that al-
lows run-time type analysis. The sub definition above is
ill-typed in ML because it must simultaneously have the
types boolarray x int — bool, realarray x int — real, as
well as Va.(a)boxedarray x int — «. Since boolarray and
realarray are nullary constructors and not instantiations of
(a)boxedarray, it is clear that there is no ML type that
unifies all of these types.

Our approach to this problem is to consider a type sys-
tem that provides analysis of types via a type-level “Type-
case” construct. For example, the sub definition above can
be assigned a type of the form:

Va.SpclArray[a] x int = «

where the specialized array constructor SpclArray is defined
using Typecase as follows:

SpclArray[a] = Typecase a of
bool = boolarray
|real = realarray
|7 = (7)boxedarray

The definition of the constructor parallels the definition of
the term: If the parameter « is instantiated to bool, then
the resulting type is boolarray and if the parameter is instan-
tiated to real, the resulting type is realarray.

In its full generality, our target language allows types to
be analyzed not just by case analysis, but also via primitive
recursion. This allows more sophisticated transformations
to be coded within the language, yet type checking for the
target language remains decidable. An example of a more
sophisticated translation made possible by primitive recur-
sion is one where arrays of tuples are represented as tuples of
arrays. For example, an array of bool x real is represented as
a pair of a boolarray and a realarray. This representation al-
lows the boolean components of the array to be packed and
allows the real components to be naturally aligned. The
subscript operation for this representation is defined using
a recursive typecase construct called typerec in the following



manner:
typerec sub [bool] = boolsub
| sub[real] = realsub
| SUb[T1 X T2] =
(x,y),i)-(sublr1] (z, i), sublz2] (y, i))
| sub[r] = boxedsub|r]

If sub is given a product type, 71 X 72, it returns a function

that takes a pair of arrays ({z,y)) and an index (¢) and

returns the pair of values from both arrays at that index,

recursively calling the sub operation at the types 71 and 7».
The type of this sub operation is:

Va.RecArray[a] X int = «

where the recursive, specialized array constructor RecArray
is defined using a type-level “Typerec”:

Typerec RecArray [bool] = boolarray
| RecArray [real] = realarray
| RecArray [11 x 7] =
RecArray[ri] x RecArray|[r,]
| RecArray[r] = (7)boxedarray

Again, the definition of the constructor parallels the defini-
tion of the sub operation. If the parameter is instantiated to
bool, then the resulting type is boolarray. If the parameter
is instantiated with 73 X 72, then the resulting type is the
product of RecArray[r1] and RecArray|[r].

Run-time type analysis can be used to provide other use-
ful language mechanisms besides efficient representations.
In particular, ad hoc polymorphic operators, such as the
equality operator of SML, or an overloaded operator ex-
ported from a Haskell type class, can be directly imple-
mented in our target language without the need to tag val-
ues. Furthermore, the static constraints of SML’s equality
types and Haskell’s type classes may be coded using our
Typerec construct. Our target language is also able to ex-
press “marshalling” of data structures and a form of type
dynamic.

In Section 2 we describe the type-analysis approach to
compilation as a type-based translation from a source lan-
guage, Mini-ML, to our target language, )\iML. The key
properties of )\I-ML are stated, and a few illustrative exam-
ples involving typerec and Typerec are given. In Section 3 we
show how many interesting and useful language constructs
can be coded using typerec, including flattened representa-
tions, marshalling, type classes, and type dynamic. In Sec-
tion 4 we discuss related work, and in Section 5 we summa-
rize and suggest directions for future research.

2 Type-Directed Compilation

In order to take full advantage of type information during
compilation, we consider translations of typing derivations
from the implicitly-typed ML core language to an explicitly-
typed target language, following the interpretation of poly-
morphism suggested by Harper and Mitchell [20]. The source
language is based on Mini-ML [11], which captures many of
the essential features of the ML core language. The tar-
get language, }\,'ML , is an extension of AML , also known as
XML [21], a predicative variant of Girard’s F,, [16, 17, 42],
enriched with primitives for intensional type analysis.

2.1 Source Language: Mini-ML

The source language for our translations is a variant of Mini-
ML [11]. The syntax of Mini-ML is defined by the following

grammar:

(monotypes) T = t|int|m o m|n X
(polytypes) o == T1|Vico
(terms) e == z|n|{e,e)|me|me]|

Ar.e|eiex|letz =vine
(values) v o= z|a|{v,v)|Az.e

Monotypes (1) are either type variables (t), int, arrow types,
or binary product types. Polytypes (o) (also known as type
schemes) are either monotypes or prenex quantified types.
We write Vti, ..., tn.7 to represent the polytype Vti. - - - Vi, .T.
The terms of Mini-ML (e) consist of identifiers, numerals
(n), pairs, first and second projections, abstractions, appli-
cations, and let expressions. Values (v) are a subset of the
terms and include identifiers, integer values, pairs of values,
and abstractions.

The static semantics for Mini-ML is given in Figure 1 as
a series of inference rules. The rules allow us to derive a
judgement of the form A;T" > e : 7 where A is a set of free
type variables and I is a type assignment mapping identifiers
to polytypes. We write [r/t]7’ to denote the substitution of
the type 7 for the type variable ¢ in the type expression 7’.
We use A W A’ to denote the union of two disjoint sets of
type variables, A and A’ and TW{x : o} to denote the type
assignment that extends I so that x is assigned the polytype
o, assuming z does not occur in the domain of I'.

Let-bound expressions are restricted to values so that our
translation, which makes type abstraction explicit, is correct
(see below).

2.2 Target Language: AlML
The target language of our translations, AM”, is based on
AML 190], a predicative variant of Girard’s F,, [16, 17, 42].
The essential departure from the impredicative systems of
Girard and Reynolds is that the quantifier V¢.o ranges only
over “small” types, or “monotypes”, which do not include
the quantified types. This calculus is sufficient for the inter-
pretation of ML-style polymorphism (see Harper and Mitchell
[20] for further discussion of this point.) The language AML
extends AML with intensional (or structural [19]) polymor-
phism, that allows non-parametric functions to be defined
by intensional analysis of types.

The four syntactic classes for AM”| kinds (k), construc-
tors (u), types (o), and terms (e), are given below:

(kinds) k& = Q|k1 = Ko

(con’s) p u= tlint]| —=(p1,p2) | x(p1,p2) |
Atz | pafpe] |
Typerec p of (j|p— )

(types) o u= T(p)|int]| o1 = 02|01 X 02 |
Vt:k.o

(terms) e u= z|n|Azio.e|Q7eres |
(e1,62)707 [ RV e [ 23172 |
At:k.e | e[py] |

typerec p of [t.o](ejle— |ex)

Kinds classify constructors, and types classify terms. Con-
structors of kind Q name “small types” or “monotypes”.
The monotypes are generated from Int and variables by the



FTV([mn /ta](-- (I /ta]7) --)) € A

int) A;T'>fc:int
ar) T wTe Vi, e o 2 [ /tdC - (/7)) (inf)  A;T'> 7z in
A;Tber:m AT >es: T A;Tde:T X T2
(pair) A;T > {er,e2) 1 T1 X T2 () ATbme:; (@ 2)
ATW{z:m}ve: AiTver 7 =7 ATpey: 7
(abs) (app)

AT > Az.e:m1 — T2

A;T>erer: T

Aw{t,..,to;Tov: 7

(let)

A;T W {2 Vi, ..

.,tn.T'}l>e:T

A;Tpletr=vine: 7

Figure 1: Mini-ML Typing Rules

constructors — and x. The application and abstraction con-
structors correspond to the function kind k1 — k3. Types
in )\Z-ML include the monotypes, and are closed under prod-
ucts, function spaces, and polymorphic quantification. We
distinguish constructors from types, writing 7'(u) for the
type corresponding to the constructor p. The terms are an
explicitly-typed A-calculus with explicit constructor abstrac-
tion and application forms.

The official syntax of terms shows that the primitive op-
erations of the language are provided with type information
that may be used at run-time. For example, the pairing
operation is {e1,e2)?"?%, where e; : o;, reflecting the fact
that there is (potentially) a pairing operation at each pair
of types. In a typical implementation, the pairing operation
is implemented by computing the size of the components
from the types, allocating a suitable chunk of memory, and
copying the parameters into that space. However, there is
no need to tag the resulting value with type information
because the projection operations (77'*?2 e) are correspond-
ingly indexed by the types of the components so that the ap-
propriate chunk of memory can be extracted from the tuple.
Similarly, the application primitive (Q” e e2) is indexed by
the domain type of the function! and is used to determine
the calling sequence for the function. Of course, primitive
operations can ignore the type if a universal representation
is used. Consequently, the implementor can decide whether
to use a natural or universal representation. We use a sim-
plified term syntax without the types when the information
is apparent from the context. However, it is important to
bear in mind that the type information is present in the fully
explicit form of the calculus.

The Typerec and typerec forms provide the ability to
define constructors and terms by structural induction on
monotypes. These forms may be thought of as eliminatory
forms for the kind Q at the constructor and term level. (The
introductory forms are the constructors of kind €2; there are
no introductory forms at the term level in order to preserve
the phase distinction [8, 21].) At the term level typerec may
be thought of as a generalization of typecase that provides
for the definition of a term by induction on the structure
of a monotype. At the constructor level Typerec provides a
similar ability to define a constructor by induction on the

n general, application could also depend upon the range type,
but our presentation is simplified greatly by restricting the depen-
dency to the domain type.

structure of a monotype.

The static semantics of ALML consists of a collection of
rules for deriving judgements of the following forms, where
A is a kind assignment, mapping type variables (¢) to kinds,
and I' is a type assignment, mapping term variables to types.

Ad>pk 1 is a constructor of kind K

Abpr =p2 ik p1and pe are equivalent constructors
Abo o is a valid type

AD>ol =0 o1 and o2 are equivalent types
A;T>e:o e is a term of type o

The formation rules for constructors are largely stan-
dard, with the exception of the Typerec form:

Abp::Q Avpk
Adbp, Q>0 > K>k kK
Abpy Q22 Q >3k 3Kk

A > Typerec p of (pilp—lpx) = K

The whole constructor has kind & if the constructor to be
analyzed, p, is of kind Q (i.e., a monotype), y; is of kind &,
and p—, and px are each of kind @ - Q - kK — Kk — k.

The constructor equivalence rules (see Figure 2) axiom-
atize definitional equality [47, 31] of constructors to consist
of B-conversion together with recursion equations governing
the Typerec form. Conceptually, Typerec selects y;, px, or
- according to the head-constructor of the normal form of
1 and passes it the components of p and the “unrolling” of
the Typerec on the components. The level of constructors
and kinds is a variation of Gédel’s T [18]. Every construc-
tor, p, has a unique normal form, NF(u), with respect to
the obvious notion of reduction derived from the equivalence
rules of Figure 2 [47]. This reduction relation is confluent,
from which it follows that constructor equivalence is decid-
able [47].

The type formation, type equivalence, and term forma-
tion rules for )\I-ML are omitted due to lack of space, but can
be found in a previous report [22]. The rules of type equiv-
alence define the interpretation T'(u) of the constructor p
as a type. For example, T'(Int) = int and T(—(p1,p2)) =
T(p1) = T'(p2). Thus, T takes us from a constructor which
names a type to the actual type. The term formation rules
are standard with the exception of the typerec form, which



Aw{t::n'}bplzzn A sk

AT
Abp, Q2 Q3 k2> KK
Abpx 2 Q—>Qo K>k

A (At & ) [pe] = [/t ik

A pr o Q
Abpus = Qo>Q o Kk—oKk—K

A ps

A > Typerec Int of (p;lp—lpx) = pi ik

Q AN T
Adpux 2 Q—=>Q >k >k kK

A Typerec (—(p1, u2)) of (pilp—|px) = p—s p1 p2 (Typerec pn of (ujlp— |px)) (Typerec pa of (kilp—|px)) = &
A Typerec (x(p1, u2)) of (wilp—|px) = px pa po (Typerec py of (pilp—lpx)) (Typerec po of (ujlu—lpx)) = K

Figure 2: Constructor Equivalence

is governed by the following rule:

Avp: Q) AY{t=Q}>o AT > e : [Int/t]o
AT > ey @ Vi, b2t [tlo — [ta/tlo — [=(t1,t2)/t]o
A; I'>ex :th,tQZZQ.[h/t]O’ — [t2/t]0’ — [X(t1,t2)/t]0’

A;T > typerec p of [t.o](ejles|ex) @ [u/tlo

The argument constructor p must be of kind €2, and the re-
sult type of the typerec expression is determined as a func-
tion of the argument constructor, namely the substitution
of p for ¢ in the type expression o. The “[t.o]” label pro-
vides the type information needed to check the construct
without infererence. Typically the constructor variable ¢
occurs in o as the argument of a Typerec expression so that
[u/t]o is determined by a recursive analysis of p. Similar
to normalization of a Typerec constructor, the evaluation of
a typerec expression selects e;, ex, or e, according to the
head constructor of the normal form of p and passes it the
components of p and the “unrolling” of the typerec on the
components.

Type checking for ALML reduces to equivalence checking
for types and constructors. In view of the decidability of
constructor equivalence, we have the following important
result:

Proposition 2.1 It is decidable whether or not A;T > e: o
is derivable in )\lML.

To fix the interpretation of typerec, we specify a call-by-
value, natural semantics for )\I-ML as a relation of the form
e — v where v is a closed (with respect to both type and
value variables), syntactic value. Values are derived from
the following grammar:

v ou= A Azio.e | (v2,v2)77% | Atk. e
Type abstractions are values, reflecting the fact that evalu-
ation does not proceed under A.

Figure 3 defines the evaluation relation with a series of
axioms and inference rules. The semantics uses an auxiliary
judgment, p < ', (not formally defined here) that deter-
mines the normal forms of constructors. During evaluation,
we only need to determine normal forms of closed construc-
tors of kind Q. This amounts to evaluating constructors of
the form Typerec(...) and (u1[p2]) by orienting the equiva-
lences of Figure 2 to the right and adding the appropriate
congruences.

The rest of the semantics is standard except for the eval-
uation of a typerec expression which proceeds as follows:

First, the normal form of the constructor argument is deter-
mined. Once the normal form is determined, the appropriate
subexpression is selected and applied to any argument con-
structors. The resulting function is in turn applied to the
“unrolling” of the typerec at each of the argument construc-
tors. Some simple examples using typerec may be found at
the end of this subsection.

The semantics uses meta-level substitution of closed val-
ues for variables and closed constructors for type variables.
In a lower-level semantics where substitution is made ex-
plicit, an environment would be needed not only for value
variables, but also for type variables. Tolmach [51] describes
many of the issues involved in implementing such a language.

Proposition 2.2 (Type Preservation) If 0;0 > e : o
and e = v, then 0;0>v: 0.

By inspection of the value typing rules, only appropriate
values occupy appropriate types and thus evaluation will
not “go wrong”. In particular, it is possible to show that
when evaluating well-typed programs, we only use the proj
evaluation rule when o] = o1 and 0% = 02 and we only use
the app rule when ¢’ = ¢. Furthermore, programs written
in pure AML (i-e., without general recursion operators or
recursive types) always terminate.

Proposition 2.3 (Termination) Ife is an expression such
that 0;0 > e : o, then there erists a value v such that e < v.

A few simple examples will help to clarify the use of
typerec. The function sizeof of type V¢:Q.int that computes
the “size” of values of a type can be defined as follows.

sizeof = At::Q.typerec t of [t'.int](e;le|ex)

where
e = 1 .
ey = At1:QAt2:Q ) z1:int. Azo:int.1
ex = At1:QAt:QAzint A\zs:int.zy + 22

(Here we assume that arrow types are boxed and thus have
size one.) It is easy to check that sizeof has the type Vt::Q.int.
Note that in a parametric setting this type contains only
constant functions.

As another example, Girard’s formulation of System F [16]
includes a distinguished constant 0, of type 7 for each type
7 (including variable types). We may define an analogue of
these constants using typerec as follows:

zero = At:Q.typerec t of [t'.T(t')](ejle—|ex)



) e1 < U1 es < V2 . e (v, 1)2)‘711“7é
) v SV (=12
(U(l ) v v (p(lZT) (el, e2)0'1,0'2 N (Ul, 1}2)01,0’2 (pTOJ) 71_;7’1,0’2 e <> v (Z ) )
e1 < \r:io.e ey v e Atk e
! ’
oy tle' — Int e v
(app) W fele v (tapp) 020 (trec-int) " i
Q% eje2 > e[p] = v typerec p of [t.o](ejless|ex) — v
e = (p, p2) = X (p1, p2)

typerec py of [t.o](eless|ex) — v typerec py of [t.o](eless|ex) — v1

typerec o of [t.o](ejles|ex) < va typerec po of [t.o](e;les|ex) — v2
(trec-fn) @[MZ/t]a(@[ul/t]a(e_’[HI][MQ]) v) v 2w (trec-pair) @[M/t]a(@[ul/t]a(ex[Hl][lh]) v1) v2 SV

typerec p of [t.0](eiles|ex) — v b typerec p of [t.o](gjles]ex) — v

Figure 3: Operational Semantics for )\Z-ML
where typerec or Typerec, but subsequent translations take advan-
_ tage of these constructs.
¢ = ?\t QA QN T (1) Ao T (1) Az-T (1) We begin by defining a translation from Mini-ML types
e, = 1::820.AT2::80.A27 1).AZ2: 2).AL: 1).22 ML .
to Aj truct tt :
ex = At12QAt2:QNz21:T(t1) A22:T (t2).(21, 22) 0 AT constructors, written |7|

It is easy to check that zero has type Vt:Q.T'(t), the “empty”
type in System F and related systems. The presence of
typerec violates parametricity to achieve a more flexible pro-
gramming language.

To simplify the presentation we usually define terms such
as zero and sizeof using recursion equations, rather than as
a typerec expression. The definitions of zero and sizeof are
given in this form as follows:

sizeof[Int] = 1
sizeof [x (u1, p2)] sizeof [1u1] + sizeof [u]
sizeof [ (p1,pu2)] = 1

zero[lnt] = 0
zero[x (p1, p2)] = (zero[u], zerofus])
zero[— (1, p2)] = Az:T(u1).zero[us]

Whenever a definition is presented in this form we tacitly
assert that it can be formalized using typerec.

2.3 Translating Mini-ML into AM?

A compiler from Mini-ML to }\Z-ML is specified by a relation
A;T > es : 7 = e that carries the meaning that A;T' > eg @ 7
is a derivable typing in Mini-ML and that the translation of
the source term e; determined by that typing derivation is
the )\lML expression e;. Since the translation depends upon
the typing derivation, it is possible to have many different
translations of a given expression. However, all of the trans-
lation schemes we consider are coherent in the sense that
any two typing derivations produce observationally equiva-
lent translations [7, 26, 20].2

Here, we give a straightforward compiler whose purpose
is to make types explicit so that the primitive operations
such as pairing and projection can potentially analyze their
types at run-time. This simple translation does not utilize

2We omit explicit consideration of the coherence of our translations
here.

It = t
lintf = Int
Tt = 2| = —=(Inl[72])
| x 2| = x(I71],[72])

The translation is extended to map Mini-ML type schemes
to )\Z-ML types as follows:

T(|r|)
Vit:Q.|o|s

I7ls =
|Vt.ols =

Finally, we write |A| for the kind assignment mapping ¢ to
the kind Q for each t € A, and |T'| for the type assignment
mapping z to [['(z)|s for each z € dom(T").

Proposition 2.4 The type translation commutes with sub-
stitution:

[ /ta] (- ([ /Ea]T) - ) = [l /0] G- ([l /EndlT]) - )

The term translation is given in Figure 4 as a series of
inference rules that parallel the typing rules for Mini-ML.
The wvar rule turns Mini-ML implicit instantiation of type
variables into )\Z-ML explicit type application. Operationally,
this corresponds to passing the types to the polymorphic
value at run-time. The let rule makes the implicit type
abstraction of the bound expression explicit. The trans-
lation of A-abstraction, application, pairing, and projection
is straightforward except that these primitive operations are
labelled with their types.

The translation may be characterized by the following
type preservation property.

Theorem 2.5 If A;T'be: 7= ¢, then |A;|T|>e : |7

Given a standard, call-by-value operational semantics for
Mini-ML with the value restriction, and given the stratifi-
cation between monotypes and polytypes in both Mini-ML
and )\iML, it is possible to modify a standard binary log-
ical relations-style argument for the simply-typed lambda
calculus [48, 15, 40, 45, 46] to show the correctness of the
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. A;Fl>61:7'1=>e'1 A'F>622T2:>6,2 A'F>6:7'1><7-2:>e' )
(pair) EYPNEN () EYPNEN (i=1,2)
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ATW{z:m}lve:m=e AiTver 7 s1=¢) ATber: 7 = e
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AT dzee:m = 1= Az |1ifs. e A;FD8162:T=>@|T|86182
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Figure 4: Translation from Mini-ML to
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translation. That is, we may show that at base type, if a
Mini-ML program computes a value, then its )\iML transla-
tion computes the same value.

In the presence of computational effects such as non-
termination, if we did not restrict the bound expression
in a let to be a value, then the translation would be in-
correct since evaluation in )\iML does not proceed under A-
abstractions. In other words, the expression might diverge
(or print “hello”) while its translation would not.

3 Applications of Type Analysis

In this section, we show how to implement a variety of useful
and interesting constructs by extending the simple transla-
tion from Mini-ML to )\iML to take advantage of typerec and
Typerec. We have already shown how simple operations like
sizeof and zero can be defined in }\Z-ML These operations
can be exported directly to Mini-ML as constants of the
appropriate type. In the following subsections, we define
new operations that may be exported to Mini-ML and mod-
ify the standard translation to change the representation of
various types.

3.1 Flattening

We consider the “flat” representation of Mini-ML tuples
in which nested tuples are represented by a sequence of
“atomic” values (for the present purposes, any non-tuple
is regarded as “atomic”). To simplify the development we
give a translation in which nested binary tuples are repre-
sented in right-associated form, so that, for example, the
Mini-ML type (int x int) x int will be compiled to the AM”
type int X (int x int). The compilation makes use of inten-
sional type analysis at both the term and constructor levels.
We begin by modifying the type translation on Mini-ML
tuples:
Prod(|m|][| 7]

of kind Q@ — Q — Q defined

|7'1 X 7'2| =
Here Prod is a constructor
below as:

Prod|Int][u]

Prod[— (pta, po)][1]
Prod[x (pta, )] (1]

x(Int, p1)
X (_>(/J‘aa /Jb)a /J)
X (ta, Prod[pus][p])

Informally, the constructor Prod computes the right-associated
form of a product of two types. For example,

|(int x int) x int] = Prod[Prod]Int][Int]][Int]

and
lint x (int x int)| = Prod][Int][Prod[Int][Int]]

and the equation

> Prod[Prod[Int][Int]][Int] = Prod[Int][Prod[Int][Int]] :: ©

is derivable in AML.
The term translation is modified by changing the behav-

ior of the pair and = rules:
AT per: AT > es

AT (er,e2) : 71 X T2 = mkpair[|71[][|72]] el b

! !
7'1:>61 ZT2:>€2

A;Fl>e:7'1><7'228’

i =1,2
A;T o mie 7 = proj[|m ]| 2] € ¢ )

The modified translation makes use of three auxiliary func-

tions, mkpair, proj; and proj,, with the following types:

mkpair : Vi1, 2 QT (t1) = T(t2) — T(Prod[t1][t2])
projl : th,tg e Q.T(Prod[tl][t2]) — T(tl)
proj, : Vi1, ts = Q.T(Prod[t1][t2]) — T(t2)

The mkpair operation is defined as follows, using the “unof-
ficial” syntax of the language:

Az:T (Int). \y:T (). (x, y)
Az TE—)(Ma,Hb))
(x

mkpair{Int][]

mkpair[—(pa, f10)][1]
T(p)-(x, y)

MfT (Ha, 1)) Ay:T (p).

(m1 2, mkpair{ps|[p] (72 ) y)

mkpair[X (pta, ps)][p] =

The verification that mkpair has the required type proceeds
by case analysis on the form of its first argument, relying
on the defining equations for Prod. For example, we must
check that mkpair[Int][s] has type

T(Int) — T'(u) — T(Prod[Int][u])



which follows from the definition of mkpair[Int][u] and the
fact that
T (Prod[Int][u]) = int x T'(u).

Similarly, we must check that mkpair[x (¢, s)][p] has type

T (X (pta,pn)) — T(p) — T(Prod[x (pta, ps)][1]

which follows from its definition, the derivability of the equa-
tion

T (Prod[x (pta, po)][1]) = T'(pa) x T(Prodps][u]),

and, inductively, the fact that mkpair[us][u] has type T'(uy) —

T(1) — T(Prodius][u]).
The operations proj; and proj, are defined as follows:

Az:T(Prod[Int][u]). m1 2
Az: T (Prod[— (ta, po)][p]). m1 2

Az:T (Prod[x (pta, fus)][1])-
(1 @, projy [us ][] (72 z))

proj, [Int] [
proj; [ (fta, o) [
proj [ (pa, po)][1e

Az:T (Prod[Int][u]). w2 =
Az:T (Prod[—(tta, )] [1])- w2
Az:T (Prod[X (ta, ps)][1])-

proj [ps] (1] (2 )

The verification that these constructors have the required
type is similar to that of mkpair, keeping in mind the equa-
tions governing T'(—) and Prod[—][—].

One advantage of controlling data representation in this
manner is that it becomes possible to support a type-safe
form of casting that we call a view. Let us define two Mini-
ML types 71 and 72 to be similar, 71 = 72, iff they have the
same representation — i.e., iff | 71| is definitionally equivalent
to |m2| in )\iML. If 71 & 72, then every value of type 71 is also a
value of type 72, and vice-versa. For example, in the case of
the right-associative representation of nested tuples above,
we have that 71 =~ 7 iff 7 and 7 are equivalent modulo
associativity of the product constructor, and a value of a
(nested) product type is a value of every other association
of that type.

In contrast to coercion implementations of type equiva-
lence, such an approach to views is compatible with mutable
types (i.e., arrays and refs) in the sense that m ref is equiv-
alent to 7> ref iff 71 is equivalent to 7o. This means that we
may freely intermingle updates with views of complex data
structures, capturing some of the expressiveness of C casts
without sacrificing type safety.

The right-associated representation does not capture all
aspects of “flatness”. In particular, access to components is
not constant time, given a standard implementation of the
pairing and projection operations. This may be overcome
by extending AML with n-tuples (tuples of variable arity),
and modifying the interpretation of the product type appro-
priately. A rigorous formulation of the target language ex-
tended with n-tuples is tedious, but appears to be straight-
forward.

projy[Int][x
projo[— (pta, o) ][
Projo[X (pa, ps)][p

3.2 Marshalling

Ohori and Kato give an extension of ML with primitives for
distributed computing in a heterogeneous environment [39].
Their extension has two essential features: one is a mech-
anism for generating globally unique names (“handles” or

“capabilities”) that are used as proxies for functions pro-
vided by servers. The other is a method for representing
arbitrary values in a form suitable for transmission through
a network. Integers are considered transmissible, as are pairs
of transmissible values, but functions cannot be transmitted
(due to the heterogeneous environment) and are thus repre-
sented by proxy using unique identifiers. These identifiers
are associated with their functions by a name server that
may be contacted through a primitive addressing scheme.
In this section we sketch how a variant of Ohori and Kato’s
representation scheme can be implemented using intensional
polymorphism.

To accommodate Ohori and Kato’s primitives the
language is extended with a primitive constructor Id of kind
Q — Q and a corresponding type constructor id(co), linked
by the equation T'(Id[u]) = id(T(n)). The Typerec and
typerec primitives are extended in the obvious way to ac-
count for constructors of the form Id[u]. For example, the
following constructor equivalence is added:

Ab oy Q A p; = Q
Adps,pux 2t Q2—>Q oKk Kk—>K
Abpig Q=K — kK

Typerec Id[p] of (p;lp—lux|y) =
;g i (Typerec p of (Bilp= s g))

AML

The primitives newid and rpc are added with the follow-
ing types:

newid : Viti,t2::Q.(T(Tran[t1]) — T(Tran[t2])) —
T (Tran[—(t1,t2)])

rpc @ Vi, b2 Q(T(Tran[—(t1, t2)])) —
T(Tran[t1]) — T(Tran[tz])

where Tran is a constructor coded using Typerec as follows:

Tran[Int] = Int
Tran[—(p1, p2)] Id[—(Tran[pu1], Tran[p2])]
Tran[x (g1, p2)] x(Tran[u1], Tran[u2])
Tran[ld[p]] = Id[y]

The constructor Tran[y] maps p to a constructor where each
arrow is wrapped by an Id constructor. Thus, values of
type T(Tran[u]) do not contain functions and are therefore
transmissible. It is easy to check that Tran is a constructor
of kind Q — Q.

From an abstract perspective, newid maps a function on
transmissible representations to a transmissible representa-
tion of the function and rpc is its (left) inverse. Opera-
tionally, newid takes a function between transmissible val-
ues, generates a new, globally unique identifier and tells the
name server to associate that identifier with the function on
the local machine. For example, the unique identifier might
consist of the machine’s name paired with the address of
the function. The rpc operation takes a proxy identifier of a
remote function, and a transmissible argument value. The
name server is contacted to discover the remote machine
where the value actually lives. The argument value is sent
to this machine, the function associated with the identifier
is applied to the argument, and the result of the function is
transmitted back as the result of the operation.

The compilation of Ohori and Kato’s distribution prim-
itives into this extension of )\iM T relies critically on a “mar-
shalling” operation M that converts a value to its transmissi-
ble representation and an “unmarshalling” operation U that



converts a value from its transmissible representation. The
types of these operations can be easily expressed in terms of
Tran:

M VE:QT(t) — T(Tran(t])

U : VizQT(Tranft]) — T'(t)

The operations themselves can be defined as follows using
the unofficial syntax of typerec:®

M[Int] = Az:int.z
M= (p1, p2)l = AfT (= (pa, p2)).
newid [z [p2]

(Az:T(Tran[u1]).
Mlp2](f (Ulp1] 2)))
MIX (1, p2)] = AT (x(p1, p2)).
M[p1](m1 ), Mp2](2 x))

Mlld[p1]] = Az:T(Id[u]).z
Ullnt] = Az:int.z
Ul=(p1, p2)] = AfT(1d[—(Tran[p1], Tran[pu2])]).
AT (p).

Ulpo](rpclpa][p2] f (M[p] ))
Ulx (g1, p2)] = AT (x(Tranfpi], Tran[us])).
(Ulp1](m1 ), Ulpe](m2 z))
Ulld[p]] = Az:T(Id[p]).z

At arrow types, M converts the function to one that takes
and returns transmissible types and then allocates and asso-
ciates a new identifier with this function via newid. Corre-
spondingly, U takes an identifier and a marshalled argument,
performs an rpc on the identifier and argument, takes the
result and unmarshalls it.

The M and U functions are used in the translation of
client phrases that import a server’s function and in the
translation of server phrases that export functions. The
reader is encouraged to consult Ohori and Kato’s paper [39]
for further details.

3.3 Type Classes

The language Haskell [25] provides the ability to define a
class of types with associated operations called methods.
The canonical example is the class of types that admit equal-
ity (also known as equality types in SML [33, 19]).

Consider adding a distinguished type void (with associ-
ated constructor Void) to AML in such a way that void is
“empty”. That is, no closed value has type void. We can
encode a type class definition by using Typerec to map types
in the class to themselves and types not in the class to void.
In this fashion, Typerec may be used to compute a predi-
cate (or in general an m-ary relation) on types. Definitional
equality can be used to determine membership in the class.

For example, the class of types that admit equality can
be defined using Typerec as follows:

Eq:Q—>Q
Eq[Int] = Int
Eq[Bool] = Bool
Eq[x(p1,p2)] = x(Eq[p1], Eqfuz])
Eq[—(u1,p2)] = Void
Eq[Void] = Void

3To compute M and U using the official syntax, we have to use a
single typerec that returns a pair holding the two functions for that
type.

Here, Eq serves as a predicate on types in the sense that a
non-Void constructor p is definitionally equal to Eq[u] only
if 41 is a constructor that does not contain the constructor
_>(_7 _)'

The equality method can be coded using typerec as fol-
lows, where we assume primitive equality functions for int
and bool and omit some type labels for simplicity:

eqllnt] = eqint
eq[Bool] = egbool
eq[x (p1,p2)] = Az.Ay.eq[Eq[u1]](m1 ) (71 y) and
eq[Eq[pz]](m2 ) (2 y)
eq[—(p1, u2)] = Az:void. \y:void.false
eq[Void] = Az:void.\y:void.false

It is straightforward to verify that:
eq : Vt:Q.T(Eq[t]) — T(Eq[t]) — bool

Consequently, eq[u] e1 e2 can be well typed only if e; and e
have types that are definitionally equal to T'(Eq[u]). The en-
coding is not entirely satisfactory because eq[— (u1, u2)] can
be a well-typed expression. However, the function resulting
from evaluation of this expression can only be applied to
values of type void. Since no such values exist, the function
can never be applied.

3.4 Dynamics

In the presence of intensional polymorphism a predicative
form of the type dynamic [2] may be defined to be the exis-
tential type 3¢::Q2.T(¢). The typing rules for existential types
are as follows:

AW {t:x}>o A>pk
A;T e [pft)lo
A;T > packewith ypas3t:k.0 : k.o

Abo A;T'be;: Jtuk.0
Aw{t:e};TW{zo'}ber: o
A;T > abstypee; ist:k, z:0 inesend : &

The pack operation introduces existentials by packaging a
type with a value. The abstype operation eliminates exis-
tentials by allowing the type and value to be unpacked and
used within a certain scope.

Under this interpretation, the introductory form dynamic[r](e)

stands for packewith 7as3t:Q.T(¢). The eliminatory form,
typecase d of (ejle—|ex), where d : dynamic, ¢; : o, and
e, ex : Vi1,t2::Q.0, is defined as follows:

abstype dist::Q, z:T(t) intyperec ¢ of [t.o](e;le’,|e) ) end

Here e, = At1:Q.At:Q.Az1:0. x2:0.e [t1][t2], and simi-
larly for e’ .

This form of dynamic type only allows values of monomor-
phic types to be made dynamic, consistent with the sepa-
ration between constructors and types in )\iML. The possi-
bilities for enriching ALM L o admit impredicative quantifiers
(and hence account for the full power of dynamic typing
including non-termination) are discussed in the conclusion.



4 Related Work

There are two traditional interpretations of polymorphism,
the ezplicit style (due to Girard [16, 17] and Reynolds [42]),
in which types are passed to polymorphic operations, and
the implicit style (due to Milner [32]), in which types are
erased prior to execution. In their study of the type the-
ory of Standard ML Harper and Mitchell [20] argued that
an explicitly-typed interpretation of ML polymorphism has
better semantic properties and scales more easily to cover
the full language. Harper and Mitchell formulated a pred-
icative type theory, XML, a theory of dependent types aug-
mented with a universe of small types, adequate for captur-
ing many aspects of Standard ML. This type theory was re-
fined by Harper, Mitchell, and Moggi [21], and provides the
basis for this work. The idea of intensional type analysis ex-
ploited here was inspired by the work of Constable [12, 13],
from which the term “intensional analysis” is taken. The
rules for typerec, and the need for Typerec, are derived from
the “universe elimination” rules in NuPRL (described only
in unpublished work of Constable).

The idea of passing types to polymorphic functions is
exploited by Morrison et al. [37] in the implementation of
Napier ’88. Types are used at run-time to specialize data
representations in roughly the manner described here. The
authors do not, however, provide a rigorous account of the
type theory underlying their implementation technique. The
work of Ohori on compiling record operations [38] is sim-
ilarly based on a type-passing interpretation of polymor-
phism, and was an inspiration for the present work. Ohori’s
solution is ad hoc in the sense that no general type-theoretic
framework is proposed, but many of the key ideas in his
work are present here. Jones [28] has proposed a general
framework for passing data derived from types to “quali-
fied” polymorphic operations, called evidence passing. His
approach differs from ours in that whereas we pass types to
polymorphic operations, that are then free to analyze them,
Jones passes code corresponding to a proof that a type sat-
isfies the constraints of the qualification. From a practical
point of view it appears that both mechanisms can be used
to solve similar problems, but the exact relationship between
the two approaches is not clear.

Recently Duggan and Ophel [14] and Thatte [50] have
independently suggested semantics for type classes that are
similar in spirit to our proposal. In particular both ap-
proaches represent the restriction of a class as a user-defined,
possibly recursive, kind definition in a predicative language.
Both sets of authors are concerned with providing a source-
level overloading facility and consequently examine hard is-
sues such as type inference and open-scoped definitions that
do not directly concern us, since we are primarily concerned
with a target-level type-analysis facility. The implementa-
tion technique proposed by Duggan and Ophel is similar to
ours in that polymorphic routines are passed type names at
run-time and a typecase construct is used to determine the
behavior of an overloaded operation. As with type classes
and Jones’s qualified types, it appears that we can code
many of their kind definitions using Typerec with the ap-
proach sketched in Section 3.3. However, Typerec can also
be used to transform types — a facility crucial for represen-
tation transformations such as flattening and marshalling.
That is, neither Duggan and Ophel nor Thatte provide a fa-
cility for coding constructors such as Prod or Tran that map
types to types.

A number of authors have considered problems pertain-

ing to representation analysis in the presence of polymor-
phism. The boxing interpretation of polymorphism has been
studied by Peyton Jones and Launchbury [29], by Leroy [30],
by Poulsen [41], by Henglein and Jgrgensen [24], and by
Shao [43] with the goal of minimizing the overhead of box-
ing and unboxing at run-time. All but the first of these
approaches involve copying coercions. Of a broadly similar
nature is the work on “soft” type systems [3, 10, 23, 49, 53]
that seek to improve data representations through global
analysis techniques. All of these methods are based on the
use of program analysis techniques to reduce the overhead of
box and tag manipulation incurred by the standard compi-
lation method for polymorphic languages. Many (including
the soft type systems, but not Leroy’s system) rely on global
analysis for their effectiveness. In contrast we propose a new
approach to compiling polymorphism that affords control
over data representation without compromising modularity.

Finally, a type-passing interpretation of polymorphism
is exploited by Tolmach [51] in his implementation of a tag-
free garbage collection algorithm. Tolmach’s results demon-
strate that it is feasible to build a run-time system for ML
in which no type information is associated with data in the
heap®. Morrisett, Harper, and Felleisen [36] give a semantic
framework for discussing garbage collection, and provide a
proof of correctness of Tolmach’s algorithm.

5 Summary and Future Directions

We have presented a type-theoretic framework for express-
ing computations that analyze types at run-time. The key
feature of our framework is the use of structural induction on
types at both the term and type level. This allows us to ex-
press the typing properties of non-trivial computations that
perform intensional type analysis. When viewed as an inter-
mediate language for compiling ML programs, much of the
type analysis in the translations can be eliminated prior to
run-time. In particular, the prenex quantification restriction
of ML ensures good binding-time separation between type
arguments and value arguments and the “value restriction”
on polymorphic functions, together with the well-founded-
ness of type induction, ensures that a polymorphic instan-
tiation always terminates. This provides important oppor-
tunities for optimization. For example, if a type variable
t occurring as the parameter of a functor is the subject of
intensional type analysis, then the typerec can be simplified
when the functor is applied and ¢ becomes known. Similarly,
link-time specialization is possible whenever ¢t is defined in
a separately-compiled module. Inductive analysis of type
variables arising from let-style polymorphism is ordinarily
handled at run-time, but it is possible to expand each in-
stance and perform type analysis in each case separately.

The type theory considered here extends readily to in-
ductively defined types such as lists and trees. However,
extending typerec and Typerec to handle generally recursive
types is problematic because of the negative occurrence of
Q in a recursive constructor. In particular, termination can
no longer be guaranteed, which presents problems not only
for optimization but also for type checking.

The restriction to predicative polymorphism is sufficient
for compiling ML programs. More recent languages such
as Quest [9] extend the expressive power to admit impred-
icative polymorphism, in which quantified types may be

4H0wever, types are passed independently as data and associated
with code.



instantiated by quantified types. (Both Girard’s [16] and
Reynolds’s [42] calculi exhibit this kind of polymorphism.)
It is natural to consider whether the methods proposed here
may be extended to the impredicative case. Since the uni-
versal quantifier may be viewed as a constant of kind (Q —
Q) — Q, similar problems arise as for recursive types. In
particular, we may extend type analysis to the quantified
case, but only at the expense of termination, due to the
negative occurrence of  in the kind of the quantifier. Ad
hoc solutions are possible, but in general it appears neces-
sary to sacrifice termination guarantees.

Compiling polymorphism using intensional type analy-
sis enables data representations that are impossible using
type-free techniques. Setting aside the additional expres-
siveness of the present approach, it is interesting to consider
the performance of a type-passing implementation of ML as
compared to the type-free approach adopted in SML/NJ [5].
As pointed out by Tolmach [51], a type-passing implemen-
tation need not maintain tag bits on values for the sake of
garbage collection. The only remaining use of tag bits in
SML/N1J is for polymorphic equality, which can readily be
implemented using intensional type analysis. Thus tag bits
can be eliminated, leading to a considerable space savings.
On the other hand, it costs time and space to pass type argu-
ments at run-time, and it is not clear whether type analysis
is cheaper in practice than carrying tag bits. An empirical
study of the relative performance of the two approaches is
currently planned by the second author, and will be reported
elsewhere.

The combination of intensional polymorphism and exis-
tential types [35] raises some interesting questions. On the
one hand, the type dynamic [2] may be defined in terms of
existentials. On the other hand, data abstraction may be
violated since a “client” of an abstraction may perform in-
tensional analysis on the abstract type, which is replaced
at run-time by the implementation type of the abstraction.
This suggests that it may be advantageous to distinguish
two kinds of types, those that are analyzable and those that
are not. In this way parametricity and representation in-
dependence can be enforced by restricting the use of type
analysis.

The idea of intensional analysis of types bears some re-
semblance to the notion of reflection [44, 4] — we may think
of type-passing as a “reification” of the meta-level notion
of types. It is interesting to speculate that the type theory
proposed here is but a special case of a fully reflective type
theory. The reflective viewpoint may provide a solution to
the problem of intensional analysis of recursive and quan-
tified types since, presumably, types would be reified in a
syntactic form that is more amenable to analysis — using
first-order, rather than higher-order, abstract syntax.
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