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Abstract

Nonshared-memory parallel computers promise scalable performance for scientific computing

needs. Unfortunately, these machines are now diHicult to program because the message-passing

languages available for them do not reflect the computational models used in designing algorithms.

This introduces a semantic gap in the programming process which is difficult for the programmer to
fill.

The purpose of this research is to show how nonshared-mernory machines can be programmed

at a higher level than is currently possible. We do this by developing techniques for compiling
shared-memory programs for execution on those architectures. The heart of the compilation process

is translating references to shared memory into explicit messages between processors. To do this,
we first define a formal model for distributing data structures across processor memories. Several

abstract results describing the messages needed to execute a program are immediately derived from

this formalism. We then develop two distinct forIllS of analysis to translate these formulas into actual

programs. Compile-time analysis is used when enough information is available to the compiler to

completely characterize the data sent in the messages. This allows excellent code to be generated

for a program. Run-time analysis produces code to examine data references while the program is

running. This allows dynamic generation of messages and a correct implementation of the program.

While the overhead of the run-time approach is higher than the compile-time approach, run-time

analysis is applicable to any program. Performance data from an initial implementation show that

both approaches are practical and produce code with acceptable efficiency.
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Chapter 1

Introduction

Nonshared memory parallel computers promise to provide high levels of performance scalable to large

numbers of processors at a very modest cost. The lack of high-level support. software has hampered
their usc, however. UnW now, the only programming environments available on nonshared memory

machines reflected the underlying architecture very directly. Unfortunately, this differs substantially
from the model of computation that programmers use in designing programs. This situation leads to

a semantic gap producing complex, inflexible programs. Our goal in this research is to provide higher

level languages for these machines to reduce this semantic gap. We first review the architecture and
programming of nonshared memory machines, and then describe our approach.

1.1 Nonshared Memory Computers

Figure 1.1 shows a block diagram of a nonshared memory computer. It consists of a number of

sequential processors, each with a section of memory which only it can access. The processors each

operate independently of the others; that is, the system is a MIMD (Multiple Instruction stream,
Multiple Data stream) machine in Flynn's terminology [Fly66]. If one processor needs data stored

on another, the storing processor must explicitly send a message containing the data through the

interconnection network and the first processor must receive that message. Examples of machines

in this class include the Caltech Cosmic Cube [Sei85], SUPRENUM [So190J, iPSCj2 [PL88} and
NCUBE/7 [BMS+86J.

Nonshared memory machines have two major advantages over competing parallel architectures:

flexibility and scalability. The flexibility comes from the MIMD parallelism of the processors, which

is difficult to simulate on SIMD (S"mgle Instruction stream, Multiple Data stream) machines such as

the Connection Machine [TR88]. The highly modular connection between processors in a nonshared

memory machine limits the bandwidth required of the interconnection network. Scalable networks

that can achieve these bandwidths have been widely studied [Fen8l]. This is in contrast to shared

memory MIMD computers such as the BBN Butterfly [BBN87], IBM RP3 [PBG+85j, and Sequent

Balance [TGF87]. which require very high bandwidths between processors and memory. Designing

scalable interconnections for this situation has proven harder than in the nonshared memory case.

This scalability has led researchers to predict very high performance for large nonshared memory
machines. The Touchstone project, Cor example, expects to build a 2048-processor machine with a

peak performance oC over 150 billion floating-point operations per second [Lil90]. Such performance

will make nonshared memory machines important in the area of high-speed computing for some time
to come.

Three considerations are vital in efficiently programming a nonshared-memory machine.

1. The processor memories are small relative to the problems to be solved.

2. Communication is expensive relative to computation.

1
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Figure 1.1: Nonshared memory parallel architecture

3. The message start-up time (latency) is high relative to the communications bandwidth.

The first consideration implies that large data structures such as arrays and matrices must be dis

tributed among the processor memories. There are two reasons for this: data-intensive programs
often need more memory than is available on a single processor, and coherency requirements mean

data stored OIl many processors must also be updated everywhere it is stored. Replicated updates

can add significant overhead to a program. For these reasons, large arrays are divided into sections
with each processor "owning" one section. The communication overhead then implies that processors

should do as much computation as possible on their own data. Thus, it is not enough to divide an
array evenly; elements of the array which are used together in computations should also be stored on

the same processor when possible. Different data distributions will imply different communications

patterns and computation strategies. Choosing the best distribution will have a great impact on the
efficiency of the program. The final consideration implies that small messages should be combined

into larger ones where possible. These optimizations mllSt be incorporated at some level in imple

menting any program on a nonshared memory machine to get reasonable performance. Because of
their lack of pertainence to the algorithm, however, it would be best if they could be implemented

automatically.

1.2 Parallel Programming

The most common model for designing parallel algorithms is the PRAM (Parallel Random Access

Memory) model [FW78]. In this model, a parallel computer consists of a group of independent
processors which share a common memory. All accesses to this memory are considered equally fast.

Many extensions to existing languages [GeiSS, Han75, JorS6] and entirely new laIlguages [MMS79,

MV87, RSW90, Tse89] reflect this model directly. In all these languages, memory is essentially

directly accessible to all processes, which conceptually map onto PRAM processors. Because of

this underlying model, we refer to these languages as shared-memory languages. The languages

provide constructs for creating and synchronizing processes, and often for protecting data from

arbitrary modification. Many of these languages denote parallel execution by some form of parallel

loops. These provide an iteration structure similar to sequential programs, except that iterations

are executed concurrently on separate processors. The forall is a special case of this idea in which

2



va,
New..A, Old....A: array[ O..N+l, O•.N+l] ofreal;

forall i in LN, j in l..N do

New...A[iJl := 0.25 • (Old...Afi-lj] + Old.A[J+lj] +
Old...Afi,j-l] + Old...Ap,j+l] )j

end;

Figure 1.2: Jacobi iteration in a shared-memory language

the iterations may not have any data dependences on other iterations. (Data dependences within an
iteration are allowed.) These conditions imply that no interprocessor synchronization is necessary

during the forall. Figure 1.2 shows how a forall can be used in Jacobi iteration, a simple numerical
algorithm,l In this program, N2 processes are created, each of which computes one element of

array New...A. The simplicity of this example points out the great advantage of these languagesj

because of their close relationship to theoretical models, they provide a high-level environment for

the programmer.
The disadvantage of shared-memory languages on nonshared memory machines is the difficulty

of mapping the PRAM model directly onto the underlying hardware. Instead, the most popular

languages on these machines are message-passing languages [AmeB3, GCKW19, Hoa18, INM86].
These languages provide an environment of asynchronously operating processes which interad by

explicit messages. Dired sharing of data is forbidden. Such languages obviously relIed the under

lying machine architedure very closely. This has advantages and drawbacks similar to assembly

language on sequential computers. Because of the close relationship to the hardware, programs
are very expressive, providing the fine control necessary for achieving optimal performance. On the

other hand, the conceptual mismatch between the language and the programmer's conceptual model

makes' programs harder to write, debug, and maintain. In particular, in a message.passing language

data distribution and message generation arc the responsibilities of the programmer.

The effed of explicit data distribution and message generation on a program is clearly demon

strated by Figure 1.3, which implements the same program as Figure 1.2 in a message-passing

language. 2 The program shown there is run on every processor of the nonshared memory machine,

although some processors will not execute certain branches of the if statements. The added com

plexity is entirely due to data distribution, which forces the use of constants lowl, low2, high1, and
high2, and message-passing, which forces the send and recv statements. The complexity of the

constant declarations is not due to an artificial data distribution; Figure 1.3 decomposes the original

(N + 2) x (N + 2) matrices into contiguous M x M matrices as shown in Figure 1.4. (We also note

that even this relatively complex program is not optimal. Jacobi iteration allows computation and

communication to be overlapped, but Figure 1.3 does not attempt this. To do so would require

additional for loops, which were omitted to save space.) Clearly, the level of detail involved in

the message-passing version of Jacobi iteration will make the program more difficult to write and

debug than the shared-memory version. Less obvious is the fact that the message-passing program

is inflexible. In particular, changing the data distribution will change both the message-passing

statements and the loop bounds. For example, Figure 1.5 implements Jacobi iteration using the

skewed data distribution shown in Figure 1.6. Since the data distribution is orthogonal to the
adual algorithm, it would be best if it could be specified separately at a high level. This is not

possible with message-passing languages.

The disadvantages of writing software in message-passing languages have been a serious hindrance
to the use of nonshared memory machines. A new approach to programming these architectures is

needed to provide a higher-level environment for the user. Shared-memory languages, because they

IThe program is wrilten in BLAZE [MV871, a forerunner to the Kali language inlroduced in Chapler 2.
2The language used in this program. and the nexl is BLAZE eXlended with message-passing construct.'!.
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-- Code on proce.uor proc{pl,p2], where proc ha~ dimenJion.! {O.. P-J,O..P-J]

const

M = (N+2) / Pj -- each p r o c e ~ ~ o r .!tore.! an M by Morray
lowl = pI • M; -- lower bound for dimension 1 on this processor
low2 = p2 • M; -- lower bound for d i m e n ~ i o n 2 on this processor

high I = min( lowl+M-I, N+I )j -- upper bound for dimension J

high2 = min( low2+M-I, N+I ); -- upper bound lor dimension 2

var -- note "border" elements added to array

New...A, OllL4..: array[lowI-1..highl+I,low2-Lhigh2+I] of real;

-- send dolo to other processors

if ( pI > 0 ) then send( Old.A[ lowI, low2..high2 ), proc[pl-l,p2]); end;

if ( pI < P-I ) then send( Old...A[ highl, low2..high2 1, proc[pl+l,p2]); end;

if ( p2 > 0 ) then send( Old...A[ low1..highl,low2], proc[pI,p2-1]); end;
if ( p2 < P-I ) then scnd( Old...A[ low1..highI, high2], proc[pl,p2+I])j end;

-- receive dolo from other processor.!

if( pI> 0) then Old.Apowl-I,low2..high2]:= recv( proc[pI-I,p2]); end;

if ( pI < P-I ) then Old.A[highI+I,low2..high2] := recv( proc[pI+I,p2] )i end;
if ( p2 > 0 ) then Old...ApowLhighI,low2-1] := recv( proc[pl,p2-1] ); end;

if (p2 < P-I ) then Old.ApowLhighl,high2+1):= send( proc[pI,p2+I] ); end;

for i in max(I,lowI) ..min(N,highI), j in max(I,low2)..min(N,high2) do

New...A[iJ] := 0.25 * ( Old...A[i-I",1 + Old.A[i+IJ] +

Old...A[tJ-IJ + Old...A[i,j+1] );
end;

Figure 1.3: Jacobi iteration in a message-passing language, blocked distribution

Processor 0 1Processor 0 0, ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
Processor 1,0 Processor 1,1

Figure 1.4: Data distribution used in Figure 1.3
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-- Code on prOCClflfor proc[pl}, where proc half dimenlfionlf [O.. P*P-l}

const
P2 ==: p·Pj

M ~ (N+2) I P2;
tolal number oj procelflforlf

-- each procelfSor If/OJ"e1f an (N+£) by M array

-- code below alfSlJmelf P dividelf N+£ evenly

v=
Ncw-A, Old-A: array[ O.•N+I, O••M] ofrealj
tempI, tcmp2 : array[ O..N+I, O..M ] of real;

-- Ifend dala to other procelfsorlf

scnd( Old...A[ LN, O.. M], proc[(pl-I)%P])j
send( Old...A[ LN, O.. M], proc[(pl+I)%PJ)j

-- receive dala from other procelfJorJ

tempI [ LN, O.. M] := recv( proc[(pI-I)%P]);
temp2[ I..N, I..M] := recv( proc[(pI+I)%P))j

-- temporarieJ

for i in 1..N

var low_j, high.j : integer;
do

jf ( i%P2 = pI ) then low_j = I; else low.j := OJ endj
jf ( (i-N-I)%P2 = pI) then higb.j:= M-Ij else high_j:= Mj endj
for j in low..j .. high..j do

New...A[ij] := 0.25 • ( tcmpI[i-Ij] + Lemp2[i+I,j] +
temp2[J,j-l] + tcmpl[ij+I))j

endj
endj

Figure 1.5: Jacobi iteration in a message-passing language, skewed distribution

'a' .:6--. 'b, 0 '9,,·:6··· .. '9"... "." ... ..
... '., ' '.

~ , O ''''O<''P'",O' ,0 ' p ~ ..Q:., ... "." ..'., ...... '. ... :"\. ...
,.0".,0' 0 "CF·.d··.' 0,0 ',0,..... , ...... ', ..... "\: '"

". ' ..' , "'. "., '
'0-'···.0···' 0" 0 ',0"···.0···· 0" 0
" ". '. "I: ' ",...~,,'., "",'" .... " " .... :'\.

a "0.:···.0··. ,0' ° "0,····.0··.' OJ" ,. . , '. . .
... "'. "., ' ,'" ". '., "'. ..... "....

'b, 0 ',O~···.d··.' 0, 0 ',0'···.0:-
" ' ... ',". "."1: " ','.'.,' " " ,'"

.:()-. ,0' 0 ',0'···.0··. ,0' 0 "',OJ
.' , ,,'., , ""
". ".,' ...' ". ".,.' , ,'.' ...

'0"'·····,-' '0"'0""
< I ' ..g.. 0 0 '< I ".":- 0

Processor 0

r------------,
r Processor 1 I
~ J

........................... .
Processor 2
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Figure 1.6: Data distribution used in Figure 1.5
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are familiar to many users, seem to be a good candidate for providing such an environment. This is

the approach that we advocate in the next section.

1.3 Research Goals

Our goal is to provide a high-level programming language for programming nonshared memory

machines. Current message-passing languages for those ma.chines, while they produce efficient code,
are too difficult for programmers to use in the long run. Programs written in those languages are

long, detailed, and inflexible even for simple tasks. Our approach is to instead offer languages closer

to the PRAM model of computation with which the programmer is familiar. This will shift the

burden of handling the details of implement data distribution and message generation from the

programmer onto the compiler. Thus, the source programs will be shorter and simpler, making

writing, debugging, and maintaining them easier.
Whether it is done by the compiler or by the programmer, the process of implementing a shared

memory program on a nonshared memory machine can be thought of as requiring five steps.

1. The data must be distributed across the processor memories in the nonshared-memory ma

chine.

2. The computation must be divided among the processors. This is partially done in the original
PRAM algorithm by the specification of parallelism; in a nonshared-memory machine, however,

it is also necessary to identify the specific processor which performs each computation.

3. For each phase of the algorithm, every processor must receive the data it needs for its compu

tation from the processor storing the data.

4. Because other processors are expecting data from it, each processor must also send messages

to other processors.

5. During the computation, the processor must correctly access both its local data and the data
received in messages.

We now consider each of these steps in more detail.

The reasons for distributing data were given in Section 1.1. Choosing a good data distribution

is often the key to designing an efficient nonshared-memory program. This can be seen from the

two versions of Jacobi iteration in Figures 1.3 and 1.5. In Figure 1.3, each processor (except edge

elements) sends and receives 4. messages ofsize O(N/ P), while processors in Figure 1.5 each exchange
2 messages of size O(N2 / P2). Both programs have a computation time of O(N2/ p 2). For moderate

message start-up times, Figure 1.3 will have a much lower communication cost, as well as requiring

only half the memory per node that Figure 1.5 does. This does not mean that blocked distribution

is a panacea, however. In Gauss-Seidel iteration, an algorithm which solves the same problem as

Jacobi iteration, parallelism appears as wavefronts sweeping diagonally across the matrix. In this

situation, the blocked distribution will allow at most O(P) processors to operate concurrently, while
a skewed distribution allows O(P2). The message complexities of the two programs would be the

same. Therefore, for Gauss-Seidel iteration the skewed distribution is preferred. In general, the

problem of selecting an optimal data distribution is NP-complete or worse [Mac83]. Research is

continuing into finding good heuristics, but at present choosing a data distribution requires insight

into the program. Such insight is more often found in programmers than in compilers; therefore,
our approach is to have the user provide a high-level description of the data distribution. This

amounts to a short annotation accompanying array declarations. It is the compiler's responsibility

to translate this annotation into the detailed declarations, addressing formulas, and code segments

needed to allocate each processor's section of the array. In the future we hope to provide morc

compiler support for choosing the distribution.

6



As the last section pointed out, communication overhead on nonshared memory machines is quite

high relative to the computation cost. This implies that computations must be distributed much
like data. In the context of parallel loops, this transJates into choosing a processor for each loop

iteration. We use program annotations to specify this. The data distribution usually determines
the computation distribution; a computation is performed either where its data is located or where

its result will be stored. To accommodate this, our annotations for distributing the iterations of

a forall can reference the distribution patterns of arrays. This relationship to data distributions

suggests several heuristics for distributing loop iterations: execute on the processor storing the first

data element referenced, or the first element assigned, and so on. We are continuing research on
these heuristics.

Given the data distribution and the distribution of computations it is possible to find the set of

data that each processor must reference. Any data that it does not already own must be received

in a message and stored in a temporary buffer. The process of identifying these references and

receiving the messages is often quite mechanical. Figures 1.3 and 1.5 show, however, that it can also

require detailed calculations. Both of these reasons point to ajob better suited to a computer than a
human. Our approach therefore puts the burden of generating this code completely on the compiler.

The programmer specifies no communication explicitly; instead, he or she merely references data in
a logically shared memory. If a reference accesses nonlocal data, the compiler must translate that

into efficient code for receiving the message.

The situation regarding sending messages is similar to that for receiving them: an often mechan
ical and always detailed task. We therefore put this burden on the compiler also. Programmers need

not specify the source of data; it is the compiler's responsibility to determine that and arrange for

it to be sent.

The sending and receiving of messages brings up a subtle point. Nonlocal data, although it is

conceptually part of the same data structure, is not stored with the rcst of that structure. Instead, it
is usually stored in temporary locations. Sometimes, the temporaries may themselves be organized

in rather complex ways unrelated to the main array. A single reference to a distributed array,

therefore, may have several translations depending on where it was originally stored. The details

of these translations will depend strongly on the exact methods used for communicatio~, which in

our approach are not available to the user. We therefore make it the compiler's responsibility to
generate code to correctly access both local and nonlocal references.

To summarize, our goal is to automatically generate explicit message-passing code from a shared

memory language, given a distribution of data and forall iterations across processors. This trans

lation can be thought of as a source-to--source translation from the shared-memory language to a

message-passing language. The outline for reaching that goal is as follows. We first define the Kali

language, a shared-memory language to be implemented on nonshared memory machines. This is

done in Chapter 2. To formalize the task of implementing this language, we then develop a model

of the process of data distribution on nonshared memory machines in Chapter 3. This model in

turn will be used to derive two distinct methods of analysis applicable to Kali programs. Chapter tj

describes a compile-time analysis which produces very good code but does not apply to all programs.

Chapter 5 describes a run-time analysis which has higher overheads but can be used for programs
which are not amenable to compile-time analysis. Chapter 6 describes an implementation of both

these forms of analysis and discusses the performance of each. Finally, Chapter 7 summarizes the

research, discusses related work, and outlines future directions for this research.

7



Chapter 2

The Kali Language

Kalil is a language designed for expressing scientific computations on parallel, nonshared memory

machines [MV89]. It contains the usual sequential constructs (assignment statements, for and while

loops, if conditionals, etc.) along with constructs specifically designed for parallel execution. The

design goals of Kali were to provide a high-level environment for programmers while still allowing

efficient execution on nonshared memory machines. In large part these conflicting goals were met
by having the programmer give concise specifications of aspects of the computation critical to per

formance, such as the data distribution. Section 2.1 below describes the syntax and semantics of

the Kali language. The compiler takes this h i g h ~ l e v e l source code and translates it into detailed

message-passing c:ode based on the SP1,ID (Single Program Multiple Data) model [Kar87]. The
target code is a single program which can be executed on every processor of the target machine.

Section 2.2 briefly sketches an implementation of Kali based on this organization. Chapters 4 and 5

will expand on details of this implementation not covered in depth in Section 2.2. Kali or Kali-like
pseudocode will also be used for all programming examples in later chapters.

2.1 Kali Syntax and Semantics

Kali grew from a set of extensions applicable to sequential imperative languages. The syntax de

scribed here applies those extensions to BLAZE [MV87], a large-grain dataflow language for express

ing scientific computations. (This explains the syntactic differences from [MV89], which applies the
same ideas to FORTRAN.) One goal of BLAZE was to make the programming environment as

much like traditional sequential environments as possible. Because of this, the sequential features

of Kali are quite standard. Section 2.1.1 briefly describes these features. The parallel programming

constructs, however, differ somewhat from other languages. Sections 2.1.2 through 2.1,4 describe

Kali's three major parallel constructs: processor arrays, data distribution patterns, and the forall
statement.

Kali also has several constructs for parallelism in addition to the forall. Reduction operators

relax the restrictions on inter-iteration data dependences to allow summations, multiplications, max

imums, and minimums to he calculated across the iterations of foralls. Parallel subroutines allow

distributed data structures to be manipulated in parallel. Because we do not use these in the main

part of this work, we will not discuss them in depth. They do, however, form an important part of

a complete language for parallel programming. The rcader is referred to [MV89] for details on these
constructs.

l The name Knli comes from lUI B-/lITllcd Hindu goddcss. In our contexl, thc mulliple nnns rcpresenllhe parnllclism

that We hope to exploit. For more det.n..i19 on tile originnl goddCS!l, 9<:<: [StU77J.
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processors Procs : array [ l..P ] with P in l..max...proC8i

processors Procs2 : array [ l..P, l..P ] with P in l..sqrLmax_procsj

Figure 2.1: Kali processor arrays

2.1.1 Sequential Constructs

Outside of explicitly parallel constructs, Kali code is executed sequentially. For these situations,

Kali provides the usual complement of imperative construcl.s. This includes assignment statements,
function calls, for and while loops for iteration, and ifand case statements for conditionals. Because

their syntax and semantics so closely resemble those ofsequential languages, we will not discuss these

constructs in detail. Instead, we emphasize the relationship ofthcse features to the parallel semantics

ofKali.

Besides the distributed arrays described in Section 2.1.3, Kali provides scalar variables and
undistributed arrays. Pascal-like declarations are used for variables of these types. Semantically,

there is a single copy of each of these variables which all processors can access. As will be seen in

Section 2.2.1, the actual implementation is somewhat more complex than this, but this need not

concern the programmer. Treating scalars as single quantities available to all processors provides a
simple, high-level model of the program.

The effects of each sequential statement are felt globally. In particular, assignments to variables

have the same eITect for all processors regardless of whether the variable is distributed or not. Since all

processors have a coherent view of the data, conditions evaluate identically on all processors, avoiding

deadlock and race conditions. Distributed arrays may be used in any expression in sequential parts
of the code. It is the compiler's responsibility to generate the necessary message-passing code in this

situation.

2.1.2 Processor Arrays

The first thing that a Kali program must specify is the array of processors to run the program, which

we call the "processor array." The first line in Figure 2.1 declares Proes to be a one-dimensional

array of processors. Multi-dimensional processor arrays can also be declared, as shown by the

declaration of PJ'ocs2 on the second line. (At present, however, Kali does not allow two processors

declarations in the same scope.) The PI·oes declaration allocates P processors to Proes, where P
is an integer constant between 1 and max..proes chosen when the program is loaded. Our current

implementation chooses the largest feasible P; future implementations might use fewer processors

to improve granularity or for other reasons. Once chosen, P remains fixed for the duration of

the program. It is assumed that each element of the processor array corresponds to one physical

processor. Similar comments apply to the Proes2 declaration. This does two things: it provides a

way of naming processors (by indexing into the processor array) and it parameterizes the code by
the number of processors.

The ability to name individual processors is needed in order to define data distributions and pass

messages. We chose the idiom of processor arrays in part because subscripting provided a familiar

naming scheme. We will see in Chapter 3 that it also provides a convenient way to formally define

data distribution. Aside from these conveniences, however, there is no magic in describing the set
of processors as an array. In particular, the order of array elemenl.s does not imply anything about

interprocessor connections. It is assumed that the underlying machine can efficiently support virtual

arrays of processors, and provide communications between arbitrary processor pairs. This can be

accomplished by incorporating routing algorithms in the message-passing routines. The cost of this

routing will vary according to topology of the machine and the processor array. Different mappings
of physical processors to processor arrays are possible, and this may also aITect the communication

costs on some machines. We wil! return to this point in Section 2.2.3.
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processors Pr : array [ l..P J with P in l..max_procsi

var A : array[ l..N Jof real dist by [ block 1on Prj
B : array[ 1..N ] of real diet by [ cyclic Jon Prj
c: array[ l..N] of real diet by [cycUc( 2) 1on Pri
D : array[ 1..M, l..M ] of real dist by [ cyclic, • 1on Prj
E : array[ l..M, I..M ] of real dist by [ ., block 1on Pr;

Figure 2.2: Kali distribution patterns in one dimension

Parameterization of a program by the number of processors is impodant for a number of reasons.

It makes the program portable to machines with different nnmbers of processors. Scaling the program

up for larger machines is transparent (up to the upper bound in the processors declaration).
Similarly, it avoids deadlock if fewer processors are available than expected. These effects can also be

achieved in other ways, such as by declaring virtual processors. In a virtual processor environment,

the programmer may declare many more processors than actually exist (often one processor for

every array element) and it is the compiler's responsibility to map these virtual processors onto the
actual processors. We prefer our style of parameterization because it allows full user control of the

computation.

2.1.3 Distribution Patterns

As discussed in Section 1.1, an important task ill programming nonshared memory machines is data

distribution. Kali supports the distribution of arrays, since they are the largest data structure in

most Kali programs. All arrays in Kali are declared to be their "natural" size, that is, a single
declaration stating the total number of elements on all processors is used. For distributed arrays,

no processor stores all of these elements; instead, the compiler generates code so that each processor

calculates the section of the array that it stores. This calculation is controlled by the dist clause,
which provides notations for the most common distribution patterns and allows IIsers to define their

own patterns. Kali data distributions can he described by dividing an array into pieces and assigning

each piece to a processor. In this section we will use this model to give an intuitive description of

distribution patterns. Section 3.2 will define data distributions more formally.

In Kali the number of data array dimensions that can be distributed by predefined patterns is

determined by the number of dimensions of the processor array. That is, a one-dimensional processor

array like the Procs array in Figure 2.1 allows one dimension of each array to be distributed; other

dimensions are not divided. We will see later that user-defined distributions need not reflect this.

Kali defines three common patterns for dividing an array dimension among processors.

1. Block distribution, which divides the indices in the distributed dimension into equally-sized

contiguous blocks.

2. Cyclic distribution, which allocates indices one at a time to processors, wrapping around when

necessary.

3. Block-cyclic distribution, which divides the indices into contiguous blocks and allocates these
blocks in a cyclic fashion.

The arrays declared in Figure 2.2 demonstrate these patterns on a one-dimensional processor array.

The most common distribution pattern for one-dimensional arrays is block distribution. Array A
in Figure 2.2 shows how this is declared in Kali. This pattern groups the array elements into

contiguous non-overlapping subsets, storing each subset on a single processor. For example, if

N = 1000 and P = 10, then processor Pr{l] would store elements A[l] through A[lOO]i Pr[2] would

store A[lOl] through A[200]j and so on. Figure 2.3 illustrates this for N = 16 and P = 4. If P does
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10 0 0 0110 0 0 0110 @ ® @II@ @ @ @I
P,[l] P,[2] P,[3] P,[4]

Figure 2.3: DIock distribution in one dimension (array A)

PrIll Pr[2] Pr[3] Pt['l] Prll) Pr[2] Pr[3) Pr['!] Prll] Pr[2] Pr[3] Pr['l] Pr{l] Pr[2] Pr[3] Pr[4]

Figure 2.4: Cyclic distribution in one dimension (array B)

10 0110 0110 0110 0110 @II® @II@ @II@ @I
P,[l] P,[2] P,[3] P,[4] P,[l] P,[2] P,[3] P,[4]

Figure 2.5: Block-cyclic distribution in one dimension (array C)

not divide N, Kali leaves the last (i.e. highest,..llumbered) processor with a smaller partition than the

other processors. Dlock distribution lends to reduce communication if many references are made

to neighboring elements.

If there are P processors, cyclic distribution stores every Pth element on the same processor,

The Kali notation for this is shown in the declaration of array B in Figure 2.2. For example, if

N = 1000 and P = 10, then processor Pr[l] would store elements B[I], B[ll], B[21], and so oni

Pr[2] would store B[2], B[12], B[22], etc. Figure 2.4 illustrates this for N =:. 16 and P = 4. Notice

that each processor appears several times. This pattern is often useful if only a subrange of the
original array will be used. Cyclic distribution then distributes the workload relatively evenly,
while block would leave some processors idle.

The above patterns can be combined using a block-cyclic scheme. Kali represents this pattern

as a variant of the cyclic distribution, as shown in the declaration of array C in Figure 2.2. This

pattern uses a parameter J(, which appears in the parenthesis after the keyword cyclic. The array is

divided into contiguous blocks of size J( which are then distributed cyclically among the processors.

For example, if N = 1000, P = 10, and J( = 50 then processor 1 would store elements C[I]
through C[50] and 0[501] through C[550]. Other processors would have similar sets of elements.

Figure 2.5 illustrates this pattern for N :::: 16, P = 4, and J( = 2, as in the actual declaration

of C. Notice that each processor appears twice. This pattern is a compromise between block and

cyclic patterns, and is oftell used when some considerations (such as load balancing) favor cyclic

distribution and some (such as enhancing data locality) favor block distribution. In fact, block and
cyclic distributions can be considered as special cases of block-cyclic distribution. When J( = I,

the distribution is simple cyclic distribution; block distribution occurs when!( = NIP.

When the processor array has only one dimension, multi-dimensional array distributions are ob
tained by applying one-dimensional distribution patterns to a single dimension and not distributing

any other dimension. Undistributed dimensions in Kali are marked with an asterisk. For example,

the rows of a matrix could be cyclically distributed, as in the declaration of array D in Figure 2.2.
Alternately, the columns of a matrix could be distributed by block, as shown in the declaration

of array E. Figures 2.6 and 2.7 show these distribution patterns for M = 8 and P = 4. In those

figures and in all later two-dimensional distributions, array elements are numbered in their standard

order; thus, the upper left corner circle of Figure 2.6 represents D[l,l] and the lower right corner is

D[M, M]. The considerations in choosing among two-dimensional distributions are similar to those
for their one-dimensional cousins.

When the processor array has more than one dimension, additional dimensions of the data
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10 a a a a a a a 1P,[I)

10 a a a a a a a IP,[2]

10 a a a a a a a 1 P,[3J

10 a a a a a a a IP,[4J

10 a a a a a a a 1P,(l)

[a a a a a a a a 1P,[2]

10 a a a a a a a IP,[3]

10 a a a a a a a I P,[4J

Figure 2.6: Cyclic distribution arrows (array D)

P,[2]

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a
Figure 2.7: Dlock distribuUon of columns (array E)

12



processors PlOcs: array [l..P, l..P 1with P in I..sqrt...rnax_procs;

var F : array[ l..M, I..M ] of renl dist by [ block, block] on Procs;
G : array[ 1..M, 1.. M 1of real <list by [ cyclic, block] on Procs;

Figure 2.8: Kali dis~ribu~ion patterns in two dimensions

Procs[I,I] Procs[I,2]

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Procs[2,1] Procs[2,2}

Figure 2.9: Two-dimensional block distribution (array F)

arrays must be distributed. These d i s t r i b u ~ i o n s are formed by taking the tensor products of one

dimensional distribution p a ~ t e r n s . In effect, each dimension of the data array is distributed across

one dimension of the processor array. If the data array has more dimensions than the processor array,

some dimensions must remain undistributed as before. If ~ h e data array has fewer dimensions than

the processor array, it currently cannot be distributed. In ~he future, we may relax this restriction to

allow low-dimension arrays t.o be replicated across some dimensions of a multi-dimensional processor

array. Figure 2.8 shows two data distributions using a two-dimensional processor array. Array F
uses a block distribution in both dimensions; this is illustrated in Figure 2.9 for M = 8 and P = 2.

Array G's distribution combines cyclic and block d i s ~ r i b u U o n patterns, as illustrated in Figure 2.10.

The two-dimensional block distribution is commonly used for solving partial differential equations

on a regular domain because it induces relatively little communication. Array G's distribution would
be useful for balancing c o m p u ~ a t i o n a l loads in some algorithms.

Finally, Kali allows user-defined data distributions. Figure 2.11 shows an example of such a

distribution. These d i s t r i b u ~ i o n s m l l S ~ specify two expressions for each possible array index. In the

example, the [i,i] term is a dummy parameter that. can take on any legal subscript value. The

number of variables defined in the term must be the same as the number of dimensions in the array.

The on clause gives the processor storing B[i, il, ill this case Pl'ocs[(i - i) mod P + I}; there can be
only one storing processor for each array element. Figure 2.12 illustrates the distribution generated

for array H. It is identical to the skewed distribution described in SeeLion 1.2. This distribution

is useful when antidiagonal strips (for example, the dotted box in Figure 2.12) can be computed in

parallel. The other expression in the declaration (here, [(i *N + i - N - 1)/PJ) specifies the storage

offset of element l/[i,i] on its processor. Section 2.2.4 discusses in some detail how this is used;
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Proes[l,2] 10 0 0 01 0 0 0 01 Proes[l,l]

Proes[2,2] 10 0 0 01 0 0 0 01 Proes[2,l)

Proes[l,2] 10 0 0 01 0 0 0 01 Proes[l,l]

Proes[2,2) 10 0 0 01 0 0 0 01 Procs[2,l]

Proes[l,2J 10 0 0 01 0 0 0 01 Proes[l,l]

Proes[2,2] 10 0 0 01 0 0 0 01 Proes[2,l]

Proes[l,2] 10 0 0 01 0 0 0 01 Proes{1,l]

Proes[2,2] 10 0 0 01 0 0 0 01 Proes[2,l]

Figure 2.10: Combining cyclic and block distributions (array G)

processors Proes : array ( l..P J with P in l..max-flrocsj

var H : array( l..M, l..M] of real
dist by [ij] => [W'N+j-N-l)fP] on Procs[ (i-j)%P+l]i

Figure 2.11: User-defined data distribution in Kali
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Figure 2.12: Skewed distribution



proce9sors Proes : array [ I..P ] with P ill I..max-procs;

var A : array[ I..N ] of real dist by [ block] on Procs;
B : array[ 1..N ] of real dist by [ cyclic] on Procs;

forall i1 in l..N on A[il].loc do

A01] ,~ "0'];
end;

forall i2 in l..N by 2 on A[i2].loc do
A[i2] := A[i2-1];

end;

forall i3 in l..P on B{N+I-i3].Ioc do
B[13]:= B[i3] + B[N+I-i3]i

end;

forall i4 in l..N/2 on Procs[i4%P+l]
var temp: reali

do

temp := B[14];
B[i4]:= B[N+l-i1]i
B[N+l-i4] := temp;

end;

Figure 2.13: KaH forall statements

for now, the expression can be thought of as a subscripting formula. Specifying this offset gives up
some notational elegance to gain compiler efficiency; future implementations of Kali may make it

optional or remove it in favor of other implementation techniques.

2.1.4 ForaH Statement

Parallel operations in I(ali are specified by forall statements, several examples of which are shown

in Figure 2.13. The Kali forall is semantically identical to the forall described in Section 1.2; that
is, it has no inter-iteration data dependences, and thus can have its iterations executed concurrently.

Index variables are implicitly declared in the loop header. The range of the index variable is given

by the in clause. The first loop, for example, has the same range as a Pascal for loop with the header

fori1:=ltoNdo

Non-unit strides are also allowed in fOl'all ranges, as shown in the second example. Multi-dimensional

ranges are also allowed using the syntax of Figure 1.2; in this case, the forall iterates over the cross

product of the individual ranges. Sequential for loops in KaH use the same notation for their ranges.
Foralls can also have local variables; the syntax for declaring them is shown in the last example.

Semantically, the effect of a foraB is that all iterations are executed in parallel and all processes

perform a barrier synchronization until all iterations arc complete. The synchronization avoids the
possibility of race condit.ions or deadlock in the surrounding sequential code. Kali foraIls have two

attributes not found in other languages for nonshared memory machina<;:

1. Each processor execut.es a subset of the iterations specified by the on clause in the forall
header.

2. The body of the forall has no explicit communication statements, even when processors may

need to receive data from other processors.
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The distribution of forall iterations among processors is specified by the foraH's on clause. In

the first foral] of Figure 2.13, iteration i will be executed on the processor which stores element A[l1.
In general, the lac expression refers to the processor which stores the named array element. Many

loops, like the first two examples, use very simple versions of this clause because they are conceptually
iterating over elements of an array. Arbitrary expressions can be used in the lac expression's

subscript, as shown by the third example. The on clause can also refer directly to the processor

array, if that is more convenient. The last foraU in the figure shows an example of this. In all

cases, a processor executes all forall iterations which refer to it when their on clauses are evaluated.
Section 2.2.5 outlines techniques which can avoid explicitly checking the on clauses of every iteration.
At present, the on clause is mandatory. As mentioned in Section 1.3, heuristics for choosing the

distribution of computations are possible; one of these will be incorporated in a later version of Kali,

making the on clause optional.

The rationale for avoiding explicit communication statements was explained in Section 1.2.

Message-passing programs must be written at too Iowa level. Hiding the communication raises

the level of programming substantially, since details of message sources, destinations, and contents
need not directly concern the programmer. In Kali, communication is implicitly generated when a

processor references non local data in a forall. It. is the compiler's responsibility to recognize this

situation and generate code to perform the low. level message passing. Chapters 3, 4, and 5 are

devoted to solving exactly this problem.

2.2 Kali Implementation

In this section we describe the implementation of Kali on nonshared memory machines. After an

overview of the basic ideas in Section 2.2.1, each subsection here sketches the implementation of the

features defined in the corresponding subsection of Section 2.1. These descriptions are not meant
to be comprehensive, particularly in the case of Section2.2.5. The details of implementing forall5

occupy Chapters 3, 4, and 5.

2.2.1 Basic Concepts

We have chosen to implement Kali programs by generating code based on the SPMD (Single

Program, Multiple Data) model of computation [Kar87J. In this model, all processors execute

copies of the same program code, parameterized by the processor id. The processors execute asyn

chronously, however. This is similar to the form of Kali source programs, in which all processors

execute the same forall statement, but may execute different statements within the forall because
of conditionals. SPMD programming should not be confused with SIMD computation, in which all

processors execute synchronOllsly. In lhe SPi\'! 0 model, processors may follow different branches

of the code, even to the point of execllling completely different functions. This is not possible in

SIMD models. In the Ka[i implementation, only a limited amount of asynchrony is used to allow

processors to calculate thcir own loop bounds, perform different numbers of forall iterations, take

different branches of conditionals, and build dynamic data structures. The original Kali code, how

ever, may contain additional sources or asynchrony, such as calling complex functions based on the

number of the forall iteration.

One consequence or the SPMD model is that code oul.side of forall statements is duplicated on

all processors. There ate two ways this can be implemented.

1. By duplicating seqllentinl computations on all processors

2. By using a conditional to make one processor the master and all others slaves. The master

then performs all sequential computations and sends thc results to the slaves.

Our implementation duplicates sequcntial computations on all processors. This decision was based on

both the method's ease of implementation and on cxpected performance gains in a nonshared memory
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environment. Section 2.2.2 describes some modifications to this model required by computations
on distributed data. Note that duplicating sequential computations automatically duplicates the

control Aow, because it duplicates any conditional branching. This implies that all processors must

have a consistent view of the state of the program to avoid deadlock.

Because Kali has no explicit communication constructs, the compiler must insert them into the
compiled code. Messages must be generated in two situations: in parallel code when one processor

may reference data on another, and in sequential code when any distributed data is referenced.

The reasons for message.passing in the first situation are clear. The second situation requires

communication because the code is executed on all processors, but the distributed data is stored
on only one. Because all processors execute the same program, message-passing statements must

usually be guarded by conditionals to ensure that only the appropriate processors participate in

the communication. All these considerations add complexity to the compiler; that is the price of
providing a high-level language to the user.

One can think of the process of generating the communication instructions as a source-ta-source

translation from Kali into a message-passing language. This is, in fact, how the Kali compiler
works; the target language is C code with subroutines for sending and receiving messages. Because

the generated code tends to be opaque, we will not present it directly. Instead, we will illustrate
translations with a fairly detailed pseudocode based on Kali. The major changes made in this

pseudocode are the addition of message-passing statements and the assumption that the code is

being executed in SPMD mode. As is tmditional with pseudocode, complex data structures will not
be shown in detail.

2.2.2 Sequential Constructs

Undistributed variables in T(ali (i.e. scalars and undistributed arrays) are duplicated on all processors.
This allows these variables to be used by any processor at any point in the code without stopping

for communication. Because Kali's semantics specify that all processors have identical views of the

data, the values of these variables must be kept consistent. This is achieved by careful generation
of the code for assignment statements, as explained below.

The left-hand side of an assignment stat.ement can refer to either a distributed array element
or an undistributed variable. Similarly, t.he computation on the right-hand side may require data

from distributed arrays or it may not. The combinations of these possibilities give four classes of
assignment statements in sequential code, all of which need different implementations.

Figure 2.14. shows the cases of assignment to undistributed variables. Statement 1 shows the

simplest possible case of assignment: no distributed array elements are present. In this case, all

processors have consistent copies of all of the data needed to compute the right-hand side. All

processors can therefore perform the same calculation, obtaining the same result, and assign that

result to their copy of the left-hand side. Note that this preserves the consistent state of the copies of

the variable X. Statement 2 shows the assignment of a distributed array clement to an undistributed

variable. Since all processors need data which is stored on only one processor, a broadcast is used

to give all processors a copy. The t.est A[IJ E foca/(p) checks whether Proc[pJ stores A[l]. This
notation is defined more formally in Section 3.2, and the implementation of the test is described in

Section 2.2.4.. For now, it is enough to lOay that focal(p) is the set of array elements stored on Procs[p];

therefore, the test is true on a processor if that processor must broadcast the value, and false ifit must
receive the broadcast. The expression p,·ocsl*] in communication statements denotes a broadcast,

either sent to all processors or received from an anonymous processor. Single-destination messages

identify the correct sender and receiver. If there are several references to distribuled variables, an

if statement and broadcast are required for each reference. Once all processors have received all of

the data, they all compute the right-hand side and make the assignment. Once again, consistency

is guaranteed since all processors perform the same computation on the same data.

Figure 2.15 shows two assignments to distributed array elements. Statement 3 shows the as

signment of an undistributed value to a distributed array. In this case, all processors simply check

whether they own the left·hanc! side of the assignment, and perform the calculation if they do.
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processors Proes : array [ l..P ] with P in l..max...procsj

var I : integerj

X: real;
A : array[ l..N ] of real dist by block on Procs;

I{ali code

-- Statement t
X:=X·Zj

-- Stlltement 2

X,~ A[I];

Message-passing code for Proes[pJ

- - Statement 1

X:=X·2;

-- Statemcnt 2

if (A[I] E local(p) ) then

lmp := A[I]j

send( tmp, Procs[·] );
else

tmp := I'ecv( Procs[·] );

endi
X := tmp;

Figure 2.14: Implementing assignments to undistributed variables

processors Praes: array [l..P] with P in l..max...procsj

var I : integer;
X: real;

A : array[ l..N ] of real dist by block on Procs;

Kali code
-- Statement 9

A[I] , ~ X ;

-- Stlltement .4
A~] ,~ A[I'2];

Message_passing code for Procs[p]

-- Statement S

ir ( A[I] E loca/(p) ) then
AD) ,~ X;

end;

-- Statement 4
if ( A[I] E 10cal(1') ) then

if ( A[2I] E 10col(1') ) then

tmp := A[Z·I],
else

q:= processor storing A[2 t I]
tmp := recv( Procs[q] )j

end;

A[I] := Lmpi

else

jf ( A[2r] E 10cal(p) ) then
q:= processor storing A{I]
send( A[Z·J], Pracs[q] );

end;

end;

Figure 2.15: Implementing assignments to distributed variables
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proces.Bors Proes : array ( l..P 1with P in l..max_proes:

var I : integerj

A : array[ I .. N Jof reul dist by block on Proes;

Permute: array[ l..N 1of integer dist by block on rroesi

Kali code
A[I] := A[ Permute[I] ]i

Message-passing code for PTOCS[P]

if( PeTmtl/c[I) E local(p)) then
tmpl := Permutc[I]j
send( tmpl, Proc:s["'l )j

else
trnpl := rccv( Proes["'] )j

end;
if ( A[I] E local(p) ) then

if ( A[tmpl] E local(p) ) then

trnp2 := A[tmpl]i
else

g:= processor storing A(tmpl]

Lmp2 := rccv( Proes[q] );

end;
AOl := Lmp2,

else
if ( A(tmpl] E local(p) ) then

q:= processor storing A(I]

send( A[tmplJ, Procs[q) )i
end;

end;

Figure 2.16: Implementing assignment with indirection

Note that processors that do not own they left-hand side need not even compute the right-hand

side. Statement 4 is the most complex case: a distributed array element being assigned to another

distributed array element. In this case, the processor owning the left-hand side collects all of the

data needed to compute the right-hand side, either from its own sections of distributed arrays or

from messages received, performs the computation, and makes the assignment. Other processors

check whether they have data needed for the right-hand side, and send it to the processor doing

the computation if they do. The inner if statements must be duplicated for each reference to a

distributed array on the right.-hand side, but the outermost if statement will not change. The com
munication statements and their associated conditions can be avoided if the compiler can detect

that a reference on the right-hand side is stored on the same processor as the left-hand side. This

occurs, for example, when the left-hand and right-hand references are the same, as in an increment
of the array elemen t.

The preceding discussion assumed that all subscripls were computable on all processors in order

to perform the localily checks. This will not be the case if a dislributed array is used as an index

vector. Figure 2.16 illustrates this case and the generated code. The computation must proceed in

two phases. First the value of Pel'mlde[T] is broadcast to all processors, and then the algorithm of

Figure 2.15 can be applied. Additional levels of illdiredion can be handled recursively, starting with
the innermost subscripts.

Expressions in other sequential constructs can be handled by methods similar to those for assign

ments. Since sequential control flow is duplicated on all processors, loop bounds, while conditions,

and expressions in conditionals can be treated as assignments to scalars. Thus, expressions with no

distributed array references can be evaluated on all processors immediately, while expressions using
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distributed arrays require broadcasts. The consistency arguments for scalar assignment guarantee

that all processors will then follow the same branches of the program.

The strategy given in this section generates many small messages, which severely impacts the

performance of sequential I<ali code that. accesses distributed arrays. Much optimization in the
area of aggregating messages is possible and sorely needed in the current compiler. That this

has not been done yet is a matter of our priorities; we felt it was more important to test our
ideas for the parallel features than to optimize the sequential parts. Techniques similar to those of

[eK8S, RP89, Rog90, ZBG88] Rre applicable to Kali and should produce substantial improvements
in the generated code. We plan to incorporate these optimizations in the near future.

2.2.3 Processor Arrays

To implement the processors declaration on a parallel machine, each processor must determine the

number of processors available to the program and its own processor id. These can determined by

simple system calls on most commercially available machines. The number of processors is used to

set the value of the bound variable in t.he processors declaration on each processor. Similarly, each
processor determines its location in the Kali processor array from the system processor id. At present,

we use a naive scheme to convert from system processor ids to processor array indices; we simply add
the lower bound of the processor array to the O-based id. Other mapping schemes are also possible.

In particular, Gray codes allow adjacent clements in the processor array to be mapped to physically

connected hypercube processors [GiI58]. Changing the Kali compiler to use this mapping would only
mea.n changing a single assignment during program initialization and modifying less than 10 lines in

the run-time environment. Multi-dimensional processor arrays arc not currently implemented, but
the principle of computing the processor array index would be similar. A mapping, such as row

major ordering, would be defined from the one-dimensional processor id onto the higher-dimension

processor array index set, and the index computed from this mapping.

2.2.4 Distribution Patterns

The effect of a dist clause in an array declaration is fourfold.

1. A formula is generated to compute the processor storing each array clement.

2. Each processor generates a representation of the set of array clements it stores. This represen
tation need not be explicit.

3. The subscripting formula for the array is generated. This formula translates subscripts based

on the global array into an offset into the local section of the array.

4. Space for the local section of the array is allocated on each processor.

For predefined distributions such as block and cyclic, these computations can be done simply; llser

defined distributions require more complex machinery. to..fore precisely, the information for predefined

distributions can be calculated in the compiler, while the calculations for user·defined distributions

must be done at run-time. We will examine each of these facets of distributed arrays. To make our

discussion more concrete, we will refer to the arrays defined ill Figure 2.17. All arrays there are

defined to be O-based in order to make the expressions in this section simpler. The compiler derives
similar expressions for arrays with other lower bOllmls.

We first consider how the processor storing an array element can be computed. In addition to
being commonly used, the predefined distribution patterns have particularly simple expressions for

finding that processor. Let the processor storing array element. A[i] be Procs[procA(i)], and similarly

for the other arrays. Then

(2.1)
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proceBSors Proes : array [O..P-I ] with P in l..max-proes;

var A : array[ O..N-1 ] of real dist by [ block] on Proes;
B : array[ O..N-l ] of rcal dist by [ cyclic J011 Procs;
C : array[ O..N-I] of real dist by [cyclic(K)] on Procs;
D: array[O ..N-I, O..N-l] orrenl

djst by [ijJ => [(i*N+j)/P] on Procs[ (i-j)%P];

Figure 2.17: Sample distribution patterns

pl'ocB(i)

P"occ(i)

i mod P (2.2)

(2.3)

The ceiling function in Equation 2.1 Clln be e1iminatcd if N is divisible by P. Expressions for arrays

with predefined patterns and undist.ribuled dimensions can be obtained by simply ignoring those
dimensions. The pTOC function for user-defined distributions is given by the on clause. In this case,

p,·ocD(i,j) = (i - j) mod P (2.4)

The Kali compiler defines these functions as macros and insert.s them where needed. All locality
checks, for example, are performed by comparing this macro to the processor array index.

A processor's local subset of array elements is used primarily in distributing forall iterations.
With this in mind, we dcfine descriptions of those sets which allow easy enumeration. Foreshadowing

the definitions of Chapter 3, we will denote the set of local elements of array A on processor p as

localA-(p), For the block dist.ribution, the lower and upper bounds of a processor's block describe

the set completely. Vle can thus definc

(2.5)

Similarly, loea/(p) for the cyclic distribution can be described by the processor p's local lower bound,

the array upper bound, and number of processors.

loealB(p) = {r,p + P,p + 2P, ... ,p + l~ Jp} (2.6)

Block-cyclic distributions require a lower bound, upper bound, and the block size to describe the

loca/(p) functions. For iteration purposes, this is implemented as a pair of perfedly nested loops, the

outer running over the possible blocks (using non-unit strides) and the inner single-stepping through

a block. Section 3.2 will give an explicit. expression for loealc(p). For user-defined distributions,

determining loeal(p) is more complex. Essentially, what must be done is to create a list of all local
array elements on the local processor. In the current implementation, this is done by looping over
all array indices and checking thc gcner(\ted values of t.he on clause. This need only be done once

for each distinct dist clause, bul even so thc startup overhead is significant. Later foralls can then

iterate through the list in linear time.

For both predefined and user-defined disLributions, it is necessary for the compiler to generate

indexing calculations into the local sedion of t,he array from subscripts based on the global ar

ray. This global-to-local translation is conceptually similar to the familiar row-major ordering and

column-major orderillg used for two-dimcnsional arraYSj it translates the programmer's coordinate

system (indices into the global array) into machine-usable addresses (offsets into the local section).

To optimize storage usage, the subscripting formula should compute, for every index, the number

of array elements in the same local section with smaller indices. It. is also advantageous to use the
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same formula on all processors. The Kali compiler generates these formulas as macros called sub

functions. For predefined distribution patlerns, analytic formulas for these functions are available.

subA(i) i - r;1 .p (2.7)

SUbB(i) l ~ j (2.8)

subc(i) lr:pj .J(+imodJ( (2.9)

In practice, the divisions by P can often be replaced by shirt operations, since P is almost always a
power of two and the numerators are nonnegative. If there are undistributed dimensions, then Kali

treats the value of the sub function as the first subscript of a new array, followed by the subscripts of

undistributed dimensions. The new array then uses row-major ordering to produce the final offset.
For user-defined distributions, the first e:-.:prcssion in the dist clause gives the addressing formula.
For the example,

. li.N+ijsllbD(') = P (2.10)

(The floor functions are the result of integer <livision truncation.) Each processor p also calculates the

lowest value of this formula while computing /ocal(p) and subtracts it during subscript calculations
to convert to O-based addressing.

Allocating space for the array is straightforward. Since the predefined patterns divide the array

evenly among processors, each processor allocates space for fNIPl elements for the first three arrays.
(Some adjustment must be made for block-cyclic distributions, which may generate unbalanced

loads.) For user-defined distributions, the number of elements on processor p is calculated during
the computation of local(p) , and this is IIsed to manage storage.

2.2.5 ForaH Statement

There are two major issues in implementing forAIl slatements. The first is distributing the fcrall

iterations, and the second is generating communication statements. Chapters 4 and 5 give detailed
explanations of how the communication is implemented, so we mention only the key issues here.

Distributing the iterations is a simpler problem, which we address more fully in this section.

The implementation of a for811 requires each processor p to execute only the iterations specified

for it in the on clause. There are several possible cases of this, as illustrated in Figure 2.18. The

figure denotes the set of iterations executed on processor p as exec(p), which is the notation used

in Chapter 3. The expressions ror cxcc(l') given there arc mathematical descriptions for the sets;
in this paragraph wc describe how they may be implemcnted. In the first forall (h) of Figure 2.18,

processor p must simply it.erate over the clements or array A stored locally. This can be done

using the appropriate representation of the loca/(p) set described earlier. Similar tactics can be

used for the second forall (i) after adjusting the bounds to conform with the forall index range.

If A were distributed by a user function, this would involve iterating through the local(p) list and

checking whether the list values were in the corrcct range. The third forall (j) requires a method

of constructing the inverse of function f. Chapters 4 and 5 show how this can be done; in the worst

case, these require each proccssor to form a list or its iterations. The fourth forall (k) is the simplest

loop; iteration k is executed on processor k. Finally, lhe fifth forall (I) is a generalization of the

previous one which again requires a runetion invcrse to be found.

As we have stated beforc, it is the compiler's responsibility to generate explicit message-passing

code where it is needed. This is particularly true of forall statements. Because all processors are

not following the same thread of control within a forall, the strategy of Section 2.2.2 for generating

communications will not work. Forall::; do have a compensating advantage, however: the data

needed during the forall is available bcfore cxecution of the fornll begins. This is a consequence
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processors Proes : array[ O..P-I 1with P in l . . m a x ~ p r o c s ;

val' A : arl'ay[ O.. N-1 1of real dist by [ block J on Procs;

rorall h in O..N-l on A[ h poe do

rorall i in low .. high on A[ i ].Ioc do

forall j in O..N-I on A[ f(j) ].lac do

forall k in O..P on Proes[ k 1do

£oralll in O..P-l on Proes[ g(I)] do

(a) Kali f01".111 headers i,i,!.:, and I

exeeh(p)

exec;(p)

execj(p)

execJ:(p)

exec/(p)

locaIA(p)

= {low,low+l, ... ,high}nlocal,1(p)

p, 2, ... , N} n j-' (lOcaIA(p))

= {p}

= g-'(p)

(b) Cort'esponding excc(p) sets

Figure 2.18: Possible eases for fm'all statements
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of the lack of data dependences between forall iterations. Chapters 3, 4, and 5 show that it is also

possible, both in theory and in practice, to predict what data a processor will need for its forall

iterations. Similarly, if a processor modifies data stored on another, the update can be deferred until

all iterations are completed. Elements assigned in this way can also be identified. Thus, a processor
could implement a forall with the following strategy:

• Identify all non local data accessed on this processor and all local data that other processors
access.

• Exchange data to be used during forall iterations with other processors.

• Execut.e the iterations on this processor.

• Exchange data that was modified during the £01'1\11 with other processors.

The exchanges only involve data used or modified on a processor other than its home. This is nearly
the strategy that the Kali compiler actually lIses. The actual code generated appears in Section 3.l.

The idea of computing all data used in a £ol'all and sending it at the start of the forall remains in

the final form of the code. This is the basic i<lea behind our methods: to derive a description of the

data that must be communicated, and to use that description in generating code. The next three
chapters show how this concept applies to £orall statements.

Communications also playa role in the synchronization at the end of a £orall statement. The
relatively expensive barrier synchronization can be avoided by noting that processors can only i n ~

terfere with each other by communicating. If a processor does not receive any messages before it

completes its forall iterations, then no other processor can alter its private memory. Similarly, if

it does not send messages until the completion of il., iterations, a processor will only send out the

correct. values. Both of these conditions arc met by the Kali implementation. Therefore, no explicit
barrier synchronization is done at the end of a rorall construct.



Chapter 3

A Model for Data Distribution

and Message Generation

The remainder of ~ h i s thesis concentrates on the generation of message-passing code for forall
statements. In this chapter we develop a model that will serve as a basis for the code generation.

Chapters 4 and 5 will then show how the model can be implemented. The model and derived

formulas here are essentially identical to those in [KM89, KMV90, Koe8S]. Section 3.1 introduces

this model by showing an outline of the target code and discussing the information required to
implement it. The next four sections each formalize one piece of that information. Section 3.2

introduces the local(p) function which models data distribution. Similarly, Section 3.3 describes the
exec(p) [unction, a model for distributing the iterations of a parallel loop. Because Kali's syntax

specifies these functions directly, we treat them as basic building blocks for the other parts of the

model. Section 3..1 defines send...sct and recv...set, the functions which control communication in the

generated program, using local and exec. Section 3.5 gives a similar treatment to focaUter and
nonfocaLiter, functions that control the computation of the foralI. This completes the main part of

the model. Section 3.6 considers some extensions to the basic model, and Section 3.7 introduces two

approaches to implementing the model. Chapters 4. and 5 will each examine one of these approaches

in detail.

3.1 The Structure of Generated Code

This section describes in general terms the structure of the code generated for a single forall state

ment. Although we give no formal definitions here, we will use the same notation developed in

the next four sections and give informal definitions. This will allow the reader to refer back to the
descriptions here.

For concreteness, we will base our discussion on the model program given in Figure 3.1, which

has some significant simplifying assumptions. In particular, it is assumed that:

1. A(J(i)] is the only array reference in the loop that can induce communication.

2. A(J(i)] is an r-value rather than an I.value, that is, it is rcad rather than written.

3. A[f(i)J is always accessed in the loop, that is, there are no conditionals to alter control flow
around the reference.

Section 3.6 shows bow these assumptions can be relaxed. Other specific features of the figure do

not represent assumptions. In particular, the exact mst and on clauses shown could be any legal

clauses. The expressions derived in Sections 3.2 through 3.5 will apply to any distributions of arrays
and forall iterations.
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processors Procs : array[ l..P ] with P in I..max.procs;

var A, New...A : array[ I ..N ] of real dist by [block] on Procsj

forall i in I..M on New...A[i].loc do
New...A[iJ := A[ f(i) ]j

endj

Figure 3.1: Example forall statement for definition of sets

Code on processor p:

• Generate communication and iteration sets

local(p) = Array elements stored on p.

e:r:ec(p) = Iterations to be performed on p.

For all q::f: p, send..set(p, q) = Array elements sent from p to q.

For all q::f:. p, recv..set(p,q) = Array elements received by p from q.

locaLiter(p) = Iterations on p that access only local data.

nonlocaLiter(p) = Iterations on p that access some nonlocal data.

• For all q with send...set(p,q)::f: ¢, send message containing send_set(p,q) to q.

• Execute computations for iterations in locaLiter(p), accessing only local arrays.

• For all q with recv...set(p,q)::f: ¢, receive message with recv...set(p,q) from q.

• Execute computations for iterations in nonlocaLiter(p), accessing local arrays and message
buffers.

Figure 3.2: Implementing a forall on a nonshared memory machine

Each processor must complete three major tasks in order to correctly implement the program of
Figure 3.1:

• Generate information needed for passing messages and controlling iteration.

• Exchange data with other processors so that all processors have the data needed for their
computations.

• Execute computations using local data and data from received messages.

A more detailed outline of how these tasks are ordered is given in Figure 3.2.

The first step of Figure 3.2 is to generate the information that will be used later. Each processor

needs four pieces of information to complete the above tasks.

1. The set of array elements that it stores locally.

2. The set of forall iterations that it must execute.

3. The sets of array elements that must be sent and received in messages.

4. Two subsets of the set of iterations: those which access only local data and those which access
some nonloca\ data.
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The usefulness of ~ h e first ~ w o sets is obvious. They are also used in computing ~ h e remaining
i n f o r m a ~ i o n . On processor p ~hey are called local(p) and exec(p). N o ~ e t h a ~ local(p) is determined

by the data d i s ~ r i b u t i o n pattern and ezec(p) by the Kali on clause. Because of this close relationship

w i ~ h the source program, we will refer to these sets as basic sets. The next pair of sets is needed
to control the communication with other processors. For every pair of processors p and q there

will be sets send..set(p,q) and recv-set(p,q). which have the obviolls meanings. We will refer to

these sets as the communication sets. Finally, the iteration subsets are used to overlap computation

and communication, as explained below. The iterations on processor p that need no data from

other processors are collected in focal..iter(p). Iterations on p that access any data from any other
processor make up nOrllocal..iter(p) We will refer to these sets as the iteration sets.

The next logical task in implementing a forall is to perform any necessary communication. This
is split into two parts in Figure 3.2; sending the messages is done first, and receiving messages

comes later. This splitting will be explained below. Here we concentrate on the communication

alone. Since A[f(i)] in Figure 3.1 is an r-value (and this is the only array reference that can cause

communication), the only messages needed in the implementation will be for reading nonlocal data.

Since there are no inter-iteration dependences in aforall, the data for these messages will be available
at the beginning of the loop and will not be overwritten within the loop. Thus, the data can be

passed as messages at any time before it is needed. Our implementation sends the messages as soon

as the data is available, that is, as soon as send..set(p, q) is known. This provides the maximum

time for messages to reach their destinations before they are needed. Similarly, messages can be
received at any time before their actual use. Our implementation performs all receives in a block

immediately before the first nonlocal value is needed. This strategy is called pre/etching and is quite
effective, but it is not the only possible strategy. We will review other possibilities in Chapter 7 in

our discussion of related work.

The final logical task in implementing a forall is the actual computation. This task is split
into two parts and interwoven with the communication task. This organization is used to gain

efficiency. If some iterations of the forall on processor p use only data stored on p, then those
iterations can be executed before any incoming messages have been received. This observation can

be exploited to overlap computation and communication by grouping all iterations which use only

local data together. These local iterations can be executed without waiting for any messages to be

received. The remaining iterations, which depend on data received in messages, must be executed

after the messages have been received. Combining this overlap strategy with the prefetehing strategy

explained above results in the alternation of communication and computation shown in Figure 3.2.

A few final points should be made about Figure 3.2. Each processor only needs to generate its

own sets. For example, processor 1 needs no information about locaLiter(2) or send..set(3, 6). This

reduces the amount of information required on each processor. It should also be noted that the
sets need not be explicitly generated in all cases; as we will see in Chapter 4, they can often be

represented by parameters computed by the compiler. Finally, it should be noted that Figure 3.2
strongly incorporates the simplifying assumption that no nonlocal array elements are llsed as 1

values; the prefetching strategy would not work otherwise. Section 3.6 addresses removing this

restriction. We will continue to make this assumption for the next two sections, however. The other

assumptions, although they will be used in deriving the formulas of Sections 3.4 and 3.5, do not

affect the outline of the generated code.

3.2 Data Distribution

The fundamental task of data distribution is to specify which processors in a nonshared memory

machine will store each element of a shared data structure in their private memories. This is done by
providing a mapping between the set of processors on a parallel machine and the set of data items to

be stored. This mapping is not necessarily one-to-one. Going from data items to processors, there

will usually be more data items than processors, so each processor must store more than one datum.

In the other direction, it is sometimes advantageous to store several copies of the same data item.
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Two particular cases of this are of interest:

1. Scalars and small arrays are usually duplicated across all processors.

2. In practice, it is common to have a small area of "overlap" between the regions stored on
neighboring processors to reduce communication.

A general model of data distribution must allow these types of copying.

The first subsection below gives a mathematical model of data distribution for arrays. Sub

sections 3.2.2, 3.2.3, and 3.2.4 will then give concrete examples of the use of the formalism in

Subsection 3.2.1. Included in these examples will be the formulas for Kali distribution patterns
presented in Section 2.1.3.

3.2.1 The Mathematical Model

We describe a data distribution by giving the set of array elements stored on each processor. Math

ematically, this can be modeled as a function from processors to sets of array elements which we call
the local function.

Definition 3.1 Let Procs be the set of processors and Elem the set of elements of an array A.
Then

local: Procs _ 2E/~m : local(p) = {a E Elcm Ia is stored on p} (3.1)

(Here, 2s is the class of subsets of set S.) A graphical example of such a local function is shown

in Figure 3.3. There, the Proes set is shown as four small squares, the Elem set is shown as a

large subdivided square, and the local function itself is indicated by the arrows from the Procs set

to regions of the Elem set. Note that in this scheme there is no problem with data copying for
overlapped distribution patterns. The only consequence is that the local sets of distinct processors

are not disjoint. This is the case for processors 0 and 3 in the figure; their overlap is shown as the

cross-hatched area. In the examples that follow, we will represent Proes and Elem by their index
sets, which will be tuples of small integers. Also, if there is an ambiguity as to the identity of the
array, we will use the array or distribution name as a subscript.

Other approaches to data distribution [CK88, GJGBB, RAPB7, R.P89] have taken a different path
toward formalizing the distribution. Generally, these approaches define a function

proe: Elem _ Procs : proc(a) = p, where p is the processor storing a (3.2)

Note that this is the way user-defined distributions are declared in Kali. If every element is stored

on exactly one processor, then the two approaches are equivalent. In this case, local is simply

proc- l
. If an element can be stored on more than one processor, however, the tlVO methods are not

equivalent. It is not obvious how such a distribution scheme could be modeled using a single-valued
proc function. One possible way around this problem is to redefine proc as

This allows copied elements to be modeled by elements c such that proc(e) has more than one
element. In this case, local and proe can be defined in terms of each other by

local(p)

proc(e)

{elpEp,a,(e)}

{p leE lam/(p)}

Such a redefinition of proc, however, loses some of the conceptual clarity claimed by other researchers.

Because the proc definition is equivalent to the local function, we will use the local formalism
throughout this paper.

The next several sections show the local functions for several distribution patterns in wide use.

For one-dimensional data and processor arrays, we assume that the data array has N elements
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Figure 3.3: Sample focaf funcLion
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and there are P processors available. We also use O-based indexing for both arrays and processors,
making the index sets

Precs = {O,l,2, ,P-l}
EI,m = {0.1.2 ,N-I}

Similarly, for m u l t i p l y ~ d i m e n s i o n e d arrays, we assume the index of the ith dimension runs from 0

to Ni -1 for data arrays and from 0 to Pi -1 for processor arrays. We will also assume that N (or
Ni ) is divisible by P (Pi) where it simplifies the formulas.

3.2.2 One-Dimensional Distribution Patterns

The most common distribution patterns for one-dimensional arrays are the block, cyclic, and
block-cyclic distributions described in Section 2.1.3. Informal definitions of the local functions for

these patterns were given in Section 2.2.4. We give definitions for these functions without further
comment.

locaIBLOCK(p)

(oealcycLIc(p)

loealBLOCK_CYCLIC(K)(P)

{ i I ; .pSi < ; . (p+ I) }

{ iii;: p (mod P) }

{ i I [;(J;: p (mod P) }

(3.3)

(3.4)

(3.5)

The J( in the definition of locaIBLOCK_CYCLIC(K) is the block size parameter to that distribution.
Equations 3.3 and 3.4 are equivalent to 2.5 and 2.6.

There are two approaches to handling array sizes which arc not divisible by the number of

processors in block distributions. Section 2.2.4 describes Kali's method, which is to leave the last

processor with less work than the others. This method has the advantage of simple formulas for
its implementation, but can seriously underutilize one processor. Another method is to divide the

"excess" elements evenly among the lowest-numbered processors. This method produces the focaf
function

local(p) =

{
{i I (l~J +I)p$i< (l)fJ +1)(p+I)}
(illl:Jp+N%PSi< ll:j(p+I)+N%P)

ifp<N%P

otherwise
(3.6)

Note that this distribution guarantees that the number of elements assigned to two processors do
not differ by more than 1.

The two types of block distribution are special cases of a generalized block scheme. Many
distributions assign contiguous sections of arrays to each processor. These can be defined in terms

of the endpoints of each processor's section of the array. Let aD, a1, .. . ,ap be a set of integers such

that aD = 0, ap = N, and ai < ai+i for all i. Then a generalized block distribution can be defined

'"
loeal(p) = { i I 4 p ::; i < 4p +1 } (3.7)

Block distributions choose the aiS to be as evenly distributed as possible. If the computations

required for different points vary, it may be advantageous to select partitions of varying sizes.

3.2.3 Multi-Dimensional Distribution Patterns

The simplest distribution patterns for multi-dimensional arrays are obtaincd by applying one

dimensional distribution patterns to a single dimcnsion and not distributing any other dimension.
Kali distributions of multi·dimensional data arrays on one-dimensional processor arrays are examples
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of this. In these cases, one dimension is essentially ignored in the definition of locaf. For example,
the local functions for the D and E arrays declared in Figure 2.2 of Section 2.1.3 are

locaID(p)

foca{E(p)

(U,j) I i=p (mod P)}

{(i,j) I;(p-1)+1 S j < ;P+1 }

(3.8)

(3.9)

Adding and subtracting one in Equations 3.9 is required by the I-based indexing of the processor
and data arrays.

A generalization of the above approach is to distribute several dimensions independently on
a multi·dimensional processor set. The multi-dimensional Kali distributions in Figure 2.8 in Sec
tion 2.1.3 are examples of this. These distributions generally give rise to several independent condi

tions in definitions of local functions. For example, the local functions for the arrays of Figure 2.8...
locafF(PI,P2) :: {(i,j) II ~ . (PI - 1) + 1 ~ i < ~ .PI + 1

and ~ . (P2 - 1) + 1 '5: j < ~ .P2 + 1 }

locaIG(pl,P2) = {(i,j) Ili=Pl (modP)

and; '(P2-1)+1 ~ j < ~ 'P:!+I}

(3.10)

(3.11)

(3.12)

Again, the dimension-wise formulas must be adjusted from O-based to I-based indexing.

The two-dimensional block distribution of Equation 3.10 is often extended with overlaps between
adjacent processors to reduce communication. The focal function for this modification is

II
NI . PI -1 :S i < N l

. (PI + 1) + 1
PI PI

and N
2 'P2-I~j< N

2
'(P2+1)+1}

P2 P2

Figure 3.4 illustrates this pattern for Nt = N2 = 8, PI = P2 = 2. Processors (0,0) and (1, I) are
shown using dotted outlines there to highlight the overlap. Overlaps larger than 1 can also be usedj
their local functions arc similar to the above.

The skewed distribution pattern is often used to pipeline computations on a two-dimensional

matrix. The basic idea is to give each processor several "slices" of the array parallel to the main
diagonal. Figure 2.12 illustrates this idea for N I = N2 = 8 and P = 4. This is essentially the

same distribution that was used in Figure 1.4; a user-defined Kali distribution for it was shown in
Figure 2.11. The relevant focal function is

lo,"/(p) = (U,j) I i - j =p (mod P)} (3.13)

This function is independent of whether the data and processor arrays use I-based or O-based
indexing.

Many other multi-dimensional distributions are possible. Chueng and Reeves [CR89] suggest
dividing two-dimensional domains into irregularly placed rectangular blocks. If the ith block is

described by its lower left corner (I;,b i ) and upper right corner (rj,t;), then an appropriate focaf
function is

lo,"/(p) = {(i,j) 1/; SiS r; and bi S j S til (3.14)

Snyder and Socha [SS90] describe a scheme for generating partitions that are "balanced, near
rectangular, and near-bulky." Each of their partitions can be described as the union or at most
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Processor 0,1Processor 0 0,

:00'0 00 0 0 0

:0 0 0 0 0 0 0 0

:0 0 0 0 0 0 0 0
...... .... ....................

0 0 0 0 0 0 0 0

:0 0 0 0 0 0 0 0
................................

0 0 0 :0 0 0 0 0

0 0 0 :0 0 0 0 0

0 0 0 :0 0 ...0. 0 ... .0...... .....

Processor 1,0 Processor 1,1

Figure 3.4: Two-dimensional block distribution with overlap

13 canonical rectangles. A local function describing such a partition would involve the union of 13

expressions like the right-hand side or Equation 3.14. Other distribution patterns can be described

in similar terms. We dose this section by noting that, although the examples here have focused
on two-dimensional arrays, similar techniques can be applied to arrays with with three or more

dimensions.

3.2.4 Other Distributions

The last two subsections have considered data distributions which can be expressed analytically. In

this subsection we turn our attention to other distributions.

In some applications it is necessary to distribute an array based on the run-time values stored in

that array or in another related array. Such data distributions are known as dynamic distributions,

and are often used to balance the computational load or to minimize communications among the

processors. Many examples of this technique are given in [FJL+86J. The data distribution can still
be modeled by local functions in these cases, but more complex definitions of those functions must

be used. In particular, the local function will depend on program data, and cannot be evaluated

before the program is executed. Implementing such distributions efficiently is quite complex because

no information is available to the compiler.

Finally, there are large data structures which are not arrays, such as trees and linked lists. These

structures must also be distributed across processor memories for the same reasons that arrays are.

In these cases, however, defining the distribution may be somewhat harder than for arrays. There

are two reasons for this:

1. These data structures are typically built dynamically, and thus require dynamic data distri

butions such as those described above.

2. Many of these structures do not have a simple identification scheme for their components.

This makes it notationally difficult to describe mappings between those components and the
processor set.
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Because of these complexities, we do not discuss non-array data structures in this thesis. Further

work is needed to implement programs using those data structures on nonshared memory parallel
machines.

3.3 Parallel Loops

We now turn to modeling the distribution of forall iterations on a nonshared memory computer.
This is similar to the data distribution described in Section 3.2, except that computation is being

distributed rather than data. A mathematical model of this distribution of computation follows the
same lines as the data distribution model given above.

Definition 3.2 Let Procs be the set of processors, and Iter the set of itemtions of a forall state
ment. Then

e:z:ec : Procs --+ 2ltor
: e:z:ec(p) = {i E Iter I i is executed by p} (3.15)

lier is precisely the range given in the forallstatement, which may depend on bounds computed at

run time. We assume that it is represented by the values of the forall index variable. For simplicity
of presentation, we will only refer to a single forall in most of our examples.

As with the local fundions described earlier, the exec formalism allows one iteration to be

executed by more than one processor. In practice, this is not common; the only situation where

it may be useful is to avoid communication by duplicating a computation on several processors.

In what follows, we will assume that the exec sets of differing processors are disjoint. In practice,
computations are often distributed to the processor where the necessary data is stored. Thus, when

a forall iterates over the elements of array A we have exec(p) = locaIA(p), Often only a section of
the array is manipulated, in which case the weaker statement exec(p) ~ locaIA(p) applies. Because

of this close relationship, there is little purpose in showing examples of exec functions as we did for
local functions.

3.4 Communication Sets

We now turn our attention to the communication sets. The purpose of this section is to define

and derive expressions for send....set(p, q) and recv....set(p, q) in terms of the local and exec functions.

This differs from the last two sections, in which we only defined the functions. This is because the

local and exec functions were defined by the Kali program text; the communication sets require
more work to derive. We will not discuss the practicalities of computing the sets here. Details of
implementing this generation will he discussed in Chapters -1 and 5.

The information needed to generate messages in the implementation of a Kali forall can he

encapsulated in the two new set-valued functions given in Definition 3.3.

Definition 3.3 Let Procs be the set of processors, and Elem the set of elements of array A. Then

send....set : Procs x Procs --+ 2E1em
:

send....set(p, q) = {a E Elem I a must be sent from p to q }

recv....set : Procs x Procs _ 2E /em :

recv...set(p, q) = {a E Elem Ia must be received by p from q}

(3.16)

(3.17)

Note that send.set(p,q) = recv..set(q,p) for all p and q, reflecting the fact that every message has a
sender arid a receiver.

We first derive an expression for recv....set(p, q). An array element e must be in recv_set(p, q) if
Lwo conditions are met:
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1. Processor q must store e. Otherwise, q cannot access e to send it.

2. Processor p must access e. Otherwise, there is no reason to receive e.

The first condition is satisfied by e E local(q). To represent the second condition, we define a new
set function.

ref: PrOC8 --+ 2EI~m : ref(p) = {e E Elem Ip accesses e} (3.18)

Under the simplifying assumptions given for Figure 3.1, the only way for processor p to access array

element e is for e = A[f(i)] for some i E exec(p). Thus, we can give a simple formula for ref(p):

ref(p) {fU) E EI,m I; E ,,,o(p»

f(ox,,(p» (3.19)

Combining the two conditions stated above, we have that e E recv-set(p,q) if e E local(q) and
e E ref(p) or, equivalently,

recv..set(p, q) 1000/(') n ref(p)

local(q) n f(exec(p)) (3.20)

We will take this as the general formula for recv..set(p, q).

The above analysis of recv..set(p, q) can be visualized easily for block distributions in two di

mensions, as shown in Figure 3.5. The diagram represents a portion of the array space used in the
Kali program above it, where each circle represents one element of array A. The local(p) sets are

squares in the data space. Because of the form of the on clause, the exec(p) sets are the same as the

local(p) sets. These sets are represented by the large dashed rectangles in the figure. Only four of

these sets are shown; the other data elements are contained in the locaf(q) sets for other processors q.

Subscripting functions shift and deform these rectangles to produce the ref(p) sets. The common

case of linear subscript functions f deforms the exec(p) sets into parallelograms and shifts them to
new positions. Here the subscripting function is f(i,j) = (i - l,j - 1), which shifts the squares up

and to the left and does not deform them. One such set is shown as the dotted square in the figure.
Intersections between the sets are shown as solid rectangles. In this case there are three nonempty
recv-set(p, q) sets for each processor p.

The analysis of the send..set function mirrors that of recv-set. In this case, the conditions on an
elementeE send.set(p, q) are

1. Processor p must sLore e. Otherwise, p cannot access e to send it.

2. Processor q must access e. Otherwise, there is no reason to receive e.

These conditions lead directly to the expression for send_set(p, q):

send..set(p, q) = focal(p) n ref(q)

looal(p) n f(ox,,(,)) (3.21)

Comparing Equations 3.20 and 3.21 we observe a fundamental relationship between send..set and
recv-set:

send..set(p,q) = recv..set(q,p) (3.22)

This is, of course, to be expected since every message received by one processor must be sent by
another. The analysis for send_set(p, q) can be visualized in the same way that the analysis for

recv..set(p, q) can. This is why Figure 3.5 labels the communication sets as both send..set and
recv...set.
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var A : array[ l..N I l..N ] of real dist by [ block, block Jon Proes;

forall i in 2..N I j in 2..N on A[ij].1oc do

... A[i-lj-l] ...

end;

•

recv..set(p, s) = send_set(s, p)

• local(r)

• recv..set(p, r)

•
= send_set(r,p)

,,[(p)

•
•
•
•

focal(s)

.1. i! ••••
........... i:......................................... ~1'Oi~---

• . • iii. • .I.i-J.=-.c-[-=---______: I .:.. I--.-r-.-::.---.---.-f-.-
II :

" ":E~_..l... _
"· . ::....
"
""· . ::....
""·IT········································

"
• • :: •••• 0-----r---- ,,---------------r- ---J

• • • • • •
local(t) local(p)

recv..set(p,t) = send..set(t,p)

Figure 3.5: Visualizing communication sets
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(3.24)

(3.23)

3.5 Iteration Sets

The purpose of this section is to derive expressions for the iteration sets in the same way that the last
section derived expressions for the communication sets. We will derive expressions for locaLiter(p)

and nonfocal_iter(p) without discussing the practicalities of their implementation. Chapters 4 and 5
will use t.hese expressions as the basis of their analysis.

Formally, the iteration sets are defined as two sel;-valued functions.

Definition 3.4 Let Praes be the set of processors, and Iter the set of iterations of a forall. Then

locuUter(p) : Proes --+ 2
I1er

:

locaUter(p) = {i E exec(p) I i uses only data on p]

nonlocaUter(p) : Proes --+ 2lter :

nonlocaUter(p) = {i E Iter I i uses some data not on p}

Note that both iteration sets are subsets of exec(p).

As was the case for recv..set(p,q), two conditions must be satisfied in order for an iteration i to
be in locaUter(p):

1. Processor p must execute i.

2. Iteration i must access only data stored on p.

The first condition is satisfied when i E ezec(p). To represent the second condition, we define a new
set function.

deref(p) : Procs -> 211er
: deref(p) = { i E Iter I j accesses only data on p} (3.25)

Although their definitions are very similar, it is not the case that deref(p) is the same as locaUter(p).

The difference is that deref(p) may include iterations not executed on processor p. For example, if

all iterations of the forall accessed the same array element e (and no other elements), then deref(p)

would be all of Iter for the processor storing e. For the program of Figure 3.1, there is only one way

that any array element e can be accessed: if e = A[J(i)J for some iteration i. Thus, we can derive a
simple formula for deref(p):

dmf(p) {i E It" I f(i) E /ooo/(p)}

f-'(looo/(p)) (3.26)

Combining the above two conditions, we have that i E focaLiter(p) if i E exec(p) and i E deref(p)
or, equivalently,

local_iter(p) exec(p) n deref(p)

",,(p) nr'(/ooo/(p)) (3.27)

This is the general formula for locaUter(p) that we sought. Since iterations on processor p which

do not fall in locaLiter(p) must fall into nonlocaUter(p), we can define nonlocaUter(p) by sel
complement:

nonfocaUter(p) = exec(p) - focaUter(p)

Rewriting and simplifying, we find

nonlocal_iter(p) exec(p) -locaUter(p)

exec(p) - (e:cec(p) n deref(p))

(ezec(p) - exec(p)) U (exec(p) - deref(p»

"U (,,,o(P) - dmf(p))

exec(p) - deref(p)
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We ~ake ~he las~ form as our d e f i n i ~ i o n of nonlocaUter.

nonlocaUter(p) = ezec(p) - deref(p)

= e.:t'ec(p) - r 1 (local(p» (3.28)

(3.30)

(3.29)

The i ~ e r a ~ i o n sets can be visualized for ~wo-dimensional block d i s ~ r i b u ~ i o n s in much ~ h e same

way as ~he communica~ion se~s, as shown in Figure 3.6. Here, ~ h e squares r e p r e s e n ~ forall i ~ e r a ~ i o n s

r a ~ h e r Lhan array elements. One exec(p) set is shown as a dashed rectangle; because of ~ h e on clause

in ~ h e forall, this is the same as the locaf(p) set. The inverses of subscript functions deform this set in

much the same way that s u b s c r i p ~ functions did in the last section. In this case, f(i,j) = (i-I, j-l),

so f- 1(i,j) = (i + l,j + 1) and the effect of f- 1 is to shin the local(p) set down and to the right.

This produces deref(p), shown as a dotted square. The locaLiter(p) and nonfocaUter(p) sets are
shown as the solid square and solid L-shaped region, respectively.

3.6 Extensions to the Example

The above discussion, particularly the outline in Figure 3.2 and Equations 3.19 through 3.28, makes

several assumptions about the program being analyzed (Figure 3.1). This section discusses changes

needed to relax the following three assumptions:

1. A[J(i)] is the only array reference in the loop.

2. A[f(i)] is an r-value rather ~ h a n an I-value, that is, A[f(i)] is not the target of an assignment.

3. A[J(i)] is always accessed in ~he loop, that is, there are no conditionals to alter control flow
around the reference.

We do not consider other possible g e n e r a l i z a ~ i o n s of our methods, such as their application to other

types of parallel loops. These will be touched on brieRy in Chapter 7.

Allowing several array references in a forall does not change the basic analysis of either the

communication or the iteration sets. For example, an array element must be received by processor p

from processor q if it is accessed by p and stored by q, regardless of the number of program expressions

causing that access. The expressions for ref(p) and deref(p) do need changing Cor this case, however.

Since ref(p) is the set of all elements accessed by v, it must be ~ h e union of the elements accessible

by each individual program expression. Similarly, derej(p) is the intersection of the iterations that

access only local array elements using each expression. This can be represented as

"I(p) = Ut.<ez,,(p))

•
d"'l(p) nI,'(looo/(p»

•
where an arbitrary array reference in the program is A[fl:(i)]. Similarly, if several different arrays

are accessed, the elements of rej(v) must be tagged to differentiate between arrays, and ~ h e corred

local function for each array must be used in the definition of deref(p). Equations 3.20, 3.21, 3.27,

and 3.28 remain correct if Equations 3.29 and 3.30 are used to define ref(v) and derej(p).

Assignment to A[f(i)] requires two new communication sets, and two extra steps in the outline

of Figure 3.2. Because a reference to A[f(i)] now implies that that array element is written rather
than read, the direction of the communications is reversed. If processor p assigns to an array element

stored on processor q, then p must send a message and q must receive it. This leads to the definitions

of two new set functions:

Clssign_send..set : Frocs ..... 2E1
•
m :

assign_send..set(p, q) = {e E Efem Ip assigns e and q stores e]

assign_recv..set : Proes ..... 2E1em
:

assign.recv..set(v, q) = {e E Elem I p stores e and q assigns e}
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var A : array( l..N, l..N 1of real dist by [ block, block 1on Procs;

foraH i in 1..N, j in l..N on A[tjJ.loc do

,,' A[i-lj-l] ,,'

end;

•

nonlocal_iter(p)

focal_iter(p)

,

- - - - ,-,,;··········································T··········..

• - - - ,

•,,,,,- - - - ,-,,,,. • - - ,•,
,,,
r: I~ ~ J

-

exec(p)

- ,_~ ~1~ ~_" -
•

•
-- _:- - . -
"r

deref(p)

Figure 3.6: Visualizing iteration sets
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Code on processor p:

• Generate communication and iteration sets

local(p) = Array elements stored on p.

exec(p) = Iterations to be performed on p.

For all q ¥:- p, send..set(p,q) = Array elements sent from p to q.

For all q ¥:- p, recv...set(p, q) = Array elements received by p from q.

For all q ¥:- p, assign..send...set(p, q) = Elements on q that p assigns.

For all q ¥:- p, assign_recv..set(p, q) = Elements on p that q assigns.

locaLiter(p) = Iterations on p that access only local data.

nonlocaLiter(p) = Iterations on p that access some nonlocal data.

• For all q with send...set(p,q):/; ¢, send message containing send_set(p,q) to q.

• Execute computations for iterations in focaLiter(p), accessing only local anays.

• For all q with recv...set(p,q) ¥:- ¢, receive message with recv..sd(p,q) from q.

• Execute computations for iterations in nonlocaUter(p), accessing local arrays and message

buffers.

• For all q with assign_scnd..set(p, q) :p ¢, send message containing assign..send.set(p, q) to q.

• For all q with assign_recv.set(p, q) :/; ¢J, receive message with assignJecv...set(p, q) from q and
perform assignments to local section of array.

Figure 3.7: Adding nODlocal assignments to Figure 3.2

An analysis parallel to that for send..set and recv...set yields the following expressions:

assign...send...set(p, q)

assign_recv...set(p, q)

lo'ol(q) n !(,",,(P))

lo'al(p) n !(,,,,(q))

(3.33)

(3.34)

(Note the similarity of Equations 3.33 and 3.34 to Equations 3.21 and 3.20.) Figure 3.7 shows how

these sets arc used in the implementation. The initial part of the computation follows Figure 3.2.

After that computation finishes, assign...send...set(p,q) is used to send nonlocal array elements that

have been assigned to their home processors, and assign.recv...set(p, q) controls receiving clements

from other processors. Parallel accumulations onto nonlocal variables can be handled in a similar

way; the essential change necessary is to send the values to be accumulated rather than the full

accumulated value. If different types of accumulations are done, either new analogues of the com
munication sets are needed for each accumulation type or flags must be maintained describing the

operation to be performed on each communicated datum. A similar statement applies to mixing

pure assignments and accumulations.
In theory, conditionals and other control.flow constructs in a forall can be handled by applying

operators to the exec(p) sets to exclude iterations which do not perform a given array reference. This

is seldom a practical approach, however. A more reasonable alternative is to compute conservative

approximations of the communication and iteration seLs. In compiler terminology, a conservative

approximation to a set X is another set Y which produces correct results when Y is substituted for

X. For example, a veetorizing compiler can transform a loop into a vector instruction only if there

are no data dependences in the loop. If the compiler's dataflow analysis cannot prove the lack of

a dependence, it must assume the possible dependence exists and not vectorize the code. In other
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words, the compiler must conservatively approximate the set of data dependences by assuming it is
as large as possible.

In the context of foralls with nested control flow, conservative approximations are needed for the

communication and iteration sets. Conservat.ive approximations send.set'(p,q) and recv..set'(p,q)
to the communication sets must satisfy three conditions.

send..sd(p, q)

recv..set(p, q)

send..set
l
(p, q)

S; send..set'(p, q)

!::: rccv-set'(p, q)

recv_set'(q,p)

(3.35)

(3.36)

(3.37)

Relations 3.35 and 3.36 follow from the observation that a program will still be correct if it performs

more communication than absolutely necessary. The last condition is necessary because the program
will deadlock if senders and receivers do not agree on the contents of a message (or whether a

message should be sent at all). For the iteration sets, the conditions on conservative approximations

10caUter(p) and nonlocaUter(p) are slightly different.

local_iter'(p) £ local...iter(p) (3.38)

nonlocaf_iter(p) £ nonlocal...iter'(p) (3.39)

locaUter' (p) n nonlocaUterl(p) ; <I (3.40)

locaUter' (p) U nonfocaUter' (p) ; exec(p) (3.41)

Relations 3.38 and 3.39 hold because a local iteration can execute either before or after messages are

received, but a nonlocal iteration must wait for data to arrive. Thus, it is correct to execute a local

iteration with the nonlocal iterations but not vice versa; equivalently, it is correct to place a local

iteration in nonlocaUterl(p) but not to place a nonlocal iteration in locaI...iter'(p). Equations 3.40
and 3.41 guarantee that each iteration is executed exactly once.

When a forall contains a conditional statement, the above conservation propedies can be main

tained by computing the sets assuming that all array references in the conditional are actually

executed. This means that Equations 3.20, 3.21, 3.27, aIld 3.28 are applied without considering

whether control flow on a given iteration will reach the array reference. Note that this differs from

the behavior defined by Definitions 3.3 through 3.4, which implicitly consider only references which
are actually used. Figure 3.8 illustrates this by showing both the actual communication sets and

conservative approximations to them in the presence of a conditional. Nested for and while

statement.s are handled similarly, by assuming that the loop bodies are always executed. In the

case of a nested for statement, array references often depend on the loop index; this must also be

incorporated in computing the communication sets. Essentially, this is done by considering a single

reference in a nested for loop as many separate references parameterized by the index. Figure 3.9
gives an example of this.

The three generalizations given in this section are almost independent, in that they may be

combined without adverse effects. The only exception to this is combining nonlocal assignments

with control-flow constructs. In this case, flags must be used to determine which array elements are
actually assigned in the loop. Otherwise, good data values may be overwriLten. Note t.hat t.hese

flags must be calculated on the assigning processor and used on the storing processor, so they must

be communicated along with the array elements.
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-- assume N=16 and P=4

processors Procs : array[ O..P-l] with P in l..max.proes;
var A, B : array[ O..N-l] of real dist by [block] on Proesj
forall i in O..N-3 on A[i].Ioc do

if( i%3 = 1) then

AI i ] ,= B[ i+2 ];
end;

end;

(a) Kali forall statement with nested conditional

Procs[O] Procs[l] Procs[2} Procs[3]

(b) Actual (solid arrows) and assumed (dashed arrows) flow of data

,-.. '-.. ...-.. '-.. '-.. '-.. ,-.. '-..

recv..set(I, 2) = send_set(2, 1) = {9}

recv..sd(2, 3) = send_set(3, 2) = {12}

(c) Exact sets (all other communication sets are empty)

recv..set/(O, 1):= send_set'(I,O) = {4,5}

recv..sd' (1,2) = send_sei' (2, I) = {9,IO}

recv..set' (2, 3) = send_set'(3,2) = {12,13}

(d) Conservative approximations (all other approximating sets are empty)

Figure 3.8: Conservative approximations of communication sets
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-- assume N=16 and P=4

processors Procs : array[ O..P-l] with P in l..ma..x_procs;

var A, B : array[ O..N-l, O..M] of real dist by [block, * 1on Procs;

forall i in O..N-3 on A[i].loc do

for j in O..M do

A[;j] ,= B[;+2J1;
end;

end;

(a) Kali forall statement with nested for

recv..set(O, I) = send..set(I,O) = {4,5) x {O,I, ,M)

recv..set(I,2) = send..set(2, 1) = {8,9} x {a, 1, , M}

recv..set(2, 3) = send_set(3, 2) = {I2, I3} x {a, 1, , M)

(b) Communication sets for (a)

Figure 3.9: Communication sets for a forall with a nested for

3.7 Generating the Sets: Compile-time versus Run-time

The preceding discussion has been necessarily vague, since the concepts here can be applied to any

forall statement. Performing these transformations on a particular forall raises certain new issues:

1. When can the required sets be generated?

2. How can the required sets be generated?

3. What representation should be used for the sets?

Different loops may require different answers to these questions. We have developed two styles of

analysis which are applicable to different types of loops: a compile-time analysis useful for regular
problems, and a run-time analysis useful for irregular problems. In this section, we discuss general

differences between the two methods; the next two chapters will give specifics on their implementa
tions.

Many scientific applications have very regular array access patterns. These access patterns

may arise from either the underlying physical domain being studied or the algorithm being used.
Examples of such applications include

1. Rela..xation algorithms on regular meshes

2. Alternating Direction Implicit (ADI) algorithms

3. Traditional linear algebra operators, such as matrix multiplication

4. Dense matrix factorizations, such as Gaussian elimination

The distribution and subscripting functions used in such applications tend to be simple: some type of

block or cyclic distribution, and linear subscript functions. With such functions, the communication

and iteration sets can often be described by a few scalar parameters (such as low and high hounds
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on a range). Such a representation is very space-efficient and can be calculated quickly if analytic

expressions are available for the parameters. Often the compiler can perform these calculations

completely or partially; in those cases, the first phase of the code in Figure 3.2 becomes either a

set of constant declarations or a few integer operations. We refer to the analysis for these cases as

compile-time analysis, discussed in depth in Chapter 4. Compile-time analysis leads to extremely

efficient programs, but the price paid is some loss of generality. If no simple descriptions of the sets
are obtainable, then this style of analysis does not apply.

In applications using complex distributions or subscripts, it may be impossible to give any an
alytic expressions describing the communication and iteration sets. This is a particularly serious

problem if the subscript functions depend on data only available at run-time, such as index arrays.
Examples of applications in this class include

1. Relaxation algorithms on unstructured meshes

2. Sparse linear algebra methods, which use specialized data structures

3. Sparse matrix factorizations, including incomplete factorization algorithms

Because of the dependence on run-time data to describe the communication and iteration sets for

these applications, little can be done at compile-time. In such cases, the compiler must generate

code which calculates the sets at run-time. Generally, no succinct description of tlle sets is available,
so some general mechanism for representing sets must be used. We refer to the analysis necessary

in this case as run-time analysis and discuss it in depth in Chapter 5. It has the advantage of being
quite general, although the code necessary to generate the sets is much more involved than that for

compile-time analysis. Chapter 6 shows that this added overhead can be made acceptably small.
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Chapter 4

Compile-time Analysis

In this chapter we develop formulas which can be used in the compiler to represent the communication

and iteration sets defined in Chapter 3. Using these formulas, the compiler can emit code to generate
the program described in Section 3.1. In order for the compiler to do this, several things must be

true:

1. The local functions for the arrays must be easily represented in the compiler. In this chapter,

we will only consider the Kali block and cyclic distributions.

2. The exec functions must have a similarly simple form. In this chapter, we will assume that

the exec function is equivalent to the local function for some array accessed by the forall.

3. The subscripts must be relatively simple. If a subscript depends on an array known only at

run time, for example, the compiler will not be able to analyze the reference. In this chapter,
we will consider subscripts which represent linear functions of the forallloop index.

The above conditions may appear very restrictive, but in practice they cover many of the most

common cases. Nearly all of the applications cited in [FJL+86] use block or cyclic distributions of

the data. In the same reference, the assumption is usually made that computations are done on the

processor where the result is to be stored, which generally satisfies our second criteria. Finally, a

recent study [SLY88J indicates that as many as 78% of all subscripts in the scientific codes studied

were linear functions ofloop indices or could be converted to linear subscripts using user assertions.
Thus, even a restricted compile analysis in the compiler will be widely applicable.

The precise conditions that we impose on subscripts are worth noting. In Sections 4.2 through 4A,
we will declare several variables used in subscript expressions as constants. We assume these con
stants are integers. This is natural, since the subscript itself must be an integer. The Kali compiler

does not require constants in actual programs, however. Instead, it allows any expression which

is invariant during the forall statement to be used. Such invariant expressions are detected by

standard compiler techniques. Figure 4.1 shows several examples of these. The references B[c],
B[j]. B[k] and B[j + k] are forall-invariant and can all be handled by the analysis in Section 4.2.

Reference B[bad], however, is outside the scope of our analysis because the value of bad changes

within the same iteration of the forall. This is more general than the definition of linear subscript

used in [SLY88], which requires coefficients to be known at compile time. Our results may therefore
be even more general than the comments above indicate.

The remainder of this chapter is organized as follows. Section 4.1 introduces some notation that

will be used in the other sections. Section 4.2 describes the compiler analysis possible when the

subscript is a constant; this analysis applies to Kali's block, cyclic, and even user-defined distri

butions. Section 4.3 describes the compiler analysis possible for one-dimensional arrays distribuled
by block. Section 4.4 describes the compiler analysis for one-dimensional cyclic arrays. Finally,

Section 4.5 describes some extensions to the results of the other sections.
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processors procs : array[ l..NP] with NP in 1..max...procsi

const
c = IOi

var
A, B : array[ l..N 1of real dist by [ block] on Proesi

for j in 1..10
var k: integer;

do

k:= Wj +j) / 2j

Corall i in low..high on A[i].loc
var bad: integeri

do

bad := round( sqrt( i ) )j
Afi] := B[ c]j -- OK; eompi/fJ-time constant

Afi] := B[ j ]j -- OK; jorallioop invariant treatfJd as constant

AfiJ := D[ k]i -- OK; fomllioop invariant treated as constant
A[i) := Br j+k]i -- OK; vallJfJ of i+k is loop invariant

Afil := B[ bad ]i -- TrolJblfJ; not forall/oop invariant
end;

endj

Figure 4.1: Forall-invariant subscripts

4.1 Notation

This section introduces a notation for describing ranges of integers, which will appear in the analysis

later in this chapter. Proofs of the lemmas presented here are omitted, as they are tangential to the

main thrust of this chapter. They may be found in [Koe90].

Definition 4.1 A contiguous range of integers is denoted by

[A,B]= {; I AS i S B}

Non-contiguous ranges with a constant (integer) step size are denoted by

lA, B; C] = {; IAS i S B Ai" A (mod C)}

(4.1)

(4.2)

with C restricted to be positive.

In order to describe certain properties of ranges, it is convenient to define the following:

Definition 4.2 For integer a and b and positive integer c, let nxt(a, b, c) bfJ the smallest integer

such that nxt(a,b,c);::: a and nxt(a,b,c) =b (mod ~ ) .

Lemma 4.1 tells how this function can be computed.

Lenuna 4.1 If the modulo operator % is defined so that a %b ;::: 0 for all a and b, then

nxt(a,b,c) =a+(b-a)%c

Using nxt(a, b, c) we can derive several properties of ranges
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processors procs : array[ 1..NP] with NP in l..max..procsj

const
low = j

high = j

c = j

N = j

var

A, B : array[ 1..N Jof real dist by [block 1on prOCSj

foraH i in low..high on A[i].Ioc do
Ar.] ,~ B{ ,];

end;

Figure 4.2: Program using constant subscripts

Lemma 4.2 For any CI > 0, C2 > 0, let nl, n2 be integers such that C1n1 + C2n2 = gCd(C1, (2) and

I"

Then

[ a 1 , b 1 ; ~ ] n [ a 2 , ~ ; ~ ] =

{ ~ m l min(b1 ,b2 ); Icm(c1,c2)] if a2 == al

otherwise
(4.4)

[a1,bl;cl]-[a2'~;~]=

[a.. min(b1,a2-1); cd U [max(al,71xt(b2 +1,at,c1))' bl ; cd U

U [a1 +kC1' b1; Icm(ct,c2)] (4.5)
as·<c2/~d(cl.o2)

0,+",.02 (mad 02)

[a1,b.] n [a2,b2 ]

[alIbi] - [a2,b2]

[a1,b.] n [a2, b2; c]

= [max(al,a2),min(b1,b2 )]

[at, min(b l , a2 - 1)] U [max(a1' b2+ 1), b2]

[ma.x(nxl(a1,a2,c),a2)' min(b t ,b2)j c]

(4.6)

(4.7)

(4.8)

For convenience we also define one other constant.

Definition 4.3 If the a7TCJY being referenced by a forall has N elements distributed over P proces

sors, then define

M = [;1
to be the number of elements stored on each processor.

4.2 Constant Subscripts

(4.9)

We consider the simplest possible case first: arrays indexed by a constant subscript. An example

program which falls into this class is shown in Figure 4.2; we will refer to this program throughout
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this section. The defining characteristic of this class is that the subscripting function is f(i) = c.

As discussed earlier, c can be any forall-invariant expression. An important example of this class

of programs is Gaussian elimination, which we will consider in Chapter 6.
The basic results for this class of subscripts are given in Theorem 4.l.

Theorem 4.1 If the subscripting function in a forall is f(i) = c for some invariant c, then

recv....set(p, q) = O,j if c E local(q) and exec(p) =F ¢
(4.10)

otherwise

send....set(p, q) = O,j if c E local(p) and ezec(q) =F ¢
(4.11)

otherwise

local_iter(p) { ;",(p) if c E local(p)
(4.12)

otherwise

nonlocal_iter(p)
{ :zec(p)

if c E local(p)
(4.13)

otherwise

To prove the theorem, we need the following lemma.

Lemma 4.3 If the subscripting function in a forall is f(i) = c for some invariant c, then

",/(p)

d"'/(p)

if exec(p) =F ¢
if exec(p) = ¢

if c E local(p)

if c ¢ local(p)

(4.14)

(4.15)

As before, Iter is the entire range of the forall.

Proof.

",/(p) = /(,,,,(p))

(J(i) liE ",,(p))

= {cliEexec(p)}

{
{,j ;f,,,,(p)#¢

¢ if exec(p) = ¢

d"'/(p) r'(loool(p))

{
Iter if c E /ocal(p)

¢ if c ¢ local(p)

o
We now return to the proof of Theorem 4.1.

Proof. (Of Theorem 4.1)

All of the formulas are direct applications of Lemma 4.3 to the formulas of Chapter 3.
Equation 4.10:

recv..set(p, q) = focal(q) n ref(p)

{
{c} if exec(p) =F ¢ and c E loca/(q)

¢ otherwise

Equation 4.11:

send..set(p, q) loool(p) n ,,/(q)

{
{c} if exec(q) =F ¢ and c E local(p)

¢ otherwise
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-- Code on processor p

COilfit

low= ;
high = i

C = ... ;

low-A = (p-l) * N / P + Ij
high...A=p*N/Pj
lowJ3 = (p-l) * N / P + 1;
highJ3=p*N/Pi

-- bounds on local section of A

- - bounds on local section of B

var A, B : array[ l..N ] of real dist by ( block] on prOCSj
c : integer;
lemp : real; compiler-genemted !emporory

-- communication statements

if ( 10w..B <= c and c <= high..B ) then
-- broadcas! to others

temp := B[ c ];

send( lemp, procs[*] );
else

-- receive broadcast

temp := recv( procs[*] )i
endj

-- computation statements

for i in max{low-A,low) .. min{high-A,high) do
Aft] := temp;

endj

Figure 4.3: Compiled form of Figure 4.2

Equation 4.12:

Equation 4.13:

local_iter(p) euc(p) n deref(p)

{
exec(p) if c E local(p)

4J otherwise

nonlocaUler(p) = eZ'ec(p) - deref(p)

{
¢ if c E local(p)

ezec(p) otherwise

o
Notice that the proofs of Lemma 4.3 and Theorem 4.1 use no information concerning the form

of either the local or the exec functions. This indicates that the formulas derived are applicable to

any array distributions and any on clauses used. It should also be noted that the expressions for

rectl..set(p, q) and send_set(p, q) indicate that one processor is sending a value to all other processors.

This type of broadcast is precisely the behavior that we expect from a program repeatedly accessing
a fixed array element.

Figure 4.3 shows how Theorem 4.1 can be used to implement the program of Figure 4.2. The

amount of memory needed to store the received values can be found directly from the maximum

size of recv..set(p, q)j a scalar variable is sufficient. Because one processor is sending to all others,

an efficient broadcast mechanism (either hardware broadcast or a fan-out tree) can be used instead
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processors proCl> : array[ O..P-l ) with P in I..max...procsi

canst
N= i

low = i

high = j

cO = j

c1 = j

va,
A, B : array[ O..N-l Jof real dist by [block Jon procs;

forall i in low..high on A[i].Ioc do

A[i]:= B( cO·i + elli

endj

Figure 4.4: Program using linear subscript functions and block array distributions

of sending individual messages. Separate loops for local and non local iterations can be avoided by
copying B[c] to the temporary location on the sending processor and considering all iterations on
every processor to he nonlocal.

4.3 Block Distributions with Linear Subscripts

We next consider programs such as those shown in Figure 4.4. The defining features of this program
m

1. All arrays in the program have a block distribution and the same size.

2. The computation is performed on the processor storing element i of one of the arrays.

3. The subscripting function is lei) = coi + Cl, that is, a linear function of the rorall index. The

discussion on page 44 described our assumptions about eo and Cl.

Programs with these features include relaxation and AD! algorithms for solving partial differential

equations on regular grids. In order to generate useful expressions for the communication and

iteration sets, it is necessary to consider two general cases for the value of co: Co > 0 and Co < O.

(The case of Co = 0 was handled in Section 4.2.) Theorem 4.2 gives the expressions needed for the
Co > 0 case, while Theorem 4.3 handles the cd < 0 case. An important subclass of these programs

have the additional property that leo! = 1; therefore, we will derive special forms of all our equations
for these cases in Theorems 4.4 and 4.5.

The analysis for all cases requires expressions for local(p) and exec(p). These may he found from
the material in Sections 3.2 and 3.3; we repeat them here for ease of reference.

/o,a/(p) = {iIMp"i"Mp+M-I)

[Mp,Mp+M-II

exec(p) [low, high] n local(p)

[max(low, Mp), m;n(Mgh, Mp + M - 1)1

Because the hounds of exec(p) will be used so frequently, we designate names for them.

Definition 4.4 Define bot(p) and top(p) as

bot(p) max(1ow,Mp)

top(p) min(high,Mp+M-I)
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We begin by deriving expressions for the communication and iteration sets when Co > o.

Theorem 4.2 If all arrays in a forall are distributed by block, the subscripting /undion is f(i) =
coi + Cl and Co is a positive integer, then let

Then:

Ib(p,q)

.b(p, q)

max(cobot(P) + CI, nxt(Mq,Ct, co))

min(cotop(p) + Cl, Mq + M - 1)

Itr':.t'l +"p - 1 $ q $ l7'-J+ c,(p + 1) then

recv....set(p, q) = [Ib(p, q), ub(p, q); co]

Otherwise,

recv..set(p, q) = t/J

send....set(p,q) = [lb(q,p), ub(q,p); col

Otherwise,

send....set(p, q) = ¢

(4.20a)

(4.20b)

(4.21a)

(4.21b)

If CI ~ 0 then

locaLiter(p) =
[max (bot(p), r M : ~ " D,

min (top(p), lMe.,,;, ' "j)]
(4.22)

nonlocaUter(p) :;; [ max (bot(p), lMp + ~o- 1 - CI J+ 1) , top(p) ]

Otherwise, if Cl S (M P - 1)(1- co) then

nonlocaUter(p) = [bot(p),min (toP(P), rMPc~ Cll- I ) ]

Otherwise,

(4.23a)

(4.23b)

nonlocaLiler(p) =
[ max (bot(p), lMp+ll~ l e, J + 1) , top(p) ] U

[ bot(p), nUn (top(p), rM;"1- 1) ]
(4.23<)

Note that the conditions on Equations i.£3a and i.£3b are both trne when Co :;; 1 and

Cl :;; O. In this case,

nonfocaLiter(p) = ¢

To prove Theorem 4.2 we use the following lemma.
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Lemma 4.4 If all an-ays in a forall are distributed by block, the subscripting function is f(i) =
coi + CI, and Co > 0, then

(4.24)

(4.25)

Proof.

Equation 4.24:

ref(p) f(""(P))

= {f(i) [i E ",,(P))

= {coi + Cl I bot(p) .$ i ::; top(p)}

{k I k = coi + CI /\ bot(p) ::; i ::; top(p)}

{k I k == Cl (mod co) /\ cobot(p) + CI ::; coi + CI ::; cotop(p) + Cl}

[cobot(p) + CI, cotop(p) + Cli col

Equation 4.25

dmf(p) r'(looo/(p))

= {i I f(i) E looa/(p)}

{i I Mp::; coi+ CI::; Mp+M-l}

{
i I Mp - Cl ::; i ::; Mp + M - 1 - Cl }

Co Co

{i I rMPo~o'1 ~i ~ lMP+~,-1-0' j}
= [[MPo~o'1, lMP+~,-1-0'j]

The insertion of the floor and ceiling functions is legal because the elements of deref(p) arc integcrs.
o

We now apply Lemma 4.4 to obtain Theorem 4.2.

Proof. (Of Theorem 4.2)

Applying Lemma 4.4 to Equations 3.20 and 3.21 produces

recv..set(v,q) = focal(q) n ref(p)

[Mq,Mq+M-l]n[cobot(p)+Cl' cotoP(P)+CI; col

[max(cobot(p) + CI, r1xt(Mq,CI, co)),

min(cotop(p)+Cl,Mq+M-l); Col
send..set(p, q) local(p) n ref(q)

= [Mp,Mp+M-l]n[cobot(q)+CI, cotop(q)+CI; co]

= [max(cobot(q) + CI, r1xt(Mp,cI, co)),

min(cotop(q) + cI,Mp + M - 1); col

These expressions apply to all values ofp and q, but are not in the most efficient form for computation.
Many processor pairs will not need to communicate during the computation, and therefore many

of the sets will be empty. To avoid explicitly computing these sets, we will now find necessary

conditions for recv..set(p, q) 'I ¢ and send_set(p, q) 'I ¢. These conditions will take the form of a

range of values for q for any fixed value of p.
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We begin by considering recv..set(p, q). A necessary condition for that set to be nonempty is for
the range

R = [max(cobot(p) + Cl, Mq), min(cotop(p) + Cl, M q + M - I)]

to also be nonempty, since it is a superset of recv..set(p,q). Since bot(p) 2, Mp and top(p) $
M p + M - 1, R nonempty implies

coMp + Cl

Mq

< Mq+M-I

< co(Mp+M-I)+cl

(Other conditions also apply, but these are the only inequalities involving both p and q.) By

simplifying these constraints, we can develop bounds on q for a particular processor p. The first
constraint produces a lower hound

COMp+Cl

COMp+Cl-M+1

cDMp+Cl-M+1

M
CI + 1

cDP-I+-
M

while the second produces an upper bound

$ Mq+M-l

< Mq

< q

< q

Mq < cD(Mp+M-I)+Cl

Mq < coMp+coM-co+Cl

coMp+coM-co+Cl
q ::; M

CI - Co
q $ co(p+I)+~

Since p and q must both be integers, we can further limit the possible range of q using ceiling and
800r operators:

cop-l+ rCI; 11 $ q $ co(p+ I) + lC
I ~coJ

Only the recv_set(p, q) values in this range must he generated; all others are empty sets. A similar

analysis identifies nonempty values of send_set(p,q). The constraints in this case are

COMq+Cl $ Mp+M-I

Mp $ co(Mq+M-I)+Cl

(Note that these are simply the constraints for recv..set(p,q) with the roles of p and q reversed.)

The first constraint now gives an upper bound on q

coMq+cl < Mp+M-I

coMq < Mp+M-I-cl

S
Mp+M-I-Cl

q
Mo,

while the second constraint gives the lower bound

Mp < co(Mq+M-I)+Cl

Mp S coMq +coM - Co +Cl

Mp-Mco+co-Ct < coMq

Mp-Mco+cO-Cl
<

Mo,
q

Mp+CO-Cl
-1 S q

Mo,
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As beCore, we can apply floor and ceiling operators to obtain integer bounds on q:

[ Mp+co-CI1_1~q~ lMP+CO-Clj_1
Afco Mco

Again, these represent values Cor which send_set(p, q) can be nonempty. The expressions for the

communication sets in Theorem 4.2 take these bounds into account.

We now turn our attention to the itcration sets. We obtain expressions for these by applying
Lemma 4.4 to Equations 3.27 and 3.28.

loca/_iter(p)

nonlocal_iter(p)

=

exec(p) n deref(p)

[bot(p),top(p))n [ [ M P , ~ " 1, lMP+~,-I-"j]
[max (bot(p), [ M P , ~ " 1) ,min (top(p), lMp+ ~ , - 1 - " j) ]
ezec(p) - deref(p)

[bot(p), top(p)] - [ [ MP,~ " 1'lMp + ~,- 1 - " j]
[bot(P), min(top(p), [ M P , ~ " 1-1)] U

[max (bot(P), lMp+ ~ , - I - "j + I) ,top(p)]

The equation Cor locaLiter(p)- is now in its final form, suitable for use in an implementation. The

formula. Cor nonlocaUter(p), however, is the union of two disjoint ranges, which is more difficult to

use. This situation is analogous to the situation for the communication sets, in which we have a

corred but computationally expensive formula. As we did then, we now identify simplifying cases;

in particular, we find cases in which one of the unioned ranges is empty.
The range

[ . [MP-c'1]bot(p), nun(top(p), '" - I)

in the general expression Cor nonlocaUter(p) will be empty if

bot(p) ~ [MP - C11 ~ Mp - Cl

Co Co

Since bot(p) ~ Mp, a necessary condition for this is

.M,:!p:.:-::.:c:!.,
Mp~ -

"
Rewriting this expression we obtain

Cl ~ Mp(l- eo)

Since M, p and Co are positive intcgcrs, we can deduce that this range will be empty on all processors

whenevcr CI ~ O. Similarly, the range

[ lMP+M-I-c'j ]max(bot(p), Co + 1), top(p)

will be empty if

.M.,--"p"-+-'-'-M"----_I:.-----"'c,
Mp+M-l::;-

"
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Processor 1 Processor 2 Processor 3
r--------------, r--------------, r--------------,
I I I I I I

k"y, ~ ... 6 OJ: 8 m ,~,:: 12 :~~
Iterations; ~ 6 ~ : 11 : I 12: 13 ~ j

I :................. I : ;1 •.........•...... ; IL J L J L J

Figure 4.5: Example of llonlocaLiter(p) sets

or, equivalenUy, if
0, $ (Mp + M -1)(1- 00)

Again, we can bound this expression to deduce that this range will be empty on all processors if

Cl :S (M P - 1)(1 - co), or CI :S eN - 1)(1 - co) if N is divisible by P. These give us the conditions

for Equations 4.23a and 4.23b. (There is some ambiguity as to the case to be used if Co = 1 and
Cl = 0; in this case, however, all three branches give nonlocaUter(p) =,p, so the expression is still
consistent.) The derivation above also proves Lemma 4.5, which will be used in dealing with the

special case of Co = 1.

LeInDla 4.5 If the subscripting function is f(i) = coi + CI and Co > 0, then

[bot(P), min (top(p), rMP,~ 0,1- I) ]
is empty if CI 2, Mp(l- CQ) and

[m"" (bot(p),l Mp+ ~ o - 1- 0, j + 1) ,toP(p)]

is empty if CI :$ (Mp+ M - 1)(1- co).

If (N - 1)(1- co) < CI < 0, different processors will have different behaviors regarding whether

tile ranges are empty. For example, if P 2: 4, M = 4, f(i) = 2i - 10 (i.e. Co = 2 and CI = -10),
low = 5, and high = 14. Then we have

nonlocaLiter(l) =

nonlocal_iter(2)

nonlocaLiter(l) =

{5}

{8} U{ll}

{13,14}

Figure 4.5 illustrates this situation, showing the nonlocaLiter(p) sets as dotted boxes. Note that
this example shows three different behaviors on three processors. In these cases, no simplification

of nonlocaLiter(p) is possible. 0

The analysis of the communication and iteration sets for the Co < 0 case parallels the Co > 0

case. Because of the close similarity, we present only the main result here. The full proof can be
found in [KoegO].

Theorem 4.3 If all arrays in a forall are distributed by block, the subscripting function i.s f(i) =
coi + Cll and Co < 0, then let

Then:

[b(p,,)

ub(p, ,)

max(cotop(p) + Cll nxt(Mq, Cll leal))

min(cobot(p) + CI, M q + M - 1)
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Iff'db "1 +'O(P+ I) -I "" '" LltJ +'oP 'hon

",,-,,'(P,,) = [Ib(p,,), ub(p,,); l'olJ

Otherwise,

recv..set(p,q) = ¢

"nd-,"(p,,) = [lb("p), ub("p); 1'01]

Otherwise,

send....set(p, q) = ¢

(4.26a)

(4.26b)

(4.27a)

(4.27b)

locaUter(p) =

[m= (bo'(p), rMP+":.-'-"l) ,

min ('op(p), lM~~', j)]
(4.28)

If CI ~ M - 1 then

nonfocal_iter(p) = [max (batep) ,lMPc~ Cl J+ 1) ,top(p) ]

If Cl ~ M PCI - co) + co(1- M)

[ ( r
MP+M-I-,,])]nonlocaUtcr(p) = bat(p), min top(p), Co - 1

OlhcnlJise,

(4.29a)

(4.29b)

nonlocal.iter(p) =
[m=(bo'(p), lM~~', j + I), 'op(p) ] U

[bot(p),min (topep), rMp+~o 1 ell-I) J
(4.29,)

We now specialize Theorems 4.2 and 4.3 to the important cases of leal = 1.

Theorem 4.4 If all arrays in a forall are distributed by block and the subscripting function is

I(i) = i + c, then let

Then:

lb(p, ,)

ub(p, ,)

max( bat(p) + c, Mq)

min(top(p) + c, Mq + M - 1)

If r'ti'1+ p - 1 '" , '" l'ifJ+ p + 1 'hon

""-'''(p, ,) = [lb(p, ,), ub(p, ,) J

Otherwise,

recv..set(p,q) = ¢
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Itr'irl +p-I" q" [-it'J +p+ 1 then

send-sd(p,q) ~ [lb(q,p),nb(q,p)]

Otherwise,

send...set(p, q) = ¢

locaUter(p) = [max( bat(p) , Mp - e), min(top(p), Mp + M - 1 - c) 1

Ife> 0 then

nonfocal.iter(p) = [max(bol(p), Mp + M - e), top(p) 1

Ifc<O then

nonlocal...iter(p) = [bot(p), min(top(p) ,Mp - c + 1) 1

Otherwise,

nonlocaUter(p) = ¢

(4.31.)

(4.3Ib)

(4.32)

(4.33.)

(4.33b)

(4.33,)

Proof. Substitute Co = 1 and Cl = c in Theorem 4.2. The bounds on nonlocaUter(p) can be

improved by using Lemma 4.5 directly rather than bounding the expressions. 0

Theorem 4.5 If all arrays in a forall are distributed by block and the subscripting function 15

lei) = c - i, then let

Then:

lb(p, q)

nb(p, q)

max(c- top(p),Mq)

min(c- bot(p),Mq+M -1)

Itr'ifl-p-2"q" l ~ J - pthen

","-"et(p, q) ~ [Ib(p, q), nb(p, q)]

Otherwise,

recv...set(p,q) = ¢

Itr'ii'l- p-2" q" l~ J - pthe"

send-sd(p, q) ~ [Ib(q, p), nb(q,p)]

Otherwise,

send....set(p, q) = ¢

locaUter(p) = [max( bot(p), c+ 1 - Mp - M), min(top(p), c - Mp) 1
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(4.35b)
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-- Code on procelJlJor p

const

-- WIer defined conlJtcmtlJ omitted

C=N/NPj
-- firlJt procelJlJor to 3end to and boundlJ on 3end..lJet

ql = p - 1 + ceil( -16 / C)i

10w..Jlend...ql = max{ low+17, C·p, C·ql+I7)i
high....send...ql = min{ high+17, C·{p+I)-I, C·{qI+I)+I6)j
-- 3eeond proceuor to 3end to and bound3 on IJentLlJet

q2 = P + floor{ (C-I8) / C )j
low...send...q2 = max{ low+17, C·p, C·q2+17 )j

high...send...q2 = min{ high+17, C·(p+I)-I, C·(q2+I)+I6);
-- fir,t proceslJor to receive from and boundlJ on rccv_lJet

q3 = P - 1 + ceil{ 18 / C )j
low..Iccv...q3 = mBx( low+17, C·q3, C·p+I7)j

high..Iccv..q3 = min( high+I7 , C·(q3+1)-l, C·(p+I)+I6)j
-- second procelJlJor to receive from and bounds on reCVJet

q4 = P + I + f1oor{ 16 / C )j
10w..IccII...q4. = max{ low+17, C·q4, C·p+17 )j
high..recv..q4. = min{ high+17, C·{q1+I)-I, C·{p+I)+16)j
-- bounds on locaLiter{p)

lowJocal = max( low, C·p )j
highJocal = min( high, C·p+C-18 );

-- bounds on nonlocaLiter{p)

low..nonlocal = max( low, C·p, C·p-I7);
high-llonlocal = min( high, C·p+C-I );

va,
A, D : array[ o..N-I] ofreal diet by [block] on procsi

temp: array[min{low..recv...q3,low..:rccII..q4.) .. max(high..recII..q3,high..recII_q4.) J
of realj -- compiler-generatcd buffer

communication statements: IJcnding

if (qI<>p and low...scnd.ql<=high....send.ql ) then
send( B[ low...send.ql..high..send...ql ), procs[ql] );

endj

if ( q2<>p and q2<>qI Bnd low..scnd.q2<=high..send.q2 ) then
send( B[ low.scnd.q2..high...send.q2], procs[q2] )i

end;
-- local computations

for i in lowJocal..highJocal do

A[i 1:= B[i + 171;
end;
-- communication stCltemcnt3: receiving

if ( q3<>p and low..send..q3<=high..scnd.q3 ) then

temp[ low..recv...q3 ..high..IccII..q3 J := recv{ procs[q3]);
endi

if (q4.<>p and low..l'ccII..q4.<=high..recv.q4. ) then

temp[ low..recll..q4...high...rccII..q4] := recv( procs[q4]);
endi

-- nonloeal computations

for i in low..nonlocaI ..high..nonlocal do

A[i]:= tcmp[i + 17]j

end;

Figure 4.6: Implementation of Figure 4.4 when Co = 1, Cl = 17
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-- Code on p r o c e ~ ~ o r p

const
-- wer-defined c o n ~ t a n t . 1 omitted

C ~ N / N P ;

-- bounds on p r o c ~ ~ o r s to send to

low..send-p = ceil( -p/2 - (C-19)/(2*C) )i
high....5end-p = floor( -p/2 + 8/C );
-- bounds on p r o c ~ s o r s 10 receive from

low-recv_p = -2*p - 3 + ceil( 19 / C )j
high-recv_p = -2*p + floor( 16 / C );

-- bounds on local iterations

10wJoeal = max( low, C*p, eeil( (C*p+C-17) / -2»j
highJocal = mine high, C*p+C-l, floor( (C*p-16) / -2) )i

-- b o u n d ~ on r1onlocnl ileratiorl.f

low..llonlocalJ = max( low, C*p );
high..nonlocalJ "" mine high, C*p+C-l, ceil( (C*p+C-17) / -2 ) )j
10w..llonlocal..2 = max( low, C·p, Hoor( (C*p-Hi) / -2 ) )j

high..nonlocaL2 = mine high, C·p+C-l );
-- bounds on temporary array

low_temp = 18 - 2*C·p - 2"'C;

high_temp = 16 - 2*C·Pii

va'
A, B : array[ O..N-l] of real dist by [block] on proesi

temp: array[ low..l.emp..highJemp 1of real; -- compiler temporar!l

-- communicntions statements: sending
for q in 10w....5Cnd.p..high....5end_p do

low_bound := max( 16-2*high, IB-2"'C·q-2*C, C*p+(C·p)%2)i

high_bound := min( 16-2*low, 16-2*C"'q, C*p+C-l );
if ( q<>p and low...hound<=high...hound ) then

send( D[ low...hound ..higLbound by 2 ), procs[q) );
end;

end;

-- local computations

for i in lowJocal ..highJocal do

A[i]:= D[ 16 - 2·i]j
end;

-- communications statements: receiving

for q in 10wJecv_p..highJeev_p do

low_hound := max( 16-2*high, 14-2*C*p-2·C, C·q+(C*q)%2 );

high_bound := min( 16-2*low, 16-2*C·p, C·q+C-I );
ir( q<>p and low...hound<=high...hound) then

temp[ low..bound..high...hound by 2 ] := send( procs[q) )j
endi

end

-- nonlocal computations

for i in low...exee..IowJocal-l do

A[ i ] := temp[ 16 - 2 • i Ji

endi
for i in highJocal+l..high...exee do

A[ i ] := temp[ 16 - 2 * i li
end;

Figure 4.7: Implementation of Figure 4.4 when Co = -2, Cl = 16
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Jfc~M-l then

nonlocal.iter(p) = [max(bot(p), c + 1 - Mp), top(p)]

If c 2: 2N + M - 1 then

nonfocal.iter(p) = [6ot(p), min(top(p), c - M p - M))

Otherwise

(4.37.)

(4.37b)

nonlocal.iter(p) =
[max(bot(p), 0 - Mp +1), top(p)] U

[bot(p), min(top(p), 0 - Mp - M) I (4.370)

Proof. Substitute Co = -1 and CI = c into Theorem 4.3. No simplification of non/ocal.iter(p) is
possible in this case. 0

Figures 4.6 and 4.7 show how the formulas derived in this section can be used directly in an

implementation. Ranges of iterations correspond directly to for loop bounds and steps, while ranges

of array subscripts describe sections of arrays. One issue of some subtlety is allocation of memory

to hold off-processor data. The size of the necessary buffers must be calculated from the cardinality
of the sets; given this information, temporary variables for the buffers can be statically declared or

dynamically allocated. (The current Kali implementation uses dynamic allocation.) To avoid sparse

use of storage, addressing into these buffers should ensure that the range is stored contiguously.

This forces the range step size to be accounted for in the addressing formulas. For illustration here,

we will assume that the implementation language allows arrays to be declared with n o n ~ u n i t step

sizes in the subscript ranges; in a native code implementation, a division by the step size would be

required in the address calculation. Some additional optimizations are possible if Icol = 1. Buffer
addressing need not be complex, since the ranges for the communication sets have unit stride. Also,

under the assumptions we have made in this section, the conditions on q in the communication sets

allow at most two sets to be nonempty. These values of q can be kept explicitly for quick reference.
Using these ideas, Figure 4.6 shows an implementation of Figure 4.4 with the subscripting function

f(i) = i + 17. Figure 4.7 does the same for f(i) = 16 - 2i.

4.4 Cyclic Distributions with Linear Subscripts

In this section we consider programs like the onc shown in Figure 4.8. The conditions in this section
are identical to those in Section 4.3, except that all array distributions will be cyclic rather than

block. In particular, we again assume a linear subscripting function f(i) = coi + Cl where Co :f:. 0.

A practical example of such a program would be a cyclic reduction tridiagonal system solver. (The
partial differential equation solvers mentioned in the last section could also be implemented with

cyclic data distributions, but usually are not because of the increased communication requirements.)

Theorem 4.6 gives the basic results for the case of Co > 0, while Theorem 4.7 handles the Co < 0

case. Again, the special cases of Icol = 1 are of interest; we therefore derive forms for these cases in

Theorem 4.8 and Theorem 4.9.

Once again we will need expressions for local(p) and e:z:ec(p), which were derived in Chapter 3.
We give those equations here for convenience.

local(p) =

ezec(p)

U I; =p (mod P))

[low, high] n /oca/(p)

[nxt(low,p, P), high; P]

(4.38)

(4.39)

As in the last section, the bounds on e:z:ec(p) will be useful. Thus, we make the following definition.
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proces.sors procs ; array[ O..P-l] with P in l..max...procs;

canst
N = ... j

low = .._j

high = ... ;
cO = j

cl = j

var

A, B ; ftrrfty[ O..N-I] ofreaJ dist by [cyclic] on proCHj

forall i in low..high on A[i].loc do
A[i];= B[cO*i + cl];

end;

Figure 4.8: Program using linear subscript functions and cyclic array distributions

Definition 4.5 Define bot(p) and top(p) as

lo'(p)

'op(p)

nxt(fow,p, P)

nxt(high - P + l,p, P)

(4.40)

(4.41)

The definition makes top(p) the largest integer less than high which is equivalent to p modulo P.

This is the exact upper bound on the range, rather than an upper bound which is not reached.

To derive expressions for the communication and iteration sets when Co > 0 we will need the
foHowing lemma.

Lemma 4.6 Let the subscripling function be I(i) = coi + ct, and Co > 0, let G '= gcd(P, co) and

let nand m be such that can +Pm = gcd(P, co). If all arrays in a forall are distributed by cyclic,
then

Proof.

't/(p)

dm/(p)
(mod G)

(mod G)

(4.42)

(4.43)

'tl(p) I(oxeo(p))

{coi + Cl Ii == p (mod P) and bot(p):=; i:=; top(p)}

= {coi + CI I coi + CI == CoP + CI (mod coP) and

cobot(p) + Cl ~ coi + CL ::; cotop(p) + Cl}

:: [cobot(p) + CI, eotop(p) + Cli coP]

(The last step is valid because bot(p) == p (mod P), which implies cobot(p) + Cl = CoP + Cl

(mod coP).) This proves Equation 4.42

dm/(p) r'(/ow/(p))

:: {i Icoi+cl ==p (mod P)}

By reasoning similar to that in Lemma 4.2, if Cl ~ P (mod gcd(P, co)) then the last set is empty,

and if CI == P (mod gcd(P, co)) then all elements of deref(p) are equivalent modulo PI gcd(P, co).
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To find a solution, we use the valuesofn and m returned by the Extended Euclid's algorithm [AHU74]

for which con+Pm = gcd(P,co). T h e s e g i v e c o n g J C p , ~ o ) = -PmgJ(J~~o) =p (mod P/gcd(P,co)).

This proves Equation 4.43. 0
We can now prove Theorem 4.6.

Theorem 4.6 If all arrays in a rorall are distributed by cyclic, the subscripting function is I(i) =
cui + CI and Co > 0, then let G = gcd(P, co) and let nand m be such that CDR + Pm = gcd(P, co).

Then:

If q =: CoP +CI (mod P) then

recv..set(p,q) = [cobot(p)+CI' cotop(P)+C)i coP]

OlhenlJise,

recv..set(p,q) = q,

Ifp=:Cl ( m o d G ) a n d q E [ ( ~ ) % ( f ) , P - l i f ] then

send..set(p,q) = [cobot(q) + Cl, cotop(q) + Cli coP]

OthenlJise,

send..set(p, q) = ¢

If p == CI (mod G) and p =: n<Fa",) (mod PIG) then

locaUter(p) = exec(p)

OthenlJise,

locaUter(p) =.p

Ifpt" (mod G) orpt~ (modP(G) th,n

nonlocaUter(p) = exec(p)

OthenlJise,

nonlocaUter(p) = .p

Proof.

We obtain the communication set by applying Lemma 4.6 to Equation 3.20.

(4.44a)

(4.44b)

(4.45a)

(4.45b)

(4.46a)

(4.46b)

(4.47a)

(4.47b)

recv..set(p,q) = focaf(q) n ref(p)

{ili=:q (mod p)}n [coboi(p) + Ct, coloP(P)+Cli coP]

{
[cobot(P)+CI, cotop(P)+Cli coP] ifcobot(p)+CI=q (modP)
¢ otherwise

~ { ~ c o b o t ( P ) + C I ' cotop(P)+Cli coP] ifcoP+CI=:q (modP)
'I' otherwise
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(The last step follows because bot(p) == P (mod P).) This form is efficiently computable, since
for each p there will be exactly one q with a nonempty recv..set(p, q), easily found by taking the

remainder of CoP + Cl. The corresponding expression for send..set(p, q),

send..se.t(p, q) =

{~cobot(q)+.Cl' eotoP(q)+Cl; CoP] ifcoq+cl==P (modP)
otherwise

is not acceptable, because there may be a number of nonempty sets which cannot be quickly com

puted from this form. We thereCore characterize the solutions to coq + CI == P (mod Pl. The
reasoning used to derive Equation 4.43 shows that

_ n(p-cd
q - (mod PIg,dCP,,,))

- gcd(P,co)

To this we add that processor numbers are in the range [0, P - 1] to derive an explicit condition
on q.

[(
n

Cp - OJ ») '11 ( P ) P l' P ]
q E gcd(P,co) 0 gcd(P,co) , -, gcd(P,co)

where n is chosen so that con + Pm = gcd(P,co) by the Extended Euclid's algorithm. As q is now
defined as a member oC a range, it is possible to iterate over that range producing all legal values
of q. We thus have the required formula for send_set(p,q).

To derive the iteration sets, we apply Equation 4.43 to Equations 3.27 and 3.28.

locaLiter(p) euc(p) n deref(p)

[b,tCp), t,pCp); PJ n d"'/Cp)

If p ~ CI (mod gcd(P, co)), the intersection is clearly empty. Otherwise, if

n(p - cil
b,t(p) "f; dCP ) Cmod PIg,dCP,"))

gc ,co

then the intersection is again empty. This leaves the case of

_ n(p - ell
b,tCp) = dCP ) Cmod PI g,dCP, ,,))

gc ,co

In this case, since ' g ~ " , r i r ~ p , ~ , " " , ) is a Cactor of P, all elements of exec(p) will be in deref(p). Thus, we

have shown that if

(mod PI g,dCP, ,,))bot(p) == Cl
n(p - CI)

Cmod g,dCP, ,,)) A b,t(p) " g,dCP, ,,)

then locaLiter(p) = (bot(p), top(p); P] = exec(p), and that the set is null otherwise. Since bot(p) ==
p (mod P), p can be substituted for bot(p) in the above condition to give Equation 4.46. The

expression for nonlocaLiter(p) can be derived immediately from this equation by noting that the
sets are complements. 0

The corresponding analysis for the Co < 0 case is given by Theorem 4.7. We omit the proof here

because it is so similar to that of Theorem 4.6; the complete proof can be Cound in [Koe90].

Theorem 4.7 If all arrays in a rorall aTe distributed by cyclic, the subscripting function is f(i) =
coi + CI, and Co < 0, then let G = gcd(P, co) and let nand m be such that con + Pm = gcd(P, co).
Then:
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If q == CoP +Cl (mod P) then

recv..set(p,q) = [cotop(p) + Cl, cobot(p) + Cl; IcolP]

Otherwise,

recv..set(p, q) = q,

Ifp=.cl (mod G) andqE [ ( ~ ) % ( f ) ' P-l; f] then

send..set(p,q) = [cotop(q) + Cl, CObot(q) + CI; IcolP]

Otherwise,

send..set(p,q) = 1J

I!P'=Cl (mod gcd(P,co» andp=. n(pc';c,) (mod PIG) then

locaUter(p) = e:z:cc(p)

Otherwise,

loeaUter(p) = 1J

Ifpte, (mod gcd(P,c,)) " p t ~ (modPfG) thon

nonlocoLiter(p) = exec(p)

Otherwise,

nonloeaLiter(p) = 1J

We now specialize Theorems 4.6 and 4.7 to the cases of eo = 1 and Co =-1.

(4.48.)

(4.48b)

(4.49.)

(4.49b)

(4.50.)

(4.50b)

(4.51.)

(4.51b)

Theorem 4.8 IJ all arrays in a forall are distributed by cyclicand the subscripting Junction is

l(i) = i + c, then:

Ilq = (p+ c) %P then

recv..set(p,q) = [bot(p) + c, top(p) + c; P]

Olherwise,

reeV...1let(p, q) = 1J

IJq= (p- c)%P then

send...1let(p, q) = [bot(q) + e, top(q) + c; coP]

Otherwise,

send..set(p,q) = 1J
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Ifc%P=O then

Otherwise,

Ifc%P f. 0 then

Otherwise,

locaLiler(p) = exec(p)

locaLiter(p) = ¢

nonlocaLiter(p) = exec(p)

nonlocaLiter(p) = ¢

(4.54.)

(4.54b)

(4.55.)

(4.55b)

Theorem 4.9 If aff afTays in a foraH are distributed by cyclic, the subscripting function is f(i) =

c-i, then let nand m be such that con+ Pm=gcd(P,co). Then:

Ifq=(c-p)%P then

recv...sei(p, q) = [c - top(p) , c - bot(p); P]

Otherwise,

recv...set(p,q) = ¢

Ifq=(c-p)%P then

send...set(p,q) = [c- top(q), c- bot(q); Pj

Otherwise,

send...sei(p, q) = ¢

Ifp= (c-p)%P then

locaLiter(p) = exec(p)

Otherwise,

locaUter(p) = ¢

Ifpf.(c-p)%P then

nonlocaLiter(p) = exec(p)

Otherwise,

nonlocaUter(p) = ¢

(4.56.)

(4.56b)

(4.57.)

(4.57b)

(4.58.)

(4.58b)

(4.59.)

(4.59b)

The proofs follow by simple substitution.

The remarks at the end of Section 4.3 regarding the use of theorems in implementation apply

here as well. We demonstrate this by transforming Figure 4.8 using the same subscripting functions

as in that section. Figure 4.9 implements f(i) = i+ 17, assuming P is not divisible by 17. Figure 4.10

implements f(i) = 16 - 2i, making no assumptions about P.
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-- Code on processor p

const

-- user constants omitted
Iow..exec = low + (p-Iow)%P; __ bOlJnds on exec(p)

high..exec = high-P+l + (p-high+l)%P;

q....recv = (p+17) % P; -- recv..sel parometers
low....rccv.= low..exec + 17;

high....recv =:: high..exec + 17;
q...send = (p-17) % P; __ scntLsct pammeters

low...send = low + (q...send-Iow)%P + 17;

high...scnd = high-P+I + (q...send-high+l)%P + 17;
var

A, D : array[ O..N-1 ] of real mst by [ cyclic] on proes;

temp: array{ p .. N-I by P 1of real; -- compiler temporary

-- communication statements: sending

if ( low...scnd<=high...send ) then

send( B[ Iow...send .. high...send by P 1. Ploc:s[q...scnd] );
end;
-- no local complJtation.'l

-- commlJnicolion statements: receiving

if ( low....rccv<=high....rcc'l ) then

lemp[ low..rccv .. higluec'l by P 1:= recv( procs[q..rccv] );
end;

-- nonloeal computations

for i in low..exec..high..excc do

A[i]:= lemp[i + 17]i
end;

Figure 4.9: Implementation of Figure 4.8 when Co = I, C1 = 17.
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-- Code on proceasor p

canst

NP = NP1-1j

low = j

high = j

-- bounds on exec

low_exec = low + (p-Iow)%NPj

high-e:tec = high-NP+1 + (p-high+1)%NPi

-- gcd(P,cO), n, m

g, TI, m = extended...eudid( NP, cO )i

p..over...gcd = NP / gi
-- bounds on recv_set

q..recv = (16-Z*p) % Pj

low-recv = 16 - Z * high...execj

high..recv = 16 - Z ·low...exec;

slep..recv = Z * NPj

-- constanta for send-set

q..send = ((n*(p-16))/g) % p.over.gcdj

va,

A, B : array[ O..N-I] of real dist by [cyclic] on prOCSj

lemp : array[ low..recv .. high..recv by slcp..recv ] of reali

low..send, high..send : integer;

-- communication statements: sending

if ( p%g = 16%g ) then

for q in q..send..P-l by p..ovcr.gcd do

low..send := 16 - Z * (high-P+I+(q-high+l)%NP)j

high..send := 16 - Z * (Iow+(q-low)%NP)i

if ( p<>q and low..send<=high.send ) then

send( B[ low.send .. higb..scnd by slcp..rccv I, procs[q]);
endj

endj

end;

-- local computations

if ( p%g=16%g and p%p..over..g=q....'lend ) then

for i in low...exec..high...excc do

A[ i] := B[ 16 - 2*j ];

end;

endj

-- communication stalemenlJ: receiving

if ( q..Iccv<>p Bnd 10w..recv<=high..Iecv ) then

temp[ 10w..Iecv .. high..Iecv by step-recv ] := recv( procs[q-recv) );
endj

-- nonlocal computations

if ( p%g<>16%g or p%p_over..g<>q....'lend ) then

for i in low...exec..higb...exec do

A[i] := B[ 16 - Z*iJ;

end;

endi

-- compiler temporaries

Figure 4.10: Implementation of Figure 4.8 when Co = -2, CI = 16
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4.5 Extensions to Compile-time Analysis

Many extensions to the above analysis are possible. This section only mentions extensions likely to

be useful in practice.

Block-cyclic distribution patterns can be analyzed by techniques similar to those in Sections 4.3
and 4.4. For the subscript functions f(i) = i + c and I(i) = c - i the communication and iteration

sets are unions of sets of the forms shown in Theorems 4..4 and 4.5. The unions essentially have one

set for each block stored on the processor. Additional conditions checking for empty sets can also

be found. H is harder to obtain closed expressions for general linear subscripts because of the added

complexity of the local function. The principle of a union with one set for each block still applies,

hut now each block may produce another union. We will report more fully on these distributions
in the future. Other distribution patterns, such as skewed distribution, also appear amenable to

compile-time analysis. Because of the wide variety of distributions, the detail of the analysis needed,

and the tediousness of the symbol manipulation, automation of this analysis is attractive. Section 7.3
considers this possibility.

Multiple-dimensional arrays may be analyzed in the same way as one-dimensional arrays if two
conditions hold.

1. The multidimensional distribution patterns are combinations of one-dimensional patterns, such

as the patterns given by Equations 3.8 through 3.11.

2. The subscripts are separable, that is, the same forall index does not appear in more than one
dimension.

In these cases, the multidimensional communication and iteration sets are Cartesian products of the

corresponding sets for each individual dimension. If fundamentally multidimensional distributions

(such as the skewed distribution of Equation 3.13) are used, then new theorems must be proved to

describe the sets. Likewise, coupled subscripts require new methods of analysis.
If several subscripted references are made in a forall, it is possible that the iteration sets for

different references will differ. In this case, the set of purely local iterations will be the intersection

of the locaUter(p) sets for each reference, which can be calculated from Lemma 4.2 if necessary. All

references in these iterations can be satisfied from the local arrays, so implementation is straight

forward. Similarly, the set of nonlocal iterations is the union of the individual nonlocaLitcr(p) sets.

While this may not be a range, it is possible to implement the iteration by means of either nested or

repeated loops. Implementation of the nonlocal iterations, which may satisfy some references from

local arrays and some from temporary message buffers, is not so easy in general. In some special

cases, all of the sets will be the same for all of the subscripts; in particular, this is true when all of

the subscript functions are the same. In this case no additional implementation steps arc necessary.

In other cases, a mechanism is needed for correctly accessing the correct data structure (local array
or message buffer) in the nonlocal iterations.

Several approaches to implementing nonlocal iterations in the presence of multiple subscripts are
possible.

1. Check the locality of each reference, and satisfy the reference from the local array or the
communication buffer as appropriate.

2. Generate a loop for every possible combination of local and nonlocal references. Within each

loop, no testing is needed for access.

3. Store the nonlocal array references as an overlap region around the original array. All references
then access the local array.

4. Copy elements of the local array into an overdimensioned message buffer. All references then

access the buffer.
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The c u r r e n ~ Kali compiler implements the first approach because of its conceptual simplicity. This
approach has the disadvantage of slow execution speed because of the overhead of locality tests.

Generating multiple loops produces fast code, but the number of loops may grow exponentially. The

last two approaches avoid the disadvantages mentioned above, but raise the problem of calculating

the size of the overlap or buffer; Gerndt [Ger89] has produced some interesting results in this area,
but not all cases can be handled efficiently yet. The last a l t e r n a ~ i v e also has ~ h e disadvantage of

copying overhead.

We have already stated that our results apply to expressions that are invariant for all iterations of

the forall. The theorems in Sections 4.2, 4.3, and 4.4 can be used without change for invariants, but
it is worth noting how the code generation m u s ~ change. All calculations using run-time invariants

r a ~ h e r than compile-time constants must be performed at run time. These calculations must also be
repeated whenever ~ h e invariant value may have changed; in the worst case, this implies recalculation

on every execution of the forall. This may result in complex code ifdifferent cases must be generated,

as when the compiler cannot deduce the sign of the forall index's coefficient. In that case, a

conditional must be used with branches for positive and negative values. Because only integer
operations will be required in any case, the resulting code will still be quite efficient. Other cases,

including Gaussian e l i m i n a ~ i o n and cyclic reduction, do not need such branching because deductions

can easily be made about coefficient values.

Despite the effort that can be put into developing new theorems for compile-time analysis, unde

cidability results guarantee that there will always be some subscript function that the compiler will

be unable to analyze. For these cases, we must fall back on other techniques such as those shown in

~ h e next chapter.
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Chapter 5

Run-time Analysis

In this chapter we consider the implementation of forall statements for which the compile-time

analysis of Chapter 4 is not applicable. Such a loop occurs whenever either the distribution or the
subscript functions cannot be computed by the compiler. In practice, these loops often arise from

solving irregular problems such as relaxation on unstructured meshes or sparse linear algebra. No

mattcr how general the compile-time analysis becomes, undecidability guarantees that there will be

some cases which the compiler cannot analyze fully. In these cases the only option is to generate
code which determines the communication and iteration sets at run-time. The techniqucs presented

here for doing this have previously appeared in shorter form in [KMV90, KMSB90j. Section 5.1
introduces the inspector-executor strategy which forms the basis of the generated code. Section 5.2

describes the major data structures used in our current implementation of this strategy, as well as

an overview of some alternatives. Section 5.3 demonstrates the i n s p e c t o r ~ e x e c u t o r technique on a

simple but realistic example. Finally, Section 5.4 describes some additional optimizations that can

be applied to the basic strategy.

5.1 The Inspector-Executor Strategy

For run-time analysis, we divide the generated code into two parts: the inspector and the executor.

The inspector is responsible for "inspecting" the forall and generating the necessary communication
and iteration sets. Briefly, this is done by executing a modified copy of the original forill; the exact

mechanism is described in Section 5.1.1. An important consideration in implementing the inspector

is that communication patterns are often used repeatedly. This observation can be exploited by

only running the inspector once and saving the results. Section 5.1.1 also explains how this is done.

The executor's task is to perform the actual computation of the forall statement, including any

necC5sary communications. To do this, the executor relics on the sets generated by the inspector.

Section 5.1.2 describes the executor.

5.1.1 The Inspector

The purpose of the inspector is Lo generate the communication and iteration sets needed to execute

the computation. Thus, the inspector corresponds to the first step of the outline of Figure 3.2. This

is most efficiently done by having each processor compute only its own sets, that is, processor p

computes locaUter(p), nonlocaUler(p), and send..set(p,q) and recv..set(p,q) for all q. These sets
are stored explicitly on the processor; the other sets defined in Chapter 3 are either stored implicitly

or discarded after they are used.
As Figure 5.1 shows, the inspector consists or three phases: an initialization phase, a parallel loop,

and a global communication phase. The initializaLions simply set the processor's communication

and iteration sets be be empty. The loop on processor p executes all iterations in exec(p), examining
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Code executed on processor p:

• Set all communication and iteration sets to empty.

• Execute a modified copy of the original rorall in parallel.

Check all array references which might be made by an iteration. If a reference accesses

an element on processor q, add the reference to recv..set(p,q).

If all references in an iteration are local, add it to locaLiter(p); otherwise, add it to

nonlocaLiter(p).

• Transpose recu..set(p,q) into send..set(q,p) using a global communication phase.

Figure 5.1: Outline of the inspector

every array reference that might access nonlocal data and checking the locality of the actual reference.
Nonlocal references are added to recv_set(p,q), where q is the processor on which the reference is

stored. Generating the array references amounts to a brute-force calculation of ref(p)j checking

their locality corresponds to taking the intersection ref(p) n UqEP local(q). While each iteration is
being processed, it is simple to keep track of whether any nonlocal array accesses were actually made

in that iteration and to add it to the appropriate iteration set (locaLiter(p) or nonlocaLiter(p)).

This computes the iteration sets directly, rather than generating them through deref(p). At the end

of this loop, both iteration sets and all of the recv..set(p,q) sets have heen calculated. The global

communication phase can then generate the send..set(p,q) sets using the transposition property

of communication sets (send..set(p,q) = recv..set(q,p)). Several algorithms exist for doing this
transposition; we describe the one used in our current implementation in Section 5.2. The global

communication phase completes the inspector.

The inner structure of the main inspection loop deserves further comment. A simple, but cor

rect, implementation would duplicate the entire computation of the loop, making assignments to

temporary variables to avoid overwriting live data. A more efficient version, which is used in our
implementation, only duplicates the code necessary to calculate each subscript. For each subscript,

this body of code is known as the "slice" of the program with respect to the variables in that expres

sion [Wei84]. Essentially what is needed is the transitive closure of the data dependence graph at

that point of the program. Examples of statements which are excluded from the inspector by using

these slices are

1. Assignments to variables not used in subscripts

2. Nested for loops whose index variables are not used by subscripts

The treatment of conditionals also warrants mention. As described in Section 3.6, ignoring condi

tional statements which may alter the control now produces a conservative approximation of the
communication sets. Using this approximation further reduces the amount of computation in the

inspector.

An important consideration in implementing the inspector is the data structures used to imple

ment the communication and iteration sets. Because the data structures will also be used by the

executor, they must be designed carefully to allow efficiency in the resulting implementation. We
therefore defer discussion of these data structures to Section 5.2 and only list the operations that

must be supported for the executor here. The iteration set data structure must support insertions of

unique elements, while the communication set data structure must support insertion of non unique

elements and the transposition needed to compute send_set(p,q).

The above description of the inspector is complete for the common case in which all of the
subscripts in a forall can be calculated using only local data. In general, however, complex subscripts
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Code on processor p:

• For all q with send...set(p,q) #: ¢, send message containing send_set(p,q) to q.

• Execute forall iterations in locaUter(p), using original loop body. References to distributed
arrays need no special treatment.

• For all q with recv...set(p,q) #: rP, receive message with recv...set(p,q) from q and store in
message buffer.

• Execute forall iterations in nonlocaUter(p), using modified loop body. References to dis
tributed arrays require an access of the message buffer.

Figure 5.2: Outline of executor

may access nonlocal elements of distributed arrays (for example, if all three arrays in the expression

A[B[C[J1]l are distributed, then a nonlocal value from B may be needed to calculate the subscript

of A). In these cases, it is necessary to have a multi-phase inspector. All subscript expressions are
placed in a graph, and a directed edge is entered between two expressions if one is a component of

the other. A topological sort of the expressions then produces a set of phases in which each phase

depends only on the Ronlocal data examined in previous phases. The phases can then be inspected

one at a time, and the nonlocal data found in each phase fetched before the next phase. This scheme
correctly handles arbitrary levels of indirection.

An important optimization can be made to the inspector based on the observation that in many

programs the communication pattern, while unpredictable at compile-time, is static. An excellent

example of this is relaxation on unstructured meshes. In these algorithms, the mesh used in the
calculation is computed at the beginning of the program based on problem-specific factors. Generally

these factors include the input to the problem, so the compiler cannot analyze the communication

induced by the mesh directly; instead, an inspector-executor strategy is needed. The relaxation

algorithm itself sweeps over the same mesh many times, thus repeating the same set of sends and

receives. An efficient implementation of the relaxation can take advantage of this situation by

computing the communication and iteration sets only once. Thus, the inspector is executed once,

and the results used many times. This amortizes the cost of the inspector over the cost of the

entire computation, rather than incurring the inspector overhead on every relaxation sweep. This

optimization is used in the code generated by the Kali compiler, and appears in the code in Section 5.3
as the test of the variable firsUime.

The above scheme for amortizing the inspector cost has several variants that are important in

practice. Some unstructured mesh algorithms, such as free Laplacian algorithms, require updating

the mesh periodically and continuing the computation with a new mesh. In this case the inspector

must be executed after every update of the mesh. Other algorithms, such as multigrid methods,

alternate between computations on a series of meshes. In these cases, several groups of communica
tion and iteration sets will be active simultaneously. An efficient implementation must identify this

situation and save the sets associated with each mesh. Neither of these generalizations has been
incorporated in the present Kali compiler.

5.1.2 The Executor

The purpose of the executor is to perform the actual computation of the forall given the necessary

communication and iteration sets. As Figure 5.2 shows, this is done by a direct implementation of

the last four steps of Figure 3.2. The major issues left unresolved in Figure 5.2 are the data structures

for the iteration and communication sets, which will be discussed in Section 5.2. In this section we

discuss the implications of the executor outline on the design of those data structures.

The major requirement added to the iteration set data structures by the executor is the necessity
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ofextracting all elements in the set. This data structure traversal is necessary to control the execution

of the loops in the second and fourth steps of Figure 5.2. It is not necessary to retrieve the iterations

in order, however, since the semantics of foralls allow arbitrary execution orders.

Two new requiremen!;s are placed on the communication set data structures by the executor.
First, it muat be possible to extract all elements of a set to implement the communication statements

(the first and third steps in the outline). The order in which elements is accessed is not vital, except

that the sending and receiving processors of any message must traverse the data structures in the

same order. That is, it is immaterial whether the elements appear sorted in ascending or descending

order, for example, as long as both sender and receiver assume the same order. Second, the data
structure must support an efficient search mechanism. In performing the computation, it is not

enough for a processor to receive nonlocal data; it must also be able to fetch the correct nonlocal

data to satisfy an array reference. The most convenient way to achieve this is to allow searches of
the recv..Eet(p, q) data structure and to store pointers into the appropriate message buffers in that

structure.

5.2 Representing the Communication and Iteration Sets

Subsections 5.1.1 and 5.1.2 placed a number of constraints on data structures for the communication

and iteration sets. The iteration set data structure must support two operations:

L Inserl.ion of unique elements (in the inspector)

2. Traversal of all stored elements (in the executor)

Communication set data structures have more demanding requirements:

1. Inserl.ion of possibly nonunique elements (in the inspector)

2. Trnnsposition to compute send_set from recv...set (in the inspector)

3. Traversal of all stored elements (in the executor)

4. Search of the stored elements (in the executor)

Of these constraints, those derived from the executor are more critical, since the inspector will

only be performed once while the executor may be executed repeatedly. In addition, both data

structures should be space-efficient given the limited storage available on each processor. Because

of the difference in requirements, we use different data structures for the two types of sets. The

subsections below describe our choices and examine some alternative designs.

5.2.1 Iteration Sets

A simple list suffices to represent the iteration sets. Because ordering is not important, the list can

be built by insertions at the end of the list and read in the order it was created. Implementing the

list as a dynamically-allocated array uses O(N) creation and traversal time and O(N) space for an
N·element set. All of these bounds are theoretically optimal for representing an arbitrary set, and

the constant factors in the implementation are quite small.
We can improve the storage efficiency of the list by observing that for many algorithms the

nonlocal iterations tend to cluster into contiguous ranges. To take advantage of this, we keep a list

of ranges rather than a list of individual elements. Since each range can be represented by its upper
and lower bounds, the new data structure requires twice as much memory per list element, but the
number of elements is presumably much smaller. Similarly, the time bounds on performance are

affected by small constant factors.
In addition to our empirical observations on a relatively small set of applications, a probabilistic

case can be made that ranges do well in the average case. The basic observation is that if locaUter(p)

72



record
low: integer;
high: integer;
from_proe: integer;
to-proe: integer;
arra-yid: integer;
buffer: -real;

end;

- - lower bound oj range

- - upper bOUJld of rClJlge

- - !endiJlg proce880r

- - receiuiJlg proauor

- - orray ideJltifier

- - poiJller to me88age buffer

Figure 5.3: Communication set record

is sparse, then nonlocaLiter(p) is dense, and vice versa. Sparse sets generate short ranges, which

increase storage requirements; dense sets do the opposite. If each iteration randomly falls into

locaUter(p) with probability Ploeol, then elementary statistics gives the average length of a range of

locaUter(p) as 1/(1 - Plo""I) (assuming an infinitely long stream of iterations). Symmetrically, the

average length of a range of nonlocaUter(p) is 1/(1 - (1 - Ploelll)) = l/Ploell'. Thus, two adjacent

ranges, one from each set, will contain 1/(1- Plo""') + l/p/o""1 elements on average. If 0 < Ploelll < 1
then 1/(1 - Plaelll) + l/Ploell' ~ 4, so the list of ranges will have two elements while the list of
individual iterations would have at least four. Thus, on average the space cost of the range list is

no more than a list of individual elements.

5.2.2 Communication Sets

The operations of insertion, search, and traversal have been widely studied in the context of sequen

. tial machines. Three broad classes of data structures have been developed for these algorithms:

1. Lists (including both linked lists or dynamic arrays)

2. Search trees

3. Bash tables

These data structures and algorithms are applicable lo the communication sets, because each proces
sor applies the operations to only its local data. Because it is a problem unique to parallel machines,

the transposition operation has been less studied. We have chosen to work with dynamically

allocated sorted arrays. The bulk of this section describes this data structure in some detail. A

short comparison with search trees and hash tables appears at the end of the section.

Each element of the array representing a communication set is a record consisting of six fields,
as shown in Figure 5.3. Like the iteration sets, array elements are grouped into contiguous ranges of

subscripts; each range is represented by its upper and lower bound in the first two record fields. In

order to collapse multi-dimensional array subscripts into a single subscript., the offset of the array

element within its local section is used rather t.han the global subscript; this also avoids pathological

behavior when processors' focal(p) sets are not contiguous. The next two fields name the processors

which will send and receive the message. On processor P, all elements in the send...set data structure
will have their from_proc fields set to P, and the to_proc fields in the recv...set dat.a structure will

also be p. This apparently wasted space is used in the transposition algorithm and cannot easily be

removed. A field identifying the array allows the same data structure to be used if multiple arrays

are accessed by the forall. Finally, a pointer field marks the base address of the range in the message

buffer. The recv...set array is sorted on the from.proc field, with the array_id and low fields being
secondary and tertiary fields, respectively. This allows recv...set(p, q) for all q to be stored in a single

array on processor p. Similarly, the selld...set array is sorted by the to.proc field.

Subscripts can be inserted into the recv...set data structure by performing a binary search of the

array. If the subscript is already part of a range, nothing further need be done. Otherwise, a new
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range is added to the array unless the new subscript can be merged into an existing range. This

is possible when the subscript being inserted is one less than an existing lower bound or one more

than an existing upper bound. In either case, the appropriate bound is adjusted rather than adding

a new range. This may also necessitate merging two adjacent ranges by adjusting the bounds of one
range and deleting the other. If N is the number of array references and R is the number arranges

stored, the cost of one binary search is O(logR) and the cost of inserting a range is O(R). The

other computations can be done in constant time. Since N searches and O(R) range insertions are

done, the time for creating the recv...set data structure is O( N log R + R 2
). In order to retrieve an

array element using this data structure, a binary search of the array is performed to find the correct
range, after which the buffer pointer can be used as the base offset of an array. Thus, the time to

access a single array element is O{log R). The array elements can, of course, be accessed in sorted
order by looping through the array at a cost of O(N).

The transposition of recv_set into send...set can be performed on machines with a hypercube

topology by using the Crystal routing strategy [FJL+86]. Assume that there are P = 2d processors
numbered starting from 0, and that each processor p can communicate with processor q if p differs
from q by exactly one bit. Call the processor which differs in the bit k the kth neighbor. The

algorithm works in d stages. Initially, each processor stores its recv_set in the send...set array. At

stage k, each processor removes from this array all entries for which the jrom..proc field differs from
its own id in the kth bit. These entries are sent to the kth neighbor, and the corresponding message

from that neighbor is received and added to the send...set array. Thus, after stage k, bits 0 through

k match the processor id; after d stages, all of the bits match. Thus, processor p has records Cor all

the messages it must send out. In other words, it has formed send_set(p, q) as required. This is the
algorithm used by the Kali run-time environment.

On machines without hypercube connectivity, similar algorithms can be developed for performing

the transposition. On a two-dimensional mesh with P = m*m processors, for example, Oem) rounds
of messages with a processor's north, south, cast, and west neighbors would suffice. On machines

supporting messages between arbitrary pairs of processors, the following algorithm can be used. Let
the processors be numbered from 1 to P. Each processor p declares an array Msgp of P integers,

and sets M sgp[qJ to 1 if recv_set(p, q) i: ,p and 0 otherwise. A tree summation is then performed

to find M sg[q] = L:.:=1 M sgp[q] in O(log P) steps. Note that M sg[q] gives the number of messages
that processor q must send. All processors receive a copy of the M sy array. Each processor p then

sends a message describing recv...set(p, q) to each processor q for which the set is nonempty. It then

receives M sg[P] messages from other processors, which are precisely the descriptions of the messages
it must send, i.e. send..set(p, q) for various values of q. Processors from which no message is received

have an empty send...set. This algorithm is general, but may not be efficient on some machines. In

particular, mapping a binary tree onto the actual machine topology may require some nontrivial

message routing, and sending the communication set messages may cause bottlenecks.

As stated above, our sorted arrays require O(N) space and O(N log R+ R 2) creation time, and

provide O(logR) search and O(N) traversal times for a list of N elements. In contrast, search

trees typically require O(N) space and have O(NlogN) creation time, O(logN) search time and

D(N) traversal time. Because of the indirections used in implementing search trees, it appears that

transposition is more complex than for dynamic arrays, but still possible. Hash tables require a

fixed (but relatively large) amount of storage have O(N) creation and 0(1) search times. It is DoL
normally possible to traverse the elements ofa hash table, although this can be added by maintaining

an auxiliary list, which could then be used in our transposition algorithm. Our design decision to

use dynamic arrays was based on several factors, including ease of implementation. The lack of

a transposition algorithm for search trees was the major factor in deciding against search trees.

Hash tables were discarded because of their high memory requirements; at the time we started the

implementation, available memory was a severe limiting factor on the target machines. Some recent

work by Mirchandaney et al. [MSMB90] has implemented a scheme similar to ours using hash tables;

no groups have experimented with search trees.
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proce8Bors Proes : array[ l..P ] with P in l..ma.x-procs;

var A, Old...A : array{ l..N Jof real dist by [block] on Proali
Count: array[ l..N ] of integer dist by [block) on Procsi

Adj : array[ 1..N, l..maLIlbrs] of integer diet by [ block, • ] on ProcB;

coer: array[ 1..N, 1..maLIlbrs] of real dist by [block, • ] on ProC8;

-- code to set up arrays 'Adi' and 'Coe!, omit/ed

while ( not converged) do

-- code to COP!! A to 0ld...A omitted

-- perform relaxation (computational core)

forall i in I..N on A[iJ.loc do
var x : real;
x:= 0.0;

for j in l..Count[iJ do
x := x + CocI[i,J1 • OId..A[ Adj[ij] ];

end;
if (Count[i] > 0) then Afi] := X; end;

endi

code to check convergence omiUed

endj

Figure 5.4: Nearest-neighbor relaxation on an unstructured grid

5.3 A Practical Example: Unstructured Mesh Relaxation

In this section we apply our analysis to the program in Figure 5.01. This models a simple partial
differential equation solver on a user-defined mesh. Arrays A and Old-A store values at nodes

in the mesh, while array Adj holds the adjacency list for the mesh and Coel stores algorithm

specific coefficients. This arrangement allows the solution of partial differential equations on irregular

meshes, and is common in practice. We will only consider the computational core of the program,
since it is the only part shown which requires communication.

The reference to Old-A[Adj[i,j)J in this program creates a communication pattern dependent on

data (Adj[i,j]) which cannot be fully analyzed by the compiler. Thus, the ref(p) sets and the com·

munication sets derived from them must be computed at run-time. Therefore, we use the i n s p e c t o r ~

executor strategy. Figures 5.5 and 5.6 show high-level descriptions of the code generated for the
inspector and the executor, respectively. Sections 2.2.4 and 2.2.5 describe how the implementation

iterates over ezec(p) and tests i E focafo1d..A(p). The sets are stoted as lists, as explained in Sec
tions 5.2.1 and 5.2.2. Here, locaIJist stores locaUter(p)j nonfocaUist stores nonlocaLiter(p); and

recvJisl and sendJist store all of the recv..set(p, q) and send_set(p, q) sets for processor p, respec

tively. In Figure 5.6, accessJist stores the search structure for accessing elements in recv..set(p, q).

We show it separately to emphasize the difference between the description of the messages and

their contents. The statements in the if statement in Figure 5.5 compute the communication and

iteration sets by examining every reference made by the forall on processor p. As discussed in

Subsection 5.1.1, this conditional is only executed once and the results saved for future executions

of the forall. The statements in Figure 5.6 are direct implementations of the code in Figure 5.2,

specialized to this example. The locality test in the nonlocal computations loop is necessary because

even within the same iteration of the Corall, the reference Old-A[Adj[i, jll may be sometimes local
and sometimes nonlocal. We will discuss the performance of this program in Chapter 6.
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- - Code executed on proce88or p

if ( firsUimc ) then -- only analyze once

- - Inilialize li8t8

localJist :=,p; nonlocalJist:=,pi
sendJisL :=,p; rccv Jist := ,pi
-- Tran6jormalion oj original jorall

for i E exec(p) do
flag:= true;

-- Generate recv..3et{p,q)
for j E {1,2, ...• Colmt[1]} do

-- Check Old..A[Adj[i,jJ]

if (Adj[i.l1 ¢ locaIA(p)) then
Add Adj{i,j] to recvJid

flag := false;

end;
end;

-- Generate iteration 6e!6

if ( flag) then
Add i to locoUi6t

else

Add i to nonlocaLli6t

end

end;

-- Generate 6end_6e!{p,q) from recvJet{p,q)
Global communication pl,06e to tron6po6c recvJi6t into 6cndJi6t

first_time := false;

end;

Figure 5.5: Inspector for Figure 5A
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-- Code executed on proce.uor p

Send messages on send..lid to their proce.uors

for i E locaUist do
var x: real;
x:= O.Oj

for j E {I, 2, ... , Count[ll} do

x := x + Coef[idl * Old-A[ Adj[ijJ Jj
endj

if (Count[i] > 0) then A[J] := Xj end;
end;

Receive me.uages on recvJist and store in accessJist

for i E nonlocaUist do

var x: reali
x:= 0.0;

for j E {I, 2, ... , Count[11J do
-- Acce.fS non/oeal array element

if ( Adj[i,;l E localA.(p) ) then
tmp := Old...A[ Adj[i,j] ];

else

Search accessJist Jor OlrLA{Adj[i,j}j and slore in tmp
endj

x := x + Coe£[i,Jl * tmpj
endj

if (Count[i] > 0) then Art] := Xi end;
end;

Figure 5.6: Executor for Figure 5.4
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5.4 Other Optimizations

Two important optimizations can be made in the inspector section of Iun-time analyzed foralls.
Both involve caching of information to avoid recomputation. The executor is less amenable to

optimization, but some improvement is also possible there.
The first inspector optimization involves groups of arrays within a single fcrall which all have

the same reference pattern, which means that all arrays have identical distributions and references

to them have the same subscripts. This is a typical situation for padial differential equation solvers,

which use the same template for several variables. In this case the communication and iteration sets
for the arrays will he identical, so it is only necessary to inspect one array's references. The sets can

then be copied and used directly for each array, or the copying can be avoided by adding an extra
level of indirection in the data structure.

A similar optimization can be used when two foralls have the same data access pattern. For

this to occur, the index sets and all nonlocal references in the foralls must be the same. This is

sometimes t.he case for multi-phase algorithms. When coupled with the first optimization, this also

applies to solving systems of partial differential equations when cach equation is solvcd by the same
technique. The optimization in this case is simply to reuse the generated sets.

The major overhead in the executor is the search invoked to satisfy nonlocal references. Since

run-time analysis is most likely to be used when the subscripts are irregular, it is unlikely that their
calculation can be optimized significantly by the compiler. Common subexpression eliminat.ion, how

ever, can reduce the number of searches significantly if the same subscript is used repeatedly. Note

that in order to perform this optimization, the compiler must be able to prove that the search has

no side effects. Providing this knowledge is not a problem if the run-time environment is integrated
in the compiler, but is more difficult if the analysis is produced by a preprocessor. Depending on

the exact nature of the data structures, it may be possible to reuse the results of a single search

for other arrays with the same distribution pattern. This optimization is akin to combining locality

checks for separate arrays in the inspector.

An analogue of another inspector optimization, saving the communication and iteration sets

between forall executions, is also possible. In this case the information being saved is the results
of the searches into the nonlocal access list.. For every reference made dynamically in the forall, a

pointer to the correct memory address (found by searching the communication set data structure)

is saved on this list. This list can be constructed once in the inspector. Details of the inspector
data structures, particularly when and how memory is allocated, determine whet.her this can be

done as the communication sets are being constructed or if it requires a separate pass. Once the

list is constructed, the executor can implement nonlocal references by an indirection from this list,

followed by an advance to the next list element. Note that t.his arrangement requires the list to

be generated in the same order as the references will be used. This requirement may interfere

with other optimizations discussed above, particularly conservative approximations of control flow

and combining the analysis for several arrays. Such a list is also expensive in terms of space.

For these reasons, we did not. implement this optimization in thc Kali compiler. Some researchers

have implemented such enumeration lists by hand [I{MSB90, SCMB90, Lit90] and report excellent
performance.
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Chapter 6

Experimental Results

In order to evaluate the effectiveness of the methods described in Chapters 4 and 5, we incorpo

rated them into the Kali compiler. This chapter describes several experiments validating and using

that compiler. Section 6.1 describes the compiler and the experiments themselves, including the

techniques used to time the compiled programs. Section 6.2 and 6.3 then describe the experimental

results on programs using compile-time and run-time analysis, respectively.

6.1 Methodology

We first give an overview of the Kali compiler and its limitations. The prototype Kali compiler

is wriUen in C [KR88], with parsing being handled by Lex and Yacc [Joh75, L575]. It consists of

over 26000 lines of source code, not including approximately 19000 lines defining the abstract data
types used to represent the parsed Kali programs. Of this, approximately 5200 lines are devoted

to implementing the forall construct, including generating the communication statements. The
compiler consists of two passes, one for parsing and one for generating code. The target language

for the compiler is C extended with message-passing routines for the specific target machine. At

present, code can be generated for the NCUDEj7 [HMS+86] or the iPSCj2 [PL8B] computers. For

brevity, however, we will only report results from the iPSC/2. We expect that extensions to any

machine with a message-passing library would be quite straightforward.
Because the current compiler is a research prototype, it has certain limitations. The most

significant limitation the compiler places on Kali programs is that processor arrays may only have one

dimension. This implies that forall statemenl.s only need a single index, and generally simplifies their

implementation. Data arrays may have any number of dimensions, but because of this limitation only

one dimension can be distributed by the built-in distribution patterns. (User-defined distributions
can, of course, depend on as many dimensions as the user desires.) Another important feature that

is not implemented is nonlocal write accesses. As discussed in Section 3.6, this allows us to avoid a

communication phase at the end of the forall. Both of these limitations will be corrected in later

versions of the compiler.

The compiler automatically determines whether to use compile-time or run-time analysis on a

forall by examining the subscripts accessed in the loop body. Currently only the compile-time

analysis for Theorems 4.1, 4.4., and 4.8 is implemented (Le. constant subscripts and subscripts of

the form f(i) = i + c for block and cyclic distribution patterns). Subscripts in undistributed

dimensions are constrained to produce at most a one-dimensional array slice in the communication

sets. This implies that at most one dimension in the constant subscript case can have a non-constant

subscript, and no dimension in the other cases can have such a subscript. If all references in a forall
meet these criteria, then compile-time analysis is used; if not, run-time analysis is generated for all

references, including those that otherwise could have been analyzed in the compiler. Compile-time

analysis generates code to evaluate the expressions defined in the appropriate theorems in Chapter 4.
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These expressions must be evaluated at run-time because the number of processors is determined at

load time rather than in the compiler. Run-time analysis is implemented as described in Chapter 5,
except for the advanced techniques of Section 5.4.

Once the compiler was written, we tested both the compile- and run-time analysis routines for
several attributes:

1. Absolute cost to generate the sets.

2. Absolute overhead of nonlocal array accesses.

3. Relative overheads within the context of a particular algorithm.

To do this, several programs were written in Kali and compiled into C code. Absolute costs were

measured by copying nonlocal array elements, while the relative overheads were obtained from

computational kernel algorithms. Details of these programs will be presented in Sections 6.2 and 6.3;
here, we will only describe the methods used to time the programs. All of the times reported later

are the averages of at least five runs. The methodology for each run is described next.

Before timing was started, all processors were forced to do a barrier synchronization to reduce

variance due to waiting. Timings were then obtained by calls to the system clock before and after

the appropriate computation. This limited the precision of our measurements to the granularity of
the system clock (approximately 1 millisecond). To measure overall time, the calls were inserted

directly in the Kali program. To obtain the times for sections of the code, such as time for commu

nications only, we hand-modified the generated C code to remove all unnecessary sections. Because

of the granularity of the timers, it was not possible to reposition the system calls to count only the

appropriate sections of code; the computation in many sections was simply too short to measure.
Our chosen methodology, however, has its own disadvantages. In particular, the iPSC/2 has data

and instruction caches; deleting code changes cache behavior, generally by improving the cache hit

ratio. This tends to reduce the times reported for partial computations, making the time for the

entire computation greater than the sum of the partial computations' times. Counteracting this
tendency is the possible overlap of computation and communication.

6.2 Experiments with Compile-time Analysis

6.2.1 Absolute Overheads

To measure the absolute overhead of compile-time analysis, we timed the copying program shown

in Figure 6.1. This program tests the formulas of Theorem 4.4, which were the most computation

intensive ones we implemented. The function iargv is used to read command-line arguments to the
program; this allows us to set SIZE, OFFSET, and IT to new values without recompiling the

program. Setting OFFSET = 0 generates no nODlocal references, and other values for OFFSET
generate from 1 to SIZE nonlocal references. In all cases, only processor 1 is accessing data, and

this was the only processor for which we obtained timings. The copying is repeated IT times to

avoid clock granularity problems. For an outline of the code generated for Figure 6.1, see Figure 4.6

in Section 4.3. The calculations for Figure 6.1 are slightly more complex than shown there because
constant folding is not possible, but the principles are identical.

Three timings were obtained from Figure 6.1, each for various values of the parameters. First,

we measured the absolute cost of generating the communication and iteration sets by timing the

sections of the program which calculated the set descriptions. These sections correspond to the

calculations in the const section and the allocation of the temporary array in Figure 4.6. The

resulting measurements showed that the constant calculations required under 100 microseconds on

the iPSC/2. For comparison, the message latency on that machine is 350 microseconds, and the
communications bandwidth is 2.8 Mbyte/sec [ArI8S]. Thus, the cost of calculating communication

and iteration sets is insignificant in comparison to the cost of actually performing the communication
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processors procs : array[ I..NP] with NP in 1..128;

const
SIZE: integer = iargv(l);
OFFSET: integer = iargv(2);
IT : integer = iargv(3)i
N = SIZE" NPi

-- number of OM"lly e l e m e n j ~ per processor
-- size of shift in occess loop

-- number of ileralions
-- total ~ i z e of array

v"'
x, y, index: array[ I..N ] of integer dist by [block] on procs;

for ii in LIT do

-- acce88 non/orol elements from processor 1

[ora.ll i in I..SIZE on xft].loc do
xli] := y[ i + OFFSET J;

end;

endi

Figure 6.1: Kali program for basic compile-time measurements

(unless, of course, the sets are empty and no message is sent). This is quite encouraging, since very

little effort was put into optimizing the performance of these calculations.
To measure the overhead of accessing non local array elements, we timed the copying loops with no

communications. This corresponds to timing the for loops in Figure 4.6 marked "local computations"

and "nonlocal computations." To measure a baseline, we set OFFSET to zero, giving no nonlocal

references. We then ran several tests with OFFSET set to values greater than SIZE, which ensured

that all references would be non local. To get a fair picture of the overheads involved, we forced the
compiler to generate a locality test for references in the nonlocal iteration loop, as described in

Section 4.5. The results of these tests showed that a single local reference cost approximately 3.33

microseconds while the nonlocal reference cost 6.23 microseconds. It is clear that the locality test is

a significant overhead. This is mitigated somewhat by the fact that the majority of iterations will

be local in a well-designed program. Future research on reducing this overhead is clearly needed,
however.

6.2.2 Realistic Performance

As a realistic example ofa program amenable to compile-time analysis, we chose Gaussian elimination
without pivoting. Figure 6.2 shows the exact program used. Figure 6.3 shows a Kali translation of

the generated C code. The form of the broadcast is generated from the formulas of Theorem 4.1,

while the bounds on the temporary array are taken from the for j loop. Cyclic array distribution

was used to achieve good load balancing. The copying loop and outermost for loop are not essential

features of the algorithm; they were added to simplify checksums and to avoid running afoul of the

system clock, respectively. They are included here ror completeness.

The Gaussian elimination program was run for several values of N and using all the possible

machine sizes. For each combination, three timings were obtained: the total time for the program,

the time for computation only, and the time for communication only. Copying the pivot row into
the temporary array was included in the communication time. Note that this will result in an

apparent communication overhead even for a single processor. The consLant IT (the number of

times the elimination was performed) was always chosen to keep Lhe times well above the clock

granularity, and Lhe raw times were divided by IT to normalize them to one execution of the

algorithm. Table 6.1 gives the results. All times in the table are in seconds. The communication
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processors
proc : array[ I..NP] with NP in 1..128;

COIlBt
N : integer = iargv(l)j
IT : integer = iargv(2)j

-- 6ize oj matrix (/rom command line)
-- number 0/ ileroUons

va,
a : array[ 1..N, 1..N Jof double dist by [cyclic, • ] on prOCj

for ii in LIT do

-- copy ox 10 a

forall i in I..N on a[i,l].loc do
for j in I..N do

a[ij] := ax[t,j];
endj

end;

-- gaussian elimination without pivoting
for k in I..N-I do

foraIl i in k+l .. Non a[t,l].loc do
for j in k+l .. N do

a[i"i] := a[i"iJ - a[kj] • a[i,k] I a[k,kJj
endj

endj
end;

end;

Figure 6.2: Kali program for Gaussian elimination
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-- Code on prOCtJ1l50r p

VBr

a: array[ LN, LN Jof double dist by [cyclic, *] on proc;
temp: array[ I ..N] of double; -- compiler temporary

for ii in LIT do

-- copy loop omitted

for k in LN-l do
-- communication5 5tatement!: broadca.ding
if( k%NP = p) then

temp[ k..N] := a[ k, LN ]i
send( templ{k..N), procs[*] );

else

temp[ k..N ] := recv( procs[*] )i
end;
- - computation statement!

for i in k+l + (p-k-l)%NP .. N by NP do
for j in k+l .. N do

a[ij] := a[iJ1 - lemp[J1 * a[i,k] {lemp{k];
end;

end;
end;

end;

Figure 6.3: Compiled form of Figure 6.2
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Figure 6.4: Speedup of Gaussian elimination program

time for one processor reflects the time to compute the communication sets and copy the pivot row

for sending (although no message is actually sent). The copying is overhead which docs not appear in

the original program, but it may ultimately save time in the computation section; it allows the pivot

row to be accessed as a one-dimensional alTay rather than as a t.wo-dimensional array. Table 6.1 also

gives the speedup, defined as the total computation time divided by the computation time on one

node. Given the available data, this compares the Kali program to the "best" sequential program.

Memory restrictions did not allow the 512 x 512 matrix factorization to be run on one processor. In

that case, the single-processor time for calculating speedup was estimated from its operation count

and the single-processor computation time for the 256 x 256 problem. The speedup figures are also
presented graphically in Figures 6.4.

The Kali program does not achieve perfect speedup for any entry in Tables 6.1 for two reasons:

1. The computation time does not scale linearly. In this case, there is no overhead for locality

checking in the generated programs; the deviation from linear speedup is entirely due to

imperfect load balancing. This effect becomes negligible for larger problem sizes.

2. The communication overhead is significant, particularly when the number ofrows per processor

is small. In a sense, this is inherent in the aJgorithm; any implementation which uses distributed

data will need to communicate between processors.

Any parallel program would have the communication overhead, but might avoid load balancing prob

lems. We therefore calculated "perfect" parallel times by adding the measured Kali communication

time to the single-processor computation time divided by the number of processors. These times

served as a realistic comparison to the actual Kali run times. The results of this comparison are

shown graphically in Figure 6.5. Note that the Kali programs are very close to the "perfect" times in

all of the graphs, in many cases being indistinguishable. This is more clearly shown in Figures 6.6,

which graph the ratio of the Kali program times to the perfect program times. In those figures,

the shape of the curves is less important than the vertical scale; it indicates that the Kali programs
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Performance for N 32

Processors Total time Computation Communication Speedup

1 0.2959 0.2773 0.0095 0.93

2 0.1809 0.1458 0.0347 1.53

4 0.1229 0.0760 0.0466 2.25

8 0.0999 0.0412 0.0589 2.77

16 0.0941 0.0233 0.Q708 2.94

32 0.0963 0.0143 0.0826 2.88

Performance for N _ 64

Processors Total time Computation Communication Speedup

1 2.339 2.231 0.030 0.95
2 1.252 Ll57 0.088 1.78
4 0.710 0.591 0.118 3.14

8 0,456 0.307 0.148 4.88

16 0.344 0.165 0.178 6.47

32 0.302 0.096 0.208 7.39

Performance for N _ 128

Processors Total time Computation Communication Speedup

1 18.894 18.205 0.107 0.96

2 9.568 9.274 0.238 1.90

4 5.007 4.670 0.313 3.63

8 2.769 2.373 0.386 6.57

16 1.696 1.231 0,459 10.72

32 Ll99 0.729 0.534 15.17

Performance for N _ 256

Processors Total time Computation Communication Speedup

1 152.39 147.58 0,40 0.96

2 76.55 75.37 0.72 1.92

4 38.65 37.59 0.91 3.81

8 19.94 18.78 LlO 7.39
16 10.89 9.52 1.29 13.54

32 6,45 5.71 1,49 22.85

Performance for N 512

Processors Total time Computation Communication Speedup

2 611.91 606.71 2.38 1.93
4 307.24 303.17 2.95 3.85

8 155.70 151.59 3.53 7.60

16 80.34 75.91 4.09 14.73

32 43.10 38.32 4.67 27,47

Table 6.1: Performance of Gaussian elimination program
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Figure 6.6: Overheads of Kali programs for Gaussian elimination

never have an overhead of more than 9% on the iPSCj2. This indicates that Kali is performing

nearly as well as the best possible implementation on this example.

6.2.3 Conclusions

The results of our experiments with compile-time analysis can be summarized as follows:

1. The time to generate the communication and iteration sets using compile-time analysis is quite

small, particularly when compared to the time to pass a message.

2. Programs with many nonlocal references may pay a significant overhead for locality checks if

the implementation described in Section 4.5 is used. This is in addition to the overhead of

sending and receiving ~ h e messages, which will Occur regardless of ~ h e implementation used.

3. Compile-time analysis produces practical code for at least one major algorithm, Gaussian

elimination. The code is nearly optimal relative to a simple model of program performance.

The conclusion to be drawn from these observations is that compile-time analysis is a promising

approach to allowing high-level programming of nonshared memory machines. Where it can be

applied it generates the necessary communications quickly and, in many cases, provides efficient
access to nonlocal data.

6.3 Experiments with Run-time Analysis

6.3.1 Absolute Overheads

To measure the absolute overhead of run-time analysis, we timed the copying program shown in

Figure 6.7. The index array can be set to create any behavior from all references local to all

references nonlocal. Additionally, the distribution of the nonlocal references can be changed; this
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processors procs: array[ l..NP] with NP in 1..128j

const
IT::: 5;

RANGES: integer = iargv(l)j
SIZE: integer = iargv(2)j
N = SIZE· NPj

-- number of iteralion6

-- number of range6 per prOCe460r

-- rlllmber 0/ orray element! per procenor

-- total 6ize of aJToy

va,
x, y, index: array[ l..N] of integer dist by [block] on prOCBj

for ii in l..IT do

-- aCCe46 rlonlocal element! from proces60r 1
forall i in l..SIZE on xfi].loc do

x[i] := y[ indexfi] ]j
endj

endj

Figure 6.7: Kali program for basic run-time measurements

is useful because our data structure for the communication sets is sensitive to this distribution.

Figure 6.8 outlines the code generated for Figure 6.7.

Our first experiments with run-time analysis studied the cost of the inspector. We first generated
five programs from the code of Figure 6.8:

1. Basic-insp, which included only lines 1 through 5 and line 13. This represented the lowest·level
overhead of the inspector.

2. Check, which included only lines 1 t.hrough 6, 8 and line 13.

3. Insert, which included only lines 1 through 8 and line 13.

4. Iterate, which included all lines except line 12.

The modified programs allowed us to compute the times for all major operations in the inspector.

1. The time for the locality checks only is the difference between Check and Basic.insp.

2. The time for insertions into the receive fist is the difference between Insert and Check.

3. The time for insertions into iteration sets is the difference between Iterate and Insert.

4. The t.ime for global communications is the difference between the entire inspector and Iteration.

We timed these programs and t.he full inspector, using several sets oevalues for index, and computed
the above measures. In all cases, every reference was nonlocal; the settings of index varied the

number of ranges representing the communication sets from 1 to 200. SIZE was varied from 5000

to 30000 to allow expressions for the performance based on time to be computed.
The performance of the inspector can be summarized as follows:

1. The time for one locality check is 8.17 microseconds on the iPSCj2.

2. The time to insert one element in the the receive list depends logarithmically on the number

of ranges in the set. More precisely, the time is 9.36Iog2 (R) + 30.8 microseconds.
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-- Code execuled on processor p

if ( firsUime ) then

locaUist := rPi nonlocaUisl:= rP;
send.Jist := rP; recv.Jist:= rPi

for i e local..:l:(p) n {l, ... ,SIZE} do
Hag:= truei

if( inde:l:[ll ¢ 10ca15l (p) ) then

Add indexli} to recv_list
flag := false;

end;

if( flag) then
Add i 10 10000Uist

else

Add i to nonlocaUist

end
end;

-- Line 1

-- Line f!

-- Line 3

-- Line 4
-- Line 5

-- Line 6

-- Line 7
-- Line 8

-- Line 9

-- Line 10

-- Line 11

Global communication phase to trclnspose recv_list inlo sfmdJi3t -- Line 12

firsLtime := false; -- Line 13

endj

Send messages on send.Jist to Iheir procc8ilors

-- local iterations

for i e localJist do

xli] := y[ index[i]]i
end;

Receive messages on recvJist and slore in accessJist

-- nonloool iterolions

for i e nonlocalJist do

if( index[ll e localy(p) ) then

lmp := y[ index[i] ];

else

Srorch ac.cessJist for ylindexfilJ and store in tmp
end;

x[i):= tmp;
endj

Figure 6.8: Compiled form of Figure 6.7
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3. The time to insert one element in the iteration lists is 5.54 microseconds.

4. The time for the global communication phase depends (linearly) on the number of ranges and

(logarithmically) on the number of processors. For this program the dominating factor is the

number of ranges. Based on this observation, a good expression for predicting performance is
27.0R+ 2170 microseconds.

All of these overheads combined give the total inspector time. A predicting expression for this time

"
T 8.17A + 5.541 + (9.361og,(R) + 30.8)N + 27.0R + 2170

where

A =

I =
N

R

Number of array references in forall

Number of iterations of forall

Number of non local array references in rorall

Number of ranges in the receive list on one processor

and the resulting time is given in microseconds. This expression was obtained by combining the
analyses above.

It is difficult to compare directly the costs of computing the lists in the inspector with the

communication required by the inspector, because the performance of two aspects depend on different
factors. The total computation time in the inspector is dominated by the time to insert elemenl;s in

the receive list and iteration lists, which depends on the numbers of ranges and iterations as well as

the number of nonlocal references. The communication cost depends on the number of processors

and the number of ranges. In this example it was computation that was the deciding factor. This

would not be the case if the number of ranges were nearer the number of references, however; in
that case, even the model given would be invalid, since the quadratic insertion time in the range
list would come into play. In any case, however, it appears that the inspector would be of the same

order of magnitude as the cost of the actual rorall computation on a given number of processors

if the rorall were doing significant processing on each iteration, rather than simply copying array

elements. This assessment is borne out in the next section on a more realistic example.

Our next experiment with run-time analysis concerned the overhead of accessing nonlocal data.
We ran two series of tests, one which accessed only local data and one in which all references were

nonlocal, and timed the for loops in the executor. To eliminate the loop overhead, we also ran

another test with empty loop bodies and subtracted the time found there. The number of ranges

representing the communication sets in the nonlocal tests ranged from 1 to 200. From the local

tesl;s, we obtained times for one local access of 3.9 microseconds on the iPSCj2. (This differs from
the results in the last section because the costs of computing the subscripts themselves diller.) The

nonlocal tests on both machines showed nonlocal access times that were logarithmic in the number

of ranges, which was expected because we were using binary search. A more exact expression is

T = 9.021og,(R) + 23.8

where R is the number of ranges and T is the time to access a single nonlocal element on a given

machine, given in microseconds. Thus, for example, accessing one element taken from 8 ranges would

cost 41 microseconds. This is a high overhead, but not so high that it could not be overshadowed

by computation time in the iteration. A single square root operation on the iPSCj2, for example,
takes approximately 48 microseconds.

6.3.2 Realistic Performance

As a realistic example of a program requiring run-time analysis, we used the unstructured mesh

relaxation program shown in Figure 6.9. Except for details of the outermost loop, this program is
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-- meah size (from command line)
-- number of iterations

-- check l1alue
-- ma.x number of neighbors

processors
proe : Rrray[ J..NP ] with NP in 1..128;

const
N : integer = iargv(I);
IT: integer = iargv(2);

ANS : double = dargv(3);
NBRS = 6;

va.

A, Old...A : array[ l..N ] ofreal dist by [block 1on proc;
C o u n ~ : array[ I ..N ] of integer dist by [ block] on proci

Adj : array[ l..N, I..NBRS ] of integer dist by [ block, * Jon proc;
Coer: array[ LN, LNBRS] of real dist by [block, *] on proe;

for ii ill LIT do
-- copy A to D/etA

forall i in l..N on A[i].loc do
Old-Af>] ,~ Af>];

end;
-- ncanst neighbor relaxation on a

forall i in 1..N on A[i].Ioc
val' x : double;

do
X:= 0.0;
for j in I..count[a] do

x := x + Coef[i,Jl * Old...A[ Adj[iJlli
end;

if (Count[i] > 0) then A[aJ := Xj end;
end;

end;

Figure 6.9: Kall program for unstructured mesh relaxation
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identical to Figure 5.4 in Section 5.3. Figures 5.5 and 5.6, also in that section, outline the inspector

and executor generated for this program.
We tested the program on several grids. Here we will focus on one typical example, a random

modification of a square mesh with 4 nearest-neighbor connections. The base mesh is referred to as
a </5·point star" in the literature; the modified mesh is designed to model unstructured meshes. To

modify the mesh, 10% of the edges were randomly reset to other points. The points of the original

mesh were numbered to map a horizontal strip of points onto each processor (i.e. the one·dimensional
distribution simulates a two-dimensional dist.ribut.ion blocked by rows). We will refer to this mesh

as the "modified square" mesh. The meshes were created with torus wrap-around connections, thus
giving each point exactly four neighbors. We varied the number of points in the mesh from 210 to

218 (corresponding to meshes of dimension 32 x 32 to 512 x 512), and adjusted IT (the number of

iterations) for each mesh to avoid clock granularity issues.

For each mesh size, we obtained five timings.

1. The total time to execute the program.

2. The time for the inspector only.

3. The time for the executor only.

4. The time for the computation in the executor.

5. The time for the communication in the executor.

The raw data for the iPSCj2 are given in Table 6.2. The nonzero communication times for one node

are attributable to checking the (empty) message lists and to clock granularity. Because the inspector
is only executed once, the different values of IT would make a straightforward calculation of the

parallel speedup deceiving. Therefore, we have normalized the times used in computing speedup to

assume IT = 100 for all values of N. For experiments which used smaller values of IT, this was

done by adding the inspector time to 100 times the time for one executor sweep. The value used for
sequential time was the computation time on one processor, if available; if a given mesh size would

not fit on one node, the sequential time was extrapolated from the sequential time for the largest

mesh which did fit. Figure 6.10 graphs the number of processors against the parallel speedup.

As wit.h the Gaussian elimination program, t.imes for the unstructured mesh solver do not achieve

perfect linear speedup. This can be attributed to three sources of overhead:

1. The time to execute the inspector

2. The communication time in the executor

3. The search overhead in accessing non/ocal reference.s

The communication overhead is inherent in the algorithm, while the inspector and non local ac

cess overheads are artifacts of our implementation. To take t.he inherent overhead into account in

evaluating our program, we proceed as in Section 6.2.2 by comparing actual Kali performance to

a "perfect" parallel program consisting of linear speedups in the computation added to our actual
communication time. The results of this comparison are shown graphically in Figure 6.11. The times

were again normalized to 100 mesh sweeps to allow comparison between different sized meshes. Un
like the Gaussian elimination experiments, the difference between the Kali times and the "perfect"

times is noticeable at some points in all the graphs. Figure 6.12 shows this overhead can be nearly

100% on the iPSej2. Figures 6.13 and 6.14 break down this overhead into its inspector and nonlocal

access components. Note that the apparent exponential increase in the last two graphs is caused by

the logarithmic scale on the horizontal axis; in reality, the increases arc closer to linear relaUons.

Figure 6.13 illustrates the inspector overhead by plotting the ratio of the inspector time and

the ''perfect'' parallel time versus number of processors. This can be interpreted as the number of

extra forall sweeps that the inspector is costing. For example, a ratio of 2 means the inspector is
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Performance for N 1024 IT 100,

Processors Total Inspector Executor Speedup

time time Teta Compo Comm.

1 1.644 0.012 1.631 1.630 0.002 0.992
2 0.939 0.008 0.930 0.851 0.072 1.737
4 0.599 0.007 0.593 0.449 0.139 2.718
8 0.395 0.007 0.388 0.245 0.139 4.120
16 0.291 0.007 0.284 0.148 0.140 5.590
32 0.239 0.007 0.233 0.094 0.140 6.792

Performance for N 4096, IT 100

Processors Total Inspector Executor Speedup

time time Tota cmp. ammo

1 19,683 0.110 19.572 19.570 0.001 0.994

2 10.703 0.069 10.629 10.382 0.170 1.829

4 5.984 0.044 5.946 5.565 0.296 3.267
8 3.544 0.032 3.512 3.146 0.324 5.522
16 2.360 0.027 2.707 1.973 0.328 7.160
32 1.748 0.026 1.724 1.370 0.330 11.183

Performance for N _ 16384, IT _ 25

Processors Total Inspector Executor Speedup

time time Total I (omp. Comm.

1 24.090 0.525 23.565 23.564 0.000 0.994
2 12.741 0.296 12.439 15.435 0.058 1.883
4 7.622 0.168 8.313 7.811 0.093 2.820
8 4.541 0.102 4.670 3.510 0.093 5.018
16 2.721 0.072 2.680 2.496 0.097 8.733
32 1.685 0.057 1.703 1.419 0.098 13.719

Performance for N 65536, IT 10

Processors Total Inspector Executor Speedup

time time Teta Compo I Camm.

2 18.680 0.990 17.810 17.147 0.035 1.745

4 9.881 0.537 8.762 8.891 0.049 3.545
8 5.461 0.309 4.814 4.705 0.049 6.451
16 2.756 0.195 2.932 2.561 0.051 10.587
32 1.869 0.138 1.819 1.452 0.053 17.053

Performance for N _ 262144, IT _ 10

Processors Total Inspector Executor Speedup

time time Total I Compo Ilomm.

8 24.644 1.275 23.412 22.154 0.Q78 6.818
16 13.550 0.747 13.409 11.765 0.077 11.903
32 8.083 0.466 7.685 6.872 0.Q78 20.757

Table 6.2: Performance of unstructured mesh relaxation program
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Figure 6.10: Speedup of unstructured mesh relaxation program

effectively adding two passes through the forall to the total time; this is a 2% overhead if the forall

is repeated 100 times, or a 200% overhead if the forall is executed once. The figure shows that for

this example the inspector is never more expensive than 2.4 perfect parallel sweeps on the iPSe;
this is probably acceptable if the forall is executed many times. It is also important to note that

the relative inspector overhead decreases as the problem size increases. This is important because

a major reason fOf adding processors to a parallel system is to solve larger problems; in such cases,

the inspector becomes even more attractive.

Figure 6.14 shows the nonlocal access overhead by plotting the ratio of executor computation

time to the computation time assuming linear speedup. Since the program data is constructed to be

perfectly load balanced, any difference in timings is due to the search invoked on nonlocal accesscs.

The overhead relative to the above perfect parallel times will be less than the ratios shown in these

graphs because of the effect of communications. Even so, the computation overheads here are large;

up to 211%. It should be noted, however, that the nonlocal access overhead is also inversely related

to problem size. For the largest problem, the overhead is only 10% on 32 processors. This indicates

that our search technique may be acceptable for large problems, which require the most computation
time in any case.

The results of experiments using other classes of meshes were similar to those above. As an

indication of this, Figure 6.15 shows the speedup curves for four representative meshes. The "9

Point Star" mesh is a regular mesh connecting each point to its eight nearest Cartesian neighbors.

Points were numbered to simulate the two-dimensional block distribution of Section 3.2.3; therefore,

each processor must communicate with at most eight others. The "Square" mesh connects each point

to its four Cartesian neighbors. The "Hexagonal" mesh tiles the plane with hexagons rather than

squares and connects adjacent hexagons; the "Modified Hexagonal" mesh varies this by randomly

deleting 10% of the edges. The points in the last three meshes were numbered to map horizontal strips

of the mesh onto the same processor; thus, communications for the regular meshes were confined to

the two neighboring processors. Of these meshes, the 9-point star and modified hexagonal meshes

probably provide the mast realistic models of actual unstructured meshes, because they produce

larger numbers of ranges in the communication sets. The fact that each processor communicates
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with a limited number ofothers is realistic, since sensible data distribution will produce this situation.

The curves are very similar to Figure 6.10 in general outline.

6.3.3 Conclusions

The results of our experiments with r u n ~ t i m e analysis can be summarized as follows:

1. The time required for the inspector is equivalent to a few extra executions of the forall in

the optimal parallel program. Whether this is acceptable depends on the number of times the
forall is executed and on the availability of alternative implementations.

2. The overhead of performing Danlaeal references is very high when there are many of them.

This is usually the case when the amount of data on a single processor is small, either because

the problem size is small or because many processors are used on a fixed-size problem.

a. Of the two overheads, the more important is the nonlocal reference overhead. It is relatively
larger and cannot be amortized as the inspector overhead can be.

4. Both the inspector and nonlocal access overheads scale very well with problem size. Although

less apparent from the experiments, it can be expected that the overheads will also decrease as
the amount of computation in the rorall increases. This is because the overheads are roughly

proportional to the number of nonlocal accesses, while additional computation is unlikely to

require proportionally more data.

The conclusion to be drawn from these observations is that run-time analysis is a promising approach

for large-grain problems which cannot. be analyzed by the compiler. Smaller problems incur relatively

large overheads. The size of problems for which run-time analysis is effective can be expected to

decrease for more computation-intensive problems. This allows high-level programming of nonshared

memory machines for a large class of problems, although there are still problems for which the
analysis is not. effective.
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Chapter 7

Conclusions

7.1 Summary of Contributions

This work has made significant contributions in four general areas:

1. It has developed a formal model fOf mapping shared-memory programs onto nonshared

memory machines.

2. It has derived a compile-time analysis applicable to a large class of programs from the formal

model.

3. It has developed a ron-time strategy and environment which is generally applicable from the

formal model.

4. It has validated the compile-time and run-time results by incQTpomting them in a compiler.

The model of Chapter 3 is a useful general framework for modeling both the compilation and the
execution of shared-memory programs on nonshared-memory machines. Ours is the first model to

unify the research done on the problems of compile- and run-time mapping techniques for programs

on these machines. In the past, most research in parallelizing transformations has not used an

explicit model, making it difficult to evaluate and compare different groups' work. Explicit models

like ours will help to change this situation, as well as driving research in developing new techniques.
They may also eventually be useful in evaluating individual programs to provide feedback to the

user; at present, no standard means of evaluation is available.

The compile-time analysis of Chapter 4 provides the best evidence to date of the utility of our

model. The formulas derived there allow efficient programming of nonshared-memory machines using

shared-memory models when they can be applied. The code generated even by a first implementation

is very close to optimal according to a simple model of program performance.

The run-time analysis of Chapter 5 provides a promising alternative approach to mapping sharcd

memory programs to nonshared-memory machines for cases where compile-time analysis cannot be

used. The overheads of run-time analysis are higher than compile-time analysis, but run-time
techniques have no limits on their applicability. Our experiments indicate that these overheads

are certainly acceptable for large problems, and may be acceptable for smaller problems if no other

alternative is available. Furthermore, we have presented evidence that run-time analysis will improve

in efficiency as more complex algorithms are used, making it doubly attractive for realistic work.

The implementation of compile- and run-time analysis in the Kali compiler demonstrates that
programs based on shared-memory models can be automatically mapped onto nonshared-memory

machines. Run-time analysis ensures the generality of the compilation process, while compile-time

analysis achieves high efficiency in many common situations. The language thus allows the program

mer to concentrate on the higher-level aspects of the program, often without sacrificing performance.
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Such a combination of ease of programming and efficient execution will make nonshared memory

machines usable by a much wider audience. Kali is one of the first programming languages able to
claim this advantage.

7.2 Related Research

There is a great deal of current research which is related in some way to ours, including general

parallel programming languages and language extensions [Ame83, Ge185, Jor86, McG82, MSA+85,

MV87], transformations for exploiting parallelism [Wo182, ACK86, ABC+87J, and shared virtual
memory systems [BCZ90, CAL+89, Li86, RAK88]. In this section we will examine only the most
closely related work.

Callahan and Kennedy [CK88] and Zima, Bast and Gerndt [ZBG88] suggest transforming anno

tated sequential FORTRAN into message-passing code by inserting explicit send and receive state

ments at the array-element level. Vedorization techniques are then aggressively applied to aggregate
messages, avoiding the overheads for small messages. The annotations to their programs describe

the data distribution in much the same way that Kali disl clauses do. In a sense, their work is a
bottom-up approach in contrast to our top-down approach. It appears that for cases amenable to

our compile-time analysis, their work produces essentially the same code. Our run-time analysis ap

pears to be beyond the abilities of their transformations, so our techniques hold an advantage there.

On the other hand, the bottom-up approach also applies to more general parallel loops (such as
the doacross [Cyt84]) which we do not consider. The two approaches therefore have complementary

strengths.

Gerndt [Ger89] extends the above work with the concept of "overlap" between the sections of

arrays stored on different processors and shows how it can be automatically computed. As explained

in Section 4.5, this allows programs compiled with his methods to avoid locality checks during ex

ecution. A further advantage of this method is to make nonlocal data persistent between forall

statements, avoiding some communication overhead. In terms of our framework he has generalized

our analysis to distribution functions with overlap (as shown in Section 3.2.3). Automatic compu·

tation of the overlaps corresponds to choosing the distribution function in the compiler rather than
having it specified by the user. His results are not without their limitations, however; in the worst
case, every processor will store every element of the array. Two cases in which this would occur are

Gaussian elimination and unstructured mesh relaxation. The techniques presented here do not have
such pathological space overheads.

Pingali and Rogers [Rog90, RP89], working with the funetionallanguage Id Nouveau, have de

veloped a compilation scheme very similar to those of Callahan and Kennedy and Zima and his
coworkers. They explicitly consider run-time resolution of messages, but do not retain information

between forall executions as our run-time analysis does. They also extend the bottom-up approach

by applying their version of compile-time analysis to forms of parallel loops which pipeline computa

tion and communication. Another notable difference between our implementation and theirs is that

they produce a separate program for each processor, while we only generate one program. Their
strategy allows much more constant folding and perhaps other optimizations, but ours produces

programs which are independent of the number of processors in the target machine.

Schnabel, Weaver, and Rosing [RSW89, RSW90J have developed DINO, the language most sim
ilar to Kali that we have found. Instead of Kali's processors, DINO has a construct called an

environment. Several environments may be mapped to the same processor, but this incurs a perfor

mance penalty. DINO has user-specified data distributions like Kali, but allolVs data to be mapped

to multiple environments and does not support axbitrary user-defined data mappings. Communica

tion is implicit. in DINO in the sense that message-passing statements are not needed, but nonlocal

references within loops must be explicitly tagged by the programmer. Fully implicit communication

is possible via subroutine parameters, in which entire array sections are automatically copied if nec

essary. This allows convenient specification of regular communication patterns, but the situation for
irregular patterns is less clear. It is certainly possible to duplicate contiguous sections of arrays in
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a given environment, but it is unclear whether disconnected regions can be duplicated and accessed

efficiently. The current implementation of DINO apparently does not perform any equivalent to

our compile- and run-time analysis on loops. This is undoubtedly because the need for such an

operation is less severe in DINO, where communication can be aggregated by the user by array copy
statements and procedure parameters. Future versions of DINO, however, promise to remove the

tagging of nonlocal reCerences; at that time such analysis will probably be added to the compiler.

Andre, Pazat, and Thomas [APT90J have implemented the Pandore language, which shares

many goals with Kali. In Pandore, parallelism is automatically extracted from essentially sequential

code, although a forall statement also exists. They have independently developed a bottom-up
compilation approach similar to Kennedy and Zima. They stress regular problems; it is unclear how

they handle irregular ones.

Tseng [Tse89] has developed the AL language and its compiler targeted to the WARP systolic

array. His work stresses linear subscript functions for the distributed dimension of an array. (Only

one dimension is distributed in AL because the WARP is a linear array.) His work is thus di

rectly comparable to our compile-time analysis. An important advance over our work is that AL
automatically generates the distribution Cor an array, including overlap information, given only the

programmer's specification of which dimension is to be distributed. His distributions are also more

general than our block and cyclic distributions. Detection of parallel loops is automatic in the AL
compiler, and more general forms of loops are handled than our work considers. AL, however, does

have its limitations. There is no equivalent to our run-time analysis for irregular problems, which
would be extremely difficult to map onto a systolic array in any case. Because small messages are

not as expensive on systolic architectures, the AL compiler does not need to aggregate messages as

our compile- and run-time analysis does. Finally, the restriction oC distributions to one dimension

may not allow generalization oC the distribution choice algorithm to multiple dimensions.

Chen and ber colleagues {CCL89, LC89, LC90] have implemented the Crystal functional program
ming language on nonshared memory machines. In doing so they have developed a robust theory

similar to our formalism in many ways, but based on lambda calculus models rather than sets. Their
equivalent of distribution functions do not appear to be easily extensible to replicated data, however.

A large portion of their work is concerned with automatically distributing data among processors,

which is a significant addition to this line of research. The exact problem that they solve, however,
is to determine sets of elements of different arrays which should be mapped to the same processor.

It appears that this is orthogonal to choosing the distribution patterns themselves. This may par

tially account for the much lower speedups that they report for Gaussian elimination in [CCL89].

Another fundamental difference in approach is that they generate communication statements by

matching patterns of subscripts with descriptions of synchronous message-passing routines. This

has two disadvantages compared to our approach:

1. Computation and communication cannot be overlapped because oC the synchronization in

communications.

2. Patterns which do not match exactly result in extra data being communicated. This appears to
be a particularly severe problem with the dynamic access patterns which our run-time analysis

is designed to handle.

Compensating these to some extent is the Cact that synchronous communication primitives can be

more efficient than the asynchronous routines we use because they can avoid congestion.

Quinn and Hatcher [QH90] have implemented C* [RS86J, a language originally designed for the
Connection Machine, on the NCUBE/7. While some of their work is directly related to the SIMD
semantics of the languages, the optimizations they apply to message-passing are closely related to

our work. Quinn and Hatcher describe their optimizations as "vectorizing" the messageSj this reflects
the close relation of their work with the bottom-up approach described above. Like the other groups

using this approach, they produce good code for regular communication patterns and bad code for

other patterns.
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Reeves [CR89] is also approaching programming nonshared-memory machines from the direction
of SIMD languages. His Paragon system uses the same ideas as Quinn and Hatcher for regular

problems, but he has also done work on irregular problems. In Paragon, a programmer can define

a mapping function describing a data movement pattern. This function corresponds to 1-1 in

Section 3.4. The Paragon implementation has features allowing efficient application of this mapping.
In effect, this arrangement gives the user an elegant interface for writing inspectors and executors.

Reeves does not generate the mapping functions automatically, however.

Saltz and his coworkers [MSMB90, MSS+S8, SBW90, SC86, SCMB90] have independently been

pursuing run-time optimizations similar to those mentioned in Section 3.7. They use an inspector
executor strategy identical to ours, but use different data structures to represent the communication

sets. Saltz reports on two different schemes:

1. A hash table scheme which is directly comparable to our sorted range lists.

2. A scheme which enumerates all references in the forall separately, which avoids even the

locality test and hash table lookup overhead in the executor.

Both schemes have lower time overheads than ours, but require more memory overhead.) (The

enumeration scheme is the extreme case for both these statements.) A clear advancement over our

work is that Saltz considers the doconsidcr loop, which is essentially a doacross loop which must

be scheduled dynamically. This is a more general construct than our forall statement, although it is

handled by very similar methods. Early versions of this work used FORTRAN-callable subroutines

to provide a convenient user interface to the inspector and executor; more recent work has produced
a prototype compiler. Littlefield [Lit90] has independently studied a very similar scheme.

7.3 Directions for Future Research

The results reported here can be extended in many ways. We divide the extensions into six categories:

1. Extensions to the basic model of Chapter 3

2. Extensions to the compile-time analysis of Chapter 4

3. Extensions to the run-time analysis of Chapter 5

4. Implications for the programming interface to nonshared memory machines

5. New application areas for similar techniques

6. Heuristics for parallel compilation

The basic model of data distribution can already suppod distributions which replicate data, hut

the formulas oC Sections 3.4 and 3.5 do not apply to those distributions. Adding these would allow

more more efficient implementation of some algorithms. New Cormulas similar to Equations 3.20,

3.21, 3.27, and 3.28 are needed for parallel control structures besides the forall. Examples oC
such control structures include the doacross loop and functional decomposition techniques. The

identification of index sets with the integers also should be relaxed to allow data structures other

than arrays, such as trees. All of these appear to be relatively straightforward extensions.

Compile-time analysis can certainly be extended to other static distributions such as the block

cyclic and skewed distributions of Section 3.2. The forms ofsubscripts which can be analyzed should

also be extended. Particularly interesting in this regard are multidimensional arrays with coupled
subscripts (Le. several dimensions which are Cunctions oC the same index). Because of the range of

possible subscript forms and distributions, it is tempting to automate this process. This could be

done by incorporating theorem-proving algorithms directly in the compiler, by providing an interface

between the compiler and existing symbolic algebra systems, or simply by using symbolic algebra

systems off-line to prove the necessary theorems. In any case, the result would be a larger class of
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programs amenable to compile-time analysis. At some point even this aggressive program will fail,

however, because of fundamental limits such as the undecidability of Diophantine equations. To

avoid futile effort it would also be wise to prove theorems giving the limits of compile-time analysis.

Both computability results and complexity results for various classes of subscripts would be useful

in this regard.
The design and analysis of data structures for inspectors and executors will continue to be of

interest for some time. Optimizations like those of Section 5.4 will also be vital for extracting per
formance from irregular codes. The optimizations may, of course, interact with the data structures

used, further complicating the analysis of the data structures. Because of this complexity, providing

user control over how the inspector and executor are implemented may be fruitful. Because of the

complexity of these pieces of code, however, much work is needed on the interface.
All aspects of this research have implications for how a programmer should approach a nonshared

memory machine. The basic model and machine-dependent information about the cost of compile

and run-time analysis should be used for performance prediction for programs. These predictions
can be fed back to the programmer to enable efficient programming. This is particularly relevant

to run-time analysis, where seemingly trivial changes to the source code can have a great impact
on performance. Annotations should also be provided for the programmer to specify important

information relevant to the analysis. The best example of this is complex subscripts. Often a

programmer can prove that the referenced array clement will be local, but the compiler cannot. In

this case, an annotation can be used to prevent costly communication code from being generated.
No groups mentioned in Section 7.2 have considered the implications of this research for debugging

in any detail. It appears that programs are easier to write with shared-memory models, but the

generated program is so far removed from the original that it is difficult to see how it can be

debugged. This is a common problem with high-level languages and highly optimizing compilers,

but no general solution is known. Finally, the mechanisms for run-time analysis suggest general
implementation techniques for user data structures. Making the run-time data structures part of

the descriptors for dynamically allocated arrays, for example, could provide an effect similar to

overlapping distributions for those data structures; similar comments apply to nonnumerical data.

Applications of our techniques can be made to other classes of parallel machines and to other

language models. There are several other classes of parallel computer in which data locality is im·
portant. Examples of such machines include the Connection Machine [TR88J and the BBN Butterfly

[BBN87]. Models and compilation techniques similar to ours should yield performance improvements
on these machines. First steps toward doing this were reported in [KMV87a, KMV87b]. Performance

models like tbose mentioned above should also be applicable to these machines. As discussed above,

the basic model should also be applicable to other parallel control constructs. In addition, it may be

possible to apply the techniques to other programming paradigms such as functional programming
and SIMD languages. Some of the groups mentioned in Section 7.2 are already pursuing these ideas

independently.

One major limitation of the current Kali implementation is the presence of dist and on clauses.

These clauses have no errect on the correctness of the code, but instead only affect performance. It

would be better if the compiler chose the data distributions and location of computations automati

cally. This is a difficult problem, however. Mace [Mac83] shows that a form of the distribution choice

problem is NP-complete, and location of computations can be modeled in the same way. Heuristics

will therefore be needed for these operations. The last section describes some current work in this

area.
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