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Abstract

Many common illnesses differentially affect men and women for unknown reasons. The 

autoimmune diseases lupus and Sjögren’s syndrome affect nine times more women than men1, 

whereas schizophrenia affects men more frequently and severely2. All three illnesses have their 

strongest common genetic associations in the Major Histocompatibility Complex (MHC) locus, an 

association that in lupus and Sjögren’s syndrome has long been thought to arise from alleles of the 

human leukocyte antigen (HLA) genes at that locus3–6. Here we show that the complement 

component 4 (C4) genes, which are also in the MHC locus and were recently found to increase 

risk for schizophrenia7, generate 7-fold variation in risk for lupus (95% CI: 5.88–8.61; p < 10−117 

in total) and 16-fold variation in risk for Sjögren’s syndrome (95% CI: 8.59–30.89; p < 10−23 in 

total) among individuals with common C4 genotypes, with C4A protecting more strongly than 

C4B in both illnesses. The same alleles that increase risk for schizophrenia greatly reduced risk for 

lupus and Sjögren’s syndrome. In all three illnesses, C4 alleles acted more strongly in men than in 

women: common combinations of C4A and C4B generated 14-fold variation in risk for lupus, 31-

fold variation in risk for Sjögren’s syndrome, and 1.7-fold variation in schizophrenia risk among 

men (vs. 6-fold, 15-fold, and 1.26-fold among women respectively). At a protein level, both C4 

and its effector C3 were present at greater levels in men than women in cerebrospinal fluid (p < 

10−5 for both C4 and C3) and plasma8,9 among adults ages 20–50, corresponding to the ages of 

differential disease vulnerability. Sex differences in complement protein levels may help explain 

the larger effects of C4 alleles in men, women’s greater risk of SLE and Sjögren’s, and men’s 

greater vulnerability in schizophrenia. These results implicate the complement system as a source 

of sexual dimorphism in vulnerability to diverse illnesses.

Systemic lupus erythematosus (SLE, or “lupus”) is a systemic autoimmune disease of 

unknown cause. Risk of SLE is heritable (66%10), although SLE may have environmental 

triggers, as its onset often follows events that damage cells, such as infections and severe 
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sunburns11. Most SLE patients produce autoantibodies against nucleic acid complexes, 

including ribonucleoproteins and DNA12.

In genetic studies, SLE associates most strongly with variation across the major 

histocompatibility complex (MHC) locus, which contains the human leukocyte antigen 

(HLA) genes3. However, conclusive attribution of this association to specific genes and 

alleles has been difficult; the identities of the most likely genetic sources have been 

frequently revised as genetic studies have grown in size4,5. In several other autoimmune 

diseases, including type 1 diabetes, celiac disease, and rheumatoid arthritis, strong effects of 

the MHC locus arise from HLA alleles that cause the peptide binding groove of HLA 

proteins to present a disease-critical autoantigen13,14. In SLE, by contrast, genetic variants in 

the MHC locus (including SNPs and HLA alleles) associate broadly with the presence of 

diverse autoantibodies15.

The complement component 4 (C4A and C4B) genes are also present in the MHC genomic 

region, between the class I and class II HLA genes. Classical complement proteins help 

eliminate debris from dead and damaged cells, attenuating the visibility of diverse 

intracellular proteins to the adaptive immune system. C4A and C4B commonly vary in 

genomic copy number16 and encode complement proteins with distinct affinities for 

molecular targets17,18. SLE frequently presents with hypocomplementemia that worsens 

during flares, possibly reflecting increased active consumption of complement19. Rare cases 

of severe, early-onset SLE can involve complete deficiency of a complement component 

(C4, C2, or C1Q)20,21, and one of the strongest common-variant associations in SLE maps to 

ITGAM, which encodes a receptor for C3, the effector of C422. Although total C4 gene copy 

number associates with SLE risk23,24, this association is thought to arise from linkage 

disequilibrium (LD) with alleles of nearby HLA genes25, which have been the focus of fine-

mapping analyses3,4.

The complex genetic variation at C4 – arising from many alleles with different numbers of 

C4A and C4B genes – has been challenging to analyze in large cohorts. A recently feasible 

approach to this problem is based on imputation: people share long haplotypes with the 

same combinations of SNP and C4 alleles, such that C4A and C4B gene copy numbers can 

be imputed from SNP data7. To analyze C4 in large cohorts, we developed a way to identify 

C4 alleles from whole-genome sequence (WGS) data (Extended Data Fig. 1a, b), then 

analyzed WGS data from 1,265 individuals (from the Genomic Psychiatry Cohort26,27) to 

create a large multi-ancestry panel of 2,530 reference haplotypes of MHC-region SNPs and 

C4 alleles (Extended Data Fig. 1c) – ten times more than in earlier work7. We then analyzed 

SNP data from the largest SLE genetic association study3 (ImmunoChip 6,748 SLE cases 

and 11,516 controls of European ancestry) (Extended Data Fig. 2a, b), imputing C4 alleles 

to estimate the SLE risk associated with common combinations of C4A and C4B gene copy 

numbers (Fig. 1a).

Groups of research participants with the eleven most common combinations of C4A and 

C4B gene copy number exhibited 7-fold variation in their relative risk of SLE (Fig. 1a, 

Extended Data Fig. 2c). The relationship between SLE risk and C4 gene copy number 

exhibited consistent, logical patterns across the 11 genotype groups. For each C4B copy 
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number, greater C4A copy number associated with reduced SLE risk (Fig. 1a, Extended 

Data Fig. 2c). For each C4A copy number, greater C4B copy number associated with more 

modestly reduced risk (Fig. 1a). Logistic-regression analysis estimated that the protection 

afforded by each copy of C4A (OR: 0.54; 95% CI: [0.51, 0.57]) was equivalent to that of 2.3 

copies of C4B (OR: 0.77; 95% CI: [0.71,0.82]). We calculated an initial C4-derived risk 

score as 2.3 times the number of C4A genes, plus the number of C4B genes, in an 

individual’s genome. Despite clear limitations of this risk score – it is imperfectly imputed 

from flanking SNP haplotypes (r2 = 0.77, Extended Data Table 1) and only approximates 

C4-derived risk by using a simple, linear model (to avoid over-fitting the genetic data) – 

SNPs across the MHC genomic region tended to associate with SLE in proportion to their 

level of LD with this risk score (Extended Data Fig. 3a).

Combinations of many different C4 alleles generate the observed variation in C4A and C4B 

gene copy number; particular C4A and C4B gene copy numbers have also arisen recurrently 

on multiple SNP haplotypes7 (Extended Data Fig. 1c). Analysis of SLE risk in relation to 

each of these C4 alleles and SNP haplotypes reinforced the conclusion that C4A contributes 

strong protection, and C4B more modest protection, from SLE, and that C4 genes (rather 

than nearby variants) are the principal drivers of this variation in risk levels (Fig. 1b).

These results prompted us to consider whether other autoimmune disorders with similar 

patterns of genetic association at the MHC genomic region might also be driven in part by 

C4 variation. Primary Sjögren’s syndrome (SjS) is a heritable (54%28) systemic autoimmune 

disorder of exocrine glands, characterized primarily by dry eyes and mouth with other 

systemic effects. At a protein level, SjS is (like SLE) characterized by diverse 

autoantibodies, including antinuclear antibodies targeting ribonucleoproteins29, and 

hypocomplementemia30. The largest source of common genetic risk for SjS lies in the MHC 

genomic locus31, with associations to the same haplotype(s) as in SLE6 and with 

heterogeneous HLA associations in different ancestries32. We imputed C4 alleles into 

existing SNP data from a European-ancestry SjS case-control cohort (673 cases and 1153 

controls). As in SLE, logistic-regression analyses found both C4A copy number (OR: 0.41; 

95% CI: [0.34, 0.49]) and C4B copy number (OR: 0.67; 95% CI: [0.53, 0.86]) to be 

protective against SjS. The risk-equivalent ratio of C4B to C4A gene copies was similar in 

SjS and SLE (about 2.3 to 1); also, as with SLE, nearby SNPs associated with SjS in 

proportion to their LD with a C4-derived risk score ((2.3)C4A+C4B ) (Extended Data Fig. 

3b). The distribution of SjS risk across the individual C4 alleles and haplotypes revealed a 

pattern that, as in SLE, supported greater protective effect from C4A than C4B, and little 

effect of flanking SNP haplotypes (Fig. 1b).

The association of SLE and SjS with C4 gene copy number has long been attributed to the 

HLA-DRB1*03:01 allele. In European populations, DRB1*03:01 is in strong LD (r2 = 0.71) 

with the common C4-B(S) allele, which lacks any C4A gene and is the highest-risk C4 allele 

in our analysis (Fig. 1b); many MHC-region SNPs associated with SLE and SjS in 

proportion to their LD correlations with both C4 and DRB1*03:01 (Extended Data Fig. 4a, 

b). Cohorts with other ancestries can have recombinant haplotypes that disambiguate the 

contributions of alleles that are in LD in Europeans. Among African Americans, we found 

that common C4 alleles exhibited far less LD with HLA alleles; in particular, the LD 
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between C4-B(S) and DRB1*03:01 was low (r2 = 0.10) (Extended Data Table 2). Thus, 

genetic data from an African American SLE cohort (1,494 cases, 5,908 controls) made it 

possible to distinguish between these potential genetic effects. Joint association analysis of 

C4A, C4B, and DRB1*0301 implicated C4A (p < 10−14) and C4B (p < 10−5) but not 

DRB1*0301 (p = 0.29) (Extended Data Table 3). Each C4 allele associated with effect sizes 

of similar magnitude on SLE risk in Europeans and African Americans (Fig. 2a). An 

analysis specifically of combinations of C4-B(S) and DRB1*03:01 allele dosages in African 

Americans showed that C4-B(S) alleles consistently increased SLE risk regardless of 

DRB1*03:01 status, whereas DRB1*03:01 had no consistent effect when controlling for C4-

B(S) (Fig. 2b). Although C4 alleles had less LD with nearby variants on African American 

than on European haplotypes, SNPs across the genomic region associated with SLE in 

proportion to LD correlations with C4 in African Americans as well (Extended Data Fig. 

4c).

Accounting for C4 alleles in jointly analyzing the SLE association data from African 

American and European ancestry cohorts also enabled the mapping of an additional, more-

modest genetic effect independent of C4; this effect (tagged by rs2105898 and rs9271513) 

appeared to involve noncoding variation in the HLA class II XL9 region that associates most 

strongly with expression levels (rather than the coding sequence) of many HLA class II 

genes (Extended Data Figs. 3c, d, 4d–l, 5, and Supplementary Note 1).

Alleles at C4 that increase dosage of C4A (and to a more modest extent C4B) appear to 

protect strongly against SLE and SjS (Fig. 1a, b); by contrast, alleles that increase 

expression of C4A in the brain are more common among research participants with 

schizophrenia6. These same illnesses exhibit striking, and opposite, sex differences: SLE and 

SjS are nine times more common among women of childbearing age than among men of a 

similar age1, whereas in schizophrenia, women exhibit less severe symptoms, more frequent 

remission of symptoms, lower relapse rates, and lower overall incidence2. Though the vast 

majority of genetic associations in complex diseases are shared between men and women33, 

the SNPs that most strongly associate with SLE risk within the MHC region associate to 

larger potential effect sizes in men34. Hence, we sought to evaluate the possibility that the 

effects of C4 alleles on risk in SLE, SjS, and schizophrenia might differ between men and 

women.

Analysis indicated that the effects of C4 alleles were stronger in men. When a sex-by-C4 

interaction term was included in association analyses, this term was significant for both SLE 

(p = 0.002) and schizophrenia (p = 0.0024), with larger C4 effects in men for both disorders. 

(Analysis of SjS had limited power due to the small number of men affected by SjS.) For 

both SLE and schizophrenia, the individual C4 alleles consistently associated with stronger 

effects in men than women (Fig. 3a, b). SNPs across the MHC genomic region exhibited 

sex-biased association to SLE, SjS, and schizophrenia to the extent of their LD with C4 

(Extended Data Fig. 6a–c).

The stronger effects of C4 alleles on male relative to female risk could arise from sex 

differences in C4 RNA expression, C4 protein levels, or downstream responses to C4. 

Analysis of RNA expression in human tissues, using data from GTEx35, identified no sex 
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differences in C4 RNA expression in brain, blood, liver, or lymphoblastoid cells (a more-

detailed description of this analysis can be found in Supplementary Note 2). We then 

analyzed C4 protein in cerebrospinal fluid (CSF) from two panels of adult research 

participants (n = 589 total) in whom we had also measured C4 gene copy number (by direct 

genotyping or imputation). CSF C4 protein levels correlated strongly with C4 gene copy 

number (p < 10−10, Extended Data Fig. 7a), so we normalized C4 protein measurements to 

the number of C4 gene copies. CSF from adult men contained on average 27% more C4 

protein per C4 gene copy than CSF from women (meta-analysis p = 9.9 × 10−6, Fig. 3c). C4 

acts by activating the complement component 3 (C3) protein, promoting C3 deposition onto 

targets in tissues. CSF levels of C3 protein were also on average 42% higher among men 

than women (meta-analysis p = 7.5 × 10−7, Fig. 3d).

The elevated concentrations of C3 and C4 proteins in CSF of men parallel earlier findings 

that, in plasma, C3 and C4 are also present at higher levels in men than women8,9. The large 

sample size (n > 50,000) of the plasma studies allows sex differences to be further analyzed 

as a function of age. Both men and women undergo age-dependent elevation of C4 and C3 

levels in plasma, but this occurs early in adulthood (age 20–30) in men and closer to 

menopause (age 40–50) in women, with the result that male–female differences in 

complement protein levels are observed primarily during the reproductive years (ages 20–

50)8,9. We replicated these findings using measurements of C3 and gene copy number-

corrected C4 protein in plasma from adults, finding (as in the earlier plasma studies8,9 and in 

CSF, Fig. 3c, d) that these differences are most pronounced during the reproductively active 

years of adulthood (ages 20–50) (Extended Data Fig. 7b–d). We also observed that SjS 

patients have lower C4 serum levels than controls (p < 1×10−20, Extended Data Fig. 7e) even 

after correcting for C4 gene copy number (p < 1×10−8, Extended Data Fig. 7f), suggesting 

that hypocomplementemia in SjS is not simply due to C4 genetics but also reflects disease 

effects on ambient complement levels, for example due to complement consumption. The 

ages of pronounced sex difference in complement levels corresponded to the ages at which 

men and women differ in disease incidence: in schizophrenia, men outnumber women 

among cases incident in early adulthood, but not among cases incident after age 402; in SLE, 

women greatly outnumber men among cases incident during the child-bearing years, but not 

among cases incident after age 50 or during childhood36; in SjS, the large relative 

vulnerability of women declines in magnitude after age 5037.

Our results indicate that the MHC genomic region shapes vulnerability in lupus and SjS – 

two of the three most common rheumatic autoimmune diseases – in a very different way 

than in type I diabetes, rheumatoid arthritis, and celiac disease. In the latter diseases, precise 

interactions between specific HLA protein variants and specific autoantigens determine risk 
13,14. In SLE and SjS, however, the genetic variation implicated here points instead to the 

continuous, chronic interaction of the immune system with very many potential 

autoantigens. Because complement facilitates the rapid clearance of debris from dead and 

injured cells, elevated levels of C4 protein likely attenuate interactions between the adaptive 

immune system and ribonuclear self-antigens at sites of cell injury, pre-empting the 

development of autoimmunity. The additional C4-independent genetic risk effect described 

here (associated with rs2105898) may also affect autoimmunity broadly, rather than antigen-

specifically, by regulating expression of many HLA class II genes (including DRB1, DQA1, 
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and DQB1). Mouse models of SLE indicate that once tolerance is broken for one self-

antigen, autoreactive germinal centers generate B cells targeting other self-antigens38; such 

“epitope spreading” could lead to autoreactivity against many related autoantigens, 

regardless of which antigen(s) are involved in the earliest interactions with immune cells. 

Further supporting such a model, higher copy number of C4 associates with lower risk of 

AQP4-IgG-seropositive neuromyelitis optica (NMO-IgG+)39, in which seropositive patients 

have increased incidence of other non-organ-specific autoantibodies such as those seen in 

SLE and SjS40. B-cells also express the complement receptors CR1 and CR241, providing an 

additional candidate mechanism for regulation by C4 and C3.

We note that the role of complement proteins in preventing the emergence of autoimmunity 

may be very different than their (potentially disease-exacerbating) role once autoimmunity 

has been established. Also, our genetic findings address the development of SLE and SjS 

rather than complications that arise in any specific organ. A few percent of SLE patients 

develop neurological complications that can include psychosis42; though psychosis is also a 

symptom of schizophrenia, neurological complications of SLE do not resemble 

schizophrenia more broadly, and likely have a different etiology.

The same C4 alleles that increase vulnerability to schizophrenia appeared to protect strongly 

against SLE and SjS. This pleiotropy will be important to consider in efforts to engage the 

complement system therapeutically. The complement system contributed to these pleiotropic 

effects more strongly in men than in women. Moreover, though the natural allelic series at 

C4 allowed human-genetic analysis to establish dose-risk relationships for C4 in men and 

women, sexual dimorphism in the complement-protein levels also included complement 

component 3 (C3). Why and how biology has come to create this sexual dimorphism in the 

complement system in humans presents interesting questions for immune and evolutionary 

biology.

Methods

Creation of a C4 reference panel from whole-genome sequence data

We constructed a reference panel for imputation of C4 structural haplotypes using whole-

genome sequencing data for 1265 individuals from the Genomic Psychiatry Cohort26. The 

reference panel included individuals of diverse ancestry, including 765 Europeans, 250 

African Americans, and 250 people of reported Latino ancestry.

We estimated the diploid C4 copy number, and separately the diploid copy number of the 

contained HERV segment, using Genome STRiP44. Briefly, Genome STRiP carefully 

calibrates measurements of read depth across specific genomic segments of interest by 

estimating and normalizing away sample-specific technical effects such as the effect of GC 

content on read depth (estimated from the genome-wide data). To estimate C4 copy number, 

we genotyped the segments 6:31948358–31981050 and 6:31981096–32013904 (hg19) for 

total copy number, but masked the intronic HERV segments that distinguish short (S) from 

long (L) C4 gene isotypes. For the HERV region, we genotyped segments 6:31952461–

31958829 and 6:31985199–31991567 (hg19) for total copy number. Across the 1,265 

individuals, the resultant locus-specific copy-number estimates exhibited a strongly multi-
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modal distribution (Extended Data Fig. 1a) from which individuals’ total C4 copy numbers 

could be readily inferred.

We then estimated the ratio of C4A to C4B genes in each individual genome. To do this, we 

extracted reads mapping to the paralogous sequence variants that distinguish C4A from C4B 

(hg19 coordinates 6:31963859–31963876 and 6:31996597–31996614) in each individual, 

combining reads across the two sites. We included only reads that aligned to one of these 

segments in its entirety. We then counted the number of reads matching the canonical active 

site sequences for C4A (CCC TGT CCA GTG TTA GAC) and C4B (CTC TCT CCA GTG 

ATA CAT). We combined these counts with the likelihood estimates of diploid C4 copy 

number (from Genome STRiP) to determine the maximum likelihood combination of C4A 

and C4B in each individual (Extended Data Fig. 1b). We estimated the genotype quality of 

the C4A and C4B estimate from the likelihood ratio between the most likely and second 

most likely combinations.

To phase the C4 haplotypes, we first used the GenerateHaploidCNVGenotypes utility in 

Genome STRiP to estimate haplotype-specific copy-number likelihoods for C4 (total C4 

gene copy number), C4A, C4B, and HERV using the diploid likelihoods from the prior step 

as input. Default parameters for GenerateHaploidCNVGenotypes were used, plus -

genotypeLikelihoodThreshold 0.0001. The output was then processed by the 

GenerateCNVHaplotypes utility in Genome STRiP to combine the multiple estimates into 

likelihood estimates for a set of unified structural alleles. GenerateCNVHaplotypes was run 

with default parameters, plus -defaultLogLikelihood −50, -unknownHaplotypeLikelihood 

−50, and -sampleHaplotypePriorLikelihood 2.0. The resultant VCF was phased using Beagle 

4.1 (beagle_4.1_27Jul16.86a) in two steps: first, performing genotype refinement from the 

genotype likelihoods using the Beagle gtgl= and maxlr=1000000 parameters, and then 

running Beagle again on the output file using gt= to complete the phasing.

Our previous work suggested that several C4 structures segregate on different haplotypes, 

and probably arose by recurrent mutation on different haplotype backgrounds7. The 

GenerateCNVHaplotypes utility requires as input an enumerated set of structural alleles to 

assign to the samples in the reference cohort, including any structurally equivalent alleles, 

with distinct labels to mark them as independent, plus a list of samples to assign (with high 

likelihood) to specific labeled input alleles to disambiguate among these recurrent alleles. 

The selection of the set of structural alleles to be modeled, along with the labeling strategy, 

is important to our methodology and the performance of the reference panel. In the reference 

panel, each input allele represents a specific copy number structure and optionally includes a 

label that differentiates the allele from other independent alleles with equivalent structure. 

We use the notation <H_n_n_n_n_L> to identify each allele, where the four integers 

following the H are, respectively, the (redundant) haploid count of the total number of C4 

copies, C4A copies, C4B copies and HERV copies on the haplotype. For example, 

<H_2_1_1_1> was used to represent the “AL-BS” haplotype. The optional final label L is 

used to distinguish potentially recurrent haplotypes with otherwise equivalent structures 

(under the model) that should be treated as independent alleles for phasing and imputation.
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To build the reference panel, we experimentally evaluated a large number of potential sets of 

structural alleles and methods for assigning labels to potentially recurrent alleles. For each 

evaluation, we built a reference panel using the 1265 reference samples, and then evaluated 

the performance of the panel via cross-validation, leaving out 10 different samples in each 

trial (5 samples in the last trial) and imputing the missing samples from the remaining 

samples in the panel. The imputed results for all 1265 samples were then compared to the 

original diploid copy number estimates to evaluate the performance of each candidate 

reference panel (Extended Data Table 1).

Using this procedure, we selected a final panel for downstream analysis that used a set of 29 

structural alleles representing 16 distinct allelic structures (as listed in the reference panel 

VCF file). Each allele contained from one to three copies of C4. Three allelic structures 

(AL-BS, AL-BL, and AL-AL) were represented as a set of independently labeled alleles 

with 9, 3, and 4 labels, respectively.

To identify the number of labels to use on the different alleles and the samples to “seed” the 

alleles, we generated “spider plots” of the C4 locus based on initial phasing experiments run 

without labeled alleles, and then clustered the resulting haplotypes in two dimensions based 

on the Y-coordinate distance between the haplotypes on the left and right sides of the spider 

plot. Clustering was based on visualizing the clusters (Extended Data Fig. 1c) and then 

manually choosing both the number of clusters (labels) to assign and a set of confidently 

assigned haplotypes to use to “seed” the clusters in GenerateCNVHaplotypes. This 

procedure was iterated multiple times using cross-validation, as described above, to evaluate 

the imputation performance of each candidate labeling strategy.

Within the data set used to build the reference panel, there is evidence for individuals 

carrying seven or more diploid copies of C4, which implies the existence of (rare) alleles 

with four or more copies of C4. In our experiments, attempting to add additional haplotypes 

to model these rare four-copy alleles reduced overall imputation performance. Consequently, 

we conducted all downstream analyses using a reference panel that models only alleles with 

up to three copies of C4. In the future, larger reference panels might benefit from modeling 

these rare four-copy alleles.

The reference panel will be available in dbGaP (accession # pending) with broad permission 

for research use.

Genetic data for SLE

For analysis of systemic lupus erythematosus (SLE), collection and genotyping of the 

European-ancestry cohort (6,748 cases, 11,516 controls, genotyped by ImmunoChip) as 

previously described3. Collection and genotyping of the African-American cohort (1,494 

cases, 5,908 controls, genotyped by OmniExpress) as previously described5.

Genetic data for SjS

For analysis of Sjögren’s syndrome (SjS), collection and genotyping of the European-

ancestry cohort (673 cases, 1,153 controls, genotyped by Omni2.5) as previously 

described32 and available in dbGaP under study accession number phs000672.v1.p1.
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Genetic data for schizophrenia

The schizophrenia analysis made use of genotype data from 40 cohorts of European ancestry 

(28,799 cases, 35,986 controls) made available by the Psychiatric Genetics Consortium 

(PGC) as previously described43. Genotyping chips used for each cohort are listed in 

Supplementary Table 3 of that study.

Imputation of C4 alleles

The reference haplotypes described above were used to extend the SLE, SjS, or 

schizophrenia cohort SNP genotypes by imputation. SNP data in VCF format were used as 

input for Beagle v4.145,46 for imputation of C4 as a multi-allelic variant. Within the Beagle 

pipeline, the reference panel was first converted to bref format. From the cohort SNP 

genotypes, we used only those SNPs from the MHC region (chr6:24–34 Mb on hg19) that 

were also in the haplotype reference panel. We used the conform-gt tool to perform strand-

flipping and filtering of specific SNPs for which strand remained ambiguous. Beagle was 

run using default parameters with two key exceptions: we used the GRCh37 PLINK 

recombination map, and we set the output to include genotype probability (i.e., GP field in 

VCF) for correct downstream probabilistic estimation of C4A and C4B joint dosages.

Imputation of HLA alleles

For HLA allele imputation, sample genotypes were used as input for the R package 

HIBAG47. For both European ancestry and African American cohorts, publicly available 

multi-ethnic reference panels generated for the most appropriate genotyping chip (i.e. 

Immunochip for European ancestry SLE cohort, Omni 2.5 for European ancestry SjS cohort, 

and OmniExpress for African American SLE cohort) were used48. Default parameters were 

used for all settings. All class I and class II HLA genes were imputed. Output haplotype 

posterior probabilities were summed per allele to yield diploid dosages for each individual.

Associating single and joint C4 structural allele dosages to SLE and SjS in European 
ancestry individuals

The analysis described above yields dosage estimates for each of the common C4 structural 

haplotypes (e.g., AL-BS, AL-AL, etc.) for each genome in each cohort. In addition to 

performing association analysis on these structures (Fig 1b), we also performed association 

analysis on the dosages of each underlying C4 gene isotype (i.e. C4A, C4B, C4L, and C4S). 

These dosages were computed from the allelic dosage (DS) field of the imputation output 

VCF simply by multiplying the dosage of a C4 structural haplotype by the number of copies 

of each C4 isotype that haplotype contains (e.g., AL-BL contains one C4A gene and one 

C4B gene).

C4 isotype dosages were then tested for disease association by logistic regression, with the 

inclusion of four available ancestry covariates derived from genome-wide principal 

component analysis (PCA) as additional independent variables, PCc,

logit θ ∼ β0 + β1C4 + ΣcβcPCc + ε (1)
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where θ=E[SLE|X]. For SjS, the model instead included two available multiethnic ancestry 

covariates from dbGaP that correlated strongly with European-specific ancestry covariates 

(specifically, PC5 and PC7) and smoking status as independent variables. Coefficients for 

relative weighting of C4A and C4B dosages were obtained from a joint logistic regression,

logit θ ∼ β0 + β1C4A + β2C4B + ΣcβcPCc + ε (2)

The values per individual of β1C4A + β2C4B were used as a combined C4 risk term for 

estimating both association strength (Extended Data Fig. 3a, b) as well as evaluating the 

relationship between the strength of nearby variants’ association with SLE or SjS and 

linkage with C4 variation (Extended Data Fig. 4a–c).

Joint dosages of C4A and C4B for each individual in the same cohort were estimated by 

summing across their genotype probabilities of paired structural alleles that encode for the 

same diploid copy numbers of both C4A and C4B (Extended Data Fig. 2a, b). For each 

individual/genome, this yields a joint dosage distribution of C4A and C4B gene copy 

number, reflecting any possible imputed haplotype-level dosages with nonzero probability. 

Joint dosages for C4A and C4B diploid copy numbers were tested for association with SLE 

in a joint model with the same ancestry covariates (Fig. 1a),

logit θ ∼ β0 + Σi, jβi, jP C4A = i, C4B = j + ΣcβcPCc + ε (3)

Calculation of composite C4 risk for SLE

Because SLE risk strongly associated with C4A and C4B copy numbers (Fig. 1a) in a 

manner that can be approximated as – but is not necessarily linear or independent – a 

composite C4 risk score was derived by taking the weighted sum of joint C4A and C4B 

dosages multiplied by the corresponding effect sizes from the aforementioned model of the 

joint C4A and C4B diploid copy numbers. The weights for calculating this composite C4 

risk term were computed from the data from the European ancestry cohort, and then applied 

unchanged to analysis of the African American cohort.

Associations of variants across the MHC region to SLE and SjS

Genotypes for non-array SNPs were imputed with IMPUTE2 using the 1000 Genomes 

reference panel; separate analyses were performed for the European-ancestry and African 

American cohorts. Unless otherwise stated, all subsequent SLE analyses were performed 

identically for both European ancestry and African American cohorts. Dosage of each 

variant, vi, was tested for association with SLE or SjS in a logistic regression including 

available ancestry covariates (and smoking status for SjS) first alone (Extended Data Fig. 3a, 

b),

logit θ ∼ β0 + β1vi + ΣcβcPCc + ε (4)

then with C4 composite risk (Extended Data Fig. 3c),
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logit θ ∼ β0 + β1vi + β2C4 + ΣcβcPCc + ε (5)

where θ=E[SLE|X]. For SjS, the simpler weighted (2.3)C4A+C4B model was used instead 

of composite risk term, as the cohort’s size gave poor precision to estimates of risk for many 

joint (C4A, C4B) copy numbers (Extended Data Fig. 3d). The Pearson correlation between 

the C4 composite risk term and each other variant was computed and squared (r2) to yield a 

measure of linkage disequilibrium between C4 composite risk and that variant in that cohort.

Association analyses for specific C4 structural alleles

The C4 structural haplotypes were tested for association with disease (Fig. 1b, 2a) in a joint 

logistic regression that included (i) terms for dosages of the five most common C4 structural 

haplotypes (AL-BS, AL-BL, AL-AL, BS, and AL), (ii) (for SLE and SjS) rs2105898 

genotype, and (iii) ancestry covariates and (for SjS) smoking status,

logit θ ∼ β0 + β1BS + β2AL + β3ALBS + β4ALBL + β5ALAL + β6rs2105898

+ ΣcβcPCc + ε
(6)

where θ=E[SLE|X]. Several of these common C4 structural alleles arose multiple times on 

distinct haplotypes; we term the set of haplotypes in which such a common allele appeared 

as “haplogroups”. The haplogroups can be further tested in a logistic regression model in 

which the structural allele appearing in all member haplotypes is instead encoded as dosages 

for each of the SNP haplotypes in which it appears. These association analyses (Fig. 1b, 2a) 

were performed as in (6), with structural allele dosages for ALBS, ALBL, and ALAL 

replaced by multiple terms for each distinct haplotype.

To delineate the relationship between C4-BS and DRB1*03:01 alleles – which are highly 

linked in European ancestry haplotypes – allelic dosages per individual in the African 

American SLE cohort were rounded to yield the most likely integer dosage for each. 

Although genotype dosages for each are reported by BEAGLE and HIBAG respectively, 

probabilities per haplotype are not linked and multiplying possible diploid dosages could 

yield incorrect non-zero joint dosages. Joint genotypes were tested as individual terms in a 

logistic regression model (Fig. 2b),

logit θ ∼ β0 + Σi, jβi, jP C4 − BS = i, DRB1 * 03:01 = j + ΣcβcPCc + ε (7)

Sex-stratified associations of C4 structural alleles and other variants with SLE, SjS, and 
schizophrenia

Determination of an effect from sex on the contribution of overall C4 variation to risk for 

each disorder was done by including an interaction term between sex and C4; ie. (2.3)C4A

+C4B for SLE and SjS and estimated C4A expression for schizophrenia:

logit θ ∼ β0 + β2C4 + β3ISex + β4ISexC4 + ΣcβcPCc + ε (8)
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Each variant in the MHC region was tested for association with among European ancestry 

cases and cohorts in a logistic regression as in models (4)–(6) using only male cases and 

controls, and then separately using only female cases and controls (Extended Data Fig. 6a–

c). Likewise, allelic series analyses were performed as in (7), but in separate models for men 

and women (Fig. 3a, b).

To assess the relationship between sex bias in the risk associated with a variant and linkage 

to C4 composite risk (as non-negative r2), male and female log-odds were multiplied by the 

sign of the Pearson correlation between that variant and C4 composite risk before taking the 

difference.

Analyses of cerebrospinal fluid

Cerebrospinal fluid (CSF) from healthy individuals was obtained from two research panels. 

The first panel, consisting of 533 donors (327 male, 126 female) from hospitals around 

Utrecht, Netherlands, was described previously49,50. The donors were generally healthy 

research participants undergoing spinal anesthesia for minor elective surgery. The same 

donors were previously genotyped using the Illumina Omni SNP array. To estimate C4 copy 

numbers, we used SNPs from the MHC region (chr6:24–34 Mb on hg19) as input for C4 

allele imputation with Beagle, as described above in Imputation of C4 alleles.

The second CSF panel sampled specimens from 56 donors (14 male, 42 female) from 

Brigham and Women’s Hospital (BWH; Boston, MA, USA) under a protocol approved by 

the institutional review board at BWH (IRB protocol ID no. 1999P010911) with informed 

consent. These samples were originally obtained to exclude the possibility of infection, and 

clinical analyses had revealed no evidence of infection. Donors ranged in age from 18 to 64 

years old. Blood samples from the same individuals were used for extraction of genomic 

DNA, and C4 gene copy number was measured by droplet digital PCR (ddPCR) as 

previously described7. Samples were excluded from measurements if they lacked C4 

genotypes, sex information, or contained visible blood contamination.

C4 measurements were performed by sandwich ELISA of 1:400 dilutions of the original 

CSF sample using goat anti-sera against human C4 as the capture antibody (Quidel, A305, 

used at 1:1000 dilution), FITC-conjugated polyclonal rabbit anti-human C4c as the detection 

antibody (Dako, F016902–2, used at 1:3000 dilution), and alkaline phosphatase–conjugated 

polyclonal goat anti-rabbit IgG as the secondary antibody (Abcam, ab97048, used at 1:5000 

dilution). C3 measurements were performed using the human complement C3 ELISA kit 

(Abcam, ab108823).

Because C4 gene copy number had a large and proportional effect on C4 protein 

concentration in these CSF samples (Extended Data Fig. 7a), we corrected for C4 gene copy 

number in our analysis of relationship between sex and C4 protein concentration, by 

normalizing the ratio of C4 protein (in CSF) to C4 gene copies (in genome). Therefore, these 

analyses included only samples for which DNA was available or C4 was successfully 

imputed. In total, 495 (332 male, 163 female) C4 and 304 (179 male, 125 female) C3 

concentrations were obtained across both cohorts. Log-concentrations of C3 (ng/mL) and C4 
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(ng/[mL, per C4 gene copy number]) protein were then used separately in linear regression 

models to estimate a sex-unbiased cohort-specific offset for each protein,

log10 C3 or C4 concentration ∼ β0 + β1Imale + β2Icohort + ε (9)

to be applied to all concentrations for that protein. Estimation of average measurements by 

age for each sex was done by local polynomial regression smoothing (LOESS) (Fig. 3c, d). 

To evaluate the significance of sex effects, we used these cohort-corrected concentrations 

estimates and analyzed them with the non-parametric unsigned Mann-Whitney rank–sum 

test comparing concentration distributions for males and females.

Analyses of blood plasma

Blood plasma was collected and immunoturbidimetric measurements of C3 and C4 protein 

in 1,844 individuals (182 men, 1662 women) by Sjögren’s International Collaborative 

Clinical Alliance (SICCA) from individuals with and without SjS as previously described51. 

C4 copy numbers for these individuals were previously imputed for use in logistic regression 

of SjS risk. As C4 copy number has an effect on measured C4 protein similar to CSF 

(Extended Data Fig. 7b), we normalized C4 levels to them in all following analyses. 

Estimation of average measurements by age for each sex was done by local polynomial 

regression smoothing (LOESS) on log-concentrations of C3 (mg/dL) and C4 (mg/[dL, per 

C4 gene copy number]) protein (Extended Data Fig. 7c, d). To evaluate the significance of 

sex bias within age ranges displaying the greatest difference (informed by LOESS), we 

analyzed individuals in these bins with the non-parametric unsigned Mann-Whitney rank–

sum test comparing concentration distributions for males and females.

Difference in C4 protein levels between individual with and without SjS was done by 

performing a non-parametric unsigned Mann-Whitney rank–sum test on C4 protein levels 

with and without normalization to C4 genomic copy number (Extended Data Fig. 7e, f).

Data Availability Statement

Individual genotype data for Sjögren’s syndrome cases and controls and individual plasma 

concentrations for C4 and C3 are available in dbGaP under accession number 

phs000672.v1.p1. Individual genotype data for schizophrenia cases and controls are 

available by application to the Psychiatric Genomics Consortium (PGC). Questions 

regarding individual genotype data for SLE cases and controls of European and/or African 

American ancestry can be directed to Timothy J. Vyse (timothy.vyse@kcl.ac.uk). Data 

resources (reference haplotypes), software scripts and instructions for imputing C4 alleles 

into SNP data sets are available on the McCarroll lab web site at http://mccarrolllab.org/

resources/resources-for-c4/. Genotype and protein concentration data for CSF samples are 

available upon request.

Extended Data
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Extended Data Figure 1. A panel of 2,530 reference haplotypes (created from whole-genome 
sequence data) containing C4 alleles and SNPs across the MHC genomic region enables 
imputation of C4 alleles into large-scale SNP data.

(a) Distributions (across 1,265 individuals) of total C4 gene copy number (C4A + C4B), as 

measured from read depth of coverage across the C4 locus, in whole-genome sequencing 

data.

(b) The relative numbers of reads that overlap sequences specific to C4A or C4B (together 

with the total C4 gene copy number as in a) are used to infer the underlying copy numbers 

of the C4A and C4B genes. For example, in an individual with four C4 genes, the presence 
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of equal numbers of reads specific to C4A or C4B suggests the presence of two copies each 

of C4A and C4B. Precise statistical approaches (including inference of probabilistic 

dosages), and further approaches for phasing C4 allelic states with nearby SNPs to create 

reference haplotypes, are described in Methods.

(c) The SNP haplotypes flanking each C4 allele are shown as rows (SNPs as columns), with 

white and black representing the major and minor allele of each SNP. Gray lines at the 

bottom indicate the physical location of each SNP along chromosome 6. The differences 

among the haplotypes are most pronounced closest to C4 (toward the center of the plot), as 

historical recombination events in the flanking megabases will have caused the haplotypes to 

be less consistently distinct at greater genomic distances from C4. The patterns indicate that 

many combinations of C4A and C4B gene copy numbers have arisen recurrently on more 

than one SNP haplotype, a relationship that can be used in association analyses (Fig. 1b).
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Extended Data Figure 2. Aggregation of joint C4A and C4B genotype probabilities per individual 
across imputed C4 structural alleles for estimation of SLE risk for each combination.

(a) An individual’s joint C4A and C4B gene copy number can be calculated by summing the 

C4A and C4B gene contents for each possible pair of two inherited alleles. Many pairings of 

possible inherited alleles result in the same joint C4A and C4B gene copy number.

(b) Each individual’s C4A and C4B gene copy number was imputed from their SNP data, 

using the reference haplotypes summarized in Extended Data Fig. 1c. For >95% of 

individuals (exemplified by samples 1–6 in the figure), this inference can be made with 

>90% certainty/confidence (the areas of the circles represent the posterior probability 

distribution over possible C4A/C4B gene copy numbers). For the remaining individuals 

(exemplified by samples 7–9 in the figure), greater statistical uncertainty persists about C4 

genotype. To account for this uncertainty, in downstream association analysis, all C4 
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genotype assignments are handled as probabilistic gene dosages – analogous to the genotype 

dosages that are routinely used in large-scale genetic association studies that use imputation.

(c) Odds ratios and 95% confidence intervals underlying each of the C4-genotype risk 

estimates in Fig. 1a presented as a series of panels for each observed copy number of C4B, 

with increasing copy number of C4A for that C4B dosage (x-axis). Data are from analysis of 

6,748 SLE cases and 11,516 controls of European ancestry.
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Extended Data Figure 3. Conditional association analyses for genetic markers across the 
extended MHC genomic region within the European-ancestry SLE and Sjögren’s syndrome 
(SjS) cohort.

(a) Association of SLE with genetic markers (SNPs and imputed HLA alleles) across the 

extended MHC locus within the European-ancestry SLE cohort (6,748 cases and 11,516 

controls). Orange diamond: an initial estimate of C4-related genetic risk, calculated as a 

weighted sum of the number of C4A and C4B gene copies: (2.3)C4A+C4B, with the 

weights derived from the relative coefficients estimated from logistic regression of SLE risk 

vs. C4A and C4B gene dosages. This risk score is imputed with an accuracy (r2) of 0.77. 

Points representing all other genetic variants in the MHC locus are shaded orange according 

to their level of linkage disequilibrium–based correlation to this C4-derived risk score.

(b) As in a, but for a European-ancestry Sjögren’s syndrome (SjS) cohort (673 cases and 

1,153 controls). The orange diamond here also represents (2.3)C4A+C4B, with this 
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weighting derived from the relative coefficients estimated from logistic regression of SjS 

risk vs. C4A and C4B gene dosages

(c) Association of SLE with genetic markers (SNPs and imputed HLA alleles) across the 

extended MHC locus within the European-ancestry SLE cohort controlling for C4 composite 

risk (weighted sum of risk associated with various combinations of C4A and C4B). Variants 

are shaded in purple by their LD with rs2105898, an independent association identified from 

trans-ancestral analyses.

(d) As in c, but in association with a European-ancestry SjS cohort. Here a simpler linear 

model of risk contributed by C4A and C4B was used instead of a weighted sum across all 

possible combinations.
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Extended Data Figure 4. Using C4 gene variation to understand the appearance of trans-
ancestral disparity in MHC association signals, and to fine-map an additional genetic effect

All panels show association signals (for SLE and SjS) for variants in a multi-megabase 

region of human chromosome 6 containing the MHC region including the HLA and C4 

genes.

(a) Relationship between SLE association [-log10(p), y-axis] and LD to the weighted C4 risk 

score (x-axis) for genetic markers and imputed HLA alleles across the extended MHC locus. 

In this European-ancestry cohort, it is unclear (from this analysis alone) whether the 

association with the markers in the predominant ray of points (at a ~45° angle from the x-
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axis) is driven by variation at C4 or by the long haplotype containing DRB1*03:01 (green), 

DQA1*05:01 (blue), and B*08:01 (red). In addition, at least one independent association 

signal (a ray of points at a higher angle in the plot, with strong association signals and only 

weak LD-based correlation to C4 and DRB1*0301) with some LD to DRB1*15:01 

(maroon) is also present.

(b) Analysis as in a, but for associations to SjS in a cohort of European ancestry. As in SLE, 

it is initially unclear whether the genetic association signal is driven by variation at C4 or by 

linked HLA alleles, DRB1*03:01 (green), DQA1*05:01 (blue), and B*08:01 (red). There is 

also an independent association signal with LD to DRB1*15:01 (maroon).

(c) Analysis as in a, but of an African American SLE case–control cohort (in which LD in 

the MHC region is more limited). Many MHC-region SNPs associate with SLE in 

proportion to their LD with the weighted C4 risk score inferred from the earlier analysis of 

the European-ancestry cohort; this C4-derived risk score itself associates with SLE at p = 

4.3×10−19 in a logistic regression on 1,494 SLE cases and 5,908 controls. No similarly 

strong association is observed for DRB1*03:01, DQA1*05:01, or B*08:01, HLA alleles 

which are in strong LD with C4 risk on European-ancestry (but not African American) 

haplotypes. An independent association signal is also present in this cohort, more clearly in 

LD with the DRB1*15:03 allele (maroon).

(d) LD in the European-ancestry SLE cohort between the composite C4 risk term (weighted 

sum of risk associated with various combinations of C4A and C4B from Fig. 2a) and 

variants in the MHC region as r2 (y-axis).

(e) As in d, but for the African American SLE cohort.

(f) LD (to C4 composite risk) for the same variants in European-ancestry individuals (x-axis) 

and African Americans (y-axis). Note the abundance of variants that have greater LD with 

C4 risk among European-ancestry individuals than among African Americans. Also, several 

groups of variants have equivalent LD (to C4 risk) in European ancestry individuals but 

exhibit a range of LD to C4 risk among African Americans.

(g) Associations with SLE (-log10 p-values) for the same variants in European ancestry (x-

axis) and African American (y-axis) case-control cohorts. Orange shading represents the 

extent of LD with C4 risk in European ancestry individuals. Variants with strong European-

specific association to SLE are generally in strong LD with C4 risk among Europeans-

ancestry individuals.

(h) Comparison of the inferred effect size from association of genetic markers with SLE 

(unconditioned log-odds ratios) among European-ancestry (x-axis) and African American 

(y-axis) research participants. As also seen in g, variants with discordant associations to SLE 

(across populations) tend also to be in strong LD to C4 risk among European-ancestry 

individuals.

(i) As in g, but now controlling for the effect of C4 variation in analysis of the European-

ancestry cohort (x-axis). Note that controlling for C4 risk in European-ancestry individuals 

alone greatly aligns (relative to g) the patterns of association between European ancestry and 

African American cohorts.

(j) As in i, but now also controlling for the effect of C4 in associations of the African 

American cohort. Note that due to the lack of strong LD relationships between C4 and 

variants in the MHC region in African Americans (e), this further adjustment does not 

change results strongly (relative to i). The independent signal, rs2105898, and HLA alleles, 

Kamitaki et al. Page 22

Nature. Author manuscript; available in PMC 2020 November 11.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



DRB1*15:01 and DRB1*15:03, are also highlighted. LD with rs2105898 in European-

ancestry individuals is indicated by purple shading.

(k) Comparison of the inferred effect sizes from association of genetic markers with SLE 

(log-odds ratios) controlling for C4-derived risk among European-ancestry (x-axis) and 

African American (y-axis) research participants. Two SNPs (rs2105898 and rs9271513) that 

form a short haplotype common to both ancestry groups are among the strongest 

associations in both cohorts. (Their association to SLE in the European-ancestry cohort was 

initially much less remarkable than that of other SNPs that are in strong LD with C4.) LD 

with rs2105898 in European-ancestry individuals is indicated by purple shading.

(l) As in i, but with variants shaded by whether they exhibit greater LD to rs2105898 in 

Europeans (blue) or African Americans (red).

Kamitaki et al. Page 23

Nature. Author manuscript; available in PMC 2020 November 11.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended Data Figure 5. Relationship of rs2105898 alleles to a known ZNF143 binding motif in 
the XL9 region of the MHC class II locus

(a) Location of rs2105898 (yellow line at center) within the XL9 region, with relevant tracks 

showing overlapping histone marks and transcription factor binding peaks (from 

ENCODE52), visualized with the UCSC genome browser53.

(b) ZNF143 consensus binding motif as a sequence logo, with the letters colored if the base 

is present in >5% of observed instances. The alleles of rs2105898 are indicated by outlined 

box surrounding the base.
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Extended Data Figure 6. Relationships between sex bias of disease associations and LD to C4 risk 
for variants in the MHC region.

(e) Relationship between male bias in SLE risk (difference between male and female log–

odds ratios) and LD with C4 risk for common (minor allele frequency [MAF] > 0.1) genetic 

markers across the extended MHC region. For each SNP, the allele for which sex risk bias is 

plotted is the allele that is positively correlated (via LD) with C4-derived risk score.

(f) Relationship between male bias in SjS risk (log-odds ratios) and LD with C4 risk for 

common (minor allele frequency [MAF] > 0.1) genetic markers across the extended MHC 

region. For each SNP, the allele for which sex risk bias is plotted is the allele that is 

positively correlated (via LD) with C4-derived risk score.

(g) Relationship of male bias in schizophrenia risk (log–odds ratios) and LD to C4A 

expression for common (MAF > 0.1) genetic markers across the extended MHC region. For 

each SNP, the allele for which sex risk bias is plotted is the allele that is positively correlated 

(via LD) with imputed C4A expression, as previously described7.
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Extended Data Figure 7. Correlation of C4 protein measurements in cerebrospinal fluid and 
blood plasma with imputed C4 gene copy number and relationship of plasma complement to sex 
and SjS status

(a) Measurements of C4 protein in CSF obtained by ELISA are presented as log10(ng/mL) 

(y-axis) for each observed or imputed copy number of total C4 (x-axis, here showing most 

likely copy number from imputation). Because C4 gene copy number affects C4 protein 

levels so strongly, we normalized C4 protein measurements to each donor’s C4 gene copy 

number in subsequent analyses (Fig. 3c). Bars indicate median values for each C4 copy 

number.
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(b) Measurements of C4 protein in blood plasma obtained by immunoturbidimetric assays 

are presented as log10(mg/dL) (y-axis) for each imputed most-likely copy number of C4 

genes (x-axis). Because C4 gene copy number affects C4 protein levels so strongly, we 

normalized C4 protein measurements by C4 gene copy number in subsequent analyses as in 

c. Due to the number of observations (n = 1,844 total), the plot is downsampled to 500 

points; the median bars shown are for all individuals (before downsampling).

(c) Levels of C4 protein in blood plasma from 182 adult men and 1662 adult women as a 

function of age. Concentrations are normalized to the number of C4 gene copies in an 

individual’s genome (a strong independent source of variance) and shown on a log10 scale as 

a LOESS curve. Shaded regions represent 95% confidence intervals derived during LOESS.

(d) Levels of C3 protein in blood plasma as a function of age from the same individuals in 

panel c. Concentrations are shown on a log10 scale as a LOESS curve. Shaded regions 

represent 95% confidence intervals derived during LOESS.

(e) C4 protein in blood plasma was measured in 670 individuals with SjS (red) and 1,151 

individuals without SjS (black) and is shown on a log10 scale (x-axis). Vertical stripes 

represent median levels for cases and controls separately. Comparison of the two sets was 

done with a non-parametric two-sided Mann-Whitney rank–sum test (p = 4.8×10−21).

(f) As in e, but concentrations are normalized to the number of C4 gene copies in an 

individual’s genome and this per-copy amount is shown on a log10 scale (x-axis). 

Comparison of the two sets was done with a non-parametric two-sided Mann-Whitney rank–

sum test (p = 7.6×10−9).

Extended Data Table 1.
Imputation accuracy for C4 copy numbers in European 

ancestry and African American haplotypes.

Imputation accuracy was evaluated by correlation of imputation results to C4 gene copy 

numbers directly inferred from WGS data. Aggregated copy numbers imputed from each 

round of leaving 10 individuals out were correlated with the directly-typed measurements 

and are reported as r2 for each feature of C4 structural variation for European ancestry and 

African American members of the reference panel separately.

Imputation accuracy (r2)

Gene copy number European ancestry African Americans

C4 0.80 0.58

C4A 0.78 0.65

C4B 0.74 0.61

C4-HERV 0.91 0.76

2.3(C4A)+C4B 0.77 0.64

Kamitaki et al. Page 27

Nature. Author manuscript; available in PMC 2020 November 11.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended Data Table 2.
Frequency of common C4 alleles and their LD-based 

correlation with HLA alleles in European ancestry and 

African American cohorts.

For each common C4 allele and HLA gene, the allele with strongest LD (r2) is listed if 

present on more than half of the haplotypes with that C4 allele (exact fraction in %). r2 

values greater than 0.4 are highlighted to point out particularly strong C4-HLA allele 

correlations, such as for several HLA alleles with the C4-B(S) allele in European ancestry 

individuals. Some common C4 alleles are further subdivided into distinct haplotypes used in 

imputation (and in Fig. 1b), as defined by shared alleles from variants flanking C4. Note that 

some alleles such as C4-A(L)-A(L)-3 are present at a low frequency in African Americans 

that might reflect their presence on admixed European-origin haplotypes spanning this 

region, whereas others such as C4-B(S) are likely to also exist on African haplotypes – these 

differences between C4 alleles are also reflected in the similarity of LD with HLA alleles to 

the corresponding row of the European ancestry section.

European ancestry

A B C C4 
allele

Allele 
Frequency

DRB1 DQA1 DQB1

allele % r2 allele % r2 allele % r2 allele % r2 allele % r2 allele %

01:01 69 0.27 08:01 93 0.75 07:01 93 0.57 B(S) 13.7% 03:01 94 0.71 05:01 94 0.7 02:01 94

A(L) 4.8%

06:02 69 0.31
A(L)-
B(S)-1

6.1% 07:01 74 0.25 02:01 74 0.25

44:03 54 0.28 16:01 53 0.39
A(L)-
B(S)-2

4.5% 07:01 57 0.1 02:01 57 0.1 02:02 55

A(L)-
B(S)-3

3.8%

A(L)-
B(S)-4

4.5%

07:02 64 0.42 07:02 63 0.35
A(L)-
B(L)-1

15.5% 15:01 73 0.49 01:02 74 0.32 06:02 70

A(L)-
B(L)-2

23.1%

35:01 55 0.2 04:01 57 0.09
A(L)-
A(L)-1

3.2% 01:01 65 0.14 01:01 65 0.11 05:01 64

A(L)-
A(L)-2

2.1% 13:01 67 0.16 01:03 65 0.13 06:03 67

02:01 65 0.03 44:02 74 0.24 05:01 72 0.23
A(L)-
A(L)-3

4.5% 04:01 80 0.29 03:03 79 0.37 03:01 82

African American

A B C C4 
allele

Allele 
Frequency

DRB1 DQA1 DQB1

allele % r2 allele % r2 allele % r2 allele % r2 allele % r2 allele %

B(S) 5.0% 01:02 51 0.01

A(L) 7.5%
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A(L)-
B(S)-1

14.1%

A(L)-
B(S)-2

18.1%

A(L)-
B(S)-3

17.7%

A(L)-
B(S)-4

6.5%

A(L)-
B(L)-1

4.4% 15:01 67 0.2 01:02 72 0.04 06:02 59

A(L)-
B(L)-2

4.5%

A(L)-
A(L)-1

0.7% 01:01 57 0.07 01:01 53 0.01

A(L)-
A(L)-2

0.8%

02:01 72 0.03 44:02 86 0.31 05:01 78 0.17
A(L)-
A(L)-3

0.8% 04:01 93 0.27 03:03 86 0.14 03:01 87

Extended Data Table 3.
Results of association analyses of SLE risk against C4 
variation, HLA alleles, and/or rs2105898 in European 

ancestry and African American cohorts.

Coefficients (beta, standard error) and p-values (as −log10(p)) for individual terms 

composing several relevant logistic regression models for predicting SLE risk in a European 

ancestry cohort of 6,748 SLE cases and 11,516 controls and an African American cohort of 

1,494 SLE cases and 5,908 controls. Each analysis also included ancestry-specific 

covariates. For each model, the Akaike information criterion (AIC) and overall p-value (as 

determined by Chi-squared likelihood-ratio test) are given at the right to indicate the relative 

strengths of similar models for each ancestry cohort.

European ancestry

C4 C4A C4B DRB1*03:01 B*08:01

Model beta se −log10(p) beta se −log10(p) beta se −log10(p) beta se −log10(p) beta se

C4 −0.55 0.027 92.7

C4A −0.53 0.024 105.3

C4A+C4B −0.62 0.028 112 −0.27 0.037 12.3

DRB1*03:01 0.7 0.03 117.1

B*08:01 0.69 0.031

rs2105898

C4A + C4B 
+ 
DRB1*03:01

−0.35 0.041 17.2 −0.11 0.041 2.3 0.4 0.046 17.5

C4A + C4B 
+ B*08:01

−0.41 0.039 24.6 −0.17 0.039 4.7 0.35 0.044
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C4A + C4B 
+ rs2105898

−0.67 0.028 122.8 −0.32 0.038 16.4

African American

C4 C4A C4B DRB1*03:01 B*08:01

Model beta se −log10(p) beta se −log10(p) beta se −log10(p) beta se −log10(p) beta se

C4 −0.51 0.059 17.3

C4A −0.43 0.062 11.2

C4A+C4B −0.62 0.068 18.7 −0.41 0.068 8.6

DRB1*03:01 0.41 0.091 5.2

B*08:01 0.78 0.11

rs2105898

C4A + C4B 
+ 
DRB1*03:01

−0.59 0.073 15 −0.38 0.071 7.1 0.1 0.099 0.5

C4A + C4B 
+ B*08:01

−0.51 0.073 11.7 −0.37 0.069 7.2 0.49 0.12

C4A + C4B 
+ rs2105898

−0.52 0.07 13.2 −0.43 0.069 9.4
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Figure 1. Association of SLE and Sjögren’s syndrome (SjS) with C4 alleles

(a) Levels of SLE risk associated with 11 common combinations of C4A and C4B gene copy 

number. The color of each circle reflects the level of SLE risk (odds ratio) associated with a 

specific combination of C4A and C4B gene copy numbers relative to the most common 

combination (two copies of C4A and two copies of C4B) in gray. The area of each circle is 

proportional to the number of individuals with that number of C4A and C4B genes. Paths 

from left to right on the plot reflect the effect of increasing C4A gene copy number (greatly 

reduced risk); paths from bottom to top reflect the effect of increasing C4B gene copy 

number (modestly reduced risk); and diagonal paths from upper left to lower right reflect the 

effect of exchanging C4B for C4A copies (modestly reduced risk). Data are from analysis of 

6,748 SLE cases and 11,516 controls of European ancestry. The odds ratios are reported 

with confidence intervals in Extended Data Fig. 2c.

(b) SLE and SjS risk associated with common combinations of C4 structural allele and 

MHC SNP haplotype. For each C4 locus structure, separate odds ratios are reported for each 

“haplogroup,” i.e., the MHC SNP haplotype background on which the C4 structure 

segregates. Data are from analyses of 6,748 SLE cases and 11,516 controls for the left plot 

and 673 SjS cases and 1,153 controls for the right plot. Error bars represent 95% confidence 

intervals around the effect size estimate for each allele.
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Figure 2. C4 and trans-ancestral analysis of the MHC association signal in SLE

(a) Common C4 alleles exhibit similar strengths of association (odds ratios) in European-

ancestry and African American (1,494 SLE cases; 5,908 controls) cohorts. Error bars 

represent 95% confidence intervals around the effect size estimate for each sex.

(b) Analysis of SLE risk across combinations of C4-B(S) and DRB1*03:01 genotypes in an 

African American SLE case–control cohort, in which the two alleles exhibit very little LD 

(r2 = 0.10). On each DRB1*03:01 genotype background, additional C4-B(S) alleles increase 

risk (i.e. within each grouping). Whereas on each C4-B(S) background, DRB1*03:01 alleles 
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have no appreciable relationship with risk (this can be seen by comparing, for example, the 

first of the three points from each group). Error bars represent 95% confidence intervals 

around the effect size estimate for each combination of C4-B(S) and DRB1*03:01.
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Figure 3. Sex differences in the magnitude of C4 genetic effects and complement protein 
concentrations.

(a) SLE risk (odds ratios) associated with the four most common C4 alleles in men (x-axis) 

and women (y-axis) among 6,748 affected and 11,516 unaffected individuals of European 

ancestry. For each sex, the lowest-risk allele (C4-A(L)-A(L)) is used as a reference (odds 

ratio of 1.0). Shading of each point reflects the relative level of SLE risk (darker = greater 

risk) conferred by C4A and C4B copy numbers as in Fig. 2b. Error bars represent 95% 

confidence intervals around the effect size estimate for each sex.

(b) Schizophrenia risk (odds ratios) associated with the four most common C4 alleles in men 

(x-axis) and women (y-axis) among 28,799 affected and 35,986 unaffected individuals of 

European ancestry, aggregated by the Psychiatric Genomics Consortium43. For each sex, the 

lowest-risk allele (C4-B(S)) is used as a reference (odds ratio of 1.0). For visual comparison 

with a, shading of each allele reflects the relative level of SLE risk. Error bars represent 95% 

confidence intervals around the effect size estimate for each sex.

(c) Concentrations of C4 protein in cerebrospinal fluid sampled from 340 adult men (blue) 

and 167 adult women (pink) as a function of age with local polynomial regression (LOESS) 

smoothing. Concentrations are normalized to the number of C4 gene copies in an 

individual’s genome (a strong independent source of variance, Extended Data Fig. 7a) and 

shown on a log10 scale as a LOESS curve. Shaded regions represent 95% confidence 

intervals derived during LOESS.

(d) Levels of C3 protein in cerebrospinal fluid from 179 adult men and 125 adult women as 

a function of age. Concentrations are shown on a log10 scale as a LOESS curve. Shaded 

regions represent 95% confidence intervals derived during LOESS.
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