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Age-related macular degeneration (AMD) is the most common cause of visual loss in developed countries, with a signi�cant
economic and social burden on public health. Although genome-wide and gene-candidate studies have been enabled to identify
genetic variants in the complement system associated with AMD pathogenesis, the e�ect of gene-environment interaction is still
under debate. In this reviewwe provide an overview of the role of complement system and its genetic variants inAMD, summarizing
the consequences of the interaction between genetic and environmental risk factors on AMD onset, progression, and therapeutic
response. Finally, we discuss the perspectives of current evidence in the �eld of genomics driven personalized medicine and public
health.

1. Introduction

Age-related macular degeneration (AMD), characterized by
the progressive destruction of neurosensory retina at the
macular area, is the most common cause of visual loss in
developed countries, with a signi�cant economic and social
burden on public health [1]. �e early stage of AMD leads to
aberrant pigmentation of retinal pigment epithelium (RPE)
and accumulation of extracellular material, called “drusen,”
underneath the RPE basement membrane. Drusen are small,
yellowish, extracellular deposits of lipid, cellular debris and
protein that may lead to impaired RPE function and disrup-
tion of the metabolic transport between RPE and choroid [2].
�e advanced stagesmanifest as choroidal neovascularization
(CNV) in the wet AMD, or geographic atrophy (GA) in
the dry AMD [3]. Pathological features of AMD are caused
by the interaction of oxidative stress, impaired RPE activity
and function, increased apoptosis, and abnormal immune
system activation [4, 5]. Smoking is the strongest modi�able
risk factor for AMD, leading to oxidative stress, ischemia,

hypoxia, and neovascularization [6]. Although both current
and former smoking may increase AMD risk, a protective
e�ect has been observed for time since smoking cessation
[7]. Particularly, subjects who had stopped smoking for more
than 20 years were not at risk of advanced stages of AMD
[8, 9]. Other modi�able risk factors, such as obesity [10–13]
and sunlight exposure [14, 15], are still under debate, since
their role in AMD susceptibility may be related to an overall
unhealthy lifestyle [16–18]. To date, the only factor that may
be protective against AMD is a healthy diet, rich in omega-
3 fatty acids, lutein, zeaxanthin, and antioxidants [19–22].
Consistently, the Age-Related Eye Disease Study 2 (AREDS2)
formulation (i.e., a combination of zinc, b-carotene, and
vitamins C, and E) has been shown to reduce the risk of
progression to advanced AMD [23]. While AREDS formu-
lation represents the only available treatment for dry AMD,
intravitreal injections of antivascular endothelial growth
factor (VEGF) agents (i.e., ranibizumab, bevacizumab, and
a�ibercept) may improve visual acuity in patients with wet
AMD [24–29].
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In addition to the e�ect of modi�able factors, genetic
variants confer about 60% of the attributable risk [30], with
at least 34 genomic loci implicated in AMD pathogenesis
[31]. Genetic risk factors associated with AMD susceptibility
include polymorphisms in complement factor H (CFH)
[32], age-related maculopathy susceptibility 2 (ARMS2) [33],
apolipoprotein E (APOE) [34], and vascular endothelial
growth factor (VEGF) [35]. Above all, the discovery of genetic
variants in components of the complement system indicated
the potential role of local in�ammation and complement
regulation in the pathogenesis of AMD [36].

Given this scenario, the perspective of personalized
medicine for the prevention and treatment of AMD requires
a more accurate evidence-based knowledge of gene-environ-
ment interactions.

Here we provide an overview of the role of complement
system in AMD and summarize the consequences of the
interaction between genetic and environmental risk factors
on AMD onset and progression and therapeutic response.
Finally, we discuss the perspectives of current evidence in the
�eld of genomics driven personalized medicine.

2. The Complement System

�e complement system is implicated in the innate immune
response, which constitutes the �rst-line host defense against
pathogenic infections [37]. It also functions as immunoreg-
ulatory system of clear immune complexes, in�ammatory
products, and apoptotic cells. Complement components
constitute a complex network of about 30 plasma- and
membrane-associated serum proteins, designated by numer-
als (C1-C9) or letter symbols (e.g., complement factors H,
FH), which are organized into hierarchal proteolytic cas-
cades. �e activation of complement system involves three
proteolytic cascades, namely, the classical, lectin, and alter-
native pathways, which lead to the activation of C3 con-
vertase, the convergence point of all complement pathways.
�is downstream cascade is characterized by the activation
of the following e�ectors: the membrane attack complex
(MAC), anaphylatoxins (C3a and C5a), and opsonins. �e
�rst induces cell lysis, producing a pore-like structure in the
phospholipid bilayer, and stimulates the release of anaphy-
latoxins and growth factors from the vascular endothelium.
�e classical and lectin pathways are, respectively, activated
by binding to complement-�xing antibodies in immune
complexes or to mannose residues on the surface of microor-
ganisms. In contrast, the alternative pathway is spontaneously
activated by a constant low-rate hydrolysis of C3, which
further binds to factor B (FB), allowing factor D (FD) to
cleave factor B into Ba and Bb. �e resulting C3 convertase
initiates the terminal pathway via an ampli�cation loop,
producing more C3b and C3a from C3 (Figure 1).

3. Regulation of Complement System

�e re�ned balance between activation and inhibition of
complement system is the crucial regulatory mechanism to
prevent self-tissue damage [37, 38]. Although increased com-
plement activity may be protective against chronic low-grade

Figure 1: Complement system activation and regulation by the
alternative pathway. �is �gure was prepared using MetaCore from
�omson Reuters.

in�ammation and infection in early life [39], lack of inhibi-
tion is associated with several diseases, such as systemic lupus
erythematosus [40], atypical haemolytic uraemic syndrome
[41], dense deposit disease [42], and AMD [43]. �erefore,
complement system activity is strictly controlled by regula-
tory proteins, which mainly act by degrading complement
components, increasingC3 convertase decay, andmodulating
the MAC assembly [44–46]. �e �rst is a function of factor
I (FI), which regulates the classical and alternative pathways
by cleaving C3b into inactive fragments [47]. However, to
prevent nonspeci�c degradation of complement components,
the proteolytic activity of FI requires several cofactors, includ-
ing complement receptor 1 (CR1),membrane cofactor protein
(MCP), and FH [47–51], which accelerate C3 convertase
decay by displacing factor Bb from existing C3 convertase
[52, 53].

�e ability of alternative pathway to discriminate between
self and potential pathogens is conferred by recognition
of glycosaminoglycans (GAGs) and sialic acid glycans (i.e.,
heparin-sulfate and N-acetylneuraminic acid) on host cells
[54–57]. Binding of FH to the surface of necrotic cells and
to apoptotic particles is mediated by CRP, Annexin II, DNA,
and histones [58–61]. An additional complement inhibitor is
the decay-accelerating factor (DAF), which inhibits assembly
of neoformed C3 convertases and accelerates the decay of
pre-existing convertases [46, 62–66]. Lastly, the regulation
of complement system may be also provided by inhibiting
MAC formation via membrane bound (CD59) or �uid-phase
(Vitronectin and Clusterin) inhibitors [67–72].

4. Complement System and AMD Pathogenesis

Although the majority of circulating complement compo-
nents is produced by the liver, the retina shows extrahep-
atic complement synthesis [73], probably to overcome the
restricted access of plasma protein to the retina through the
blood-retinal barrier. Several lines of evidence demonstrated
that complement dysregulation, especially the alternative
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Figure 2: Complement system dysregulation in the age-related
macular degeneration. �is �gure was prepared using MetaCore
from�omson Reuters.

pathway, is involved in the pathogenesis of AMD. �e major
stressors for AMDdevelopment, such as aging, smoking, and
oxidative stress, have been linked to the overactivation of the
complement system (Figure 2). �is evidence has been also
supported by immune-histological and proteomic studies,
which identi�ed complement components as constituents of
drusen, suggesting the local activation of the complement
pathways [30, 74–77]. Increased levels of activated com-
plement components, which are released during the com-
plement activation, have been also observed in peripheral
blood of AMD patients [78–80]. Consistently, complement
regulators, such as Vitronectin, Clusterin, and MCP, are
highly expressed in drusen and RPE cells adjacent to drusen
[30, 81, 82]. Drusen are especially characterized by Amyloid
beta accumulation, which in turn is produced by senescent
RPE cells and may induce oxidative stress [83]. Binding of
Amyloid beta to FI results in complement activation and
chronic low-grade in�ammation [83]. During RPE aging, the
accumulation of lipofuscin and bis-retinoid component N-
retinylidene-N-retinylethanolamine has also been observed,
which reduces the degradation of phospholipids by lysosomes
[84, 85]. �e accumulation of undigested lipids, combined
with oxidative stress, leads to the formation of lipid peroxi-
dation products [86], which in turn can induce apoptosis and
complement activation [87, 88].

5. The Role of Common Variants in the
Pathogenesis and Treatment of AMD

5.1. Complement Factor H (FH). FH is produced in the liver
and secreted as a protein composed of 20 short consensus
repeats (SCRs), which share homology at speci�c residues
[89, 90].�e 1q32 region, known as the regulators of comple-
ment activation (RCA) cluster, also contains �ve homologous
CFH-related genes (CFHR1 to CFHR5), encoding FH-related
proteins (FHR1-5) [91]. FH is also locally produced by RPE
and contributes to C3 convertase decay, preventing the
ampli�cation of C3b deposition.

In 2005, several genetic association studies, conducted
by independent research groups, identi�ed the CFH gene
on chromosome 1q32 as the �rst gene associated with AMD
risk [76, 92–94]. �e most prominent e�ect on AMD risk
was initially attributed to rs1061170 polymorphism, which
leads to an amino acid change at position 402 of the FH
polypeptide (Y402H). Prevalence of the 402H risk variant
varies across ethnicities [95], with an increased AMD risk
of 2.5 times among heterozygous individuals and 6.0 times
among homozygotes [96]. �is �nding was con�rmed by
pooled analysis in both Caucasians [95] and Asians [97–99].
A more recent meta-analysis strati�ed by stage of disease
and ethnicity, including data of 27418 AMD patients and
32843 controls, stated that the polymorphism is signi�cantly
associatedwithAMD: inCaucasian themutated allele confers
a 1.44 risk of early AMD, a 2.90 risk of dry AMD and a 2.46
risk of wet AMD; in Asians, the mutated allele seems to be
associated only with wet AMD [100].

�e rs1061170 polymorphism has been also identi�ed as a
predictor of response to anti-VEGF treatment; homozygotes
individuals were less likely to achieve a better outcome than
those carrying wild type genotype, suggesting the need of
more e�ective therapeutic strategies for this subgroup of
patients [101].

Conversely to this well-known genetic risk factor, the
rs800292 polymorphism, a coding variant in the SCR1
domain, has been found to be protective against AMD in
both Caucasians and Asians [99, 102]. �is polymorphism,
which leads to an amino acid change at position 62 of the
FH polypeptide (V62I), also conferred a better response to
treatment of neovascular AMD [101].

Besides these polymorphisms, the impact on AMD risk
of other CFH genetic variants is still under debate. A recent
meta-analysis [103] aimed to resolve inconsistent �ndings
from studies on distinct ethnic populations about the role of
four coding and noncoding variants: two noncoding variants
in intron 14 (543G>A, rs1410996) and intron 15 (3144C>T,
rs1329428); a coding synonymous variant in exon 10 (A473A,
rs2274700); a promoter variant, positioned 257 upstream
in the CFH promoter region (257 C>T, rs3753394). Pooled
results demonstrated that these polymorphisms are signi�-
cantly associated with increased AMD risk, but none of them
was related to response to treatment [104].

5.2. Complement Component 3 (C3). �e C3 gene, located
on chromosome 19p13.3-13.2, consists of 41 exons encoding
for 1663 amino acids and 13 functional domains. C3 protein
is biologically inactive until it undergoes to conformational
changes, which expose binding sites for pathogenic cell
surface and other complement components [105]. Although
several studies suggest the association between C3 polymor-
phisms and AMD, �ndings are con�icting [106–110]. �e
rs2230199 polymorphism, leading to the R102G substitution,
is themost commonly investigated, since it seems to in�uence
C3 binding capacity and cofactor activity, thereby extending
convertase lifetime [111]. Overall, this polymorphism was
associated with AMD risk, even though this �nding was con-
�rmed in Caucasians but not in Asians [112]. A further meta-
analysis con�rmed the increased AMD risk associated with
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rs2230199 polymorphism and suggested the adverse e�ect
of rs1047286 and rs11569536 polymorphisms on the disease
[113]. By contrast, the rs2250656 polymorphism has been
found to be protective against AMD [113].

Lack of evidence exists about the e�ect of C3 genetic vari-
ants on response to AMD treatment [114–117]. Particularly,
the Comparison of AMD Treatments Trials (CATT) showed
no signi�cant e�ect of rs2230199 polymorphism on both
visual and anatomical outcomes, a�er anti-VEGF therapy
[118].

However, analysis of changes in central macular thickness
a�er ranibizumab treatment, showed that the minor allele of
rs2250656 SNP was associated with improvement in retinal
thickness and architecture [119].

5.3. Factor B and C2. �e CFB gene is located in the
major histocompatibility complex (MHC) class III region on
chromosome 6p21. Several lines of evidence suggest that
polymorphisms in this region are associated with reduced
AMD risk. Among these, pooled results from previous meta-
analyses con�rmed the protective e�ect on AMD risk of the
common rs641153 polymorphism, also known as R32Q, in
Caucasians [120] and in other ethnic groups [121].

�eMHCclass III region also includes genes encoding for
proteins involved in the regulation of the immune reaction,
such as C2 gene that is located 500 bp upstream from CFB
gene. C2 is a serum glycoprotein that functions as part
of the classical pathway of the complement system. Two
polymorphisms (rs9332739 and rs547154) have been directly
associated with AMD by decreasing the risk of 45% and 53%,
respectively [120]. However, these variants may be indirectly
linked to AMD risk due to linkage disequilibrium with CFB.
Indeed, some common haplotypes, spanning CFB and C2
genes, are considered highly protective against AMD [122].
Genetic and functional studies suggest that CFB rather than
C2 polymorphisms are more likely to determine the reduced
AMD risk.�e rs9332739 and rs547154 polymorphisms in C2
are noncoding variant, whereas the rs641153 polymorphism
in CFB results in reduced alternative pathway ampli�cation
and hemolytic activity of the CFB protein [123, 124]. More-
over, a�er adjustment for genetic and nongenetic risk factors,
the association with rs641153 proved to be robust whereas the
associationwith rs9332739 and rs547154 became insigni�cant
[125].

Lack of evidence exists about the e�ect of CFB and C2
genetic variants on response to intravitreal anti-VEGF injec-
tions; particularly, the rs641153 polymorphism did not show
any pharmacogenetics e�ects in patients with neovascular
AMD [104, 126].

5.4. Factor I. �e CFI gene, located on chromosome 4q25,
consists of 13 exons encoding for a precursor protein in
hepatocytes, macrophages, lymphocytes, endothelial cells,
and �broblasts. �e �rst eight exons encode the heavy chain,
and the last �ve exons encode the light chain, which contains
the serine protease domain. To obtain the active protein, the
precursor is cleaved into heavy and light chains, which form
a heterodimeric glycoprotein. �is heterodimer can prevent
the assembly of convertase enzymes by cleaving of C4b and

C3b.�e association between CFI polymorphisms and AMD
was �rstly reported by Fagerness et al. [127]. A�erwards,
several studies identi�ed polymorphisms that can alter gene
expression and protein production [128–131].�e association
between AMD risk and rs10033900 polymorphism is the
most investigated, but results are still con�icting. To date,
an updated meta-analysis showed that carriers of rs10033900
polymorphism have a reduced risk of developing AMD; these
results were con�rmed in Caucasians, but not in Asians [132].

6. The Role of Rare Variants in AMD

Growing body of evidence supports the role of rare vari-
ants, with large e�ect sizes, in the pathogenesis of AMD.
Accordingly, targeted genomic resequencing of selected loci
pointed out the e�ect of nonsynonymous rare variants in four
complement genes (i.e., CFH, CFI, C3, and C9). �ese vari-
ants and their implication for personalized treatment have
been recently reviewed elsewhere [102].�eCFH rs121913059
polymorphism consists of a missense mutation in the C-
terminal region of the protein, which leads to an amino acid
change at position 1210 of the FH polypeptide (R1210C). �e
R1210C variant conferred a 47-times higher risk of developing
AMD [133], independently of the common rs1061170 variant.
Particularly, the R1210C variant is associated with a typical
phenotype with extensive drusen accumulation, as well as
with earlier age of onset of the disease [134]. Whole-exome
sequencing of families with AMD allowed identifying R53C
and D90G variants which accelerate activity and cofactor-
mediated inactivation of FH [135]. More recently, both
high penetrant splice site variant (IVS6+1G>A) and coding
variants (N90G, R127H, R175P, R175G, C192F, and S193L)
have been proposed to explain the high burden of disease
in AMD families with unknown genetic risk factors [102,
105]. Among rare variants, the K155Q variant in C3 has
been independently associated with AMD [106–109], with an
overall 3-fold increased risk of developing the disease [110].
In addition, Duvvari et al. [136] identi�ed four additional
genetic variants (K65Q, R161W, R735W, and S1619R) by
sequencing of all coding exons of the C3 gene; however, none
of these associations was further con�rmed in independent
cohorts [137]. Several rare and highly penetrant CFI variants
have been identi�ed in patients with AMD [108]. Particularly,
the majority of mutations a�ect the catalytic domain of
the protein, leading to secretion defect and decreasing FI-
mediated cleavage of C3b. Among these, van den Ven et al.
demonstrated that the missense G119R substitution conferred
a 22-times higher risk of AMD [138].

7. Interaction of Genetic Variants with
Environmental Risk Factors

7.1. Smoking. Evidence from candidate gene studies of AMD-
associated loci suggested that smoking might be an e�ect
modi�er of geneticAMDrisk. Consistentlywith other studies
[95, 139–142], results from the Beaver Dam Eye cohort
did not show signi�cant multiplicative interaction between
smoking and rs1061170 polymorphism on AMD incidence
and progression [143]. However, the rs1061170 polymorphism
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showed a stronger e�ect on AMD risk among smokers [139,
141, 142, 144–146]. Particularly, the Rotterdam Study reported
that, among smokers, homozygosity for the risk variant
conferred a 34-fold increased risk of late AMD compared to
nonsmoking wild type subjects [147]. A study of discordant
sibling pairs further speci�ed that the combination between
smoking more than ten pack-years and homozygosity for the
risk variant was associated with a 144-fold increased risk of
wet AMD, compared to nonsmoking heterozygous or wild
type individuals [139]. Accordingly, the retrospective analysis
of data from 385 eligible patients included in the European
Genetic Database, a multicenter database for clinical and
molecular analysis of AMD, demonstrated that the presence
of homozygous risk variant among smokers was associated
with earlier onset of wet AMD [148]. Moreover, the inde-
pendent multiplicative e�ect of CFH genotype and smoking
was more evident for some features of early AMD (i.e.,
central so� drusen, large area of so� drusen, and pericentral
pigmentary abnormalities) associated with higher risk of
AMD progression [149].

Overall, these �ndings indicate that smoking and
rs1061170 polymorphism have independent multiplicative
e�ects on AMD risk, with no signi�cant interaction. �e bio-
logical plausibility of this relationship might be explained by
the well-known e�ects of smoking and CFH polymorphism
on the activation of alternative pathway: on one hand,
smoking alters binding of CFH to C3 and lowers plasma
CFH levels [150, 151]; on the other hand, the presence of
rs1061170 polymorphism alters the ability of CFH to bind to
C3b.

7.2. Dietary Intake. In the last decades, it has been consis-
tently demonstrated that an adequate intake of omega-3 fatty
acids, lutein, zeaxanthin, and other antioxidants represents
the onlywell-knownprotective factor againstAMDonset and
progression [19–22]. However, few studies have previously
explored whether genetic susceptibility could modify this
association.

While lutein and zeaxanthin supplementation clearly
decreases the progression from early to advanced AMD
[152], evidence on the e�ect of their intake through the diet
is still controversial, probably due to genetic susceptibility
and/or other unmeasured e�ect modi�ers. �e Rotterdam
study showed a synergic biological interaction between CFH
rs1061170 polymorphism and dietary intake of antioxidants,
suggesting that higher intake of zinc, �-3 fatty acids, �-
carotene, lutein, and zeaxanthin might reduce the incidence
of early AMD in subjects at higher genetic risk [153].
Consistently, pooled analysis of Blue Mountains Eye and
Rotterdam cohorts showed that dietary intake of lutein and
zeaxanthin was inversely associated with the risk of early
AMD, only in concurrence with at least two risk alleles
of CFH rs1061170 and ARMS2 rs10490924 polymorphisms
[154]. By contrast, in absence of genetic susceptibility, higher
intake of lutein and zeaxanthin was associated with greater
incidence of early AMD [154]. Analysis of the Atherosclerosis
Risk in Communities (ARIC) Study added to this mounting
controversial evidence, demonstrating that greater lutein and

zeaxanthin intake were associated with lower AMD preva-
lence among carriers of the heterozygous CFH genotype,
higher prevalence among carriers of the homozygous risk
genotype, and no statistically signi�cant association among
those with nonrisk genotype [155].

Growing body of evidence demonstrated that the anti-
in�ammatory and antioxidant properties of omega-3 long
chain polyunsaturated fatty acids slow the progression to
advanced AMD [4, 22, 156–158]. In the Age-Related Eye
Disease Study (AREDS), increased intake of docosahex-
aenoic acid (DHA) and eicosapentaenoic acid (EPA) was
associated with reduced dry AMD risk, a�er adjustment for
behavioural factors and genetic variants, including SNPs in
CFH, ARMS2/HTRA1, CFB, C2, C3, CFI, and LIPC genes
[159]. In addition, the Blue Mountain Eye Study demon-
strated that weekly consumption of �sh was associated with
lower risk of late AMD, only among subjects with the CFH
homozygous risk genotype [160]. More recently, the joint
e�ect of high-risk genotypes and vitamins intake has been
also evaluated. A cross-sectional analysis of the Inter99
Eye Study suggested a signi�cant interaction between vita-
min A and rs1061170 CFH polymorphism, with a positive
association between dietary intake and drusen diameter,
among subjects with the homozygous risk genotype [161].
Findings from a subsample of the AREDS study also demon-
strated a signi�cant interaction between folate intake and the
rs2230199 C3 polymorphism: the risk of AMD progression
was lower among subjects with homozygous nonrisk geno-
type, but not in those carrying the risk allele. By contrast,
no signi�cant e�ect on AMD progression was evident for
dietary intake of thiamin, ribo�avin, niacin, and vitamins B6
and B12 [162]. Although foods and nutrients are consumed
in combination, the abovementioned studies used single-
nutrient or a single-food approach, without taking into
account potential synergistic e�ects. To our knowledge, the
study by Merle et al., including participants of the AREDS,
was the �rst to evaluate the interaction between genetic risk
factors and overall diet [163]. Particularly, the adherence to
the Mediterranean diet was associated with lower risk of
progression to advanced AMD among subjects with nonrisk
genotype, but not among those with the homozygous risk
genotype [163]. �e signi�cant association, in absence of
genetic susceptibility, might be explained by the protective
e�ect of Mediterranean diet on immune and in�ammatory
responses.

8. Interaction of Genetic Variants with
AMD Treatments

�e e�ect of the interaction between nutritional supplements
and genetic susceptibility on the progression to advanced
AMD is currently under debate. In 2008, for the �rst time,
Klein and colleagues demonstrated that the e�ect of com-
bined antioxidant and zinc supplementation on the progres-
sion to advanced AMDwas greater among subjects with non-
risk genotype for the CFH rs1061170 polymorphism, com-
pared with high-risk subjects [164]. Seddon and colleagues,
investigating the progression to advanced AMD among sub-
jects with low CFH and high ARMS2 genetic risk, reported
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that antioxidant and zinc supplementation reduced the risk
of progression to wet AMD, with no signi�cant e�ect on dry
AMD [165]. Awh et al. �rst reported that zinc supplementa-
tion reduced progression to advanced AMD, among subjects
with no risk alleles for CFH and at least one risk allele for
ARMS2 [166].�e same research group further demonstrated
a distinct e�ect on disease progression according to the
number of risk alleles for these SNPs: supplementation with
zinc, alone or as a component of the AREDS formulation,
was protective against the harmful e�ect of the ARMS2
risk allele but it increased the risk posed by CFH allele
[166]. �ese �ndings are supported by current knowledge
about physiologic implication of zinc binding to CFH, which
might neutralize the ability to inactivate C3 convertase [167–
169]. �is, together with functional consequences of CFH
rs1061170 polymorphism, might cause the detrimental e�ect
associated with concurrence of CFH risk genotypes and zinc
supplementation [170]. By contrast, data analysis of a larger
AREDS subsample found no interaction between AREDS
formulation and genetic susceptibility [171]. However, the
design of this study does not allow us to exclude if the
absence of interactionwas caused by underpowered statistical
analysis.

While the AREDS formulation may slow the progression
to dry AMD by modulating complement activity [172],
intravitreal injections of anti-VEGF agents are currently con-
sidered part of the standard treatment regimen for neovas-
cular AMD, accompanied by photodynamic therapy (PDT)
with vertepor�n. In spite of the well-established e�ect of CFH
rs1061170 polymorphism on AMD risk, there is still contro-
versy about its role in the response to anti-VEGF treatment.
To our knowledge, Chen et al. were the �rst to summarize
data on the relationship between the rs1061170 polymorphism
and response to treatment of neovascular AMD [32]. Pooled
analysis indicated that CFH risk genotypes were weakly but
signi�cantly associated with less e�ective response to any
form of treatment, including anti-VEGF agents, photody-
namic therapy, and antioxidants/zinc supplementation [32].
�is �nding was further con�rmed by more speci�c meta-
analyses of studies, investigating the relationship between
CFH rs1061170 polymorphism and response to anti-VEGF
treatment [97, 173].

In summary, evidence on the interaction between genetic
susceptibility and response to AMD treatment is currently
weak and controversial, raising the need of further researches
prior to applying genetic testing to personalized medicine.

9. Implications for Preventive and
Personalized Medicine

Uncovering the interaction between genome and environ-
ment is one of the main challenge towards preventive and
personalized medicine. �e discovery of genetic variants in
genes for complement proteins pointed out the role of chronic
in�ammation and complement regulation in AMD patho-
genesis. While the e�ect of common and rare genetic variants
is well established, our review suggests that environmental
exposure could modulate the genetic-associated risk of onset
and progression of AMD, as well as therapeutic response.

Since the identi�cation of high-risk patients can improve
clinical management of AMD, several prediction models of
onset and progression are now widely available [174, 175].
�ese models, based on a small number of common genetic
variants, are suitable to distinguish subjects who will and
will not su�er from AMD, with an area under the curve that
ranges between 0.8 and 0.9 [174, 175]. However, the evaluation
of these models did not provide encouraging results, because
the same subject can receive controversial forecasts from
di�erent tests [176, 177].

To date, it is di�cult to evaluate the bene�ts of genetic
testing in the context of complex diseases such as AMD
[178]. To overcome this issue, prediction models should also
include rare mutations, like those reviewed by Geerlings et al.
[102], clinical characteristics, and environmental risk factors.
Once early AMD is clinically manifested, the number and
nature of risk alleles signi�cantly in�uence the progression
to advanced AMD. Moreover, in addition to independent
risk factors (i.e., smoking) [95, 139–143], others, such as
diet [163] and nutrients intake [153, 154], seem to interact
with AMD-associated polymorphisms on determining the
risk of progression to advanced AMD. Growing body of
evidence also suggested determining the genetic risk pro�le
prior to choosing the adequate treatment. In this context,
we concluded that success of treatment of dry AMD with
antioxidants and zinc relies on genetic risk variants, with a
better response among subjectswith noCFH risk alleles [164–
166]. Similarly, the presence of CFH risk genotypes leads
to worse response to anti-VEGF therapy against wet AMD
[97, 173]. Despite the fact that knowledge is increasing, the
perspective to guide personalized medicine through genetic
testing is still under debate and further clinical studies should
be encouraged.

Several lines of evidence also suggested that complement
system is a promising target for the development of novel
therapies, which could support the conventional treatment
with anti-VEGF agents. Currently, potential candidates, such
as complement component inhibitors, antibody-based com-
pounds, and receptor antagonists, are in clinical trials or
in preclinical evaluation [179]. While eculizumab, a human-
ized IgG antibody against complement component 5 (C5),
seems to be ine�ective in the management of dry AMD
patients [180], treatment with lampalizumab, an antibody
that inhibits complement factor D, reduced the progression
of geographic atrophy lesion [181]. Since treatment with
lampalizumab seems to be more e�ective in patients with
speci�c CFI genotypes, a phase III trial is currently running.
In this perspective, understanding the pathways involved in
in�ammation and neovascularization could allow the choice
of proper treatment within the clinical context of disease
heterogeneity.

In conclusion, our review highlighted that research
behind the role of complement system in AMD has been
mainly based on genome-wide and candidate gene studies.
However, genomics alone does not reveal the causative
relation between gene-environment interaction and AMD,
and current evidence should be integrated by other “omics”
disciplines which take into account the impact of exposome.
However, in the forthcoming future, it is plausible that AMD
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prevention and treatment will be personalized for single
groups of patients, according to their genetic risk pro�le,
clinical characteristics, and environmental exposure.
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complement regulator in health and disease, and a mediator of
cellular interactions,”Biomolecules, vol. 2, no. 1, pp. 46–75, 2012.

[46] A. Nicholson-Weller, J. Burge, D. T. Fearon, and K. F. Austen,
“Isolation of a human erythrocytemembrane glycoprotein with
decay-accelerating activity for C3 convertases of the comple-
ment system,” e Journal of Immunology, vol. 129, no. 1, pp.
184–189, 1982.

[47] S. Tsukasa, O. Michiyo, M. Misako, H. Kyongsu, K. Taroh, and
J. P. Atkinson, “Preferential inactivation of the C5 convertase of
the alternative complement pathway by factor I and membrane
cofactor protein (MCP),”Molecular Immunology, vol. 28, no. 10,
pp. 1137–1147, 1991.

[48] T. Seya, A. Hirano, M. Matsumoto, M. Nomura, and S. Ueda,
“Human membrane cofactor protein (MCP, CD46): Multiple
isoforms and functions,” e International Journal of Biochem-
istry & Cell Biology, vol. 31, no. 11, pp. 1255–1260, 1999.

[49] G. D. Ross, J. D. Lambris, J. A. Cain, and S. L. Newman,
“Generation of three di�erent fragments of bound C3 with
puri�ed factor I or serum. I. Requirements for factor H vs CR1
cofactor activity,”e Journal of Immunology, vol. 129, no. 5, pp.
2051–2060, 1982.

[50] D. Mossakowska, I. Dodd, W. Pindar, and R. A. G. Smith,
“Structure-activity relationships within the N-terminal short
consensus repeats (SCR) of human CR1 (C3b/C4b receptor
CD35): SCR 3 plays a critical role in inhibition of the classical
and alternative pathways of complement activation,” European
Journal of Immunology, vol. 29, no. 6, pp. 1955–1965, 1999.

[51] R. G. DiScipio, “Ultrastructures and interactions of comple-
ment factors H and I,” e Journal of Immunology, vol. 149, no.
8, pp. 2592–2599, 1992.

[52] J. L. McRae, T. G. Duthy, K. M. Griggs et al., “Human factor
H-related protein 5 has cofactor activity, inhibits C3 convertase
activity, binds heparin and C-reactive protein, and associates
with lipoprotein,” e Journal of Immunology, vol. 174, no. 10,
pp. 6250–6256, 2005.

[53] J. Wu, Y.-Q. Wu, D. Ricklin, B. J. C. Janssen, J. D. Lambris,
and P. Gros, “Structure of complement fragment C3b-factor H
and implications for host protection by complement regulators,”
Nature Immunology, vol. 10, no. 7, pp. 728–733, 2009.

[54] P. F. Zipfel and C. Skerka, “Complement regulators and
inhibitory proteins,” Nature Reviews Immunology, vol. 9, no. 10,
pp. 729–740, 2009.

[55] S. J. Perkins, K. W. Fung, and S. Khan, “Molecular interactions
between complement factor H and its heparin and heparan
sulfate ligands,” Frontiers in Immunology, vol. 5, no. 126, pp. 1–14,
2014.

[56] B. S. Blaum, J. P. Hannan, A. P. Herbert, D. Kavanagh, D. Uhŕın,
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