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Abstract
A graph G = (V,E) is Complementary Distance Pattern Uniform

if there exists M ⊂ V (G) such that fM (u) = {d(u, v) : v ∈ M}, for
every u ∈ V (G) − M , is independent of the choice of u ∈ V (G) − M
and the set M is called the Complementary Distance Pattern Uniform
Set (CDPU set). The least cardinality of CDPU set in G is called the
CDPU number of G.
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1 Introduction

For all terminology and notation in graph theory, not defined specifically in
this paper, we refer the reader to Harary [3]. Unless mentioned otherwise, all
the graphs considered in this note are simple, self-loop-free and finite.

Let G = (V, E) represent the structure of a chemical molecule. Often,
a topological index (TI), derived as an invariant of G, is used to represent
a chemical property of the molecule. There are a number of TIs based on
distance concepts in graphs [4] and some of them could be designed using
distance patterns of vertices in a graph. There are strong indications in the
literature [4] that the notion of CDPU sets in G could be used to design a class
of TIs that represent certain stereochemical properties of the molecule.

B.D.Acharya define the M - distance pattern of a vertex as follows :

Definition 1.1. [5] Given an arbitrary non-empty subset M of vertices in
a graph G = (V, E), each vertex u ∈ G is associated with the set fM(u) =
{d(u, v) : v ∈ M}, where d(u, v) denotes the usual distance between the ver-
tices u and v in G, is called the M- vertex distance pattern of u. If for a subset
M of vertices in a graph G = (V, E), fM is injective, then the set M is called
the distance pattern distinguishing set (DPD-set in short).
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As another version of distance-pattern distinguishing set (or, a ‘DPD-set’)
of G, we define Complementary Distance Pattern Uniform (CDPU) Graph as
follows:

Definition 1.2. If fM(u) is independent of the choice of u ∈ V − M , then
G is called a Complementary Distance Pattern Uniform (CDPU) Graph and
the set M is called the CDPU set.

Theorem 1.3. Every connected graph has a CDPU set.

Proof. Let G be a connected (p, q) graph with p ≥ 2. For u ∈ V (G), let
M = V (G) − {u}. Then, clearly M is a CDPU set of G.

Corollary 1.4. All connected graphs are CDPU.

Definition 1.5. The least cardinality of CDPU set in G is called the CDPU
number of G, denoted σ(G).

Theorem 1.6. Every self centered graph of order p has a CDPU set M with
|M | ≤ p − 2.

Proof. Let G be a self-centered graph. Then e(v) = r(G), for all v ∈ G,
where r(G) is the radius of G. Take M = V (G) − {u, v}, where u, v are
any two adjacent vertices of G. Then fM(u) = {1, 2, . . . , r(G)} and fM(v) =
{1, 2, . . . , r(G)}. Therefore, M is a CDPU set in G. Thus, for a self-centered
graph G, σ(G) ≤ |V (G)| − 2.

Corollary 1.7. For a self centered graph G, max fM(v) = rad(G), for every
v ∈ V (G) − M .

Theorem 1.8. If G is a self-median graph of order n(2n− 13), n ≥ 8, then
σ(G) ≤ 2n(n − 7).

Proof. Let G be a self-median graph. As well known [?], one can construct
G with Cn, n ≥ 8 and two disjoint copies of Kn(n−7), by joining each vertex of
Cn to n − 7 vertices in each copy of Kn(n−7) so that each vertex in each copy
of Kn(n−7) is adjacent to precisely one vertex of the cycle. Choose M as the
set of all vertices in both the copy of Kn(n−7). Then fM(vi) = {1, 2} for every
vi ∈ Cn. Hence the theorem.

Remark 1.9. Let G be a connected graph of order p and let (e1, e2, . . . , ek)
be the non decreasing sequence of eccentricities of its vertices. Let M consists
of the vertices with eccentricities e1, e2, . . . , ek−1 and let |V − M | = p − m
where |M | = m. Then σ(G) ≤ m, since all the vertices in V − M have
fM(v) = {1, 2, . . . , ek−1}.
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Theorem 1.10. Let G be a connected non-self centered graph on n vertices
and k distinct eccentricities. Then there are exactly k distinct CDPU sets for
G.

Proof. Let G be a connected non-self centered graph with V (G) = {v1, v2, . . . , vn}.
Suppose that G has exactly k different eccentricities. Let the vertices corre-
sponding to ei be {vi1, vi2, . . . , vim}. Take
Mi = V (G) − {vertices corresponding to eccentricity ei}. Then fM(vi) =
{1, 2, . . . , ei}, for every vi ∈ V − M . Since G has k different eccentricities, we
get k distinct CDPU sets for G.

To show that there are exactly k CDPU sets for G, take V −M = {vi1, vi2, . . . , vim, vj},
where vj is a vertex corresponding to eccentricity ej. Then fM(vi) = {1, 2, . . . , j−
1, j + 1, . . . , ei}, for every vi ∈ V − {M, vj} and fM(vj) = {1, 2, . . . , j − 1, j +
1, . . . , ej}. Hence the distance pattern is different showing that there are ex-
actly k CDPU sets.

Corollary 1.11. Let ε denotes the set of all different eccentricities of a
non-self centered graph G and ζ denotes the set of all possible CDPU sets of
G. Then |ε| = |ζ |.
Remark 1.12. If G is a non-self centered graph, then all the vertices in the
complement of the CDPU set should have the same eccentricity.

Theorem 1.13. Let G be a graph with n vertices. If G is a self centered
graph, then 1 ≤ σ(G) ≤ n − 2. If G is not a self centered graph, then 1 ≤
σ(G) ≤ n − r, where r is the number of vertices with maximum eccentricity.

Proof. The proof follows from Theorem 1.6 and Remark 1.9

Theorem 1.14. Let G be a non self centered graph with exactly two differ-
ent eccentricities. Then diam(G) ≤ 3.

Proof. When diam(G) = 1, G is a complete graph, which is not the case.
Then it is enough to prove that diam(G) is either two or three. The

smallest graph with exactly two different eccentricities are P3 and K1,2. Let
V (P3) = {v1, v2, v3}, whose diameter is two. When we add any edge to the
vertex v2, say, (v2, vi), then it becomes a star whose diameter is also two. Also
if ei = (vi, v3) is any edge, then the diameter is also two.

The next possibility is to add edges to the antipodal vertex, say, (v3, v4).
Then the diameter of the graph increases by one. Hence e(v1) = e(v4) = 3 and
e(v2) = e(v3) = 2. Thus diam(G) = 3.

Corollary 1.15. If G is a non-self centered graph having no full degree
vertex, then diam(G) = 3.
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Theorem 1.16. Let G be a non-self centered graph having no full degree
vertex. Then σ(G) = 2 if G has exactly two different eccentricities, with the
number of vertices corresponding to atleast one of the eccentricities should be
two.

Proof. Suppose that G has exactly two different eccentricities, say, ei and
ej . The by Corollary 1.15, diam(G) = 3. Hence G atleast four vertices with
ei = 3 and ej = 2. Therefore atleast two vertices should have eccentricity two
and three. since the number of vertices corresponding to atleast one of the
eccentricity should be two, we get σ(G) = 2.

Conjecture 1. Let G be a non-self centered graph having no full degree
vertex. Then σ(G) = 2 if and only if G has exactly two different eccentricities
with the number of vertices corresponding to atleast one of the eccentricity
should be two.

Remark 1.17. For a graph G which is not self centered, max.fM (v) ≤
diam(G) − 1.

Theorem 1.18. A graph G has σ(G) = 1 if and only if G has atleast one
vertex of full degree.

Proof. Suppose that G has one vertex vi with full degree. Take M = {vi}.
Then fM(u) = {1}, for every u ∈ V − M . Hence σ(G) = 1.
Conversely, suppose that G is a graph with σ(G) = 1. That is, there exists an
M which contains only one vertex vi which is a CDPU set of G. Also σ(G) = 1
implies that vi is adjacent to all other vertices. Hence vi is a vertex with full
degree.

Corollary 1.19. For any graph G, if σ(G) = 1, then r(G) = 1.

Proof. Let G be a graph with σ(G) = 1. Then from Theorem 1.18, G has a
vertex, say, vi of full degree. Then e(vi) = 1. Hence r(G) = 1.

Theorem 1.20. For any integer n, σ(Pn) = n − 2.

Proof. Let Pn be the path on n vertices and V (Pn) = {v1, v2, . . . , vn}.
Choose M as the set of all cut vertices, {v2, v3, . . . , vn−1}. Then fM(v1) =
{1, 2, . . . , n − 2} and fM(vn) = {1, 2, . . . , n − 2}. Therefore σ(Pn) ≤ n − 2.

Next we have to show that σ(G) ≮ n− 2. For a path Pn, there are atmost
two vertices with same eccentricity. If three vertices are outside M , then atleast
one of the vertices should have different eccentricity and the distance pattern
of that vertex is different. Hence σ(Pn) = n − 2.

Theorem 1.21. For all integers a1 ≥ a2 ≥ · · · ≥ an ≥ 2, σ(Ka1,a2,...,an) =
min{min.{a1, a2, . . . , an}, n}.
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Proof. Let G = Ka1,a2,...,an be a complete n - partite graph. Then V (G) can
be partitioned into n subsets V1, V2, . . . , Vn where |V1| = a1, |V2| = a2, . . . , |Vn| =
an.
Case1: Take one vertex from each partite set of Ka1,a2,...,an to constitute the
set M . Since each element of a partite set is non-adjacent to the other vertices
in it and is adjacent to all other partite sets, we get, fM(v) = {1, 2}, ∀v ∈
V (Ka1,a2,...,an) − M . Hence σ(Ka1,a2,...,an) ≤ n.

Next suppose that no vertex from the partite set Vi belong to M . Let
vi ∈ Vi. Then fM(vi) = {1}, for every vi ∈ Vi and fM(u) = {1, 2} for every
u ∈ V (G) − M , u does not belong to Vi. Hence M is not a CDPU set.
Case 2: Let Mi corresponds to the partite set Vi. Then fMi

(u) = {1}, for every
u ∈ V (Ka1,a2,...,an)−Mi. Hence all Mi’s form CDPU sets. Thus σ(Ka1,a2,...,an) ≤
min.{a1, a2, . . . , an}.

Next suppose that vi ∈ Vi does not belong to Mi. Then fM(vi) = {1, 2}
and fM(u) = {1}, for every u ∈ V (G) − M . Hence Mi is not CDPU.

Thus σ(Ka1,a2,...,an) = min{min.{a1, a2, . . . , an}, n}.
Corollary 1.22. σ(Ka1,a2) = 2.

Proposition 1. σ(Cn) ≤
{

n − 2, if n is odd;
n
2
, if n ≥ 8 is even.

Proof. Let Cn be a cycle on n vertices and V (Cn) = {v1, v2, . . . , vn}.
Case 1 : n is even.
Choose M as the set of alternate vertices on Cn, say, {v2, v4, . . . , vn}. Then for

i = 1, 3, . . . , n−1, fM(vi) =

{ {1, 3, 5, . . . , m − 1}, if Cn = 2m and m is even;
{1, 3, 5, . . . , m}, if Cn = 2m and m odd.

Therefore fM(vi) is identical depending on whether m is odd or even. Hence
σ(Cn) ≤ n

2
.

Case 2 : n is odd.
Choose n−2 adjacent vertices, say, {v3, v4, . . . , vn}. Then fM(v1) = {1, 2, 3, . . . , n−1

2
},

and fM(v2) = {1, 2, 3, . . . , n−1
2
}. Hence σ(Cn) ≤ n − 2.

Remark 1.23. σ(C4) = σ(C6) = 2

Theorem 1.24. σ(G + Km) ≤ m if G has no vertex of full degree.

Proof. Let G be a graph with no vertices of G has full degree. In G + Km,
every vertex of G is joined to every vertex of Km.

Case 1: G has more number of vertices than Km.
Take M as the set of all m vertices in Km. Then fM(v) = {1}, ∀v ∈ V −
M .Hence σ(G + Km ≤ m. If we remove any vertex u from the above M , then
fM(v) = {1}, ∀v ∈ G and fM(u) = {1, 2}. Hence it is not possible. Thus
σ(G + Km) = m.
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Case 2: G has lesser number of vertices than Km.
Then take M as the set of all vertices in G. Hence in this case σ(G + Km) <
m.

Theorem 1.25. If σ(G1) = k1 and σ(G2) = k2, then σ(G1+G2) = min{k1, k2}.
Proof. Let σ(Gi) = ki, and Mi be a σ(G)-set (since it is a CDPU-set with
σ(Gi) vertices). In G1 + G2, every vertex of G1 is joined to every vertex of
G2. Therefore, both M1 and M2 are CDPU sets of G1 + G2. If we remove
any vertex from Mi, then it does not form a CDPU set for Gi, since σGi = ki.
Hence σ(G1 + G2) = min(k1, k2).

Corollary 1.26. For any positive integer n, σ(G + Km) = 1.

Theorem 1.27. Let G be a bipartite CDPU graph. Then σ(G) = 1 if and
only if G is isomorphic to a star.

Proof. Suppose σ(G) = 1. Then, from Theorem 1.18 there is atleast one
vertex of full degree in G. Also G is bipartite. Thus G is isomorphic to a star.
Conversely, if G is a star, then σ(G) = 1.

Theorem 1.28. Let T be a CDPU tree. Then σ(T ) = 1 if and only if T is
isomorphic to P2, P3 or K1,n.

Proof. When T ∼= P2, P3 or K1,n, clearly σ(T ) = 1. Conversely, suppose that
σ(T ) = 1. Since σ(T ) = 1, from Theorem 1.18, there is atleast one vertex of
full degree in T . Also T is a tree. Thus the only trees which contains atleast
one full degree vertices are P2, P3 and K1,n.

Theorem 1.29. The shadow graph of a complete graph Kn has exactly two
σ(Kn) disjoint CDPU sets.

Proof. Let V (Kn) = {u1, u2, . . . , un} and the shadow vertices be {u′
1, u

′
2, . . . , u

′
n}.

Let M = V (Kn) and M ′ = {u′
1, u

′
2, . . . , u

′
n}. We shall show that σ(Kn) = n.

For M , we have fM(ui) = {1, 2}, ∀1 ≤ i ≤ n. Also fM (u′
i) = {1, 2}, ∀1 ≤ i ≤ n.

Also any n−1 vertices from M or M ′ will not form a CDPU set as the distance
pattern of the vertex, say uj (respectively, u′

j) fM (uj) = {1, 2, 3} ( respectively,
fM(u′

j) = {1, 2, 3}), a contradiction. A similar contradiction occur when we
allow the CDPU set to be vertices from both M nd M ′. Hence the proof

More, generally we have the following theorem

Theorem 1.30. If G is a self-centered graph of order p and S(G) is its
shadow graph then σ(S(G)) = p and there are exactly two σ(S(G))-sets M1

and M2; further, M1 ∩ M2 = ∅.

Scope and Conclusion
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As already stated in the introduction, the concept under study has impor-
tant applications in the field of Chemistry. The study is interesting due to
its applications in Computer Networks and Engineering, especially in Control
System. In a closed loop control system, signal flow graph representation is
used for gain analysis. So in certain control systems specified by certain char-
acteristics, we can find out M of vertices consisting of two vertices such that
one vertex will be the take off point and other vertex will be the summing
point.
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