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Abstract. The sarcolemma of the smooth muscle cell 

displays two alternating structural domains in the elec- 
tron microscope: densely-staining plaques that cor- 
respond to the adherens junctions and intervening 
uncoated regions which are rich in membrane invagina- 
tions, or caveolae. The adherens junctions serve as 
membrane anchorage sites for the actin cytoskeleton 
and are typically marked by antibodies to vinculin. 

We show here by immunofluorescence and immuno- 
electron microscopy that dystrophin is specifically 
localized in the caveolae-rich domains of the smooth 

muscle sarcolemma, together with the caveolae-asso- 
ciated molecule caveolin. Additional labeling experi- 

ments revealed that ~/t integrin and fibronectin are 

confined to the adherens junctions, as indicated by 
their codistribution with vinculin and tensin. Laminin, 
on the other hand, is distributed around the entire cell 

perimeter. 
The sarcolernma of the smooth muscle cell is thus 

divided into two distinct domains, featuring different 
and mutually exclusive components. This simple bipar- 

tite domain organization contrasts with the more com- 
plex organization of the skeletal muscle sarcolemma: 
smooth muscle thus offers itself as a useful system for 
localizing, among other components, potential interact- 
ing partners of dystrophin. 

T 
HE sarcolemma of smooth muscle cells exhibits two 
structurally distinct regions: those bearing submem- 
branous dense plaques -,,0.2/~m thick and 0.5 am 

wide, and intervening uncoated zones which bear many ve- 
sicular invaginations or caveolae (see Bagby, 1983). The 
submembranous plaques are junctions of the adherens type, 
involved in actin anchorage and characterized by the pres- 
ence ofa Sl~cific set of junctional proteins (Geiger and Gins- 
borg, 1991) including vinculin (Geiger et al., 1981) and talin 
(Volberg et al., 1986; Drenckhahn et al., 1988; Draeger et 
al., 1989). Antibodies against the latter proteins reveal a lon- 
gitudinal fib-like organization of adherens junctions at the 
smooth muscle cell surface (Small, 1985; Drenckhahn et al., 
1988), with only rare exceptions (avian gizzard) in which the 
ribs are discontinuous (Draeger et al., 1989). tn surface 
views of the smooth muscle cell membrane, obtained by 
freeze-fracture EM (Gabella and BltmdeU, 1978), longitudi- 
nal channels containing membrane vesicles or caveolae are 
seen to alternate with smooth-surfaced channels, taken to be 
the adherens junction domains. 

In comparison with smooth muscle, the sarcolemma of 
skeletal muscle appears to be more complex, as regards the 
complement of peripheral cytoskeletal proteins (see review 
by Small et at., 1992). Adherens junction proteins have been 
localized in submembranous specializations flanking the 
Z-disc (costameres; Pardo et al., 1983), whereas other cyto- 
skeletal components, including certain spectrin isoforms 

(Appleyard et al., 1984; Vybiral et al., 1992) and dystro- 
phin, have been reported to be more uniformly distributed 
over the sarcolemma. Particular interest has focused on dys- 
trophin since this protein is absent from, or altered in 
sufferers of Duchenne muscular dystrophy (DMD) (Hoffman 
et al., 1987; Hoffman et al., 1988). The widely demon- 
strated localization of dystrophin along the skeletal muscle 
plasma membrane (Arahata et al., 1988; Bonilla et al., 
1988; Zubrzycka-Gaarn et al., 1988), together with the 
identification of a tightly linked oligomeric complex of mem- 
brane glycoproteins, has been taken to suggest a structural 
role for dystrophin in linking the subsarcolemmal cytoskele- 
ton to the plasma membrane (Campbell and Kahl, 1989; Er- 
vasti and Campbell, 1991) and, via laminin-binding com- 
plexes, to the extracellular matrix (Ibraghimov-Beskrovnaya 
et al., 1992). However, taking the apparently homogeneous 
distribution of dystrophin along the skeletal muscle sar- 
colemma seen by immunogold labeling (Watkins et al., 
1988; Cullen et al., 1990; Byers et al., 1991) and the com- 
plexity of organization of other membrane skeleton compo- 
nents, skeletal muscle appears a less favorable model for 
testing the colocalization of putative dystrophin-associated 
proteins in situ. 

Preliminary data of Byers et at. 0991) suggested that dys- 
trophin may not be distributed uniformly over the smooth 
muscle cell membrane. In the present work we confirm and 
extend these latter studies by showing that dystrophin and 

�9 The Rockefeller University Press, 0021-9525/93/03/1159/9 $2.00 
The Journa/of Cell Biology, Volume 120, Number 5, March 1993 1159-1167 t 159 



vinculin occupy complementary membrane domains in this 
tissue. Taken together with the localization of other mem- 
brane-associated and extracellular matrix components, our 
data demonstrate the existence of two mutually exclusive do- 
mains in the smooth muscle sarcolemma. 

Materials and Methods 

Antibodies 

The primary antibodies used were: monoclonal antibodies directed against 
human vinculin (generously supplied by Prof. V. Koteliansky (CNRS, Paris, 
France); clone no. hVIN-1 from Sigma Immunochemicals, St. Louis, MO), 
chicken vinculin (a kind gift from Prof. B. Geiger, Weizman Institute, Re- 
hovot, Israel) and tensin (Glenney and Zokas, 1989; Bockholt et al., 1992); 
human fibronectin (clone no. FN-3E2, Sigma Immunochemicals); and cav- 
colin (Rothberg et al., 1992); and polyclonal antibodies against dystrophin, 
affinity-purified antibody 6-10 (produced in a rabbit immunized with a dys- 
trophin polypeptide expressed in bacteria from dystrophin eDNA residues 
6,181-9,544; Lidov et al., 1990; Byers et al., 1991); mouse laminin 
(affinity-isolated antibody L 9393 from Sigma Immunochemicals); and rat 
/31 integrin (Bottger et al., 1989; generously supplied by Dr. S. Johansson, 
University of Uppsala, Sweden). For double labeling in combination with 
fibronectin, tensin, and caveolin, we used a polyclonal antiserum against 
pig stomach vinculin raised in collaboration with Dr. M. Moeremans (Jans- 
sen Pharmaceuticals, Beerse, Belgium) and purified on a pig vinculin 
affinity column by Dr. M. Gimona (Institute of Molecular Biology, Salz- 
burg, Austria). Polyclonal antibodies against various mammalian erythro- 
cyte and brain spectrin subunits were generously donated by Dr. B. Riederer 
(University of Lausanne, Switzerland), Prof. J. Morrow (Yale University, 
New Haven, CT), and Dr. K. Burridge (University of North Carolina). 

Gel Electrophoresis and Immunoblotting 

SDS-gel electrophoresis was carried out using 2.5-12.5 % linear gradient 
mini-gels (0.5 % bisacrylamide; Fiirst et al., 1988) and the Laemmli buffer 
system (Laemmli, 1970). Proteins were transferred electrophoretically 
(Towbin et al., 1979) onto nitrocellulose sheets (Schleicher & Sehiill, Ger- 
many) and the blots processed for imrnunogold silver staining as described 
previously (Moeremans et al., 1984). 

Preparation of Semi-Thin Cryosections 

Thin longitudinal strips of guinea pig Taenia coli muscle or chicken gizzard 
were dissected into a Ca 2+ free balanced salt solution (solution 1, Small et 
al., 1986), tied to plastic plates and fixed for 30 rain in 2% paraformalde- 
hyde (PFA) l in the same solution, at room temperature (RT). After several 
washes in ice-cold solution 1, the strips were cryoprotected by infusion for 
at least 2 h with a polyvinyl pyrrolidone/sucrose mixture (Toknyasu, 1990), 
mounted on aluminium cryopins (Reichert, Vienna), and plunge frozen in 
liquid nitrogen. Semi-thin cryosections, ,'o0.25 #m thick, were prepared ac- 
cording to the general method of Tokuyasu (1980) using a Reichert-Jung 
FC4E cryo-ultramicrotome in combination with tungsten-coated glass 
knives (Roberts, 1975). Sections were retrieved on droplets of 2 M sucrose 
plus 0.75% gelatin (Tokuyasu and Singer, 1976), transferred to 4-ram glass 
coverslips coated with 1 mg/ml poly-L-lysine and stored on gold buffer (GB, 
155 mM NaCI, 2 mM MgCI2, 2 mM EGTA, 20 mM Tris-base, pH 7.6) at 
4~ before immunolabeling. 

Tissue Whole Mounts 

Short strips ("~8 mm long) of guinea pig T. coli and chicken gizzard were 
tied to plastic plates and incubated in ice-cold solution 1 for 4-5 h. They 
were then digested in 1 mg/ml collagenase (Sigma type V) for 1.5 h at 370C 
in 137 mM NaCI, 5 mM KC1, 4 mM NaHCO3, 5.5 mM glucose, 2 mM 
MgCIz, 2.5 mM CaCI2, and 10 mM Pipes, pH 6.5. After rinsing in cold 
solution 1, the samples were fixed for 10 rain in 2% PFA/0.2 % Triton X-100 
at RT and then immunolabeled. After labeling, thin strips were teased from 
the exposed surface, using a fine needle under a dissecting microscope, re- 
trieved on coverslips and flattened onto a slide coated with a drop of Gel- 
vatol (20-30) containing 2.5 mg/ml n-propyl gallate (Giloh and Sedat, 

1. Abbreviations used in this paper: PFA, paraformaldehyde; PVA, poly- 
vinyl alcohol; RT, room temperature. 

1982) or 1 mg/ml phenylene-diamine (Johnson et al., 1982) as anti-bleach 
agent. 

Preparation of Sections for EM 

For immunoelectron microscopy the method of embedding in polyvinyl al- 
cohol (PVA; Small et al., 1986) was specifically adapted for use with 
fixation-sensitive antibodies. Guinea pig Z coli strips were prepared and 
fixed as for cryoultramicrotomy, and then infiltrated sequentially with 5 and 
10% PVA (10 kD; Air Products and Chemicals Inc. Allentown, PA) in solu- 
tion 1 followed by 20% PVA plus 8% trehalose in water, over a total period 
of 36 h. After final embedding in fresh 20% PVA and 8% trehalose, the 
specimens were allowed to dry at RT to a jelly-like consistency, and refixed 
in this state in the vapor from a solution of 2 % PFA for 1 h at RT. Sections 
were cut at low specimen temperatures ( - 6 0 - - 8 0 ~  with a diamond knife 
onto 50% DMSO at 'x,-40~ Spreading of sections was effected by trans- 
fer onto 87 % glycerol at room temperature by the use of a wire loop, before 
retrieval on formvar-coated nickel grids. 

lmmunocytochemistry 

Immunolabeling was performed on sections by transferring the coverslips 
or grids between droplets of antibodies and washing solutions arranged on 
a sheet of parafilm. For tissue whole mounts, the plates carrying the muscle 
strips were inverted on parafilm and 40 t~l of antibody pipetted underneath. 
Antibodies were dissolved in GB containing 1% BSA, and washes were car- 
ried out in multiwell dishes using the same buffer containing 0.1% BSA. 

Before the first antibody incubation, sections were treated for 10 rain 
with 0.02 M glyeine, followed by 10 rain with 2 % normal goat serum (NGS) 
plus 1% BSA (whole mounts), or with 5% NGS, 1% BSA, 2% PVA, and 
2% gelatin (sections), and then rinsed on a drop of 0.1% BSA. 

Fluorescent labeling was performed using the biotin-streptavidin-FITC 
system supplied by Amersham International (Amersham, UK), a FITC- 
conjugated anti-IgM antibody (Sigma Immunocbemicals) and rhodarnine- 
conjugated secondary antibodies prepared according to Brandtzaeg (1973). 
Final mounting was in Gelvatol (20-30) containing an antibleach agent as 
described above. Microscopy was carded out using a Zeiss Axioskop 
epifluorescence microscope (Carl Zeiss, Inc., Oberkochen, Germany). 

Double immunogold labeling on PVA-embedded sections of smooth 
muscle was performed using a 5-nm gold-conjugated anti-mouse IgG (Bio- 
Cell Research Laboratories, Cardiff, UK) to detect the monoclonal vinculin 
antibody, and a biotinylated secondary antibody (Amersham) followed by 
an anti-binfin antibody conjugated to 10 tun colloidal gold (BioCeli Re- 
search Laboratories) to detect bound anti-dystrophin antibodies. After thor- 
ough washing in GB, sections were fixed for 5 min in 2.5% glutaraldehyde 
in solution 1, rinsed in water, and contrasted by negative staining using 2% 
ammonium molybdate or a mixture of equal parts of 2% ammonium molyb- 
date and 2 % sodium ortho-vanadate, the latter being added to the negative 
stain to reduce electron density without reducing the thickness of the final 
embedding layer. 

Sections were examined using a Zeiss EM 10A electron microscope (Carl 
Zeiss, Inc.). 

Results 

The reactivity of the different antibodies on immunoblots 
(Fig. 1) was monospecific and essentially in accord with pre- 
viously published data, giving the following labeling pat- 
terns: dystrophin, a major band at '~400 kD (Byers et al., 
1991), a second, weaker band of slightly lower molecular 
weight, possibly a degradation product, was also labeled; 
vinculin/metavinculin, two bands at an apparent molecular 
mass of 130 and 150 kD (Gimona et al., 1987); tensin, two 
bands of 'o150 and 200 kD (Wilkins et al., 1986); fibronec- 
tin, a single band at 240 kD; and laminin, a band at •220 
kD (Hedin et al., 1988). In our hands, the/St integrin anti- 
body (Bottger et al., 1989) gave a diffuse reaction at '~180 
kD, and the monoclonal caveolin antibody labeled three 
bands corresponding to the monomer (22 kD) and higher 
molecular weight complexes of around 220 and 350 kD, 
which may arise from aggregation (Glenney, unpublished 
data). 
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Figure L Immunoblot of antibodies used for immunolocalization 
studies. (A) Whole muscle extract from guinea pig T. coli. (Lane 
1) Coornassie blue; (lanes 2-9) immunoblots of the same sample 
as in lane I showing the reaction with the following antibodies: dys- 
trophin (2); vinculin (monoclonal [3] and polyclonal [4]); tensin 
(5); caveolin (6); #~ integrin (7); fibronectin (8); and laminin (9). 
(B) Whole muscle extract from chicken gizzard. (Lane 1) Coomas- 
sic blue; (lanes 2 and 3) immtmoblots of the same sample as in lane 
I showing the reaction with dystrophin and vinculin antibodies, re- 
spectively. Arrowheads indicate the positions of the following pro- 
teins on the gel (from top to bottom): filamin (250 kD), myosin 
heavy chain (212 kD), vinculin (130 kD), ,~-actinin (95 kD), des- 
min (55 kD) and actin (43 kD). 

In transverse semi-thin cryosections of guinea pig T. coli, 

antibodies against vinculin and dystrophin both labeled dis- 
continuous streaks of fluorescence at the cell periphery (Fig. 
2, a and b), which appeared to occupy complementary posi- 
tions. In general the vinculin label was confined to a discrete 
narrow band corresponding to the adherens junctions (Geiger 
et al., 1981), whereas the dystrophin label tended to be some- 
what more diffuse. 

In tissue whole mounts (Fig. 2, c and d) vinculin and dys- 
trophin were seen to occupy alternating sets of complemen- 
tary and nonoverlapping surface ribs arranged parallel to the 
long axis of the cell. The ribs of dystrophin immunolabel 
were not always continuous, a feature that appeared to be an 
artefact of Triton extraction, in that longer Triton treatments 
resulted in an almost spotty appearance (not shown). 

The complementary distributions of vinculin and dystro- 
phin were most strikingly seen in superimposed images 
of double immunofluorescence-labeled cross sections (Fig. 
2 g). The alternating positions of vinculin (green) and dys- 
trophin (red) label in such double exposures contrasted with 
the superimposed pattern (yellow) obtained with vinculin 
and tensin, a further component of adherens junctions (Wil- 
kins et al., 1986; Fig. 2 h). One feature of the labeling of 
adherens junction regions, particularly noticeable in the case 
of tensin, was the intense staining of cells of apparently 
smaller profile (Fig. 2, e and f ) .  It is probable that these cells 
had been sectioned across their terminal portions, where the 
adherens junctions have been shown to occupy almost 100% 
of the plasmalemmal area (Gabella, 1984). 

The relative localizations of dystrophin and vinculin were 
also investigated in chicken gizzard, which has previously 
been shown to possess an unusual pattern of vinculin distri- 

bution (Draeger et al., 1989). The transverse, banded or 
chevron-like arrays of vinculin-positive streaks characteris- 
tic of gizzard cells is seen in Fig. 3 a. Unfortunately, an even 
greater susceptibility of dystrophin in chicken gizzard to- 
wards Triton extraction rendered the use of such whole mount 
preparations unsuitable for its localization. However, the ex- 
clusion of dystrophin from vinculin-rich domains could be 
clearly demonstrated in semi-thin, longitudinal cryosections 
(Fig. 3, b and c). 

lmmunoelectron microscopy confirmed the localization of 
dystrophin and vinculin in different and complementary sar- 
colemma domains (Fig. 4). Since the human vinculin anti- 
body did not react with glutaraldehyde-fixed tissue, the 
embedding and sectioning protocol had to be modified to al- 
low covisualization of sarcolemma structure and immuno- 
label. As indicated in Materials and Methods this was 
achieved by using a variation of the PVA embedding tech- 
nique (Small et al., 1986) involving curing of soft blocks 
with formaldehyde vapor and low temperature sectioning 
onto DMSO. As shown in Fig. 4 a, dystrophin label was 
confined to the infolded, caveolae-rich regions of the sar- 
colemma found between the adhesion plaques marked by 
vinculin antibodies. The visibility of the 5-nm gold particles 
could be enhanced by the use of a composite mixture of am- 
monium molybdate and sodium vanadate as negative stain 
(Fig. 4 b). The restricted localization of dystrophin label in 
smooth muscle contrasted markedly with the homogeneous 
distribution of immunogold label reported for skeletal mus- 
cle by several laboratories (see Discussion). 

Does the differential distribution of dystrophin and vincu- 
lin reflect the segregation of other sarcolemma-associated 
proteins in smooth muscle? This was tested using other anti- 
body probes on semi-thin cryosections of guinea pig T. coli 

muscle in double label combinations with vinculin antibod- 
ies (Fig. 5). Caveolin, a protein component of caveolae 
membrane coats (Rothberg et al., 1992), was confined, like 
dystrophin, to the vesicular domains (Fig. 5 b)./3~ integrin 
was colocalized with vinculin (Fig. 5 d), as was fibronectin 
(Fig. 5f) .  In contrast, laminin showed an almost continuous 
distribution around each muscle cell (Fig. 5 h), implying an 
association with components of both domains. In some areas 
the larninin label assumed a zig-zag appearance between 
neighboring cells, which appeared to arise from excessive 
spreading of the sections or cell shrinkage, leading to an ar- 
tefactual enlargement of the extracellular space. 

A range ofanti-spectrin antibodies, directed against differ- 
ent chains of mammalian erythrocyte and brain spectrin, 
were also tested on semi-thin cryosections of guinea pig T. 
coli. No antibody was found to react with smooth muscle 
cells, although some of them, including one originally 
reported to react weakly with smooth muscle (Burridge et 
al., 1982), labeled the membranes of cells localized in the 
nerve plexus (Fig. 5 j ) .  

Discussion 

The results described above show that the two structuraLly 
distinct domains of the smooth muscle sarcolemma are as- 
sociated with different complements of cytoskeletal, integral 
membrane, and extracellular matrix proteins. The clear-cut 
division of these domains contrasts with the more complex 
organization of the skeletal muscle sarcolemma, and permits 
us to make suggestions concerning possible molecular inter- 
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actions. Before discussing these we draw attention to two 
technical points. 

First, we found that the use of semi-thin cryosections was 
imperative to obtain optimal resolution in the light micro- 
scope. In sections thicker than ,00.25 #m, the punctate label- 
ing of dystrophin and vinculin was more difficult to discern. 
This finding explains the apparently continuous and errone- 
ous pattern of dystrophin immunolabel previously obtained 
using 8-#m cryostat sections of chicken gizzard (Pens et al., 
1990; Harricane et al., 1991). Second, although ultrathin 
sections of PVA-embedded tissue have previously been used 
in this laboratory for immunofluorescence microscopy, cell 
profiles were smaller than in cryosections and the intensity 
of immunolabeling sometimes varied across the section. 
Thus, for light microscopy, the standard cryosectioning 
method gave slightly superior results. However, the situation 
was reversed for the electron microscope preparations in 
which the structural integrity in transverse ultrathin sections 
was significantly better in PVA-embedded tissue than in stan- 
dard cryosections. In particular, the cells were held together 
in a more coherent manner and the preservation of filaments 
within the cell was improved. This technique is thus well 
suited for ultrastructural immunocytochemistry of mildly 
fixed muscle tissue. 

The total exclusion of dystrophin from the adherens junc- 
tions of smooth muscle is at variance with the suggested in- 
teraction of this protein with vinculin (Porter et al., 1992). 
It is also inconsistent with a possible interaction between 
dystrophin and integrins (Otey et al., 1990), although the 
presence of a different integrin isoform in the caveolar 
regions or of a transient interaction during development, as 
suggested for skeletal muscle (Lakonishok et al., 1992), can- 
not be ruled out. This finding of dystrophin outside adherens 
junctions would also appear to contradict a suggestion that 
dystrophin may be a focal adhesion protein (Kramarcy and 
Sealock, 1990), based on its colocalization with talin in cul- 
tured Xenopus muscle. Our results are consistent with the 
reported indirect association of dystrophin with laminin 
(lbraghimov-Beskrovnaya et al., 1992), and also prompt the 
suggestion that caveolin is a potential interacting partner of 
dystrophin (see also below). 

Vinculin (Geiger et al., 1981), talin (Volberg et al., 1986; 
Drenckhahn et al., 1988; Draeger et al., 1989), metavincu- 
lin (Gimona et ai., 1988), filamin (Small et al., 1986; Drae- 
ger et al., 1990), paxillin (Turner et al., 1991), and plectin 
Cqdiche et al., 1983) have previously been localized to the 
adherens junctions of smooth muscle. We now formally add 
to this list the protein tensin, as well as 81 integrin, both of 
which have been earlier localized to fibroblast focal adhe- 
sions (Wilkins et al., 1986; Hynes, 1987) and are considered 
to be adherens junction components (Geiger and Ginsborg, 
1991). The/~1 integrins constitute the largest subfamily of 
integrins and are represented in receptors to fibronectin and 

lqgure 3. Relative localizations of vinculin and dystrophin in chicken 
gizzard. (a) Vinculin immunolabeling of a tissue whole mount 
demonstrates the complex, chevron-like pattern of vineulin distri- 
bution at the surface of gizzard cells. In longitudinal semi-thin cryo- 
sections, double immunolabeling of vinculin (b) and dystrophin (c) 
reveals the mutual exclusion of vinculin- and dystrophin-associated 
domains also in gizzard muscle. Bar, 5 t~m. 

laminin (for reviews, see Hynes, 1987; Damsky and Werb, 
1992); they have been identified in smooth muscle extracts 
(Kelly et al., 1987) and localized in sections of smooth mus- 
cle tissue (De Strooper et al., 1989) and in cultured smooth 
muscle cells (Clyman et al., 1990). In this context, the 
different distributions of fibronectin and laminin in the 
pericellular matrix of smooth muscle cells is noteworthy. As 
we show, laminin occurs around the entire cell periphery, 
consistent with the presence of a continuous basal lamina, 
whereas fibronectin shows a restricted distribution over the 
adherens junctions. Kurisu et al. (1987) noted a higher con- 
centration of fibronectin label between apposed adhesion 
plaques, but failed to note the specific association described 

lqgure 2. Relative loealizations of vinculin and dystrophin (a--d and g) and of vinculin and tensin (e, f, and h) in guinea pig Z cell muscle. 
Double immunofluorescent labeling of vinculin and dystrophin on a transverse semi-thin cryosection (a and b) shows the two proteins to 
occupy complementary positions at the cell periphery (arrows). In a tissue whole mount (c and d) the two antibodies label complementary 
ribs at the cell surface. The labeling of dystrophin and vinculln contrasts with the coincident labeling of vinculin and tensin obtained on 
transverse semi-thin cryosections (e and f ;  see arrows). The relative distributions of dystrophin, vinculln and tensin are most clearly seen 
in double exposure color micrographs of transverse semi-thin eryosections immunolabeled in (g) for vinculin (green) and dystrophin (red) 
and in (h) for vinculin (red) and tensin (green). Overlap of the two colors in (h) gives rise to a yellow product. Bars, 5/~m. 
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Figure 4. Localization of vinculin and dystrophin at the periphery of smooth muscle cells as demonstrated by immunogold labeling. Vinculin 
(5 nm gold) is localized at the adherens junctions (A J) and dystrophin (10 nm gold) in the intervening regions containing caveolae and 
membrane invnginations ( ~  caveolar regions; arrows indicate caveolar invnginations). Transverse ultrathin sections of PVA-embedded 
guinea pig T. coli were negatively stained with 2 % ammonium molybdate (a) and 1% ammonium molybdate plus 1% sodium ortho-vanadate 
(b). The vesicular regions are most clearly seen in a but the 5 nm gold is more easily visualized using the weaker stain combination (b). 
Bars, 0.1/~m. 

here. The presence of fibronectin over the adhesion plaques 
containing /~ integrin points to the involvement of these 
receptors in restricting the deposition of fibronectin in the 
basal lamina in vivo. Exactly how this final arrangement is 
achieved is unclear, but it probably involves an interplay be- 
tween intrinsic (cytoskeletai) and extrinsic factors (Bur- 
ridge, 1986) including interactions between the matrix mole- 
cules themselves (Ruoslahti, 1988; Damsky and Werb, 
1992). The circumferential distribution of laminin suggests 
that receptors for this matrix molecule are present over the 
whole cell surface. However, we suppose that different 

classes of receptors are involved and that those resident in 
the caveolar domains include the dystrophin-associated gly- 
coprotein complex that is thought to link dystrophin to lami- 
nin in skeletal muscle (Ibraghimov-Beskrovnaya et ai., 
1992). This proposal remains to be tested in future work. In 
any case, dystrophin distribution is clearly determined not 
by the accessibility of laminin, but by intracellular factors. 

In view of the widespread occurrence of spectrin in the 
membrane skeleton of diverse cell types (Coleman et al., 
1989), including striated muscle cells, we considered it 
necessary to probe for the presence of spectrin in the smooth 
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Figure S. Immunofluorescent localization of other sarcolemma-associated proteins relative to vinculin (a, c, e, g, and i) on transverse semi- 
thin cryosoctions of guinea pig Z coli. Caveolin (b) is localized, like dystrophin, in the regions between those labeled with vinculin, while 
/51 integrin (d) and fibronectin ( f )  are colocalized with vinculin at the adherens junctions. Arrows indicate regions where the relative 
locallzations are most clearly seen. Laminin (h) is localized more or less continuously around the cell periphery. Various anti-spectrin 
antibodies failed to label smooth muscle cells, although some of them labeled the membranes of cells in the nerve plexus (j)  (anti- 
mammalian brain spectrin from Dr. B. Riederer). Bars, 5 #m. 



muscle sarcolemma. Mammalian skeletal muscle is charac- 
terized by multiple spectrin isoforms that are variously dis- 
tributed in a restricted (Bloch and Morrow, 1989; Vybiral et 
al., 1992; Porter et al., 1992) or uniform (Appleyard et al., 
1984) manner along the cytoplasmic surface of the plasma 
membrane. However, we observed no cross-reactivity of any 
of the donated anti-spectrin antibodies with smooth muscle 
cells. The strong labeling of nerve cells by some of the anti- 
bodies could explain the weak cross-reactivity with smooth 
muscle tissue reported by certain laboratories (Levine and 
Willard, 1981; Burridge et al., 1982; Glenney and Glenney, 
1983). We conclude that either spectrin is absent from 
smooth muscle cells or they possess a unique isoform. 

A final question concerns the functional significance of the 
restricted distribution of dystrophin. The absence of dystro- 
phin from dystrophic skeletal muscle has been proposed to 
result in mechanical damage to the plasma membrane 
(WeUer et al., 1990; Menke and Jockusch, 1991), possibly 
by altering the threshold for work-induced injury (Stedman 
et al., 1991), or in altered calcium regulation across the 
membrane (Franco and Lansman, 1990; Fong et ai., 1990). 
During smooth muscle contraction, the major burden of lon- 
gitudinal force transmission is believed to fall on the sar- 
colemma, the vesicle-rich regions of the membrane being 
forced outwards relative to the dense bands (Gabella, 1984), 
analogous to the festooning of the membrane which occurs 
in skeletal muscle (Pierobon-Bormioli, 1981). This behavior 
of the dystrophin-rich membrane would be consistent with 
the frequently proposed role for dystrophin in providing me- 
chanical support to the membrane, possibly via anchorage 
of the membrane skeleton to the extracellular matrix (Ervasti 
et al., 1990; Ervasfi and Campbell, 1991). However, it is also 
possible that the location of dystrophin in the caveolae-rich 
domains may reflect a more direct functional interaction. A 
recent immunofluorescence study suggested that dystrophin 
is highly concentrated adjacent to the I-band regions of 
skeletal muscle, a result taken to suggest an involvement of 
dystrophin in the subsarcolemmal lattice which is believed 
to mediate attachment of the contractile apparatus to the 
plasma membrane (Porter et al., 1992). However, since fur- 
ther results suggest that vinculin and dystrophin are not ex- 
actly colocaiized in skeletal muscle (Masuda et ai., 1992), 
alternative interpretations should be considered. Thus the 
characteristic distribution of caveolae over the I bands of fast 

skeletal muscle fibers, together with the apparent loss of this 
banding pattern in Duchenne muscle (Shotton, 1982), would 
be consistent with an interaction of dystrophin with caveolae. 
Although the role of caveolae in muscle cells remains elusive 
(Severs, 1988), proposed functions include their involvement 
in the transport of calcium across the membrane (Popescu, 
1974) and in stretch reception (Prescott and Brightman, 
1976). Hence, a putative interaction between dystrophin and 
caveolae would be consistent with the suggestion that dystro- 
phin acts as a tension-sensing molecule, conveying informa- 
tion about sarcolemmai stress to mechano-sensitive calcium 
channels (Lansman and Franco, 1991). The localization in 
skeletal muscle of caveolin or caveolin-like molecules, rela- 
tive to dystrophin, remains to be established. 

It is clear that much information is lacking about the orga- 
nization of the smooth muscle sarcolemma. Nevertheless, 
we propose that smooth muscle provides a more simple sys- 
tem than skeletal muscle for identifying proteins which 
might interact with dystrophin, on the initial basis of their 

colocalization in the vesicle-rich domain. Of primary in- 
terest will be to determine whether all of the components of 
the dystrophin-associated glycoprotein complex are present 
at, and restricted to, the dystrophin-associated membrane 
areas in this tissue. 
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