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Abstract. We recall why linear codes with complementary duals (LCD codes)
play a role in counter-measures to passive and active side-channel analyses on

embedded cryptosystems. The rate and the minimum distance of such LCD
codes must be as large as possible. We recall the known primary construction

of such codes with cyclic codes, and investigate other constructions, with ex-

panded Reed-Solomon codes and generalized residue codes, for which we study
the idempotents. These constructions do not allow to reach all the desired

parameters. We study then those secondary constructions which preserve the

LCD property, and we characterize conditions under which codes obtained by
direct sum, direct product, puncturing, shortening, extending codes, or ob-

tained by the Plotkin sum, can be LCD.

1. Introduction. Codes play a central role in digital communication. Recently,
it has been shown that codes can also help improve the security of the informa-
tion processed by sensitive devices, especially against so-called side-channel attacks
(SCA) and fault non-invasive attacks. This paper recalls that linear codes with
complementary duals (called LCD), which are linear codes whose intersection with
their dual is trivial, play an important role in armoring implementations against
these two kinds of non-invasive attacks.

LCD codes, introduced by Massey [20], provide an optimum linear coding so-
lution for the two-user binary adder channel. Some constructions are known:
[27, 13, 12]. Some of them are within cyclic codes and in particular quadratic
residue (QR) codes. As another example, maximum rank distance (MRD) codes
generated by the trace-orthogonal-generator matrices are LCD codes [17]. Asymp-
totically good LCD codes exist [23].
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However, SCA sheds a new light on LCD codes and poses more accurately the
question of their effective construction achieving good minimum distance, especially
in the context of large rate.

QR codes are not well adapted to this context and we explore generalized residue
codes (GRC), candidates for being LCD and for which theoretical results exist
regarding their minimum distance [7]. However, in practically relevant cases, the
results about minimum distances are void. Therefore, we complement the state-of-
the-art of GRC, with the viewpoint of their construction and of the need for a lower
bound on their minimum distance. We also introduce a way of constructing LCD
codes by expanding Reed-Solomon codes. Finally, we study secondary constructions
of LCD codes, which help reaching the exact parameters needed in our framework.

2. Motivation. Implementations of cryptographic algorithms are prone to SCA
and fault attacks that aim at extracting the secret key when the algorithm is run-
ning over some device. Non-invasive attacks observe some leakage (such as electro-
magnetic emanations) or perturb internal data (for example with electromagnetic
impulses), without damaging the system. They are a special concern insofar as they
leave no evidence that they have been perpetrated. Those attacks can be classified
into two categories:

• Side-channel attacks (SCA), which consist in passively recording some leakage,
that is the source of information to retrieve the key;

• Fault injection attacks (FIA), which consist in actively perturbing the com-
putation so as to obtain exploitable differences at the output.

Few generic protections, demonstrably provable against both threats, have been
proposed. The best understood and most studied protection against SCA is achieved
with masking. Every sensitive data x, say a binary vector, employed in the crypto-
graphic algorithm is exclusived-or with one uniformly distributed random vector of
the same length, called mask. We are interested in this article in a homomorphic
computation. This means that the computations are carried out on the masked data
itself. Therefore, it must be possible, from a masked sensitive variable, denoted by
z, to recover x (e.g., for the final demasking at the end of the computation). This is
possible if the sensitive data and the masks belong to two supplementary subspaces
of a larger space vector. Indeed, by definition of supplementary subspaces, any ele-
ment of the large space vector decomposes itself in a unique way as the sum of two
elements (in Boolean vector spaces, the sum is the exclusive-or, denoted by “+” in
the sequel). It is thus decided to interpret those two elements as the sensitive data
and the mask. This method is called Orthogonal Direct Sum Masking (ODSM),
see [8].

We call n the dimension of this large vector space, which practically is Fn2 . Now,
we call C and D the two supplementary vector spaces:

Fn2 = C ⊕D . (1)

The masks are the codewords of code D. By the rank-nullity theorem, if the dimen-
sion of C is k, then the dimension of D is n− k. Let us consider generator matrices
G and G′ of C and D, respectively. Then every vector z ∈ Fn2 can be written in

a unique way as z = xG + yG′, x ∈ Fk2 , y ∈ Fn−k2 . If C and D are furthermore
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orthogonal with respect to the usual inner product, i.e., D = C⊥, then C is said
complementary dual1.

Definition 2.1. A linear code C is called complementary dual (LCD) if C and C⊥

are supplementary, that is (given their dimensions), C ∩ C⊥ = {0}.
Remark 1. Let C be a linear code. The space vector C ∩ C⊥ is called the hull of
C. So, C is LCD if and only if its hull has a zero dimension.

Note that D = C⊥ if and only if G′ is a parity-check matrix of C, that is,
GG′T = 0, where G′T is the transposed matrix of matrix G′; we denote then G′ by
H. We can use an orthogonal projection to recover x and y from z: the relation
z = xG+ yH implies zHT = yHHT and zGT = xGGT. The next characterization
is due to Massey [20]:

Proposition 1. Let C be a linear code. Let G be a generator matrix of C and H
a parity-check matrix. Then the three following properties are equivalent:

1. C is LCD,

2. the matrix HHT is invertible,

3. the matrix GGT is invertible.

We deduce from zHT = yHHT and zGT = xGGT, and from Proposition 1 that
if C is LCD, the matrices of the two projections z = xG+ yH 7→ x and z 7→ y are
respectively (see also [20, Proposition 1]):

GT(GGT)−1 so that x = zGT(GGT)−1 , (2)

HT(HHT)−1 so that y = zHT(HHT)−1 . (3)

Note that, GT(GGT)−1 is also known as the pseudo-inverse (or Moore-Penrose in-
verse [1]) G+ of G.

The quality of the masking is an important factor. Let φ : Fn2 → R be a leakage
function, that describes how z is leaked outside of device. The masked word z
conceals the information x at first degree if for all pseudo-Boolean function φ : Fn2 →
R of unitary numerical degree [9, Sec. 2.1], all the averages of φ(z) over the masks
d ∈ D for a given x are equal irrespective of x. Indeed, first-degree attacks consist
in correlating the measured leakage with a leakage model, the latter being precisely
independent of x, since equal to the expectation of φ(z) knowing x [22]. This means
that ∀x ∈ Fk2 ,

∑
y∈Fn−k φ(xG + yH) are the same, i.e., equal to

∑
y∈Fn−k φ(yH)

(for x = 0). Now, this notion can be generalized (see [3, Def. 2]). A zero-offset
masking countermeasure is of degree at least d if ∀x ∈ Fk2 ,

∑
y∈Fn−k φ(xG + yH) =∑

y∈Fn−k φ(yH) for all φ of numerical degree at most d. The greater the degree of the

countermeasure, the harder to pass a successful SCA. Actually, it is known from [8,
Proposition 3] that the countermeasure is (d − 1)-th degree secure if D has dual
distance d, i.e., if C has minimum distance d. This result has been independently
validated in [15] for d ∈ {1, 2}. This characterization is equivalent to the (d− 1)-th
order probing security, since any tuple of (d−1) bits of the mask is uniform random,
hence perfectly conceals the (d− 1) information bits.

Let us now consider a fault injection attack (FIA). The state z is modified into
z + ε, for some random ε ∈ Fn2 . By supplementarity of C and D, there exists a

unique ordered pair (e, f) ∈ Fk2×Fn−k2 such that ε = eG+fH. A detection strategy

1“supplementary” would seem a more appropriate term than “complementary”, but the termi-
nology being more than ten year old, we must keep it as is.
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could consist in decoding z into (x, y), and checking that we recover the genuine
values unchanged. However, x is sensitive: the purpose of the protection is exactly
to avoid representing x by replacing it by z. The random variable y, from its side,
does not convey any (statistically) exploitable information. So, checking whether

or not the mask has been altered, i.e., zHT(HHT)−1
?
= y, is a harmless detection

strategy. This happens if and only if f = 0, i.e., ε ∈ C. As ε = 0 is pointless (since
without observable effect), harmful faults only happen if ε ∈ C \ {0}. In particular,
the Hamming weight of ε must be greater or equal to the minimum distance d of
code C for the fault not to be detected. Now, given that the minimum distance d
of C is a design parameter, it is set as high as possible.

Therefore, have C be LCD of greatest possible minimum distance simultaneously
improves the resistance against SCA and FIA.

There are two kinds of designs that can benefit from the described protection.
The first one is the implementation of hardware accelerators for block ciphers, such
as the AES. In this case, the data to protect are typically bytes, with k = 8 (see for
instance this case study [8]). It is shown that an optimal linear code of parameters
[16, 8, 5] is LCD, and is very suitable for embedded devices, as the length n =
2k = 16 consists in one word (two bytes). Besides, it happens that the [16, 8, 5]
code is unique, as proven by Betsumiya and Harada in [2, Corollary 6, page 19].
Remarkably, this code is not only LCD, but also CIS (i.e., with Complementary
Information Sets) [11, Sec. V.A, page 6004] while being odd formally self-dual.
The second kind is a general-purpose processor executing software cryptography (see
for instance [6], where a tiny processor is protected). Its registers can be protected
individually (hence k = 8, 16, 32). For an improved security, it can be advantageous
to mask all the registers seen as one unique resource, made up of a few hundreds to
a few thousands bits. Therefore, we are interested in codes of various dimensions,
ranging from k = 8 to k ≈ 4096.

Side-channel analysis starts to be difficult even at low degrees (e.g., d is equal to
a few units, such as d = 2, 3, 4). The same applies to perturbation attacks: if all
faults on d = 1, 2, 3, 4 bits are detected, then the success of FIA is compromised.
Now, hardware trojan horses (HTHs) make up a special threat. HTHs are gates
added by an adversary (e.g., a silicon foundry) into the design at fabrication time.
Those gates allow to deliver a malicious payload on a crafted activation condition.
The activation results from a triggering, decided based on the value of some bits
of the circuit. Thus, in a circuit protected by a LCD code C of minimum distance
d, the HTH must connect to at least d bits to receive enough bits for a partial
demasking of the state. Symmetrically, the payload is delivered by altering some
bits of the circuit. Consequently, the HTH must modify at least d bits to bypass
an integrity check. Therefore, in order to preventively refrain the insertion of HTH
trigger logic and in order to proactively detect the effect of the HTH payload, the
minimum distance d of LCD codes must be set has high as possible (refer to [6] for
more details). Now, it is known that for too large a value of d (e.g., d > 16), then
the added gates making up the HTH will be so numerous that the HTH will be
trivially disclosed, e.g., by some visual inspection [5].

The problem is thus the following: for a given dimension k (architecture param-
eter) and minimum distance d (security parameter), find a LCD code of length n
as small as possible (and therefore, of rate k/n as large as possible).
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Remark 2 (More general formalization). Let us consider two codes C and D which
are supplementary in Fnq , where q is a prime power (e.g., 2), but not necessarily
dual. We denote by d the minimum distance of C and by d′ the dual distance of D.
Then the researched compromise is between min(d, d′) and the dimension of code C.
Indeed, if C is a subcode of C1 and D is a supercode of D1, then d ≥ d1 and d′ ≥ d′1
(since D⊥ is a subcode of D⊥1 ), which implies that min(d, d′) ≥ min(d1, d

′
1).

An application of remark 2 can be found in [4, 10]. The context is that of an
asymmetrical defense against HTH: the HTH must connect to at least d′ bits to
be able to trigger itself, and must modify at least d bits to be able to deliver its
payload.

In the sequel, we will consider only LCD codes, for which C = D⊥ hence d = d′.

The rest of the paper is organized as follows.

• Sec. 3 gives several constructions of codes, which make up the bulk of the
countermeasures.

• Sec. 4 gives constructions from other codes, thereby allowing for optimiza-
tions. Especially, puncturing, shortening and extending allows to fine-tune a
code that has the almost expected security level. Typically, it can be ben-
eficial to start from a code whose dimension is little larger than the target
dimension, in which case it can be shortened. This is beneficial as both the
dimension and the length are decremented, which allows to reduce the cost of
the implementation while at the same time have a code that better fits the
intended dimension.

3. Constructions. In this section we study, with a practical viewpoint, how the
known primary constructions2 can allow to obtain effective LCD binary codes with
large minimum distance and large rate. An important selection criterion is the
existence of a bound on the minimum distance, that otherwise cannot be computed
by testing all the possible Hamming weights of nonzero codewords since our codes
can have lengths of the order of one or several thousands.

LCD cyclic codes, which have a minoration on their minimum distance via the
BCH bound, have been characterized in [27]. The condition for being LCD is rather
simple and not difficult to achieve. Moreover, a potentially stronger lower bound
on the minimum distance exists for the sub-class of quadratic-residue (QR) codes,
which can also be LCD. A QR code has for length a prime number n and has a
minimum distance d at least

√
n. A binary QR code has length congruent with

±1 modulo 8 and is LCD if the length is congruent with 1 modulo 8 [19, Chp. 16,
§6, page 495]. Asymptotically,

√
n is a rather low value compared with the Gilbert

Varshamov bound, but such value is not far from what we need in our framework.
The main drawback of QR codes is that their dimension equals n±1

2 (namely n+1
2

if we exclude 1 as possible zero of QR codes, and n−1
2 otherwise), while we need

larger dimensions. Indeed, given the dimension k (which can be of the order of one
or several thousands) and some number δ (say, at most 64), we look for a LCD
code of length n as small as possible such that d ≥ δ. This leads us to consider (in
Sec. 3.3) a generalization of QR codes whose lengths are not prime.

We first recall in Sec. 3.1 the definition and some properties of cyclic codes in
general, and of LCD cyclic codes in particular. We then prove in Sec. 3.2 that there

2By that, we mean constructions from scratch. We shall deal with secondary constructions,
which deduce LCD codes from other codes, in the next section.
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exist LCD Reed-Solomon codes of any dimension over Fqm ; but their length can
hardly be controlled. Thus, we define in Sec. 3.3 the generalized residue codes3 and
study LCD codes within them.

3.1. LCD cyclic codes. In all this paper, q is a prime power; for applications
against SCA, FIA, and HTH, q shall be considered to be a power of 2.

Definition 3.1 (Cyclic code). A linear code C of length n over a finite field Fq is
cyclic if it is stable by any circular rotation.

We shall always consider n co-prime with q. The codewords can also be repre-
sented as polynomials in the algebra A = Fq[X]/(Xn − 1). In this representation,
a code is cyclic if and only if it is an ideal of A. A cyclic code C 6= {0} is generated
by the (unique) normalized nonzero polynomial g(X) of the smallest degree in C,
which is always a divisor of Xn−1 (conversely, any divisor of Xn−1 is the generator
polynomial of a cyclic code of length n). The zeros of g(X) in the extension of Fq
equal to Fqm where m is the multiplicative order of q modulo n (i.e., the smallest
positive integer such that n divides qm − 1) are then n-th roots of unity. They are
called the zeros of the code. The other n-th roots of unity are called the non-zeros
of C. Since n is co-prime with q, the zeros of Xn − 1 and then of g(X) are simple.
This is because the derivative nXn−1 of Xn − 1 has 0 for unique zero. The dimen-
sion of the code equals the number of its non-zeros because every codeword is in
fact a multiple of degree at most n− 1 of g(X) in Fq[X]. The set of zeros is stable
under the Frobenius automorphism γ 7→ γq. Conversely, any set of n-th roots of
unity stable under the Frobenius automorphism is the set of zeros of a cyclic code
over Fq. Let β be a primitive n-th root of unity. Let C be a cyclic code of zeros
{βj , j ∈ J ⊆ Z/nZ}. The BCH bound states that the minimum distance of C is
bounded below by the length of any string of consecutive elements in J , plus 1.
The dual C⊥ is the cyclic code whose zeros are the inverses of the non-zeros of C
[19, Chap. 7, page 188] and C ∩ C⊥ is the cyclic code whose set of zeros equals
the union of the zeros of C and those of C⊥. It equals {0} if and only if this union
equals the set of all n-th roots of unity. Hence:

Proposition 2. [27, Theorem at page 392] A cyclic code C is LCD if and only if
its set of zeros is stable by the multiplicative inverse, i.e., if and only if its generator
polynomial g(X) is self-reciprocal.

Example 1. The binary cyclic code of length 17 whose zeros are

{βj , j = 0, 1, 2, 4, 8, 9, 13, 15, 16}
is LCD and has parameters [17, 8, 6], and its generator polynomial is X9 + X6 +
X5 +X4 +X3 + 1. Note that the set of zeros is stable under the Frobenius γ 7→ γ2,
which makes the code binary, and that the string 15, 16, 0, 1, 2 in Z/17Z has length
5; the BCH bound is then tight for this code.

3.2. Expanded LCD Reed-Solomon codes. According to Proposition 2, those
Reed-Solomon codes whose sets of zeroes are stable under inversion are LCD codes.
These codes provide full choice of the dimension (see the proof of Lemma 3.2 be-
low), but not of the length, which must be primitive. Being MDS, they have optimal

3Earlier works, such as [25, 26] generalized QR codes to prime power (instead of prime) lengths
and to t-th order residues (instead of quadratic). Our work goes beyond insofar as we consider

any length co-prime with the field characteristic q (for our application, q = 2).
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minimum distance. But they are not binary and are then less useful for the ap-
plications described in introduction. However, there exists a way of transforming
them into binary LCD codes. Mapping a code C over Fqm onto a code C ′ over Fq
by replacing each coordinate by the binary vector of its coordinates relative to a
fixed basis is called expanding the code. For doing so, we can use that Fqm is a
field extension of Fq, and given an irreducible polynomial P over Fq and denoting

each element a ∈ Fqm as
∑m−1
i=0 aiX

i [ mod P (X) ], replace a by (a0, . . . , am−1).
Under the computer algebra system Magma, P is DefiningPolynomial(Fqm) and
C ′ is SubfieldRepresentationCode(C). If C has parameters [n, k, d]qm , then C ′

has parameters [mn,mk, d′]q, where d′ ≥ d.
According to [21, Theorem 5.1.18 page 103], there exists a self-dual basis of Fqm

over Fq if and only if either q is even or both q and m are odd. In the application
against attacks (Sec. 2), q = 2 and we can then consider a self-dual basis of F2m

over F2. We have the simple observations:

Proposition 3. If a code over Fqm is LCD, then the expanded code relative to a
self-dual basis of Fqm over Fq is also LCD.

Proof. Let (α1, . . . , αm) be a self-dual basis of Fqm over Fq. It is such that tr(αiαj) =
1 if i = j and 0 otherwise, where “tr” is the trace function from Fqm to Fq. Then
the vector x̄ of the coordinates of x relative to this basis is (tr(α1x), . . . , tr(αmx)).
For all x, y ∈ Fqm , we have tr(xy) = tr((

∑m
i=1 αitr(αix))(

∑m
j=1 αjtr(αjy))) =∑m

i=1 tr(αix)tr(αiy) = x̄ · ȳ. Orthogonality in Fqm and in the expanded version

Fmq being equivalent, the expanded code C ′ of C satisfies C⊥
′

= C ′
⊥

, for all linear
code C on Fqm .

Lemma 3.2. For all primitive length n = qm − 1 and all 0 < k < qm, there exists
an expanded LCD Reed-Solomon code of parameters [nm, km, d] with d ≥ n−k+ 1.

Proof. Let β be a primitive element of Fqm . For any integer b, the code generated by

the polynomial gb(X) =
∏n−k−1
j=0 (X − βj+b) is a Reed-Solomon code of parameters

[n = qm−1, k, d = n−k+1]qm . If k is odd, then the polynomial g(k+1)/2(X) is self-

reciprocal, because its set of (simple) zeros, {βj , (k + 1)/2 ≤ j ≤ n− (k + 1)/2}, is
stable by inversion. If k is even, then g−(n−k−1)/2(X) is self-reciprocal, because its

set of (simple) zeros, {βj , |j| ≤ (n−k−1)/2}, contains 1 and is stable by inversion.
So, irrespective of the parity of k, there exists a Reed-Solomon code generated by a
self-reciprocal polynomial, and by Proposition 2, this code is LCD. We apply then
Proposition 3.

Example 2 (Application of Lemma 3.2). By choosing q = 2, m = 10 and k = 644,
we can build the LCD Reed-Solomon code of generating polynomial g−(n−k−1)/2(X) =∏+189
j=−189(X − βj), where β is a primitive element of F1024. Its parameters are

[1023, 644, 380]1024. Its expanded code (i.e., its representation in F2) is also a cyclic
LCD code (by Proposition 3), and has parameters [10230, 6440, d]2 with d ≥ 380.

The length (qm − 1)m quickly explodes (for q = 2, it is respectively equal to 1,
6, 21, 60, 155, 378, 889, 2040, 4599, 10230 for 1 ≤ m ≤ 10). We need to investigate
more constructions.

3.3. LCD generalized residue codes. Let n be any integer co-prime with a
prime power q and let t be any positive integer. Let Q be the set of t-th powers in
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Z/nZ:

Q = {it, i ∈ Z/nZ} ⊆ Z/nZ .

Then Q is stable under multiplication in the sense that, for any s ∈ Q, the mapping
r ∈ Q 7→ sr is valued in Q (indeed, for every it, jt ∈ Q, we have itjt = (ij)t).
Note that, since n is not assumed to be a prime, the image set of such mapping
may be strictly included in Q (for the same reason, we do not exclude i = 0 in the
definition of Q above since there can exist 0 divisors) and Z/nZ \ Q may not be
stable under all such mappings. Assume that q belongs to Q. Then Q is stable
under multiplication by q, in the strong sense that the mapping r ∈ Q 7→ qr has
image set Q, since q being co-prime with n, the multiplication by q is a permutation
of Z/nZ, and Q∗ = Q \ {0} is also stable under multiplication by q.

Proposition 4. Let n be an odd positive integer and t be any positive integer. Let
Q be the set of t-th powers in Z/nZ. Assume that q and −1 both belong to Q. Then
the cyclic code C of length n whose zeros are βi, i ∈ Q (resp. i ∈ Q∗, i ∈ Z/nZ\Q,
i ∈ Z/nZ \Q∗) where β is a primitive n-th root of unity in an extension field of Fq,
is a cyclic LCD code.

Proof. C is q-ary since its set of zeros is stable under the Frobenius automorphism,
and Q being stable under multiplication by −1 in Z/nZ, C is LCD.

Note that, given t, it is easy to find integers n such that q and −1 are in Q: it
is enough to take n as a common divisor of an integer of the form rt − q and of an
integer of the form st + 1.
But since n is not assumed to be a prime, the size of Q may be strictly smaller than
1+ n−1

gcd(t,n−1) (that is, n+1
2 if t = 2 and n is odd) and the dimension k = n−card(Q)

of the code may be larger than (n− 1)(1− 1
gcd(t,n−1) ) (that is, n−1

2 if t = 2 and n

is odd).
We give in Table 1 the values of n ≤ 10, 000 such that q = 2 and −1 are quadratic

residues (t = 2) and Q has size strictly smaller than n+1
2 . They are not numerous

but they exist. We observe that card(Q) either is near n
2 or is near n

4 (which is of
course more interesting for us since it gives a larger dimension). Note that the only
way we know of bounding below the minimum distance is then by using the BCH
bound.

Remark 3. For classical QR codes, n is a prime number (and Z/nZ is then a
field) and t = 2. Given a nonzero codeword f(X) of minimum weight d in the code
C of zeros βi, i ∈ Q∗, and j a non-residue, the polynomial f(Xj) is a nonzero
codeword in the code of zeros βi, i ∈ Z/nZ \Q, and f(X)f(Xj) belongs then to the

intersection of these two codes and is a multiple of
∑n−1
i=0 X

i which has weight n.
Then d2 ≥ n (but since the size of Q∗ equals n−1

2 , the dimension of the code is n±1
2 ,

which is too small for our purpose). We need then to generalize.

Proposition 5. Let n be a prime number co-prime with q (i.e. not dividing q) and
t be any integer. Let e = gcd(n − 1, t) and Q be the set of t-th powers in Z/nZ.
Assume that q and −1 both belong to Q. Then the binary LCD code of Proposition 4

has rate
n−n−1

e

n =
e−1+ 1

n

e and minimum distance d satisfying de ≥ n.

Proof. Let α be a primitive element of the field Z/nZ; we have Q∗ = {αje, j ∈
Z/(n − 1)Z} and (Z/nZ)∗ =

⋃e−1
i=0 α

iQ∗. Then, since f(Xα−i

) = 0 if and only if

Xα−i ∈ {βj , j ∈ Q∗}, that is, X ∈ {βαij , j ∈ Q∗}, if f(X) ∈ C the polynomial
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i=0 f(Xα−i

) has any element βj , j ∈ (Z/nZ)∗ for zero and is then a multiple of∑n−1
i=0 X

i. This completes the proof since wH(
∏e−1
i=0 f(Xα−i

)) ≤ (wH(f))e.

We have then a trade-off between minimum distance and rate.

Remark 4. The article [7] also introduces generalized residue codes. Moreover,
this article provides an lower bound on the minimum distance of such codes.
However, in our context of LCD codes, this bound is not exploitable. For instance,
the first entry in Table 1 of rate close to 3/4 (and not only 1/2) has length n = 697.
For this length, we have the decomposition X697 − 1 = (X − 1)P (X)Φn(X), where
(using notations borrowed from [7]):

• Φn(X) is a product of 16 irreducible polynomials of degree 40, and
• P (X) is a polynomial of degree 56, which decomposes into 2 irreducible poly-

nomials of degree 8 and 2 irreducible polynomials of degree 20.

Thus, according to [7, Theorem 3], the lower bound on d, the minimum distance of
the code, is: 56d16 ≥ 697, which does not give any information on d because this
inequation is true for all d > 1.

Remark 5. The paper [18] also introduces a bound for minimal distances on gen-
eralized residue codes. However, for meaningful examples, it degenerates to dt ≥
n′ = 1, which does not learn anything on d (at least for the examples given in [18]).

3.4. Generating the codes by the use of idempotents. The generator poly-
nomial of a cyclic code C of length n may be complex to calculate, because this
needs to calculate in the Galois extension of Fq containing a primitive n-th root of
unity β. An alternative way is to use an idempotent as generator of the code (this
method is well-known and specially simple for classical quadratic residue codes, see
[19, Chap. 16, §3, page 484]). Let g(X) be the generator polynomial of a cyclic code
C. We have Xn − 1 = g(X)h(X) where h(X) is co-prime with g(X) since n is odd
(all zeros of Xn−1 being then simple). Bezout’s theorem implies then the existence
of two polynomials u(X), v(X) such that g(X)u(X)+h(X)v(X) = 1, which implies
(g(X)u(X))2 = g(X)u(X) [mod Xn − 1]. Then E(X) = g(X)u(X) is an idempo-
tent in Fq[X]/(Xn − 1). Moreover, g(X) = (E(X) + h(X)v(X))g(X) = E(X)g(X)
[mod Xn − 1] implies that E(X) is also a generator of C. Using that E(X) is
an idempotent, we have that f(X) ∈ C if and only if f(X)E(X) = f(X). This
implies that E(X) is unique, since if another idempotent F (X) exists in C, we have
F (X)E(X) = F (X) = E(X). Note that E applied to n-th roots of unity takes
values in F2 (this is in fact a necessary and sufficient condition for E(X) ∈ C to be
an idempotent [19, Chap. 16, §3, Theorem 2 at page 484]).

Proposition 6. Let C be a cyclic code over Fq. Let E(X) be the idempotent of
C. Then C is LCD if and only if E(X) is self-reciprocal, that is, if and only if the
idempotent associated to C⊥ is 1− E(X).

Proof. If C is LCD, then g(X) and h(X) are self-reciprocal, and E(X) which is ob-
tained from g(X) and h(X) by the extended Euclidean algorithm, is self-reciprocal
as well. Conversely, if E(X) is self-reciprocal, then the zeros of the code, which are
the common zeros of E(X) and Xn − 1, are globally stable under inversion and C
is LCD. The idempotent of C⊥ equals the reciprocal of 1−E(X), since 1−E(X) is
an idempotent (note that (1−E(X))2 = 1− 2E(X) + (E(X))2 = 1−E(X)) whose
common zeros with Xn − 1 equal the non-zeros of the code.

Case of generalized residue codes for q = 2:
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Proposition 7. Let n be an odd positive integer and t be any positive integer. Let
Q be the set of t-th powers in Z/nZ. Assume that q = 2 belongs to Q. Let C be
the binary cyclic code of length n over Fq whose zeros are βi, i ∈ Q∗ where β is a
primitive n-th root of unity in an extension field of Fq. Let P (X) =

∑
j∈QX

j. If
every nonzero element in Q is co-prime with n, then the idempotent of code C is
P (X) or 1 + P (X).

Proof. Since 2 ∈ Q, P (X) satisfies P 2(X) =
∑
j∈QX

2j ≡ P (X) [mod Xn − 1] and

is then an idempotent. For every t-th power residue r, we have P (βr) =
∑
j∈Q β

rj ,

and if r is co-prime with n then we deduce that P (βr) =
∑
j∈Q β

j = P (β) ∈ F2.

Note that adding β0 = 1 to the zeros of the code (resp. withdrawing β0 if it was
a zero) corresponds to multiplying (resp. dividing) the generator polynomial by

(X + 1). The idempotent becomes E(X) + Xn+1
X+1 since the idempotent element

Xn+1
X+1 of the algebra A takes value 1 at 1 and value 0 at any other n-th root of

unity.

3.5. When the length n is a prime power. We have now a simple way to
practically generate LCD generalized residue codes. But we need to check that the
conditions “q ∈ Q”, “−1 ∈ Q” and “every nonzero element in Q is co-prime with
n” can be satisfied simultaneously. Of course if n is a prime, the last condition is
satisfied. If t = 2 (which, as we saw above, can give good rates for some values of
n which are not primes) and n is the square of a prime, we have:

Proposition 8. Let p be any prime number and n = pr for some r ≥ 1. Let
Q = {it, i ∈ Z/nZ} where t ≥ r. Then every nonzero element in Q is co-prime
with n.

Proof. Indeed, let 0 < i = kp+ l < n, with l < p. Then it ≡ lt [mod p] and if it 6= 0
in Z/nZ then l 6= 0 and it is then co-prime with p and then with n.

We give in Table 2 the first values of p and n = p2 such that q = 2 and −1 are
quadratic residues (note that all these values of p are congruent with 1 mod 8 since
if 2 and −1 are quadratic residues mod p2 they are also quadratic residues mod p
and we know from [19, Chap. 16, §6, page 495] that p is then congruent with 1
mod 8) and the corresponding values of the size of Q. We observe that this size is
smaller than n+1

2 which is easily proved in general since two elements i = kp + l

and i′ = k′p + l′ of Z/nZ have the same square if and only if p|(l′2 − l2), that is,
l = l′ or l′ = p − l, and in the case l = l′, then k = k′ (since p|k′ − k), and in the
case l′ = p− l, then k′ = k − p+1

2 .
We can now generalize Proposition 5 to the case where n is not prime, but a power

of a prime. Notice that Ling and Xing [18], and also Sharma, Bakshi and Raka [24],
study generalized residue codes. However, the minimum distances given in [18, Sec.
V, page 204] and [24, Table 1, page 1083] have been computed thanks to Magma,
and does not result from a mathematical result. We provide this proposition:

Proposition 9. Let n = pr, where p is a prime and r ≥ 1, and let t ≥ r. Let
e = gcd(pr−1(p−1), t) and Q be the set of t-th powers in Z/nZ. Assume that q and
−1 both belong to Q. Then the q-ary LCD code C of Proposition 4 (with zeros in

Q∗) has rate
e−1+ 1

p

e and minimum distance d satisfying de ≥ p.
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Proof. The non invertible elements of Z/nZ are the multiples of p, and the group
(say G) of invertible elements (the unities) is cyclic of order pk−pk−1 = pk−1(p−1)
and of generator g = a(p+1), where a is an element of order p−1. Indeed, we have

(p+1)p
k

= pk+1qk+1 where qk is coprime with p, and this implies that p+1 has order
pr−1. If we take t ≥ r, then the t-th power of any non-invertible element is equal
to 0 (note that this reduces the size of Q and thus increases the rate) and Q∗ is the
cyclic group of unities generated by gt. Let us denote e = gcd(pr−1(p− 1), t). The

group Q∗ has order pr−1(p−1)
e , and G equals the union

⋃e−1
i=0 g

iQ∗. Let f(X) ∈ C.

Then
∏e−1
i=0 f(Xg−i

) equals Xn+1
P (X) where P (X) =

∏pr−1−1
j=0 (X+βpj). The βpj being

all (n/p)-th roots of the unity, we have P (X) = Xn/p + 1. Hence Xn+1
P (X) has weight

p and we have de ≥ p. Finally, the rate is
pr− pr−1(p−1)

e

pr =
e−1+ 1

p

e .

Remark 6. The bound on d given in Proposition 5 is interesting in some contexts,
such as the codes given in Table 2, where it is the best known bound (as mentioned
in Remarks 4 and 5, we recall that other state-of-the-art bounds do not apply).

Remark 7. In some very particular cases (when their length is comparable with
competing codes), expanded LCD Reed-Solomon codes (covered in Sec. 3.2) can be
interesting substitutes to LCD generalized residue codes. For exemple, there is in
Table 2 a binary code of dimension 6440, length 1132 = 12769, and minimal distance
≥ 11. The expanded LCD Reed-Solomon code of Example 2 has the same dimension,
but a smaller length (only 10230) and a minimal distance equal or greater than 380.

4. Constructing LCD codes from other codes. The constructions investigated
in the previous section do not always allow to reach the precise parameters (length,
dimension, minimum distance) needed in our framework. We must then study
those secondary constructions which allow modifying the parameters of codes and
to obtain LCD codes from other codes (which can be LCD or not). As far as we
know, these secondary constructions have not yet been studied in the literature.
The LCD property is invariant under permutation of the codeword coordinates and,
as seen in Subsection 3.2, under expansion. The only two other transformations that
we know which preserve the LCD property are the direct sum and the direct product.
They are detailed in Sec. 4.1. These preservations do not allow to construct LCD
codes with large rate. But transformations of codes which do not preserve the
LCD property can allow more constructions of LCD codes. Let φ be one of them.
Then, we can express by means of a code C the fact that φ(C) is LCD, or by
means of φ(C) the fact that C is LCD. This allows to have constraints different
from C ∩ C⊥ = {0}, that could possibly be satisfied by other classes of codes.
The operations allowing to turn codes into LCD are studied in Sec. 4.2, which
discusses puncturing, shortening, extending and the (u, u + v) construct. These
operations allow to fine-tune a code, with a view to obtain LCD codes with adjusted
parameters. Finally, Sec. 4.3 explains how to turn an arbitrary code into a LCD
code by applying a linear automorphism.

4.1. Transformations of LCD codes into other LCD codes.

4.1.1. Constructing LCD codes using the direct sum.

Proposition 10. If C1 and C2 are LCD codes of respective parameters [n1, k1, d1]
and [n2, k2, d2], then their direct sum (i.e. their Cartesian product), defined as C1⊕
C2 = {(c1, c2), c1 ∈ C1, c2 ∈ C2}, is LCD of parameters [n1+n2, k1+k2,min(d1, d2)].
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The name of direct sum (see [19, Problem 17 of Chp. 1, page 76]) comes from the
fact that the indices of the codewords of C1 and of those of C2 being distinct, the
sum of C1 × {0} and {0} × C2 as vector-spaces is direct.

Proof. (C1 ⊕ C2)⊥ = C⊥1 ⊕ C⊥2 and then (C1 ⊕ C2) ∩ (C1 ⊕ C2)⊥ = (C1 ∩ C⊥1 ) ⊕
(C2 ∩ C⊥2 ).

4.1.2. Constructing LCD codes using the direct product.

Definition 4.1 (Direct Product, [19, Chap. 18, §2, page 568]). Let C1 and C2

be two codes of parameters [n1, k1, d1] and [n2, k2, d2], respectively. The direct
product C1 ⊗ C2 between C1 and C2 is the code of parameters [n1n2, k1k2, d1d2],
whose codewords are equal to:

(c1[j1]c2[j2])0≤j1<n1,0≤j2<n2
, (4)

for all c1 ∈ C1 and c2 ∈ C2, where the square brackets operator represents the
coordinate selection of a codeword.

Remark 8. The codewords of C1 ⊗ C2 can have their coordinates permuted such
that they write:

• either as (c1[j1]c2)0≤j1<n1
,

• or as (c2[j2]c1)0≤j2<n2 ,

where words such as c1[j1]c2, where c1[j1] ∈ Fq and c2 ∈ Fn2
q , belong to Fn2

q .

Definition 4.2. We denote:

• by σ1 : {0, . . . , n1 × n2 − 1} → {0, . . . , n1 × n2 − 1} the permutation of coor-
dinates that leads to codewords of C1 ⊗C2 been written as (c1[j1]c2)0≤j1<n1

,
• by σ2 : {0, . . . , n1 × n2 − 1} → {0, . . . , n1 × n2 − 1} the permutation of coor-

dinates that leads to codewords of C1 ⊗C2 been written as (c2[j2]c1)0≤j2<n2 .

More precisely, let d = (c1[j1]c2[j2])0≤j1<n1,0≤j2<n2
a codeword of C1 ⊗ C2 (see

Eqn. (4)). We denote: d[j] = c1[j/n2]c2[j mod n2], for all 0 ≤ j < n1n2. Then:{
σ1(j) = j ,

σ2(j) = n2(j mod n1) + (j/n1) .

Lemma 4.3. The dual of C1 ⊗ C2 is (C⊥1 ⊗ Fn2
q ) + (Fn1

q ⊗ C⊥2 ).

Proof. In fact it is easily shown that the dual of C1 ⊗ C2 also equals (C⊥1 ⊗ C2) +
(Fn1
q ⊗ C⊥2 ) (this is between the lines of the proof of Proposition 11 below) when

C1 and C2 are LCD. Actually, the sum in Lemma 4.3 is not direct, but the sum
(C⊥1 ⊗ C2) + (Fn1

q ⊗ C⊥2 ) or (Fn1
q ⊗ C2) + (C1 ⊗ C⊥2 ) (both equal to the dual of

C1 ⊗ C2) is indeed direct.

Proposition 11. If C1 and C2 are LCD, then C1 ⊗ C2 is also LCD.

Proof. We know that a linear code C of length n is LCD if and only if C+C⊥ = Fnq ,

since the dimension of C⊥ equals the co-dimension of C. The code (C1⊗C2)+(C⊥1 ⊗
Fn2
q ) includes (C1+C⊥1 )⊗C2 = Fn1

q ⊗C2, since any word ((c1[j1]+c′1[j1])c2)0≤j1<n1
of

(C1+C⊥1 )⊗C2 can be decomposed into the sum of (c1[j1]c2)0≤j1<n1
∈ C1⊗C2 and of

(c′1[j1]c2)0≤j1<n1 ∈ C⊥1 ⊗C2 ⊆ C⊥1 ⊗Fn2
q . Hence (C1⊗C2)+(C⊥1 ⊗Fn2

q )+(Fn1
q ⊗C⊥2 )

includes Fn1
q ⊗ C2 + Fn1

q ⊗ C⊥2 = Fn1
q ⊗ Fn2

q = Fn1n2
q .

Proposition 12. Let C1 and C2 be two linear codes of dual distance d⊥1 and d⊥2 .
Then, the dual distance of C1 ⊗ C2 is min(d⊥1 , d

⊥
2 ).
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Example 3. Let q = 2, n = 15 and k = 8. The best known linear code in the
Magma database has parameters [15, 8, 4]. But this code is not LCD. However, let

C1 the cyclic linear code of parameters [5, 4, 2] of generating matrix

 1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

,

and C2 the cyclic linear code of parameters [3, 2, 2] of generating matrix

(
1 0 1
0 1 1

)
.

As C1 and C2 are LCD, then, by Proposition 11, C1 ⊗ C2 is also LCD, and has
parameters [5× 3, 4× 2, 2× 2] = [15, 8, 4].

4.1.3. The (u, u + v) construction. The (u, u + v) construction (also known as the
Plotkin sum) provides an interesting construction of LCD codes.

Proposition 13. If C and C ′ are linear codes of parameters [n, k, d] and [n, k′, d′],
respectively, and if C ′ ∩C⊥ is LCD (that is, C +C ′⊥ is LCD) and C ∩C ′⊥ = {0},
then the code C ′′ = {(u, u + v), u ∈ C, v ∈ C ′} is LCD of parameters [2n, k +
k′,min(2d, d′)].

Proof. We have C ′′⊥ = {(a, b), a + b ∈ C⊥, b ∈ C ′⊥} and then C ′′ ∩ C ′′⊥ =
{(a, b), a+ b ∈ C ′ ∩ C⊥, a ∈ C, b ∈ C ′⊥}. For any such (a, b), the double condition
a ∈ C, b ∈ C ′⊥ implies a + b ∈ C + C ′⊥. Hence, a + b ∈ (C + C ′⊥) ∩ (C + C ′⊥)⊥

and a = b since C + C ′⊥ is assumed LCD. Then a = b ∈ C ∩ C ′⊥ is null. �

Note that the double condition “C ′ ∩C⊥ is LCD and C ∩C ′⊥ = {0}” is satisfied
when C and C ′⊥ are supplementary in Fnq since we have then C ′∩C⊥ = C ∩C ′⊥ =
{0}, but this double condition is much more general. In fact, the building blocks
for this construction are a LCD code C, two subcodes C1 and C2 of C which are
supplementary in C; we take then C = C1 and C ′ = C⊥2 . Note that the rate of C is
k+n−k′

2n , the rate of its dual is k′+n−k
2n , while that of the (u, u+ v)-constructed code

is k+k′

2n . Hence, this construction allows increasing the rate in some cases.

4.2. Constructing LCD codes by puncturing, shortening and extending
codes.

4.2.1. Puncturing and shortening codes. Let C be a binary linear code of length n
and let T ⊆ {1, . . . , n}. Let CT be the punctured code obtained by deleting every
coordinate ci such that i ∈ T in every codeword c of C and CT be the shortened
code obtained by deleting every such coordinate in every codeword c of C such that
ci = 0 for every i ∈ T . Then (see [16, Chap. 1, Theorem 1.5.7, page 17]):

(CT )⊥ = (C⊥)T .

This can be easily checked: (C⊥)T ⊆ (CT )⊥ is clear and every element of (CT )⊥

can be extended to an element of C⊥ by adding zeroes, which proves that (CT )⊥ ⊆
(C⊥)T . By applying this property to C⊥, we have also:

CT
⊥ = (C⊥)T .

Puncturing and shortening allow constructing LCD codes but the conditions on the
original code C and on its dual are not straightforward to check.

Proposition 14. Let C be a linear [n, k, d] code and T a subset of {1, . . . , n}. Then:
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1. The shortened code CT is LCD if and only if every c ∈ C, whose support is
disjoint from T and for which there exists c′ ∈ C⊥ coinciding with c outside
T , is null. Code CT has parameters [n− |T |, k′, d′] with k − |T | ≤ k′ ≤ k and
d′ ≥ d.

2. The punctured code CT is LCD if and only if (C⊥)T is LCD, that is, every
c′ ∈ C⊥, whose support is disjoint from T and such that there exists c ∈ C
coinciding with c′ outside T , is null. Code CT has parameters [n− |T |, k, d′],
with d′ ≥ d− |T | if d > |T |.

Proof. We have CT
⊥ = (C⊥)T and CT ∩ (C⊥)T contains a nonzero vector if and

only if there exists c ∈ C nonzero whose support is disjoint from T and c′ ∈ C⊥
which coincides with c outside T . This proves 1 (the parameters of CT and CT are
well known, see e.g. [16, Chap. 1.5]).
The fact that CT is LCD if and only if (C⊥)T is LCD is a direct consequence of

CT
⊥ = (C⊥)T . Applying the characterization of the LCD property of CT to C⊥

gives 2. �

We investigate now hypotheses under which the conditions of Proposition 14 are
satisfied.

Corollary 1. Let C be a linear code of length n and let T be a subset of {1, . . . , n}
whose size is strictly smaller than the minimum distance of C + C⊥ and such that
every nonzero codeword of C ∩C⊥ has a nonzero coordinate at one (at least) of the
positions in T . Then CT and CT are LCD codes.

Proof. Indeed, the vector c + c′ in 1 or 2 of Proposition 14 has support included
in T and has then Hamming weight strictly smaller than the minimum distance of
C +C⊥ and is then null. Hence c = c′ has all its coordinates at positions in T null,
and is then null, according to the hypothesis on T .

Corollary 2. Let C be a LCD code of length n and let T be a subset of {1, . . . , n}
whose size is strictly smaller than the dual distance of C (the minimum distance of
C⊥). Let π be the linear projection over C parallel to C⊥ (for every x ∈ Fnq , π(x)

is the unique element of C such that x ∈ π(x) + C⊥). Let ET be the vector space
{x ∈ Fnq ; supp(x) ⊆ T} where supp(x) is the support {i ; xi 6= 0} of x, and let πT
be the linear function from ET to FTq such that πT (x) is the restriction of the vector
π(x) to the positions in T . Then CT is LCD if and only if πT is bijective.

Proof. We first show that the condition of bijectivity of πT is sufficient. Let
c ∈ C be nonzero and have support disjoint from T , and let c′ ∈ C⊥ be such that c
and c′ coincide outside T . Let x = c+c′. Then x belongs to ET and is nonzero since
C and C⊥ are supplementary. Then πT (x) is nonzero, that is, supp(π(x)) ∩ T 6= ∅,
but by definition π(x) = c, a contradiction. We deduce according to Proposition 14
that C is LCD.
Let us prove now that the condition is necessary. Let x ∈ ET be nonzero and let
c ∈ C and c′ ∈ C⊥ be the unique elements such that x = c+ c′. Then c is nonzero
since if c = 0 then x ∈ C⊥, a contradiction since x has Hamming weight strictly
smaller than the minimum distance of C⊥. Moreover, c and c′ coincide outside T .
Then, according to Proposition 14, c has nonzero coordinates among the positions
in T and πT (x) 6= 0. Hence πT is injective and therefore bijective since the vector
spaces ET and FTq have the same dimension |T |. �
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The next corollary deals with cyclic codes. We index then the coordinates of the
codewords by 0, . . . , n− 1 instead of 1, . . . , n.

Corollary 3. Let C be a LCD cyclic code of length n over Fq. Let E(X) be the
idempotent of C. Let T = {n − t, n − t + 1, . . . , n − 1} where 1 ≤ t ≤ n − 1.
Then the shortened code CT is LCD if and only if, for every nonzero polynomial
f(X) = fn−tX

n−t + · · · + fn−1X
n−1 ∈ Fq[X], the polynomial f(X)E(X) [mod

Xn− 1] has degree at least n− t. In particular, if t = 1 then CT is LCD if and only
if the constant coefficient of E(X) is nonzero (i.e. equals 1 if q = 2).

Proof. Given a vector (g0, . . . , gn−1) represented by the polynomial g(X) =
g0+g1X+· · ·+gn−1Xn−1, the projection of g(X) on C parallel to C⊥ is represented
by the product g(X)E(X) computed in Fq[X]/(Xn − 1) (indeed, the idempotent
of C⊥ is E(X) + 1 and we have g(X) = g(X)E(X) + g(X)(E(X) + 1)). Accord-
ing to Corollary 2, CT is then LCD if and only if, for every nonzero polynomial
f(X) = fn−tX

n−t + · · · + fn−1X
n−1, the polynomial f(X)E(X) [mod Xn − 1]

has degree at least n − t. If t = 1 this condition is equivalent to the fact that the
constant coefficient of E(X) is nonzero. �

Example 4. Let C be the binary QR code of length n = 89; this cyclic code is LCD
because n mod 8 = +1. It can be checked with Magma that the code CT is LCD
for T = {n−1}, {n−2, n−1}, {n−3, n−2, n−1}. A computer search allows to check
Corollary 3 for those values of T . However, C{n−4,n−3,n−2,n−1} is not LCD. This

complies with Corollary 3, since, for instance, for f(X) = X85+X88 (i.e., fn−4 = 1,
fn−3 = 0, fn−2 = 0, fn−1 = 1), we have f(X)E(X) = X3 +X5 +X6 +X8 +X9 +
X10 +X12 +X13 +X14 +X15 +X18 +X19 +X20 +X24 +X28 +X30 +X31 +X32 +
X33 +X36 +X39 +X40 +X44 +X45 +X48 +X51 +X52 +X53 +X54 +X56 +X60 +
X64 +X65 +X66 +X69 +X70 +X71 +X72 +X74 +X75 +X76 +X78 +X79 +X81,
which has degree 81 < n− 4.

In the framework of Corollary 3, let E(X) =
∑n−1
j=0 ejX

j , then CT is LCD if

and only if the polynomials
∑n−1−i
j=n−t−i ejX

i+j , where i ranges from n− t to n− 1,
are linearly independent. Note that the matrix G whose i-th row is the list of the
coefficients of the polynomial XiE(X) [mod Xn−1], where i ranges over an interval
of length k (the dimension of C), say where i ∈ {n − k, . . . , n − 1}, is a generator
matrix of C. According to Corollary 3, CT is LCD if and only if the submatrix
of the last t rows and the last t columns of G is non-degenerate, that is, the set
{n− t, . . . , n− 1} is an information set of the subcode of C generated by the last t
rows of G.

Example 5. Let C be the QR (cyclic) binary [17, 9, 5]-code whose zeroes are βi,
i = 1, 2, 4, 8, 9, 13, 15, 16 where β is a primitive n-th root of unity. The generator
polynomial of C is X8 +X7 +X6 +X4 +X2 +X + 1. The shortened C{17} code is
LCD, of parameters [16, 8, 5]. This code is indicated as having optimal parameters
in the Grassl table [14] and is an example of LCD code given in [8, Appendix B].
Notice that this [16, 8, 5] code is equivalent to the code of Example 1 punctured at
{17}.

We obtain similar corollaries for characterizing the fact that CT is LCD when C
is LCD, by exchanging the roles of C and C⊥.
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4.2.2. Extending codes. Let C be a binary linear code of length n. Let us extend
it by adding a coordinate `(x) to each codeword x ∈ C, where ` is a linear form on
C. We assume that there exists a ∈ C such that `(a) = 1 so that this extension of
the code is not just adding a zero.

Proposition 15. Let C be a linear code and Ĉ = {(x, `(x)), x ∈ C}, where ` is a
nonzero linear form on C. Let a ∈ C be such that `(a) = 1 and let us denote 〈a, x〉
by `′(x). Then Ĉ is LCD if and only if :

C ∩ (ker(`))⊥ ∩ ker(`+ `′) = {0}.

Proof. According to the hypothesis, ker(`) is a hyperplane of C, and C is the direct
sum of ker(`) and {0, a}. Denoting by 〈, 〉 the usual inner product in Fnq , we have
then:

(Ĉ)⊥ = {(x, ε) ∈ Fnq × Fq ; ∀c ∈ C, 〈c, x〉 = ε `(c)}
=
{

(x, ε) ∈ Fnq × Fq ; ∀c ∈ ker(`), 〈c, x〉 = 0 and 〈a, x〉 = ε
}

= {(x, 〈a, x〉); x ∈ (ker(`))⊥}.

Hence Ĉ ∩ (Ĉ)⊥ = {(x, 〈a, x〉); x ∈ C ∩ (ker(`))⊥ and 〈a, x〉 = `(x)}.

Note that if C has dimension k then (C ∩ ker(`))⊥ has dimension n− k + 1 and
C ∩ (C ∩ ker(`))⊥ has then dimension at least 1.

The particular case where this dimension equals 1 is of course particularly inter-
esting. Note that (C ∩ ker(`))⊥ is the union of C⊥ and of one of its cosets, then if
C is LCD, C ∩ (C ∩ ker(`))⊥ has dimension 1.

The condition becomes then that the unique nonzero element of C∩(C∩ker(`))⊥

does not belong to ker(`+ `′).

Example 6. Let C as in Example 5. The generator matrix G of C is:

1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1
0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1


that can be extended thanks to ` : x ∈ F17

2 7→ x(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,
giving 

1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0
0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0


.

This matrix generates a LCD code of parameters [18, 9, 5].
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The vector a can be chosen as the first line of G, that is:

a = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0) ,

thus the form `′ is defined as `′(x) = 〈a, x〉. The code C∩ (C∩ker(`))⊥ is generated
by M1 = (1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0), ker(` + `′) is generated by M2 =
(0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0)T, and indeed, M1M2 = (1).

We notice that the best linear code of length 18 and dimension 9 has parameters
[18, 9, 6]. However, the code example given by Magma is not LCD.

4.3. LCD codes obtained by applying a linear automorphism to a given
code. Let C be a linear code of length n and L a linear automorphism of Fnq . We
consider the code L(C) = {L(c), c ∈ C}. Note that every linear code of length
n and dimension k can be obtained from one such code by applying all linear
automorphisms. We denote by L∗ the adjoint operator of L, characterized by the
fact that, for every x, y ∈ Fnq , we have 〈x, L(y)〉 = 〈L∗(x), y〉, and whose matrix is
the transpose of that of L.

Proposition 16. Let C be any linear code of length n and dimension k. Let L be
the space of linear automorphisms of Fnq . The set of LCD codes of length n and

dimension k equals {L(C); L ∈ L, C⊥ ∩ (L∗ ◦ L(C)) = {0}}.

Proof. The dual of L(C) equals L∗−1(C⊥) since for every x ∈ Fnq and every c ∈ C,

we have that 〈L(c), x〉 = 0 for every c ∈ C if and only if L∗(x) ∈ C⊥. Given C of
dimension k, finding all LCD codes of length n and dimension k is then equivalent
to finding all linear automorphisms L such that : C⊥ ∩ (L∗ ◦ L(C)) = {0}.

The applications L∗ ◦L are all the self-adjoint automorphisms A (whose matrices
are invertible and symmetric). Using this proposition for constructing a LCD code
corresponds to (1) determining an auto-adjoint automorphism A ∈ L such that
C⊥ ∩A(C) = {0} and (2) finding L ∈ L such that A = L∗ ◦ L.

Example 7. The best known linear code of length 7 and dimension 4 over F2 has
minimum distance 3. However, we have checked by computer search that no LCD
code of parameters [7, 4, 3] exists. LCD codes of parameters [7, 4, 2] exist, and can
be obtained by Proposition 16, starting from the Hamming code for C.

If C is already LCD, for instance C = Fkq×{0}, denoting by Ai the i-th coordinate

function of A, the condition C⊥ ∩ (A(C)) = {0} is that (A(x) ∈ C⊥ and x ∈ C)
implies x = 0, that is, A1(x) = · · · = Ak(x) = xk+1 = · · · = xn = 0 implies x = 0,
that is the mapping x 7→ (A1(x), ..., Ak(x), xk+1, ..., xn) is bijective, that is, the
mapping x 7→ (L∗1(x), ..., L∗k(x), L−1k+1(x), ..., L−1n (x)) is bijective.

5. Conclusion and perspectives. Complementary dual codes have applications
in information protection. An example is that of a cryptographic implementation,
be it hardware or software, which must be simultaneously protected against in-
formation leakage and information corruption, since both threats enable successful
attacks. We construct cyclic LCD codes, which can be used for that and need
then to have large minimum distance and large rate, and find suitable codes within
Reed-Solomon codes and the class of generalized residue codes. In addition to these
codes, we detail some secondary constructions, using direct sum, direct product,
puncturing, shortening, extension, (u, u+ v) construction, and the application of a
suitable linear automorphism.
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As a perspective, we aim at defining bounds for the minimum distance of LCD
codes, and at finding codes that approach those bounds. Besides, LCD codes of
sparse generator matrices would help reduce the implementation complexity.

Acknowledgments. The authors are grateful to Patrick Solé for pointing relevant
previous art. We also thank Mehdi Tibouchi for raising our attention on the original
properties of the [16, 8, 5] linear code.
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Appendix: Tables. In both tables 1 and 2, the binary linear codes are quadratic
residues (t = 2), and have parameters [n, k, d], where k = n − card(Q) and the
minimum distance d is greater or equal to the BCH bound.

The cells in gray in Table 1 correspond to composite length, i.e., the length n is
not a prime power, as opposed to the cells in white. The cells in gray correspond to
codes of rate near 1/4. They all correspond to duals of QR codes direct products
(recall Sec. 4.1.2). For instance, the code of length n = 697 and dimension k = 697−
189 is the dual of the direct product of QR codes C1 and C2 of parameters [17, 9]
and [41, 21] (notice that 697 = 17× 41 and 189 = 9× 21). Therefore, the minimum
distance of this code is small, namely 6. Indeed, we can apply Proposition 12, where
the dual distance d⊥1 of C1 is equal to 6, and the dual distance d⊥2 of C2 is equal to
10.

In Tab. 2, the minimum distance are given as:

1. the BCH lower bound,
2. the QR lower bound (see Proposition 9),
3. the (exact) value calculated by Magma; we fix a timeout of 1 hour.

The cells in gray highlight the best value or bound for the minimum distance.
Starting from p ≥ 113, it seems that the bound of Proposition 9 (i.e., d ≥ d√pe) is
the most efficient.
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Table 1. Values of n ∈ N (with its factorization) such that 2,−1 ∈
Q, for t = 2, and Q has size strictly smaller than n+1

2

n card(Q) BCH bound

289 = 172 137 6

697 = 17× 41 189 6

1241 = 17× 73 333 6

1513 = 17× 89 405 6

1649 = 17× 97 441 6

1681 = 412 821 6

1921 = 17× 113 513 6

2329 = 17× 137 621 6

2993 = 41× 73 777 6

3281 = 17× 193 873 6

3649 = 41× 89 945 6

3961 = 17× 233 1053 6

3977 = 41× 97 1029 6

4097 = 17× 241 1089 6

4369 = 17× 257 1161 6

4633 = 41× 113 1197 6

4777 = 17× 281 1269 6

4913 = 173 2321 6

5321 = 17× 313 1413 6

5329 = 732 2629 10

5617 = 41× 137 1449 6

5729 = 17× 337 1521 6

6001 = 17× 353 1593 6

6497 = 73× 89 1665 6

6817 = 17× 401 1809 6

6953 = 17× 409 1845 6

7081 = 73× 97 1813 10

7361 = 17× 433 1953 6

7633 = 17× 449 2025 6

7769 = 17× 457 2061 6

7913 = 41× 193 2037 6

7921 = 892 3917 6

8249 = 73× 113 2109 6

8633 = 89× 97 2205 6

8857 = 17× 521 2349 6

9409 = 972 4657 10

9553 = 41× 233 2457 6

9673 = 17× 569 2565 6

9809 = 17× 577 2601 6

9881 = 41× 241 2541 6
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Table 2. Values of p (prime number) and n = p2 such that 2,−1 ∈
Q, for t = 2, the size of Q and BCH bound

p n card(Q)
Minimum distance d

dBCH d√pe dMagma

17 289 137 ≥ 6 ≥ 5 = 6

41 1681 821 ≥ 6 ≥ 7 = 9

73 5329 2629 ≥ 10 ≥ 9 ?

89 7921 3917 ≥ 6 ≥ 10 ?

97 9409 4657 ≥ 10 ≥ 10 ?

113 12769 6329 ≥ 6 ≥ 11 ?

137 18769 9317 ≥ 7 ≥ 12 ?

193 37249 18529 ≥ 10 ≥ 14 ?

233 54289 27029 ≥ 7 ≥ 16 ?

241 58081 28921 ≥ 14 ≥ 16 ?

257 66049 32897 ≥ 7 ≥ 17 ?

281 78961 39341 ≥ 7 ≥ 17 ?
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