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Abstract— This paper considers the problem of obtaining
high quality attitude extraction and gyros bias estimation from
typical low cost inertial measurement units for applications in
control of unmanned aerial vehicles. Two different non-linear
complementary filters are proposed: Direct complementary filter
and Passive non-linear complementary filter. Both filters evolve
explicitly on the special orthogonal group SO(3) and can be
expressed in quaternion form for easy implementation. An
extension to the passive complementary filter is proposed to
provide adaptive gyro bias estimation.

I. INTRODUCTION

A fundamental problem in autonomous control of flight

vehicles is estimation of vehicle attitude. Due to the fast

time-scales associated with the attitude stabilisation loop,

degradation of attitude estimates can lead quickly to insta-

bility and cataclysmic failure of the system. Historically,

applications in unmanned aerial vehicles have addressed this

issue by using high quality sensor systems, for example

the YAMAHA RMAX radio controlled helicopters use high

quality optical gyros for their stability augmentation systems.

However, military specification inertial measurement units

are expensive, often subject to export restrictions and not

suitable for commercial applications. More recently, the focus

on new low cost aerial robotic systems, has lead to a

strong interest in attitude estimation algorithms. Traditional

linear Kalman filter techniques [6] (including EKF techniques

[2], [4]) have proved extremely difficult to apply robustly

to applications with low quality sensor systems [5]. The

inherent non-linearity of the system and non-Guassian noise

encountered in practice can lead to very poor behaviour of

such filters. Many UAV projects use a simple complementary

filter design to estimate attitude states [5]. Such filters are

very robust and easy to implement and tune, however, the

classical implementation is for a single-input integration [1],

[5]. Work in the nineties used the quaternion parameterisation

of SO(3) to derive filters for state estimation [7]. Following

this work there has been considerable interest in filtering

and control design for systems on SO(3) working in the

quaternion representation. In the last few years some authors

have tackled the joint estimation and control problem in this

framework [9]. These filters turn out to be very closely related

to the complementary filters in common use in practice.

In this paper we study the design of complementary filters

on SO(3) in a general setting. We consider the question

of measurements, error criterion and filter design from first

principals with attention to the Lie group structure of SO(3).
From this work we propose two non-linear filters: a direct
complementary filter and passive complementary filter. The

direct filter appears to be the filter that has been proposed by

authors working purely in the quaternion representation of

SO(3) [9]. The passive filter has several practical advantages

over the direct filter associated with implementation and low-

sensitivity to noise. We provide a derivation of the passive

filter in the quaternion representation and a short review of

classical complementary filters for completeness.

II. FILTER DESIGN AND ERROR CRITERIA FOR

ESTIMATION ON SO(3)
In this section, a detailed analysis of the natural error

coordinates and cost functions are presented for an estimation

problem of the dynamics of a rigid body evolving on SO(3).
The following frames of reference are defined

• A denotes an inertial (fixed) frame of reference.

• B denotes a body fixed frame of reference.

• E denotes the estimator frame of reference.

Let R = A
BR denote the attitude of the body-fixed frame

relative to the inertial frame. Let Ω = BΩ denote the angular

velocity of the body-fixed frame expressed in the body fixed

frame B.

The system considered is the kinematics

Ṙ = RΩ× (1)

where Ω× denotes the skew-symmetric (or anti-symmetric)

matrix such that Ω×a = Ω× a for all vectors a. The inverse
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operation that takes an anti-symmetric matrix to its associated

vector is denoted vex, Ω = vex(Ω×). The kinematics can also

be written directly in terms of the quaternion representation

of SO(3) by

q̇ =
1
2
q ⊗ p(Ω) (2)

where q = {(s, v) ∈ R × R
3| s2 + |v|2 = 1} represents the

unit quaternion and p(Ω) represents the pure quaternion as-

sociated to Ω, p(Ω) = (0,Ω)′. The quaternion multiplication

is denoted q1⊗q2 = [(s1s2−vT
1 v2), (s1v2 +s2v1 +v1×v2)].

The goal of developing an estimator is to provide a smooth

estimate R̂(t) ∈ SO(3) of a state R(t) that is evolving due

to some external input based on a set of measurements. The

measurements available from a typical inertial measurement

unit are 3-axis rate gyro, acceleration and magnetometer

measurements. The rate gyro measurements are measured in

the body fixed frame,

Ωy = Ω + b(t) + µΩ

where Ω is the true body velocity, b(t) denotes a slowly time-

varying bias and µΩ denotes a noise process. The bias de-

stroys any low frequency information from the gyro readings,

however, the high frequency information in Ωy is reasonably

good. The acceleration and magnetometer readings are com-

bined together to provide an algebraic estimate of the attitude

rotation Ry. Although this is already an estimate of the

desired rotation, it is highly unreliable at high frequency due

to its dependence on the system dynamics (that perturb the

gravitational field estimate with dynamic effects) and its high

sensitivity to noise due to the magnetometer noise and the

algebraic reconstruction of Ry. The goal of a complementary

filter is to fuse the low-frequency measurement Ry with

the high-frequency rate measurement Ωy , to produce a good

estimate R̂ of the attitude, valid over the frequency domain.

Let R̂ denote an estimate of the body fixed rotation matrix

R. The rotation R̂ can itself be considered coordinates for the

estimator frame of reference E and is also the transformation

matrix between frames

R̂ = A
ER̂ : E → A.

The natural estimation error to use is the rotation

R̃ = R̂T R : B → E (3)

The rotation R̃ may be thought of as the attitude of the body-

fixed frame with respect to the estimator frame. The goal of

the filter design is to find kinematics for R̂(t) ∈ SO(3) such

that R̃(t) → I uniformly.

Let πa, πs denote, respectively, the anti-symmetric and

symmetric projection operators in matrix space:

πa(R̃) =
1
2
(R̃ − R̃T ), πs(R̃) =

1
2
(R̃ + R̃T ).

Thus,

R̃ = πa(R̃)+πs(R̃), πa(R̃)T = −πa(R̃), πs(R̃)T = πs(R̃).

Let (θ, a) denote the angle-axis coordinates of R̃. One has

[3]:

R̃ = exp(θa×), log(R̃) = θa×

cos(θ) =
1
2
(tr(R̃) − 1), a× =

1
sin(θ)

πa(R̃)

The cost function considered is

Et := ‖I3 − R̃‖2 =
1
2

tr(I3 − R̃) (4)

To see that this error measures an absolute difference between

R̃ and I3 note that

Et :=
1
2

tr(I − R̃) = (1 − cos(θ)) = 2 sin(θ/2)2. (5)

Thus, driving Eq. 4 to zero ensures that θ → 0. We term

this error the trace error or quaternion error. The second

terminology comes from observing that if q̃ = (s̃, ṽ) is

the quaternion related to R̃ then Et = 2|ṽ|2 = 2(1 − s̃2).
Much of the earlier work on non-linear filtering and control

design on SO(3) has used the error criteria Et and the

quaternion representation. In this document, we will work

almost exclusively directly on the matrix representation of

SO(3), although, equivalent derivations in the quaternion

framework are provided for completeness.

III. NON-LINEAR COMPLEMENTARY FILTER DESIGN ON

SO(3)

In this section, a general framework for non-linear esti-

mator for the rotation R(t) is proposed. The present section

focuses on the case where exact measurements of R(t) and

Ω(t) are available. Practical implementation for measured

values is considered at the end of the section.

A. Theoretical development of complementary filter on
SO(3).

The goal of attitude estimation is to provide a set of

dynamics for an estimate R̂(t) ∈ SO(3) to drive the error

rotation (Eq. 3) R̃(t) → I3 given measurements Ωy and Ry

of the angular velocity and true rotation respectively. It is

useful to begin by considering the case where

Ry = R, and Ωy = Ω.

In principle, it is not necessary to use a filter in this case,

since the measurements are exact. It is instructive, however,

to study the dynamics of a filter R̂(t) that is driven by exact

information without the complexities of dealing with sensor

noise characteristics, biases and partial state measurements.

Knowing that, for R ∈ SO(3) and for any vector a ∈ R
3,

we have:

(Ra)× = Ra×RT ,
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the kinematics of the true system are given by

Ṙ = RΩ× = (RΩ)×R

where Ω ∈ B and (RΩ) ∈ A. The dynamics of the filter

R̂ are required to evolve on SO(3) and should have a form

similar to the kinematics of R. Note that when R̂ = R then

the estimate must evolve according to the kinematics of R.

Thus, we propose kinematics of the form

˙̂
R = (RΩ + R̂ω(R̂, R))×R̂ (6)

where ω(R̂, R) ∈ E is a correction term that is zero when

R̂ = R. Note that the kinematics for R̂ are expressed with

respect to the inertial frame and the forward kinematics of

the true system are given in the inertial frame. In particular,

if no correction term is used, ω ≡ 0, then

˙̃R =R̂T (RΩ)T
×R + R̂T (RΩ)×R

=R̂T (−(RΩ)× + (RΩ)×) R = 0 (7)

The kinematics of R̃ are given by

˙̃R = R̂T (RΩ + R̂ω)T
×R + R̂T (RΩ)×R = R̂T (R̂ω×R̂T )T R

= ωT
×R̃ = −ω×R̃ (8)

Since ω ∈ E was specified in the estimator frame, the above

equation corresponds to the natural form of the kinematics

of R̃ : B → E .

The correction term ω in the filter dynamics Eq. 6 can

be chosen using a straightforward Lyapunov argument. We

choose

ω = kestvex(πa(R̃)) ⇔ ω× = kestπa(R̃), kest > 0. (9)

Lemma 3.1: Consider the true system

Ṙ = RΩ×

and assume that R and Ω are measured. The direct comple-
mentary filter dynamics are specified by

˙̂
R = (RΩ + R̂ω)×R̂,

=
(
(RΩ)× + kestR̂πa(R̃)R̂T

)
R̂, for R̂(0) = R̂0. (10)

Then

Ėt = −2kest cos2(θ/2)Et

and for any initial condition R̂0 such that

θ0 =
1√
2
|| log(R̃0)|| < π,

then Et → 0 and R̂(t) → R(t) exponentially.

Proof: Deriving the Lyapunov function Et subject to

dynamics Eq. 6 yields

Ėt = − 1
2

tr( ˙̃R) = −1
2

tr
(
ωT
×R̃

)

= −1
2

tr(ωT
×R̃) = −1

2
tr

[
ωT
×(πs(R̃) + πa(R̃))

]
.

knowing that, for any any symmetric matrix As and any

skew-symmetric Aa,

tr(AsAa) = 0,

the derivative of the cost function Et becomes:

Ėt = −1
2

tr(ωT
×πa(R̃))

Using the chosen expression of the correction term (Eq. 9),

one has

Ėt = −kest

2
||πa(R̃)||2F .

(where || · ||F denotes the Frobenius norm). Substituting for

sin(θ)a× = πa(R̃) gives

Ėt = −kest

2
sin2(θ)||a×||2 = −kest sin2(θ) =

= −4kest sin2(θ/2) cos2(θ/2) = −2kest cos2(θ/2)Et.

For θ0 < π then Et is exponentially decreasing to zero.

Lyapunov’s direct method completes the proof.

We term the filter Eq. 10 a complementary filter on
SO(3) since it recaptures the basic block diagram structure

of a classical complementary filter (see Appendix A). A

representative block diagram for the filter is shown in Figure

1. Consider a comparison of the terms in this block diagram

with the block diagram of a classical complementary filter,

Figure 8.

˙̂
R = R̂A

R̂
kπaR̃R̂T R

Ω

Maps angular velocity

Maps angular velocity
onto TISO(3).

into correct frame of reference

R̂T

RΩ

R̃
+

+

A

Inverse operation
on SO(3)

on SO(3)
Difference operation

(RΩ)×

System
kinematics

Maps error R̃
onto TISO(3).

R

R

Fig. 1. Block diagram of the non-linear filter on SO(3).

The ‘R̂T ’ operation is an inverse operation on SO(3)
and is equivalent to a ‘−’ operation on Euclidean space.

The ‘R̂T R’ operation is equivalent to generating the error

term ‘y − x̂’ in the classical complementary filter (cf. § ).

The two operations πaR̃ and (RΩ)× are maps from error

space and velocity space into the tangent space of SO(3),
an operation that is unnecessary on Euclidean space due to

the identification TxR
n ≡ R

n. The kinematic model is a first

order system that is essentially an integrator.

An important aspect of the proposed filter is the pre-

multiplication of Ω by the rotation R to ensure that the

velocity is in the correct frame of reference. This comes

from the fact that the measured angular velocity lies in the

body-fixed frame whereas the filter requires an angular ve-

locity estimate in the inertial frame. The requirement for the
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transformation R is a consequence of the measurement, not

directly of the geometry. If an angular velocity measurement

was obtained directly in the inertial frame, for example, such

as would be supplied by an external vision system, then this

transformation would be unnecessary.

B. Implementing a complementary filter on SO(3)
Given the theoretical form of the filter Eq. 10 it is

important to consider how such a filter may be implemented.

In practice, the various inputs to the filter are replaced by

measurements and filtered estimates of the states. There are

three key inputs

1) The reference rotation R that generates the error term

R̂T R. Based on an understanding of complementary

filter design (cf. Appendix ) it is natural to use the

estimate Ry to generate the error term.

2) A direct measurement of the angular velocity Ωy ≈ Ω
is available and used to drive the feedforward term in

the filter.

3) Finally, an estimate of the rotation R must be used to

map the body-fixed-frame velocity back into the inertial

frame. There are two choices for this crucial choice:

Direct complementary filter: Using the measured rotation

Ry as a feed-forward estimate of the B → A transformation

is the most common approach taken in the literature [7],

[9], [8]. A block diagram of this filter design is shown in

Figure 2. This approach has the advantage that it does not

introduce any additional feedback loop in the filter dynamics.

The error in the feed-forward estimate of the velocity will

enter as bounded noise in the filter implementation and the

overall filter will inherit strong stability properties from the

Lyapunov analysis in Lemma 3.1. It has the disadvantage

that the measurement of Ry is typically corrupted by high

frequency noise and this noise is transmitted to the output

via the B → A.
Passive complementary filter: Using the estimated rotation

R̂ to feedback an estimate of the B → A transformation is

a natural alternative to using Ry , Figure 3. The authors do

not know of a reference where a theoretical analysis of this

approach has been discussed in the literature, although, it is

certain that many authors will have used this idea in practice.

The advantage is that the estimate R̂ is likely to be a better

estimate of the true rotation than Ry if the filter remains well

behaved.

˙̂
R = R̂A

R̂
kπaR̃

R̂T

R̃
+

+

Ωy

Ry

RyΩy

R̂T Ry A

(RyΩy)×

Fig. 2. Block diagram of the direct complementary filter on SO(3).

˙̂
R = R̂A

R̂
kπaR̃

R̂T

R̃
+

+
R̂T Ry A

Ry

Ωy
R̂Ωy

(R̂Ωy)×

Fig. 3. Block diagram of the passive complementary filter on SO(3).

C. Passive Complementary Filter Design

In this section we provide an analysis of the passive

complementary filter.

It is interesting to note that using the feedback estimate

R̂ as the estimate for transforming the filter design leads to

filter kinematics in the estimator frame of reference

˙̂
R =

(
R̂Ω + R̂ω

)
×

R̂ = R̂
(
R̂Ω×R̂T + kestR̂πa(R̃)R̂T

)
R̂

= R̂
(
Ω× + kestπa(R̃)

)
= R̂ (Ω + ω)× (11)

In terms of the frames of reference, the factorisation relates

to the fact that the use of R̂ as a feedback estimation of the

transformation corresponds to assuming that the velocity is

measured directly in the estimator frame of reference. This

due to invariance of the anti-symmetric projection operator

under the adjoint map

AdR̃πa(R̃) = R̃πa(R̃)R̃T = πa(R̃)

we think of πa(R̃) ∈ B. Consequently, the equivalent error

correction in the estimator frame is the same skew-symmetric

matrix. This is natural as

πa(R̃) =
sin(θ)

θ
log(R̃)

and log is invariant under the Ad operator [3]. Therefore,

the filter may be rewritten naturally in the estimator frame

of reference. This structure is important since it considerably

simplifies the implementation of the filter as shown in Figure

4.

Lemma 3.2: Consider the true system

Ṙ = RΩ×

and assume that R and Ω are measured. Using the passive
complementary filter dynamics specified by Eq. 11. Then

Ėt = −2kest cos2(θ/2)Et

and for any initial condition R̂0 such that

θ0 =
1√
2
|| log(R̃0)|| < π,

then Et → 0 and R̂(t) → R(t) exponentially.

Proof: Analogously to the proof of lemma 3.1, the trace

error criterion Et = 1
2 tr(I − R̃) (Eq. 4) is used.
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Deriving Eq. 4 subject to dynamics Eq. 11 yields

Ėt = − 1
2

tr( ˙̃R) = −1
2

tr(−(Ω + ω)×R̃ + R̃Ω×)

= −1
2

tr([R̃,Ω×]) − 1
2

tr(ωT
×R̃)

Note that trace of a Lie bracket is zero, tr([R̃,Ω×]) = 0.

Analogously to the proof of lemma 3.1, using the chosen

expression for the correction term (Eq. 9) and the fact that

tr(ωT
×πs(R̃)) = 0, one obtains

Ėt = −1
2
kest||πa(R̃)||2 = −2kest cos2(θ/2)Et.

For θ0 < π then Eq is exponentially decreasing to zero.

Lyapunov’s direct method completes the proof.

˙̂
R = R̂A

R̂
kR̂T R πaR̃

R̂T

(Ω)×
Ωy

Ry

Fig. 4. Block diagram of the non-linear filter using feedback (R̂) estimation
of body-fixed-frame velocity and expressed in the estimator frame of
reference.

D. Simulation results

The proposed designs of direct and passive filters have

been simulated. The initial condition of orientation matrix is

the identity matrix (R(0) = I3). The chosen initial deviation

R̃ for both filters corresponds to a deviation of π
2 around the

axis e2. The orientation velocity has been chosen constant of

0.3rad/s around the axis e3 (Ω = 0.3e3). Figure 5 shows that

although trajectories are different, both errors of estimation

have, at a given time, the same deviation with respect to the

direction e3. In other words, they are on the same circle at

the same time.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
passive filter
direct filter

Fig. 5. Trajectories of R̃e3 for direct and passive complementary filters
on the plan {e1, e2}.

IV. ATTITUDE EXTRACTION AND GYROS BIAS

ESTIMATION FROM PASSIVE COMPLEMENTARY FILTER

In this section we propose to redesign the passive and

complementary filter Eq. 11 for state attitude estimation on

SO(3) in the presence of constant gyro bias. The redesign

approach consists in considering a dynamic estimator for the

bias b.

Theorem 4.1: Consider the true system

Ṙ = RΩ×

along with measurements

Ry ≈ R, valid for low frequencies,

Ωy ≈ Ω + b for constant bias b.

For a correction term ω given by Eq. 9, the passive comple-

mentary filter dynamics are specified by

˙̂
R = R̂(Ωy − b̂ + ω)× (12)

along with the following dynamics for the estimate b̂

˙̂
b = −kbvex(πa(R̃)), kb > 0 (13)

Consider the following Lyapunov function,

V = Et +
1

2kb
|b̃|2

Then for any initial condition R̂0 such that

θ0 =
1√
2
|| log(R̃0)|| < π and that kb >

2b̃(0)
2 − E(0)

,

then Et → 0 and R̂(t) → R(t) uniformly and b̃ → 0
converges to zero.

Proof: To prove the stability of the proposed observer,

we recall the expression of candidate Lyapunov function V :

V =
1
2

tr(I3 − R̃) +
1

2kb
|b̃|2

Differentiating V , one gets:

V̇ = − 1
2

tr( ˙̃R) − 1
kb

b̃T ˙̂
b

= −1
2

tr([R̃,Ω×]) +
1
2

tr((ω + b̃)×R̃) − 1
kb

b̃T ˙̂
b

Knowing that trace of a Lie bracket is zero ( tr[R̃,Ω×] = 0),

by simple verification that b̃T ˙̂
b = tr(b̃T

×
˙̂
b×) and that tr((ω +

b̃)×πs((̃R)) = 0, the derivative of the candidate Lyapunov

function becomes:

V̇ = − tr((ω + b̃)T
×πa(R̃)) − 1

kb
tr(b̃T

×
˙̂
b×)

= − tr(ωT
×πa(R̃)) − tr[b̃T

×(πa(R̃) +
1
kb

˙̂
b×)]
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Introducing now, the expressions of ω (Eq. 9) and of
˙̂
b (Eq.

13), the derivative of the Lyapunov function V becomes:

V̇ = −kesttr(πa(R̃)T πa(R̃)) = −kest||πa(R̃)||2 (14)

From the last equation where the Lyapunov function deriva-

tive is negative semi-definite, standard Lyapunov argument

concludes that πa(R̃) tends to zero. Consequently R̃ con-

verges towards R̃T and therefore R̃ tends to I3 and Et

converges to zero.

To address the problem of gyroscope bias error estimation

we appeal to LaSalle principle. The invariant set is contained

in the set defined by the condition πaR̃ = 0. Recalling Eq.

13, it follows that
˙̂
b = 0 on the invariant set and therefore

the gyros bias estimation error converges to a constant value

b̃∞. Recalling the derivative of R̃, one gets:

˙̃R = −(Ω + b̃ + ω)×R̃ + R̃Ω×

Using the fact R̃ ≡ I3 and that ω ≡ 0, it yields:

b̃∞ = 0

From the above discussion b̃ converges asymptotically to-

wards zero.

Remark 4.2: It is interesting to note that attitude extraction

and gyros bias estimation from direct complementary filter

leads to the following kinematics:

˙̂
R = R̂(R̃(Ωy − b̂) + ω)×

= R̂(R̃(Ωy − b̂) + kestvex(πa(R̃)))× (15)

along with dynamics

˙̂
b = −kbR̃

T vex(πa(R̃))

for the estimate b̂. However, as R̃T vex(πa(R̃)) =
vex(R̃T πa(R̃)R̃) = vex(πa(R̃)), expression of gyros bias

adaptive filter remains unchanged:

˙̂
b = −kbvex(πa(R̃)) (16)

	
A. A Quaternion-Based derivation of the passive complemen-
tary filter

As discussed in the introduction section much of the ex-

isting literature in estimation and control has been developed

on the quaternion group rather than directly on the Lie group

SO(3). Although the two groups are homomorphic, it is

not easy to detect the passivity structure used to derive the

passive complementary filter when working in the quaternion

representation. The authors feel that this explains the fact

that existing works have not used the passive complementary

filter Eq. 11. In this section we will provide the passive

complementary filter in terms of unit quaternion formulation.

Recall the unit quaternion kinematics given by Eq. 2 along

with measurements: qy ≈ q (valid for low frequencies) and

Ωy ≈ Ω + b (for constant bias b). Define the unit quaternion

error q̃ between the estimated and actual unit quaternions:

q̃ = q̂−1 ⊗ q =
[

s̃
ṽ

]

Recall the observer based quaternion proposed by Thienel

and Sanner [9] which represents one of recent development

in this area:

˙̂q =
1
2
q̂ ⊗ p(R̃(Ωy − b̂ + kestsgn(s̃)ṽ))

along with the following dynamics for the estimate b̂.

˙̂
b = −kbsgn(s̃)ṽ

If we replace the term sgn(s̃) in the expression of the observer

by 2s̃, the filter of the reference [9] is equivalent to the

proposed direct complementary filter designed on SO(3).
Indeed, we have

2s̃ṽ = 2 cos(θ/2) sin(θ/2)a =
1
2
(sin θ)a = vex(πa(R̃))

Consequently, the observer expresses as:

˙̂q =
1
2
q̂ ⊗ p(R̃(Ωy − b̂) + kestR̃vex(πa(R̃)))

Knowing that R̃vex(πa(R̃)) = vex(πa(R̃)), the final expres-

sion of the Thienel and Sanner’s observer could be rewritten

as follows:

˙̂q =
1
2
q̂ ⊗ p(R̃(Ωy − b̂) + kestvex(πa(R̃)))

along with the following dynamics for the estimate b̂

˙̂
b = −kbvex(πa(R̃))

which is the equivalent quaternion formulation of the di-

rect complementary filter designed on the orthogonal group

SO(3).
From the above discussion and formulation, the passive

complementary filter in terms of unit quaternion representa-

tion can be expressed as follows:

˙̂q =
1
2
q̂ ⊗ p(Ωy − b̂ + ω) (17)

where ω = kests̃ṽ and
˙̂
b = −kbs̃ṽ.

B. Experimental results

In this section, we present experimental results to evaluate

the performance of the proposed filters.

Experiments have been done on a real platform to illustrate

the convergence of the 3 Euler angles as well as the gyro

bias estimates. The platform was equipped with an IMU

and provided magnetic field measurements. The platform

simulates the movement of a flying vehicle with an orienta-

tion trajectory known a priori. From the platform, we could

extract the real values of the three Euler angles to compare
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them with the estimates provided by direct and passive

complementary filters. The frequency of inertial sensors data

acquisition is set to 25 Hz.

Due to the discrete data acquisition and in order to preserve

the evolution of the estimated matrix R̂ on the SO(3)
manifold, the proposed observer has been implemented in

the experiments in discrete time using exact integration of

passive complementary filters dynamics (Eq. 11) and Euler

integration of the bias estimation dynamics in Eq. 13. More

precisely, if we denote the sample time by T , rewrite
˙̃R =

R̃Ω̃× and assume that Ω̃(t) = Ω̃k for t ∈ [kT, (k + 1)T ],
then we have the discrete time model of the observer:

R̃k+1 = AkR̃k, b̂k+1 = bk − Tkbπa(R̃k)

where Ak = exp(Ω̃k
×) has closed form solution given by

Rodrigue’s formula (see reference [3]):

Ak
k = I3 − Ω̃k

×
sin(|Ω̃k|T )

|Ω̃k| + (Ω̃k
×)2

1 − cos(|Ω̃k|T )
|Ω̃k|2 (18)

Note that exact integration of direct complementary filter is

impossible. This due the actual dependance of the orientation

velocity Ω (see Eq. 10) but in the experiment we have

assumed that the term R̃Ω is constant in the interval t ∈
[kT, (k + 1)T ].

For the experiments the gains of the the proposed filters has

been chosen as follows: kest = 1rd.s−1 and kb = 0.3rd.s−1

0 10 20 30 40 50 60
−50

0

50

ro
ll

φ 
(°

)

φ
measure

φ
passive

φ
direct

0 10 20 30 40 50 60
−60

−40

−20

0

20

40

60

pi
tc

h
θ 

(°
)

θ
measure

θ
passive

θ
direct

0 10 20 30 40 50 60
−100

−50

0

50

100

150

200

ya
w

ψ
 (

°
)

time (s)

ψ
measure

ψ
passive

ψ
direct

Fig. 6. Euler angles from direct and passive complementary filters
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Fig. 7. Bias estimation from direct and passive complementary filters

V. CONCLUDING REMARKS

In this paper we have discussed the problem of orientation

extraction and gyro bias estimation from direct and passive

complementary filters developed directly in the special or-

thogonal group SO(3). Some advantages of passive comple-

mentary filter have been presented and discussed with respect

the direct version of the filter. Experimental results have been

provided as complement of the theoretical approach.

REFERENCES

[1] A.J. Baerveldt and R. Klang. A low-cost and low-weight attitude
estimation system for an autonomous helicopter. pages 391–395, 1997.

[2] J. L. Marins, X. Yun, E. R. Backmann, R. B. McGhee, and M.J. Zyda.
An extended kalman filter for quaternion-based orientation estimation
using marg sensors. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2003–2011, 2001.

[3] R.M. Murray, Z. Li, and S. Sastry. A mathematical introduction to
robotic manipulation. CRC Press, 1994.

[4] H. Rehbinder and X. Hu. Drift-free attitude estimation for accelerated
rigid bodies. Automatica, pages 653–659, April 2004.

[5] J. M. Roberts, P. I. Corke, and G. Buskey. Low-cost flight control system
for small autonomous helicopter. In Australian Conference on Robotics
and Automation, Auckland, 27-29 Novembre, pages 71–76, 2002.

[6] M. Jun S.I. Roumeliotis and G.S. Sukhatme. State estimation via sensor
modeling for helicopter control using an indirect kalman filter. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1346–1353, 1999.

[7] S. Salcudean. A globally convergent angular velocity observer for rigid
body motion. IEEE Transactions on Automatic Control, 46, no 12:1493–
1497, 1991.

[8] A. Tayebi and S. McGilvray. Attitude stabilization of a four-rotor aerial
robot: Theory and experiments. To appear in IEEE Transactions on
Control Systems Technology, 2005.

[9] J. Thienel and R.M. Sanner. A coupled nonlinear spacecraft attitude
controller and observer with an unknown constant gyro bias and gyro
noise. IEEE Transactions on Automatic Control, 48, no 11:2011–2014,
2003.

APPENDIX

A Review of Complementary Filtering: Complementary

filters provide a means of fusing low bandwidth position

measurements with high band width rate measurements for

first order kinematic systems.

A. Classical Complementary Filters

Consider a simple first order integrator

ẋ = u (19)
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with typical measurement characteristics

yx = L(s)x + µx, yu = u + µu + b(t) (20)

where L(s) is low pass filter associated with sensor character-

istics, µ represents noise in both measurements and b(t) is a

deterministic perturbation that is dominated by low-frequency

content. Normally the low pass filter L(s) ≈ 1 over the

frequency range on which the measurement yx is of interest.

A demonstrative example is a single axis attitude estimator

with a tilt meter providing a direct measurement of attitude

(filtered by the natural low pass dynamics of the tilt meter)

and yu provided by a rate gyro with associated noise µu and

bias b(t).
The measurements yx and yu can be fused into an estimate

x̂ of the state x via a filter

x̂ = F1(s)yx + F2(s)
yu

s

where F1 is low pass and F2 is high-pass. Note that the rate

measurement yu is first integrated to get a position estimate

and then filtered by F2 to retain only the high frequency

prediction, the low frequency component of yu/s is highly

unreliable due to the integration of µu + b(t). A filter of the

above form is termed a complementary filter if

F1(s) + F2(s) = 1. (21)

That is if F1(s) and F2(s) are complementary sensitivity

transfer functions then the overall filter is termed comple-

mentary. In practice, the above condition ensures that the

cross over frequency of the low pass filter F1(s) corresponds

to the cross over frequency of the high pass filter, and the

whole frequency domain is evenly represented in the filter

response.

There is a systems interpretation of a complementary filter

that provides an excellent structure for implementation in a

practical system. Consider the block diagram in Figure 8.

The output x̂ can be written

yu

C(s)
-

yx

+

+

+

∫ x̂

Fig. 8. Block diagram of a classical complementary filter.

x̂(s) =
C(s)

s + C(s)
yx(s) +

s

C(s) + s

yu(s)
s

= T (s)yx(s) + S(s)
yu(s)

s

where S(s) is the sensitivity function of the closed-loop

system and T (s) is the complementary sensitivity. It follows

that T (s) + S(s) = 1. Thus, a complementary filter design

is achieved by using classical control design techniques

to design the compensator C(s) = A(s)/B(s) and then

implementing the simple linear system

sB(s)x̂ = B(s)yu + A(s)(yx − x̂).

The most common complementary filter considered in-

volves a proportional feedback C(s) = k. In this case the

closed-loop dynamics are given by

˙̂x = yu + k(yx − x̂). (22)

The frequency domain complementary filters (cf. Eq. 21)

associated with the proportional feedback complementary

filter are F1(s) = k
s+k and F2(s) = s

s+k . Note that the

crossover frequency for the filter is at krad/s. Design of the

gain k is based on analyzing the low pass characteristics

of yx and the low frequency noise characteristics of yu to

choose the best crossover frequency to tradeoff between the

two measurements. If the rate measurement bias, b(t) = b0,

is a constant then it is possible to add an integrator into the

compensator

C(s) = k +
1
λs

(23)

to reject a constant input disturbance from the closed-loop

system.

It is useful to also consider a constructive Lyapunov

analysis of closed-loop system Eq. 22 for measurements

yu = u + b0 + µu, yx = x + µx

for b0 a constant. Applying the PI compensator, Eq. 23, one

obtains state space filter dynamics

˙̂x = yu − b̂ + k(yx − x̂), ˙̂
b =

−(yx − x̂)
λ

The negative sign in the integrator state is introduced to

indicate that the state b̂ will cancel the bias in yu. Consider

the Lyapunov function

L =
1
2
|x − x̂|2 +

λ

2
|b0 − b̂|2

Abusing notation for the noise processes, and using x̃ =
(x − x̂), and b̃ = (b0 − b̂), one has

d

dt
L = −k|x̃|2 − µux̃ + µx(b̃ − kx̃)

In the absence of noise one may apply Lyapunov’s direct

method to prove convergence of the state estimate. LaSalles

principal of invariance may be used to show that b̂ → b0,

however, Lyapunov theory itself does not ensure exponential

convergence of the system. When the underlying system is

linear, then the linear form of the feedback and adaptation

law ensure that the closed-loop system is linear and stability

implies exponential stability.
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