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Abstract: Numerous lifetime distributions have been developed to assist researchers in various
fields. This paper proposes a new continuous three-parameter lifetime distribution called the com-
plementary gamma zero-truncated Poisson distribution (CGZTP), which combines the distribution
of the maximum of a series of independently identical gamma-distributed random variables with
zero-truncated Poisson random variables. The proposed distribution’s properties, including proofs of
the probability density function, cumulative distribution function, survival function, hazard function,
and moments, are discussed. The unknown parameters are estimated using the maximum likelihood
method, whose asymptotic properties are examined. In addition, Wald confidence intervals are
constructed for the CGZTP parameters. Simulation studies are conducted to evaluate the efficacy
of parameter estimation, and three real-world data applications demonstrate that CGZTP can be an
alternative distribution for fitting data.
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1. Introduction

The gamma distribution is widely used in modeling lifetime data. However, the gamma
distribution does not provide a reasonable parametric fit for modeling phenomena with
non-monotone hazard functions, such as bathtub hazard functions. Some new distributions
to model lifetime data have appeared in the recent literature by compounding existing
lifetime models with several discrete distributions. For instance, a distribution is obtained by
assuming the minimum or maximum of continuous positive random variables. To accomplish
this, Adamidis and Loukas [1] proposed an exponential-geometric (EG) distribution by
compounding the geometric distribution and the exponential distribution. A complementary
version of the EG distribution was proposed by Louzada et al. [2], which would be applied
to maximum lifetime data. The Weibull-geometric (WG) distribution with the minimum
compounded function was proposed by Barreto-Souza et al. [3], and its maximum version
was given by Tojeiro et al. [4]. Zakerzadeh and Mahmoudi [5] introduced a Lindley-geometric
(LG) distribution, whereas Gui et al. [6] introduced a complementary Lindley-geometric
distribution. In addition, several new compoundings of the Poisson distribution and some
lifetime models have been introduced in closed forms, such as Kus [7], who proposed an
Exponential-Poisson (EP) distribution, Hemmati et al. [8] and Lu and Shi [9], who proposed
a Weibull-Poisson (WP), whose complementary version was given by Ismail [10]. Alkarni
and Oraby [11] defined the class of Poisson with some lifetime distributions, and some
properties of the Rayleigh-Poisson and Pareto-Poisson distributions are presented in their
works. Additionally, Gui et al. [12] proposed a Lindley-Poisson (LP) distribution.
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In this article, the gamma and zero-truncated Poisson distributions are compounded
to generate a new lifetime distribution using the maximum function, which the hazard
function can perform in a bathtub shape. This novel distribution is established as the com-
plementary gamma zero-truncated Poisson distribution (CGZTP). This article is structured
as follows: In Section 2, the distribution is mathematically derived, and in Section 3, its
important properties are examined. In Sections 4 and 5, the estimates of the parameters and
the results of a simulation study are presented. An application to real datasets is provided
in Section 6. Finally, Section 7 concludes the paper.

2. The Complementary Gamma Zero-Truncated Poisson Distribution

Let X1, X2, . . . , XN be independent and identically distributed random variables from
a gamma distribution which probability density function (pdf) given by

f (x; α, β) = βαxα−1e−βx/Γ(α) , x > 0,

where α > 0 is a shape parameter and β > 0 is a rate parameter, and N is a random variable
from a zero-truncated Poisson distribution with parameter λ> 0. The pdf is given by

P(N = n) = e−λλn/n!
(

1− e−λ
)

, n = 1, 2, . . . .

Assuming that random variables X and N are independent, we define
Z = max{X1, X2, . . . , XN}. Then, g(z|n ) = n[F(z)]n−1 f (z), where F(z) = 1− Γ(α, βz)/Γ(α) ,

and Γ(α, βz) =
∞∫

βz
tα−1e−tdt is the upper incomplete gamma function. The marginal distribution for

Z is

g(z; θ) =
λe−λ(

1− e−λ
)( βαzα−1e−βz

Γ(α)

)
eλ(1− Γ(α,βz)

Γ(α) ), z, λ, α, β > 0, (1)

where θ = (λ, α, β). The distribution of Z will be referred to as CGZTP, and plots of its pdf
are displayed in Figure 1 for selected parameter values. For α = 1, the CGZTP distribution
reduces to the density of the complementary Exponential-Poisson distribution introduced
by Cancho et al. [13]. Additionally, if λ→ 0 , the following theorem will show that the
CGZTP distribution reduces to the two-parameter gamma distribution.
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Theorem 1. The CGZTP distribution reduces to two-parameter gamma distribution as λ→ 0 .
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Proof. If λ approaches to zero, then

lim
λ→0

g(z; θ) = lim
λ→0

λe−λ

(1−e−λ)

(
βαzα−1e−βz

Γ(α)

)
eλ(1− Γ(α,βz)

Γ(α) )

= βαzα−1e−βz

Γ(α) .

Then, the CGZTP distribution reduces to the two-parameter gamma distribution. �

3. Properties of the Distribution
3.1. Cumulative Distribution Function, Quantile and Moment

The cumulative distribution function (cdf) of the CGZTP distribution is given by:

G(z; θ) =

(
e−

λΓ(α,βz)
Γ(α) − e−λ

)
/
(

1− e−λ
)

(2)

and the rth quantile is defined as the value z such that:

Γ(α, βz) = −Γ(α)
λ

ln
(

r + (1− r)e−λ
)

.

In particular, the median is z such that Γ(α, βz) = −Γ(α) ln
(
0.5 + 0.5e−λ

)
/λ . Addi-

tionally, the moment generating function can be calculated from:

MZ(t) =
λβα

Γ(α)
(
1− e−λ

) ∞∫
0

zα−1etz−βz−λ
Γ(α,βz)

Γ(α) dz.

The k-th raw moments are given by:

E(Zk) =
λβα

Γ(α)
(
1− e−λ

) ∞∫
0

zα−1+ke−βz−λ
Γ(α,βz)

Γ(α) dz , k ∈ N.

The raw moments have no closed form; however, the convergence of moments can be
verified by employing the comparison theorem for an improper integral [14]. Suppose that:

m(z) = zα−1+ke−βz−λ
Γ(α,βz)

Γ(α)

and
n(z) = zα−1+ke−βz

are continuous functions with 0 ≤ m(z) ≤ n(z) for z ≥ 0. Since
∞∫
0

n(z)dz = β−(α+k)Γ(α + k),

which means that this integral converges,
∞∫
0

m(z)dz also converges. It follows that the raw

moments of the distribution converge for all k. Therefore, the mean and variance of the
CGZTP distribution are given, respectively, by:

E(Z) =
λβα

Γ(α)
(
1− e−λ

) ∞∫
0

zαe−βz−λ
Γ(α,βz)

Γ(α) dz

and

Var(Z) =
λβα

Γ(α)
(
1− e−λ

) ∞∫
0

zα+1e−βz−λ
Γ(α,βz)

Γ(α) dz− [E(Z)]2.
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3.2. Survival Function and Hazard Function

Using Equations (1) and (2), the survival and hazard functions of the CGZTP distribu-
tion are given, respectively, by:

S(z; θ) = 1− G(z; θ) =
1− e−

λΓ(α,βz)
Γ(α)

1− e−λ

and

H(z; θ) =
g(z; θ)

S(z; θ)
=

λβαzα−1e−βz− λΓ(α,βz)
Γ(α)

Γ(α)
(

1− e−
λΓ(α,βz)

Γ(α)

) .

If considering η(z) = − g′(z;θ)
g(z;θ) , it is straightforward to show that:

η(z) = −(1/z)[α− 1 − βz + λ(βz)αe−βz/ Γ(α)] ,

and its first derivative is

η′(z) =
1

Γ(α)z2

[
(α− 1)Γ(α) + λ(βz)α(βz− α + 1)e−βz

]
.

For α = 1, η′(z) > 0 for all z, the hazard function is increasing according to Glaser’s
theorem [15]. However, in cases α > 1 or 0 < α < 1, the sign of η′(z) relates to all parameters
of the distribution. For example, when α > 1, η′(z) is greater than 0 if βz− α + 1 > 0. This
condition depends on the value of z and parameter β. Additionally, if βz−α + 1 < 0, the sign
of η′(z) will follow the sign of (α− 1)Γ(α) + λ(βz)α(βz− α + 1)e−βz. In the latter case, the
shape of hazard function can be a bathtub. When 0 < α < 1, the sign of η′(z) will depend
on the sign of (α− 1)Γ(α) + λ(βz)α(βz− α + 1)e−βz. There are no explicit conditions that
are functions of only one parameter. To check the shape of a hazard function, all related
parameters are used to calculate the aforementioned conditions. Figure 2 illustrates some of
the possible shapes of the hazard function for selected values of θ. The shape of the hazard
function can be increasing, decreasing or bathtub-shaped.
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Figure 2. Hazard functions of the CGZTP distribution for (a) α = 2 and (b) λ = 2, β = 1.

4. Parameter Estimation
4.1. Method of Maximum Likelihood

The log-likelihood function based on the observed random sample size of n,
wobs = (z1, z2, . . . , zn), is the following:
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l(θ; wobs) = n
(
log λ− log

(
1− e−λ

))
+ nα log β− n log Γ(α) + (α− 1)

n
∑

i=1
log zi

−β

(
n
∑

i=1
zi

)
− λ

n
∑

i=1
Γ(α, βzi)/Γ(α) ,

and the corresponding gradients are found to be

∂l(θ; wobs)

∂λ
= n

(
1/λ − e−λ

(
1− e−λ

)−1
)
−

n

∑
i=1

Γ(α, βzi)/Γ(α) , (3)

∂l(θ; wobs)

∂α
= n log β− nψ0(α) +

n

∑
i=1

log zi

−λ
n

∑
i=1

[
G3,0

2,3

(
βzi

∣∣∣∣ 1, 1
0, 0, α

)
+ Γ(α, βzi)(log(βzi)− ψ0(α))

]
/Γ(α) , (4)

∂l(θ; wobs)

∂β
=

nα

β
−

n

∑
i=1

zi +
λβα−1

Γ(α)

n

∑
i=1

zα
i e−βzi , (5)

where ψ0(α) is a digamma function and Gm,n
p,q

(
βzi

∣∣∣∣a1, . . . ap
b1, . . . bq

)
is Meijer G-function. The

Meijer G-function is a very general function which reduces to simpler special functions in
many common cases [16]. It is defined by:

Gm,n
p,q

(
z
∣∣∣∣a1, . . . ap
b1, . . . bq

)
=

1
2πi

∫
L

∏m
j=1 Γ

(
bj − s

)
∏n

j=1 Γ
(
1− aj + s

)
∏

q
j=m+1 Γ

(
1− bj + s

)
∏

p
j=n+1 Γ

(
aj − s

) zsds,

where the integral is a line integral along a path L in the complex plane that separates the
poles of the Gamma function terms Γ

(
aj − s

)
from the poles of the terms Γ

(
bj − s

)
. The

definition of the Meijer G-function holds under the following assumptions:

(a) 0 ≤ m ≤ q and 0 ≤ n ≤ p where m, n, p and q are integer numbers.
(b) ak − bj 6= 1, 2, 3, . . . for k = 1, 2, . . . , n and j = 1, 2, . . . , m which implies that no pole of

any Γ
(
bj − s

)
, j = 1, 2, . . . , m coincide with any pole of any Γ(1− ak + s), k = 1, 2, . . . , n.

(c) z 6= 0.

Here,

G3,0
2,3

(
βzi

∣∣∣∣ 1, 1
0, 0, α

)
= 1

2πi
∫
L

∏3
j=1 Γ(bj−s)

∏2
j=1 Γ(aj−s)

(βzi)
sds

= 1
2πi
∫
L

Γ(−s)Γ(−s)Γ(α−s)
Γ(1−s)Γ(1−s) (βzi)

sds.

More details on the Meijer G-function can be found in Rajshreemishra [16].
For finding the MLEs, Equation (5) could be solved exactly for λ as follows:

∂l(θ; wobs)

∂β
= 0

nα

β
−

n

∑
i=1

zi +
λβα−1

Γ(α)

n

∑
i=1

zα
i e−βzi= 0

λ=
Γ(α)

βα−1
n
∑

i=1
zα

i e−βzi

(
n

∑
i=1

zi −
nα

β

)
.
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Thus, the maximum likelihood estimator of λ is λ̂ = Γ(α̂)

β̂α̂−1
n
∑

i=1
zα̂

i e−β̂zi

(
n
∑

i=1
zi − nα̂

β̂

)
, con-

ditional upon the value of α̂ and β̂, where λ̂, α̂ and β̂ are maximum likelihood estimates
(MLEs) for the parameter λ, α and β, respectively.

In the following theorem, a condition is needed to be satisfied for the existence of the
MLEs of λ and β.

Theorem 2.

(a) Let l1(λ; α, β, wobs) = ∂l(θ; wobs)/∂λ , If α and β are known, thenλ̂ is the uniquely exist

root of l1(λ; α, β, wobs) = 0 if
n
∑

i=1
Γ(α, βzi)/Γ(α) < n

2 .

Proof. Since l1(λ; α, β, wobs) = n
(

1
λ −

e−λ

1−e−λ

)
−

n
∑

i=1
Γ(α, βzi)/Γ(α) ,

lim
λ→0

l1(λ; α, β, wobs) =
n
2
−

n

∑
i=1

Γ(α, βzi)/Γ(α)

and

lim
λ→∞

l1(λ; α, β, wobs) = −
n

∑
i=1

Γ(α, βzi)/Γ(α) .

Because lim
λ→0

l1(λ; α, β, wobs) > 0 as
n
∑

i=1
Γ(α, βzi)/Γ(α) < n

2 and lim
λ→∞

l1(λ; α, β, wobs) < 0,

there exists at least one solution of l1(λ; α, β, wobs) = 0. Consider

l1′(λ; α, β, wobs) = −
neλ(e−λ + eλ − (λ2 + 2))

eλ

and use the fact that eλ = 1 + λ + 1
2 λ2 + 1

3! λ
3 + . . . and e−λ = 1− λ + 1

2 λ2 − 1
3! λ

3 + . . .,
then e−λ + eλ = 2 + λ2 + 2

4! λ
4 + . . . > λ2 + 2. It follows that l1′(λ; α, β, wobs) < 0 and l1 is

strictly decreasing in λ. Consequently, the root is proved to be unique. �

(b) Let l3(β; λ, α, wobs) = ∂l(θ; wobs)/∂β . If λ and α are known, then there exists at least one
solution of l3(β; λ, α, wobs) = 0.

Proof. Because l3(β; λ, α, wobs) =
nα
β −

n
∑

i=1
zi +

λβα−1

Γ(α)

n
∑

i=1
zα

i e−βzi ,

lim
β→0

l3(β; λ, α, wobs) = lim
β→0

nα

β
− lim

β→0

n

∑
i=1

zi + lim
β→0

λβα−1

Γ(α)

n

∑
i=1

zα
i e−βzi = ∞

and
lim

β→∞
l3(β; λ, α, wobs) = lim

β→∞
nα
β − lim

β→∞

n
∑

i=1
zi + lim

β→∞

λβα−1

Γ(α)

n
∑

i=1
zα

i e−βzi

= 0−
n
∑

i=1
zi + lim

β→∞

λβα−1

Γ(α)

n
∑

i=1
zα

i e−βzi

= −
n
∑

i=1
zi + lim

β→∞

λβα−1

Γ(α)

n
∑

i=1
zα

i e−βzi .

Consider the following:

lim
β→∞

λβα−1

Γ(α)

n

∑
i=1

zα
i e−βzi =

λ

Γ(α)

n

∑
i=1

(
zi lim

β→∞

(βzi)
α−1

eβzi

)
.
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Since lim
β→∞

(βzi)
α−1

eβzi
= 0, lim

β→∞

λβα−1

Γ(α)

n
∑

i=1
zα

i e−βzi = 0. It leads to lim
β→∞

l3(β; λ, α, wobs) =

−
n
∑

i=1
zi < 0.

Therefore, there exist at least one solution of l3(β; λ, α, wobs) = 0. �

4.2. Variance–Covariance Matrix of the MLEs

The MLE of θ is approximately multivariate normal with a mean θ and a variance–
covariance matrix that is the inverse of Fisher information matrix, i.e., θ̂ ∼ N3

(
θ, J
(
θ̂
)−1
)

or θ̂ ∼ N3

(
θ, I
(
θ̂
)−1
)

, where J(θ) = E[I(θ)] and I(θ) is the observed Fisher information
matrix. By differentiating Equations (3)–(5), the elements of the observed Fisher information
matrix are derived as follows:

I11 = neλ(e−λ + eλ − (λ2 + 2))/eλ ,

I22 = nψ(1)(α) + λ
n

∑
i=1

 1
Γ(α)

 2G4,0
3,4

(
βzi

∣∣∣∣ 1, 1, 1
0, 0, 0, α

)
+ 2
(

log(βzi)− ψ(0)(α)
)

G3,0
2,3

(
βzi

∣∣∣∣ 1, 1
0, 0, α

)
+Γ(α, βzi)

(
−2ψ(0)(α) log(βzi) + ψ(0)(α)2 − ψ(1)(α) + log2(βzi)

)

,

I33 =
nα

β2 −
λβα−2

Γ(α)

n

∑
i=1

zα
i e−βzi (α− 1− βzi),

I12 = I21 = (1/Γ(α))
n

∑
i=1

G3,0
2,3

(
βzi

∣∣∣∣ 1, 1
0, 0, α

)
+ Γ(α, βzi)(log(βzi)− ψ0(α)),

I13 = I31 = −λβα−1(1/Γ(α))
n

∑
i=1

zα
i e−βzi ,

I23 = I32 = − n
β − λ

n
∑

i=1
e−βzi ∂

∂α

[
zα

i βα−1

Γ(α)

]
= − n

β − λ
n
∑

i=1
e−βzi

[
zα

i βα−1(−ψ(0)(α)+log(β)+log(zi))
Γ(α)

]
.

4.3. Asymptotic Confidence Interval

The Wald Confidence Interval is a type of confidence interval based on asymptotic the-
ory or large-sample theory. This means that the interval’s coverage probability approaches
the nominal level as the sample size goes to infinity. For testing the null hypothesis
H0 : θ = θ0, the test statistic is the Wald statistic:

J
(
θ̂
)1/2(

θ̂− θ0
)
∼ N3(0, I3) or I

(
θ̂
)1/2(

θ̂− θ0
)
∼ N3(0, I3).

The asymptotic distribution of the ith component of θ̂ is θ̂i ∼ N
(
θi, Jii) or θ̂i ∼

N
(
θi, Iii), where Jii =

[
J
(
θ̂
)−1
]

ii
and Iii =

[
I
(
θ̂
)−1
]

ii
. Then, the corresponding (1− α)100%

Wald confidence intervals for θi are θ̂i ± z1−α/2
√

Jii or θ̂i ± z1−α/2
√

Iii.

5. Simulation Study

The samples were generated by using the rejection sampling method. The study was
based on 1000 simulated samples from the CGZTPs with different sample sizes: n = 50, 100
and 1000. The case studies are CGZTP (λ = 1, α = 2, β = 1), CGZTP (λ = 3, α = 1, β = 0.5)
and CGZTP (λ = 3, α = 0.5, β = 0.5). When all parameters are assumed unknown, the
MLEs of λ, α and β are numerically calculated by the simulated-annealing method. In the
simulated annealing optimization algorithm, each potential solution to an optimization
problem is viewed as a state of a physical system, and each state has an associated energy
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calculated from the objective function of the optimization problem. The system attempts
to move to a state of lower energy to reduce the overall system’s energy. The R package
“maxLik” version 1.5-2 was used to find the MLEs as well as the hessian of log-likelihood
functions. Table 1 shows the average MLEs of λ, α and β, the minimum and maximum
values of each estimated parameter, and their corresponding mean-squared errors (MSEs).
As sample sizes increase, estimates become more accurate, and MSE values decrease.
Among three estimates, β̂ tends to have smallest MSE. Additionally, the minimum and
maximum values illustrate that as the sample size increases, those values of α̂ and β̂ will
get closer to the parameter values.

Table 1. Mean estimates, minimum and maximum values of estimated parameters and mean-squared
errors of λ, α, and β.

Distribution n Estimator Mean
Estimate Min Max MSE

CGZTP (1,2,1) 50 λ̂ 1.7122 0.0001 17.6696 5.3198
α̂ 1.9225 0.1245 4.3819 0.4782
β̂ 1.0064 0.4106 1.9742 0.0519

100 λ̂ 1.6464 0.0002 15.5108 4.5325
α̂ 1.8901 0.2544 3.9272 0.3659
β̂ 0.9864 0.5593 1.6377 0.0272

1000 λ̂ 1.0225 0.0005 7.3604 0.3992
α̂ 2.0003 0.5176 2.5456 0.0523
β̂ 0.9965 0.6622 1.1687 0.0025

CGZTP (3,1,0.5) 50 λ̂ 2.2571 0.0020 12.5656 4.4487
α̂ 1.4061 0.1748 3.1618 0.5402
β̂ 0.5503 0.2714 1.1914 0.0193

100 λ̂ 2.4622 0.0027 10.0311 3.4684
α̂ 1.2759 0.2918 2.7858 0.3293
β̂ 0.5294 0.3194 0.8996 0.0092

1000 λ̂ 2.9382 0.7820 7.2618 0.8841
α̂ 1.0504 0.3924 1.7449 0.0597
β̂ 0.5049 0.3728 0.6275 0.0015

CGZTP (3,0.5,0.5) 50 λ̂ 2.3268 0.0015 14.3020 4.5848
α̂ 0.715 0.0946 1.8241 0.1518
β̂ 0.5386 0.2916 1.0680 0.0165

100 λ̂ 2.5139 0.0002 12.7619 3.679
α̂ 0.6553 0.0989 1.4855 0.0981
β̂ 0.5265 0.3043 0.8963 0.0086

1000 λ̂ 2.853 0.5444 7.7735 0.7855
α̂ 0.5561 0.1756 0.9525 0.0159
β̂ 0.5098 0.3992 0.6041 0.0010

Wald confidence intervals using observed Fisher information are constructed for all
parameters of CGZTPs. Monte Carlo simulations with 1000 repetitions help estimate the
coverage probability (CP) and average length (AL) of the confidence intervals (CIs). All
results are presented in Table 2. It is found that when the sample size (n) increases, the CPs
will be closer to the nominal coverage probability, 0.95, and the ALs will decrease. In a few
cases, especially when λ has a small value, i.e., λ = 0.5, n is required to be 1000 to achieve
the nominal coverage probability. In many cases, CPs are not less than 0.95 although the
sample size is only 50.
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Table 2. Coverage probabilities and average lengths of Wald CIs.

θ=(λ,α,β) n CP AL

λ = 0.5, β = 3

α = 1
50 0.9130 1.4147
100 0.9090 1.0495

1000 0.9530 0.3411

α = 2
50 0.8920 2.6400
100 0.9130 1.9795

1000 0.9550 0.6626

α = 1, β = 3

λ = 0.5
50 0.9800 6.0251
100 0.9610 4.5462

1000 0.9520 1.3820

λ = 1
50 0.9840 6.2418
100 0.9580 5.2028

1000 0.9560 1.7814

λ = 1, α = 0.5

β = 0.5
50 0.9670 0.5587
100 0.9640 0.3832

1000 0.9470 0.1144

β = 1
50 0.9710 1.0991
100 0.9630 0.7861

1000 0.9530 0.2311

6. Application on Real Data

In this section, three real datasets are used to illustrate the use of the proposed CGZTP
distribution. It is worth noting that the simulated-annealing method is used for the numerical
computation of MLEs, and the model comparison is conducted using the Kolmogorov–Smirnov
(K-S) test and Akaike’s information criterion (AIC).

6.1. The Number of Successive Failures

The dataset is obtained from Proschan [17], and it is made up of 213 observations
about how many times the air conditioning system on each of 13 Boeing 720 jet planes
failed in a row. Some descriptive statistics are presented in Table 3. The gamma distribution,
for which the probability density function is shown below, was also fitted to the dataset.

f1(z; θ1) =
βαzα−1e−βz

Γ(α)
, z > 0 , θ1 = (α, β).

Table 3. Descriptive statistics of the number of successive failures.

n Minimum Maximum Median Mean Skewness SD

213 1.00 603.00 57.00 93.14 1.6665 106.7636

The p-values of the K-S tests shown in Table 4 suggest that both CGZTP and gamma
distributions are useful for fitting the dataset. When comparing p-values, CGZTP will be a
better fit for the dataset as the larger p-value is under the CGZTP distribution. Nevertheless,
the AIC suggests the choice of the gamma distribution. The probability–probability plots
(P-P plots), given in Figure 3, show that most points under CGZTP lie not far from a
straight diagonal line from the bottom left to the top right of the plot. Therefore, the CGZTP
distribution can be used to model data for which the MLE of λ, α and β are 0.11, 0.84 and
0.01, respectively.
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Table 4. Maximum likelihood estimates, goodness-of-fit testing and AIC for the number of successive
failure dataset.

Distribution Estimates K-S p-Value AIC

CGZTP θ̂ = (0.1096, 0.8411, 0.0096) 0.0561 0.5136 2364.206
Gamma θ̂1 = (0.9048, 0.0098) 0.0574 0.4826 2360.642
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6.2. March Precipitation

This dataset is obtained from Hinkley [18], and it is made up of 30 consecutive
measurements of the amount of precipitation that fell in March in Minneapolis/St. Paul.
The lists of some descriptive statistics are shown in Table 5. Because the data have a
unimodal density function and an increasing hazard function, the CGZTP, gamma and WP
distributions are used to model the data. The pdf of WP is given below:

WP : f2(z; θ2) =
αβλzα−1

1− e−λ
e−λ−βzα+λe−βzα

, z > 0 , θ2 = (λ, α, β).

Table 5. Descriptive statistics of March precipitation.

n Minimum Maximum Median Mean Skewness SD

30 0.320 4.750 1.470 1.675 1.1447 1.0006

The MLEs and statistics for model selections are summarized in Table 6 and suggest
that all distributions can be used to model the data at a significant level of 0.05. The K–S test
statistic has the smallest value and the largest p-value under the CGZTP distribution, while
the AIC of the gamma fit is the lowest. Here, the “best” model depends on the choice of
criteria; however, all these distributions are still useful, and the P–P plots, given in Figure 4,
confirm the fit of the CGZTP, Gamma, and WP distributions to the dataset.

Table 6. Maximum likelihood estimates, goodness-of-fit testing and AIC for March precipitation dataset.

Distribution Estimates K-S p-Value AIC

CGZTP θ̂ = (0.3811, 3.1587, 1.7838) 0.05480 0.9999906 82.221
Gamma θ̂1 = (2.9677, 1.7718) 0.05552 0.9999868 80.197

WP θ̂2 = (2.1745, 2.1041, 0.1358) 0.05709 0.9999734 82.506
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6.3. Breaking Stress of Carbon Fibers

The data, which were provided by Nichols and Padgett [19], consist of 100 observations
of the breaking stress of 50 mm-long carbon fibers. The lists of some descriptive statistics
are shown in Table 7. The gamma and CGZTP were utilized to model the breaking stress
dataset, and the maximum likelihood estimates, K-S statistics and AIC are summarized in
Table 8. Under CGZTP, the p-value is larger, and the AIC value is smaller compared to the
gamma distribution. This implies that the CGZTP distribution is superior to the gamma
distribution according to two criteria. From Figure 5, comparing CGZTP and gamma
distributions, most points under CGZTP are closer to the straight line, which confirms the
fit of CGZTP to the dataset.

Table 7. Descriptive statistics of breaking stress of carbon fibers.

n Minimum Maximum Median Mean Skewness SD

100 0.390 5.560 2.700 2.621 0.3738 1.0139

Table 8. Maximum likelihood estimates, goodness-of-fit testing and AIC for breaking stress of carbon
fibers dataset.

Distribution Estimates K-S p-Value AIC

CGZTP θ̂ = (2.2899, 4.4108, 2.1769) 0.0788 0.5639 289.334
Gamma θ̂1 = (5.9511, 2.2699) 0.0933 0.3484 290.467



Mathematics 2023, 11, 2584 12 of 13
Mathematics 2023, 11, x FOR PEER REVIEW 13 of 14 
 

 

  
Figure 5. P-P plots for breaking stress of carbon fibers for (a) CGZTP and (b) Gamma distributions. 

7. Conclusions 
The gamma and zero-truncated Poisson distributions are compounded to create the 

CGZTP distribution. Its basic statistical properties are established in this work. The plots 
of hazard functions show the flexibility of this distribution, as they can be increasing, de-
creasing or bathtub-shaped. The MLEs and the corresponding variance–covariance matrix 
are mathematically derived, and some proofs of their existence and uniqueness are pro-
vided. Furthermore, a simulation study was also conducted to show the ability of param-
eter estimation and the quality of estimation in some case studies. The Wald confidence 
intervals are useful, although the samples are not large. In a few cases, large sample sizes 
are required to achieve the nominal level. Finally, the CGZTP model was applied to real 
data to demonstrate the distribution’s utility. 

Author Contributions: Writing—original draft, A.N.; Writing—review & editing, P.S. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data presented in this study are openly available in reference 
number [17–19]. 

Acknowledgments: The authors would like to thank the editor and the reviewers for their valuable 
comments and suggestions to improve this paper. The research of Srisuradetchai is currently sup-
ported by the Thammasat University Research Unit in Theoretical and Computational Statistics. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Adamidis, K.; Loukas, S. A Lifetime Distribution with Decreasing Failure Rate. Stat. Probab. Lett. 1998, 39, 35–42. 

https://doi.org/10.1016/s0167-7152(98)00012-1. 
2. Louzada, F.; Roman, M.; Cancho, V.G. The Complementary Exponential Geometric Distribution: Model, Properties, and a Com-

parison with Its Counterpart. Comput. Stat. Data Anal. 2011, 55, 2516–2524. https://doi.org/10.1016/j.csda.2011.02.018.  
3. Barreto-Souza, W.; de Morais, A.L.; Cordeiro, G.M. The Weibull-Geometric Distribution. J. Stat. Comput. Simul. 2011, 81, 645–

657. https://doi.org/10.1080/00949650903436554.  
4. Tojeiro, C.; Louzada, F.; Roman, M.; Borges, P. The Complementary Weibull Geometric Distribution. J. Stat. Comput. Simul. 2014, 

84, 1345–1362. https://doi.org/10.1080/00949655.2012.744406. 
5. Zakerzadeh, H.; Mahmoudi, E. A New Two Parameter Lifetime Distribution: Model and Properties. arXiv 2012, arXiv:1204.4248. 
6. Gui, W.; Zhang, H.; Guo, L. The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis. San-

khya B 2017, 79, 316–335. https://doi.org/10.1007/s13571-017-0142-1.  
7. Kuş, C. A New Lifetime Distribution. Comput. Stat. Data Anal. 2007, 51, 4497–4509. https://doi.org/10.1016/j.csda.2006.07.017. 
8. Hemmati, F.; Khorram, E.; Rezakhah, S. A New Three-Parameter Ageing Distribution. J. Stat. Plan. Inference 2011, 141, 2266–

2275. https://doi.org/10.1016/j.jspi.2011.01.007.  
9. Lu, W.; Shi, D. A New Compounding Life Distribution: The Weibull–Poisson Distribution. J. Appl. Stat. 2012, 39, 21–38. 

https://doi.org/10.1080/02664763.2011.575126.  

Figure 5. P-P plots for breaking stress of carbon fibers for (a) CGZTP and (b) Gamma distributions.

7. Conclusions

The gamma and zero-truncated Poisson distributions are compounded to create the
CGZTP distribution. Its basic statistical properties are established in this work. The plots
of hazard functions show the flexibility of this distribution, as they can be increasing,
decreasing or bathtub-shaped. The MLEs and the corresponding variance–covariance
matrix are mathematically derived, and some proofs of their existence and uniqueness
are provided. Furthermore, a simulation study was also conducted to show the ability
of parameter estimation and the quality of estimation in some case studies. The Wald
confidence intervals are useful, although the samples are not large. In a few cases, large
sample sizes are required to achieve the nominal level. Finally, the CGZTP model was
applied to real data to demonstrate the distribution’s utility.
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