COMPLEMENTARY GRAPHS AND THE CHROMATIC NUMBER

Colin L. Starr and Galen E. Turner III

Abstract

Zykov proved that if G and \bar{G} are complementary graphs having chromatic numbers χ and $\bar{\chi}$, respectively then $\chi \cdot \bar{\chi}$ is at least the number of vertices of G. Nordhaus and Gaddum gave an upper bound for $\chi \cdot \bar{\chi}$ and gave both upper and lower bounds for the analogue $\chi+\bar{\chi}$.

In this paper we characterize those graphs for which $\chi \cdot \bar{\chi}$ and $\chi+\bar{\chi}$ reach the bounds of Nordhaus and Gaddum.

1. Introduction. Unless stated otherwise, the terminology used here will follow Diestel [4]. In particular, a graph G is a finite set of elements $V(G)$, called vertices, and a set $E(G)$ of unordered pairs of vertices, called edges. The number of vertices of a graph G is denoted $|V(G)|$ and the complete graph on n vertices, denoted K_{n}, is a graph containing the set of all $n(n-1) / 2$ possible edges. Two graphs G and \bar{G} having the same n vertices are called complementary if each edge determined by the n vertices is in either G or \bar{G} but not in both. If $X \subseteq V(G)$, the subgraph induced by X, denoted $G[X]$, is the subgraph H of G with $V(H)=X$ and $E(H)=$ $\{x y \in E(G) \mid x, y \in X\}$. The degree of a vertex x is the number $d_{G}(x)$ of edges incident with it, and we denote the maximum and minimum vertex degrees of a graph by Δ and δ, respectively. If every vertex of a graph has degree k then we say that the graph is k-regular.

A k-coloring of a graph G is a coloring of the vertices of G so that no two adjacent vertices are colored with the same color and the total number of colors used is at most k. The chromatic number of a graph G is the smallest number of colors required to color the vertices of G. The chromatic number of G is denoted $\chi(G)$ or simply χ while the chromatic number of \bar{G} is denoted $\bar{\chi}$; that is, $\bar{\chi}=\chi(\bar{G})$. The clique number of a graph G is the largest integer ω such that G contains a subgraph isomorphic to K_{ω}. The clique number of G is denoted by ω or $\omega(G)$, and $\bar{\omega}=\omega(\bar{G})$. It is easy to see that $\omega(G) \leq \chi(G)$ for any graph G. Moreover, it is easy to show that $\chi(G) \leq \Delta(G)+1$. The following well-known theorem of Brooks [4] characterizes the graphs that are extremal with this property.

Theorem 1.1 (Brooks' Theorem). If G is a graph such that G is neither a clique nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A factor of a graph G is a subgraph containing all the vertices of G, and a k-factor is a factor that is k-regular. If we require every component of a factor to be a complete graph, then the factor is said to be complete; thus, a complete k-factor of a graph G is a factor of G all of whose components
are isomorphic to K_{k+1}. Note that if G has a complete k-factor, then $k+1$ is a factor of the integer $|V(G)|$.

In 1949, Zykov [7] showed that $|V(G)| \leq \chi(G) \cdot \bar{\chi}(G)$. Nordhaus and Gaddum [6] extended this result by proving the following theorem.

Theorem 1.2. Let G and \bar{G} be complementary graphs on n vertices having chromatic numbers χ and $\bar{\chi}$, respectively. Then

$$
2 \sqrt{n} \leq \chi+\bar{\chi} \leq n+1 \quad \text { and } \quad n \leq \chi \cdot \bar{\chi} \leq\left(\frac{n+1}{2}\right)^{2}
$$

In this paper, we characterize the graphs in the extreme cases of the inequalities in this theorem. Finck [5] offered a characterization of such graphs from one point of view, which was applied incorrectly in [2]. We find Finck's characterization somewhat unintuitive; our characterization approaches these graphs from a different perspective, which we explain in Sections 2 and 3.

Finally, it is worth noting that it is not difficult to show that every graph has a complete factor. To see this, consider a graph G and its complement \bar{G}. Let $T_{1}, T_{2}, \ldots, T_{\bar{\chi}}$ be the color classes of a $\bar{\chi}$-coloring of \bar{G}. In G, it is clear that the induced subgraph $G\left[T_{i}\right]$ is complete for every T_{i}. Thus, G has a complete factor, namely

$$
\bigcup_{i=1}^{\bar{\chi}} G\left[T_{i}\right] .
$$

2. Graphs Satisfying the Lower Bounds. We begin with those graphs G for which $\chi \cdot \bar{\chi}=|V(G)|$. Clearly, any complete graph satisfies the equation; moreover, if $\chi(G) \cdot \bar{\chi}(G)=|V(G)|$, then both χ and $\bar{\chi}$ are integer factors of $|V(G)|$. What is surprising is that the graphs G and \bar{G} must contain complete factors as we shall now show.

Theorem 2.1. Let G be a graph on n vertices. Then the following are equivalent.
(1) $\chi \cdot \bar{\chi}=n$
(2) G has a complete $(\chi-1)$-factor
(3) \bar{G} has a complete $(\bar{\chi}-1)$-factor.

Proof. We begin by assuming (1) that $\chi \cdot \bar{\chi}=n$, and we will prove that this implies (2) G has a complete $(\chi-1)$-factor and (3) \bar{G} has a complete ($\bar{\chi}-1$)-factor. Let $S_{1}, S_{2}, \ldots, S_{\chi}$ be the color classes of a χ-coloring of G. Clearly, each component of $G\left[S_{i}\right]$ has no edge and $\cup_{i=1}^{\chi} S_{i}=V(G)$. We require the following lemma.
$\underline{\text { Lemma 2.2. }\left|S_{i}\right|=\left|S_{j}\right| \text { for any } i, j \in\{1, \ldots, \chi\} . ~}$

Proof. Suppose $\left|S_{i}\right|>\left|S_{j}\right|$ for some $i, j \in\{1, \ldots, \chi\}$, and let S_{t} be a set of maximum size among all sets $S_{1}, S_{2}, \ldots S_{\chi}$. Since G has exactly $\chi \cdot \bar{\chi}$ vertices, $\left|S_{t}\right|>\bar{\chi}$. However, because \bar{G} must have a subgraph isomorphic to $K_{\left|S_{t}\right|}$ we obtain $\bar{\chi} \geq\left|S_{t}\right|>\bar{\chi}$; a contradiction.

By Lemma 2.2, each of $S_{1}, S_{2}, \ldots, S_{\chi}$ has the same size. Moreover, as $\chi \cdot \bar{\chi}=n$, each S_{i} has size $\bar{\chi}$. Thus, \bar{G} has a complete ($\bar{\chi}-1$)-factor, namely

$$
\bigcup_{i=1}^{\chi} \bar{G}\left[S_{i}\right]
$$

Now, if $T_{1}, T_{2}, \ldots, T_{\bar{\chi}}$ are the color classes of a $\bar{\chi}$-coloring of \bar{G}, then using Lemma 2.2 with \bar{G} and $\bar{\chi}$ instead of G and χ, it is clear that each T_{i} has size χ. Therefore, G has a complete $(\chi-1)$-factor, namely

$$
\bigcup_{i=1}^{\bar{\chi}} G\left[T_{i}\right] .
$$

We will now show that (2) is equivalent to (3). First, suppose that (2) holds; that is, G has a complete $(\chi-1)$-factor. This means that G has a spanning subgraph H in which each component is isomorphic to K_{χ}. Let k be the number of components of H, and observe that $\chi \cdot k=n$. Since each component C of H is complete, every vertex of C can be colored the same color in \bar{G}. Thus, $\bar{\chi} \leq k$.

Now, since each component of H is isomorphic to K_{χ}, each of the χ colors of G is used exactly once in each component of H. Thus, the color classes of G form χ independent sets of size k each, so \bar{G} has a spanning subgraph in which each component is isomorphic to K_{k}; it follows that $\bar{\chi} \geq k$. Thus, $\bar{\chi}=k$ and \bar{G} has a complete ($\bar{\chi}-1$)-factor, so (2) implies (3). The argument that (3) implies (2) is symmetric. Moreover, since $n=\chi \cdot k=\chi \cdot \bar{\chi}$, we have shown that (2) implies (1), and the theorem is established.

The next theorem characterizes those graphs for which $\chi+\bar{\chi}=$ $2 \sqrt{|V(G)|}$. Its proof relies on the arithmetic-geometric mean inequality; namely, $\sqrt{\chi \cdot \bar{\chi}} \leq \frac{\chi+\bar{\chi}}{2}$ with equality holding if and only if $\chi=\bar{\chi}$.

Theorem 2.3. Let G and \bar{G} be complementary graphs on n vertices. Then $\chi+\bar{\chi}=2 \sqrt{n}$ if and only if $\chi=\bar{\chi}$ and G has a complete $(\chi-1)$-factor.

Proof. Suppose that $\chi+\bar{\chi}=2 \sqrt{n}$.
Since $2 \sqrt{n}=\chi+\bar{\chi}$, using the arithmetic-geometric mean inequality and Theorem 1.2 we obtain

$$
\chi+\bar{\chi} \geq 2 \cdot \sqrt{\chi \cdot \bar{\chi}} \geq 2 \sqrt{n}=\chi+\bar{\chi}
$$

This means that

$$
\chi+\bar{\chi}=2 \cdot \sqrt{\chi \cdot \bar{\chi}}=2 \sqrt{n}
$$

Now, the first equality shows that $\chi=\bar{\chi}$ by the arithmetic-geometric mean inequality. The second equality implies that $\chi \cdot \bar{\chi}=n$, and the theorem follows from Theorem 2.1.

Conversely, suppose that $\chi=\bar{\chi}$ and that G has a complete $(\chi-1)$ factor. We need only show that $\chi+\bar{\chi}=2 \sqrt{n}$. Since $\chi=\bar{\chi}$,

$$
\begin{gathered}
0=(\chi-\bar{\chi})^{2}=\chi^{2}-2 \chi \cdot \bar{\chi}+\bar{\chi}^{2} \\
\chi^{2}+2 \chi \cdot \bar{\chi}+\bar{\chi}^{2}=4 \cdot \chi \cdot \bar{\chi} .
\end{gathered}
$$

Now, by Theorem 2.1, $\chi \cdot \bar{\chi}=n$, and thus,

$$
(\chi+\bar{\chi})^{2}=\chi^{2}+2 \chi \cdot \bar{\chi}+\bar{\chi}^{2}=4 n
$$

This implies that $\chi+\bar{\chi}=2 \sqrt{n}$, and the theorem is established.

3. Graphs Satisfying the Upper Bounds.

Theorem 3.1. Let G and \bar{G} be complementary graphs on n vertices. Then $\chi+\bar{\chi}=n+1$ if and only if $V(G)$ can be partitioned into three sets S, T, and $\{x\}$ such that $G[S]$ is isomorphic to $K_{\chi-1}$ and $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}-1}$.

Before proving this theorem, we establish several lemmas, the first of which is easy and is stated without proof.

Lemma 3.2. Let G be a graph on n vertices. Then G is Δ-regular if and only if $\Delta+\bar{\Delta}=n-1$.

Lemma 3.3. If G is a Δ-regular graph and $\chi+\bar{\chi}=n+1$, then G is isomorphic to K_{1} or C_{5}.

Proof. If G or \bar{G} is neither complete nor an odd cycle, then $\chi \leq \Delta$ or $\bar{\chi} \leq \bar{\Delta}$ by Theorem 1.1. In either case, we have the following chain of inequalities with the last equality being from Lemma 3.2.

$$
n+1=\chi+\bar{\chi} \leq \Delta+\bar{\Delta}+1=n
$$

Since this is a contradiction, it is clear that both $\chi=\Delta+1$ and $\bar{\chi}=\bar{\Delta}+1$. Thus, by Theorem 1.1, G must be complete or an odd cycle, and \bar{G} must be complete or an odd cycle. Clearly either both G and \bar{G} must be complete or both be odd cycles. If G is complete and \bar{G} is complete, then G is isomorphic to K_{1}. If G is an odd cycle and \bar{G} is an odd cycle, then it is easy to see that G is isomorphic to C_{5}.

Lemma 3.4. Let G be a graph on n vertices and $\omega=\omega(G)$ the clique number of G. If $\omega=\chi$ and $\chi+\bar{\chi}=n+1$, then $V(G)$ can be partitioned
into two sets S and T such that $G[S]$ is isomorphic to K_{χ} and $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}-1}$.

Proof. Let S be a subset of $V(G)$ such that $G[S]$ is a χ-clique in G, and let $T=V(G)-V(S)$, so that $|T|=n-\chi=\bar{\chi}-1$. Since S is independent in \bar{G}, each member of S can be colored 1 in \bar{G}. Since \bar{G} has chromatic number $\bar{\chi}$, the graph $\bar{G}[T]$ requires at least $\bar{\chi}-1$ colors. But $\bar{G}[T]$ has exactly $\bar{\chi}$ vertices, so $\bar{G}[T]$ must be complete.

Lemma 3.5. Let G be a graph on n vertices. If $\omega=\chi-1$ and $\chi+\bar{\chi}=$ $n+1$, then $V(G)$ can be partitioned into two sets S and T such that $G[S]$ is isomorphic to $K_{\chi-1}$ and one of the following holds:
(1) $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}}$, or
(2) there exists $x \in T$ such that $\bar{G}[T-x]$ is isomorphic to $K_{\bar{\chi}-1}$.

Proof. Let H be an ω-clique in G, and let $S=V(H)$ and $T=V(G)-$ $V(H)$. Notice that $|T|=n-\omega=n-(\chi-1)=\bar{\chi}$. Therefore, $\bar{G}[T]$ has exactly $\bar{\chi}$ vertices. If $\bar{G}[T]$ is complete, then the conclusion of the lemma is satisfied.

Thus, we assume that $\bar{G}[T]$ is not complete. Now, if $\bar{G}[T]$ could be colored with fewer than $\bar{\chi}-1$ colors, then, since $V(H)$ is independent in \bar{G}, the entire graph \bar{G} could be colored with fewer than $\bar{\chi}$ colors. Therefore, $\chi(\bar{G}[T])=\bar{\chi}-1$.

Since $\bar{G}[T]$ is a graph on $\bar{\chi}$ vertices with chromatic number $\bar{\chi}-1$, we can show that $\bar{G}[T]$ must contain a subgraph isomorphic to $K_{\bar{\chi}-1}$. To see this, color $\bar{G}[T]$ with $\bar{\chi}-1$ colors and observe that there are exactly two vertices, say x and y, colored the same. Since the chromatic number of $\bar{G}[T]$ is $\bar{\chi}-1$, it is clear that the vertices of $\bar{G}[T]-\{x, y\}$ form a complete graph. (Otherwise, a color could be duplicated on those vertices, reducing the chromatic number of $\bar{G}[T]$ to at most $\bar{\chi}-2$.) Now, if x is not adjacent to some vertex z of $\bar{G}[T]-\{x, y\}$, then z can be re-colored with the color used on x. But this would require that y be re-colored with the original color on z, for otherwise we can color $\bar{G}[T]$ with fewer colors; thus, y is adjacent to z.

We now have a $\bar{\chi}-1$ coloring of $\bar{G}[T]$ where x and z are colored the same. As before (when x and y were colored the same), $\bar{G}[T]-\{x, z\}$ forms a complete graph. In particular, y is adjacent to every vertex in $T-\{x, z\}$. But y is also adjacent to z, as we have seen, and z is adjacent to all vertices of $G[T]-\{x, y\}$. This implies that $G[T]-\{x\}$ is complete, so $\bar{G}[T]$ contains a copy of $K_{\bar{\chi}-1}$.

Corollary 3.6. Let G be a graph on n vertices. If $\omega=\chi-1$ and $\chi+\bar{\chi}=n+1$, then $V(G)$ can be partitioned into three sets S, T, and $\{x\}$, such that $G[S]$ is isomorphic to $K_{\chi-1}$ and $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}-1}$.

Lemma 3.7. Let G be a graph on n vertices. If $\chi+\bar{\chi}=n+1$, then $\omega \geq \chi-1$ and $\bar{\omega} \geq \bar{\chi}-1$.

Proof. Let G be a minimal counterexample to the lemma with respect to $|V(G)|$, and let $H=G-x$, where $x \in V(G)$. Note that $\chi(H) \leq \chi(G)$ and $\bar{\chi}(H) \leq \bar{\chi}(G)$. By the theorem of Nordhaus and Gaddum, $\chi(H)+\bar{\chi}(H) \leq$ n, so in fact at least one of the inequalities $\chi(H) \leq \chi(G)$ and $\bar{\chi}(H) \leq \bar{\chi}(G)$ must be strict. Thus, there are two cases.

Case 1. If only one of $\chi(H)<\chi(G)$ and $\bar{\chi}(H)<\bar{\chi}(G)$ is true, then without loss of generality, suppose that $\chi(H)=\chi(G)$ and $\bar{\chi}(H)=\bar{\chi}(G)-1$. (Note that deleting a vertex will decrease the chromatic number by at most one.) Therefore, $\chi(H)+\bar{\chi}(H)=n=|V(H)|+1$ and so $\omega(H) \geq \chi(H)-1$ by the minimality of G. Thus, since $\chi(H)=\chi(G)$, it is clear that $\omega(G) \geq$ $\omega(H) \geq \chi(H)-1=\chi(G)-1$. By Lemmas 3.4 and $3.5, \bar{G}$ must contain a clique of size at least $\bar{\chi}-1$, a contradiction to the choice of G.

Case 2. Assume that $\chi(G-x)=\chi-1$ and $\bar{\chi}(G-x)=\bar{\chi}-1$ for every vertex x of G. This implies that $d_{G}(x) \geq \chi-1$ and $d_{\bar{G}}(x) \geq \bar{\chi}-1$; otherwise, x could be restored to $G-x$ and colored the same as some nonadjacent vertex, giving G a chromatic number less than χ, a contradiction.

Therefore, for each vertex x of $G, n-1=d_{G}(x)+d_{\bar{G}}(x) \geq \chi+\bar{\chi}-2=$ $n-1$. In order to achieve this, we must have $d_{G}(x)=\chi-1$ and $d_{\bar{G}}(x)=\bar{\chi}-1$ for every vertex x of G, which means that both G and \bar{G} are regular. By Lemma 3.3, G must be isomorphic to K_{1} or C_{5}, a contradiction as these both satisfy the statement of the lemma.

We now prove Theorem 3.1, the characterization of the case $\chi+\bar{\chi}=$ $|V(G)|+1$, which we restate here for convenience.

Theorem 3.8. Let G and \bar{G} be complementary graphs on n vertices. Then $\chi+\bar{\chi}=n+1$ if and only if $V(G)$ can be partitioned into three sets S, T, and $\{x\}$ such that $G[S]$ is isomorphic to $K_{\chi-1}$ and $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}-1}$.

Proof. First assume that $V(G)$ can be partitioned into three sets S, T, and $\{x\}$ such that $G[S]$ is isomorphic to $K_{\chi-1}$ and $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}-1}$. We merely need to count vertices: $|V(G)|=|S \cup T \cup\{x\}|=$ $(\chi-1)+(\bar{\chi}-1)+1=\chi+\bar{\chi}-1$. Thus, $\chi+\bar{\chi}=n+1$.

Now assume that $\chi+\bar{\chi}=n+1$. By Lemma 3.7, we have $\omega(G) \geq$ $\chi-1$ and $\bar{\omega}(G) \geq \bar{\chi}-1$. First, if $\omega(G)=\chi-1$, then the theorem holds by Corollary 3.6. Second, if $\omega(G)=\chi$, then by Lemma 3.4, G can be partitioned into a χ-clique S^{\prime} and an independent set T of size $\bar{\chi}-1$. Let $x \in \underline{V}\left(S^{\prime}\right)$, and put $S=V\left(S^{\prime}\right)-\{x\}$. Then $G[S]$ is isomorphic to $K_{\chi-1}$ and $\bar{G}[T]$ is isomorphic to $K_{\bar{\chi}-1}$.

Capobianco [2] incorrectly states, "The only graphs that attain the upper bound $[\chi+\bar{\chi}=n+1]$ are $K_{n}, \overline{K_{n}}$, and C_{n}." Theorem 3.1 gives the means to construct counterexamples; one simple counterexample is $G=$ $K_{4} \bigcup \overline{K_{3}}$.

The following theorem completes the characterizations of the graphs in the extreme cases of Theorem 1.2.

Theorem 3.9. Let G be a graph on n vertices. Then $\chi \cdot \bar{\chi}=\left(\frac{n+1}{2}\right)^{2}$ if and only if $\chi+\bar{\chi}=n+1$ and $\chi=\bar{\chi}$.

Proof. Since $4 \chi \cdot \bar{\chi}=(n+1)^{2} \geq(\chi+\bar{\chi})^{2}$, we must have $(\chi-\bar{\chi})^{2} \leq 0$. Therefore, $\chi=\bar{\chi}$, and the inequality is actually an equality. Thus, $\chi+\bar{\chi}=$ $n+1$.
4. Conclusion. A natural extension of Theorem 2.1 would be to characterize those graphs H where $\chi(H)$ and $\chi(\bar{H})$ are factors of $|V(H)|$, but $\chi(H) \cdot \chi(\bar{H})>|V(H)|$.

Alavi and Behzad [1] proved bounds for edge chromatic numbers and Cook [3] proved bounds for total chromatic numbers similar to the bounds of Nordhaus and Gaddum. It is hoped that the approach presented here will shed light on a characterization of the graphs that attain those bounds.

$$
\underline{\text { References }}
$$

1. Y. Alavi and M. Behzad, "Complementary Graphs and Edge Chromatic Numbers," SIAM J. Appl. Math., 20 (1971), 161-163.
2. M. Capobianco, Examples and Counterexamples in Graph Theory, North-Holland, New York, 1978.
3. R. J. Cook, "Complementary Graphs and Total Chromatic Numbers," SIAM J. Appl. Math., 27 (1974), 626-628.
4. R. Diestel, Graph Theory, 2nd Edition, Springer-Verlag, New York, 2000.
5. H. J. Finck, "On the Chromatic Number of a Graph and its Complements," Theory of Graphs, Proceedings of the Colloquium, Tihany, Hungary, 1966, 99-113.
6. E. A. Nordhaus and J. W. Gaddum, "On Complementary Graphs," Amer. Math. Monthly, 63 (1956), 175-177.
7. A. A. Zykov, "On Some Properties of Linear Complexes," Math. Sbornik. NS, 24 (1949), 163-188, [AMS Translation No. 79].

Mathematics Subject Classification (2000): 05C15
Colin L. Starr
Department of Mathematics
Willamette University
Salem, OR 97301
email: cstarr@willamette.edu
Galen E. Turner III
Mathematics and Statistics Program
Louisiana Tech University
Ruston, LA 71272
email: gturner@coes.LaTech.edu

