COMPLEMENTARY GRAPHS AND THE CHROMATIC NUMBER

Colin L. Starr and Galen E. Turner III

Abstract. Zykov proved that if G and \overline{G} are complementary graphs having chromatic numbers χ and $\overline{\chi}$, respectively then $\chi \cdot \overline{\chi}$ is at least the number of vertices of G. Nordhaus and Gaddum gave an upper bound for $\chi \cdot \overline{\chi}$ and gave both upper and lower bounds for the analogue $\chi + \overline{\chi}$.

In this paper we characterize those graphs for which $\chi \cdot \overline{\chi}$ and $\chi + \overline{\chi}$ reach the bounds of Nordhaus and Gaddum.

1. Introduction. Unless stated otherwise, the terminology used here will follow Diestel [4]. In particular, a graph G is a finite set of elements V(G), called *vertices*, and a set E(G) of unordered pairs of vertices, called *edges*. The number of vertices of a graph G is denoted |V(G)| and the complete graph on n vertices, denoted K_n , is a graph containing the set of all n(n-1)/2 possible edges. Two graphs G and \overline{G} having the same n vertices are called *complementary* if each edge determined by the n vertices is in either G or \overline{G} but not in both. If $X \subseteq V(G)$, the subgraph induced by X, denoted G[X], is the subgraph H of G with V(H) = X and $E(H) = \{xy \in E(G) | x, y \in X\}$. The degree of a vertex x is the number $d_G(x)$ of edges incident with it, and we denote the maximum and minimum vertex degrees of a graph by Δ and δ , respectively. If every vertex of a graph has degree k then we say that the graph is k-regular.

A k-coloring of a graph G is a coloring of the vertices of G so that no two adjacent vertices are colored with the same color and the total number of colors used is at most k. The chromatic number of a graph G is the smallest number of colors required to color the vertices of G. The chromatic number of G is denoted $\chi(G)$ or simply χ while the chromatic number of \overline{G} is denoted $\overline{\chi}$; that is, $\overline{\chi} = \chi(\overline{G})$. The clique number of a graph G is the largest integer ω such that G contains a subgraph isomorphic to K_{ω} . The clique number of G is denoted by ω or $\omega(G)$, and $\overline{\omega} = \omega(\overline{G})$. It is easy to see that $\omega(G) \leq \chi(G)$ for any graph G. Moreover, it is easy to show that $\chi(G) \leq \Delta(G) + 1$. The following well-known theorem of Brooks [4] characterizes the graphs that are extremal with this property.

<u>Theorem 1.1</u> (Brooks' Theorem). If G is a graph such that G is neither a clique nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A factor of a graph G is a subgraph containing all the vertices of G, and a k-factor is a factor that is k-regular. If we require every component of a factor to be a complete graph, then the factor is said to be *complete*; thus, a complete k-factor of a graph G is a factor of G all of whose components

are isomorphic to K_{k+1} . Note that if G has a complete k-factor, then k+1 is a factor of the integer |V(G)|.

In 1949, Zykov [7] showed that $|V(G)| \leq \chi(G) \cdot \overline{\chi}(G)$. Nordhaus and Gaddum [6] extended this result by proving the following theorem.

<u>Theorem 1.2</u>. Let G and \overline{G} be complementary graphs on n vertices having chromatic numbers χ and $\overline{\chi}$, respectively. Then

$$2\sqrt{n} \le \chi + \overline{\chi} \le n+1$$
 and $n \le \chi \cdot \overline{\chi} \le \left(\frac{n+1}{2}\right)^2$.

In this paper, we characterize the graphs in the extreme cases of the inequalities in this theorem. Finck [5] offered a characterization of such graphs from one point of view, which was applied incorrectly in [2]. We find Finck's characterization somewhat unintuitive; our characterization approaches these graphs from a different perspective, which we explain in Sections 2 and 3.

Finally, it is worth noting that it is not difficult to show that every graph has a complete factor. To see this, consider a graph G and its complement \overline{G} . Let $T_1, T_2, \ldots, T_{\overline{\chi}}$ be the color classes of a $\overline{\chi}$ -coloring of \overline{G} . In G, it is clear that the induced subgraph $G[T_i]$ is complete for every T_i . Thus, G has a complete factor, namely

$$\bigcup_{i=1}^{\overline{\chi}} G[T_i].$$

2. Graphs Satisfying the Lower Bounds. We begin with those graphs G for which $\chi \cdot \overline{\chi} = |V(G)|$. Clearly, any complete graph satisfies the equation; moreover, if $\chi(G) \cdot \overline{\chi}(G) = |V(G)|$, then both χ and $\overline{\chi}$ are integer factors of |V(G)|. What is surprising is that the graphs G and \overline{G} must contain complete factors as we shall now show.

<u>Theorem 2.1</u>. Let G be a graph on n vertices. Then the following are equivalent.

- (1) $\chi \cdot \overline{\chi} = n$
- (2) G has a complete $(\chi 1)$ -factor
- (3) \overline{G} has a complete $(\overline{\chi} 1)$ -factor.

<u>Proof.</u> We begin by assuming (1) that $\chi \cdot \overline{\chi} = n$, and we will prove that this implies (2) G has a complete $(\chi - 1)$ -factor and (3) \overline{G} has a complete $(\overline{\chi} - 1)$ -factor. Let $S_1, S_2, \ldots, S_{\chi}$ be the color classes of a χ -coloring of G. Clearly, each component of $G[S_i]$ has no edge and $\bigcup_{i=1}^{\chi} S_i = V(G)$. We require the following lemma.

<u>Lemma 2.2</u>. $|S_i| = |S_j|$ for any $i, j \in \{1, ..., \chi\}$.

<u>Proof.</u> Suppose $|S_i| > |S_j|$ for some $i, j \in \{1, \ldots, \chi\}$, and let S_t be a set of maximum size among all sets $S_1, S_2, \ldots, S_{\chi}$. Since G has exactly $\chi \cdot \overline{\chi}$ vertices, $|S_t| > \overline{\chi}$. However, because \overline{G} must have a subgraph isomorphic to $K_{|S_t|}$ we obtain $\overline{\chi} \ge |S_t| > \overline{\chi}$; a contradiction.

By Lemma 2.2, each of $S_1, S_2, \ldots, S_{\chi}$ has the same size. Moreover, as $\chi \cdot \overline{\chi} = n$, each S_i has size $\overline{\chi}$. Thus, \overline{G} has a complete $(\overline{\chi} - 1)$ -factor, namely

$$\bigcup_{i=1}^{\chi} \overline{G}[S_i].$$

Now, if $T_1, T_2, \ldots, T_{\overline{\chi}}$ are the color classes of a $\overline{\chi}$ -coloring of \overline{G} , then using Lemma 2.2 with \overline{G} and $\overline{\chi}$ instead of G and χ , it is clear that each T_i has size χ . Therefore, G has a complete $(\chi - 1)$ -factor, namely

$$\bigcup_{i=1}^{\overline{\chi}} G[T_i].$$

We will now show that (2) is equivalent to (3). First, suppose that (2) holds; that is, G has a complete $(\chi - 1)$ -factor. This means that G has a spanning subgraph H in which each component is isomorphic to K_{χ} . Let k be the number of components of H, and observe that $\chi \cdot k = n$. Since each component C of H is complete, every vertex of C can be colored the same color in \overline{G} . Thus, $\overline{\chi} \leq k$.

Now, since each component of H is isomorphic to K_{χ} , each of the χ colors of G is used exactly once in each component of H. Thus, the color classes of G form χ independent sets of size k each, so \overline{G} has a spanning subgraph in which each component is isomorphic to K_k ; it follows that $\overline{\chi} \geq k$. Thus, $\overline{\chi} = k$ and \overline{G} has a complete $(\overline{\chi} - 1)$ -factor, so (2) implies (3). The argument that (3) implies (2) is symmetric. Moreover, since $n = \chi \cdot k = \chi \cdot \overline{\chi}$, we have shown that (2) implies (1), and the theorem is established.

The next theorem characterizes those graphs for which $\chi + \overline{\chi} = 2\sqrt{|V(G)|}$. Its proof relies on the arithmetic-geometric mean inequality; namely, $\sqrt{\chi \cdot \overline{\chi}} \leq \frac{\chi + \overline{\chi}}{2}$ with equality holding if and only if $\chi = \overline{\chi}$.

<u>Theorem 2.3.</u> Let G and \overline{G} be complementary graphs on n vertices. Then $\chi + \overline{\chi} = 2\sqrt{n}$ if and only if $\chi = \overline{\chi}$ and G has a complete $(\chi - 1)$ -factor.

<u>Proof.</u> Suppose that $\chi + \overline{\chi} = 2\sqrt{n}$.

Since $2\sqrt{n} = \chi + \overline{\chi}$, using the arithmetic-geometric mean inequality and Theorem 1.2 we obtain

$$\chi + \overline{\chi} \ge 2 \cdot \sqrt{\chi \cdot \overline{\chi}} \ge 2\sqrt{n} = \chi + \overline{\chi}.$$

This means that

$$\chi + \overline{\chi} = 2 \cdot \sqrt{\chi \cdot \overline{\chi}} = 2\sqrt{n}.$$

Now, the first equality shows that $\chi = \overline{\chi}$ by the arithmetic-geometric mean inequality. The second equality implies that $\chi \cdot \overline{\chi} = n$, and the theorem follows from Theorem 2.1.

Conversely, suppose that $\chi = \overline{\chi}$ and that G has a complete $(\chi - 1)$ -factor. We need only show that $\chi + \overline{\chi} = 2\sqrt{n}$. Since $\chi = \overline{\chi}$,

$$0 = (\chi - \overline{\chi})^2 = \chi^2 - 2\chi \cdot \overline{\chi} + \overline{\chi}^2,$$
$$\chi^2 + 2\chi \cdot \overline{\chi} + \overline{\chi}^2 = 4 \cdot \chi \cdot \overline{\chi}.$$

Now, by Theorem 2.1, $\chi \cdot \overline{\chi} = n$, and thus,

$$(\chi + \overline{\chi})^2 = \chi^2 + 2\chi \cdot \overline{\chi} + \overline{\chi}^2 = 4n.$$

This implies that $\chi + \overline{\chi} = 2\sqrt{n}$, and the theorem is established.

3. Graphs Satisfying the Upper Bounds.

<u>Theorem 3.1.</u> Let G and \overline{G} be complementary graphs on n vertices. Then $\chi + \overline{\chi} = n + 1$ if and only if V(G) can be partitioned into three sets S, T, and $\{x\}$ such that G[S] is isomorphic to $K_{\chi-1}$ and $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}-1}$.

Before proving this theorem, we establish several lemmas, the first of which is easy and is stated without proof.

<u>Lemma 3.2</u>. Let G be a graph on n vertices. Then G is Δ -regular if and only if $\Delta + \overline{\Delta} = n - 1$.

<u>Lemma 3.3</u>. If G is a Δ -regular graph and $\chi + \overline{\chi} = n + 1$, then G is isomorphic to K_1 or C_5 .

<u>Proof.</u> If G or \overline{G} is neither complete nor an odd cycle, then $\chi \leq \Delta$ or $\overline{\chi} \leq \overline{\Delta}$ by Theorem 1.1. In either case, we have the following chain of inequalities with the last equality being from Lemma 3.2.

$$n+1 = \chi + \overline{\chi} \le \Delta + \overline{\Delta} + 1 = n.$$

Since this is a contradiction, it is clear that both $\chi = \Delta + 1$ and $\overline{\chi} = \overline{\Delta} + 1$. Thus, by Theorem 1.1, G must be complete or an odd cycle, and \overline{G} must be complete or an odd cycle. Clearly either both G and \overline{G} must be complete or both be odd cycles. If G is complete and \overline{G} is complete, then G is isomorphic to K_1 . If G is an odd cycle and \overline{G} is an odd cycle, then it is easy to see that G is isomorphic to C_5 .

<u>Lemma 3.4</u>. Let G be a graph on n vertices and $\omega = \omega(G)$ the clique number of G. If $\omega = \chi$ and $\chi + \overline{\chi} = n + 1$, then V(G) can be partitioned

into two sets S and T such that G[S] is isomorphic to K_{χ} and $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}-1}$.

<u>Proof.</u> Let S be a subset of V(G) such that G[S] is a χ -clique in G, and let T = V(G) - V(S), so that $|T| = n - \chi = \overline{\chi} - 1$. Since S is independent in \overline{G} , each member of S can be colored 1 in \overline{G} . Since \overline{G} has chromatic number $\overline{\chi}$, the graph $\overline{G}[T]$ requires at least $\overline{\chi} - 1$ colors. But $\overline{G}[T]$ has exactly $\overline{\chi}$ vertices, so $\overline{G}[T]$ must be complete.

<u>Lemma 3.5.</u> Let G be a graph on n vertices. If $\omega = \chi - 1$ and $\chi + \overline{\chi} = n + 1$, then V(G) can be partitioned into two sets S and T such that G[S] is isomorphic to $K_{\chi-1}$ and one of the following holds:

- (1) $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}}$, or
- (2) there exists $x \in T$ such that $\overline{G}[T-x]$ is isomorphic to $K_{\overline{\chi}-1}$.

<u>Proof.</u> Let H be an ω -clique in G, and let S = V(H) and T = V(G) - V(H). Notice that $|T| = n - \omega = n - (\chi - 1) = \overline{\chi}$. Therefore, $\overline{G}[T]$ has exactly $\overline{\chi}$ vertices. If $\overline{G}[T]$ is complete, then the conclusion of the lemma is satisfied.

Thus, we assume that $\overline{G}[T]$ is not complete. Now, if $\overline{G}[T]$ could be colored with fewer than $\overline{\chi} - 1$ colors, then, since V(H) is independent in \overline{G} , the entire graph \overline{G} could be colored with fewer than $\overline{\chi}$ colors. Therefore, $\chi(\overline{G}[T]) = \overline{\chi} - 1$.

Since $\overline{G}[T]$ is a graph on $\overline{\chi}$ vertices with chromatic number $\overline{\chi} - 1$, we can show that $\overline{G}[T]$ must contain a subgraph isomorphic to $K_{\overline{\chi}-1}$. To see this, color $\overline{G}[T]$ with $\overline{\chi} - 1$ colors and observe that there are exactly two vertices, say x and y, colored the same. Since the chromatic number of $\overline{G}[T]$ is $\overline{\chi} - 1$, it is clear that the vertices of $\overline{G}[T] - \{x, y\}$ form a complete graph. (Otherwise, a color could be duplicated on those vertices, reducing the chromatic number of $\overline{G}[T]$ to at most $\overline{\chi} - 2$.) Now, if x is not adjacent to some vertex z of $\overline{G}[T] - \{x, y\}$, then z can be re-colored with the color used on x. But this would require that y be re-colored with the original color on z, for otherwise we can color $\overline{G}[T]$ with fewer colors; thus, y is adjacent to z.

We now have a $\overline{\chi} - 1$ coloring of $\overline{G}[T]$ where x and z are colored the same. As before (when x and y were colored the same), $\overline{G}[T] - \{x, z\}$ forms a complete graph. In particular, y is adjacent to every vertex in $T - \{x, z\}$. But y is also adjacent to z, as we have seen, and z is adjacent to all vertices of $G[T] - \{x, y\}$. This implies that $G[T] - \{x\}$ is complete, so $\overline{G}[T]$ contains a copy of $K_{\overline{\chi}-1}$.

Corollary 3.6. Let G be a graph on n vertices. If $\omega = \chi - 1$ and $\chi + \overline{\chi} = n + 1$, then V(G) can be partitioned into three sets S, T, and $\{x\}$, such that G[S] is isomorphic to $K_{\chi-1}$ and $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}-1}$.

<u>Lemma 3.7</u>. Let G be a graph on n vertices. If $\chi + \overline{\chi} = n + 1$, then $\omega \ge \chi - 1$ and $\overline{\omega} \ge \overline{\chi} - 1$.

<u>Proof.</u> Let G be a minimal counterexample to the lemma with respect to |V(G)|, and let H = G - x, where $x \in V(G)$. Note that $\chi(H) \leq \chi(G)$ and $\overline{\chi}(H) \leq \overline{\chi}(G)$. By the theorem of Nordhaus and Gaddum, $\chi(H) + \overline{\chi}(H) \leq n$, so in fact at least one of the inequalities $\chi(H) \leq \chi(G)$ and $\overline{\chi}(H) \leq \overline{\chi}(G)$ must be strict. Thus, there are two cases.

<u>Case 1</u>. If only one of $\chi(H) < \chi(G)$ and $\overline{\chi}(H) < \overline{\chi}(G)$ is true, then without loss of generality, suppose that $\chi(H) = \chi(G)$ and $\overline{\chi}(H) = \overline{\chi}(G) - 1$. (Note that deleting a vertex will decrease the chromatic number by at most one.) Therefore, $\chi(H) + \overline{\chi}(H) = n = |V(H)| + 1$ and so $\omega(H) \ge \chi(H) - 1$ by the minimality of G. Thus, since $\chi(H) = \chi(G)$, it is clear that $\omega(G) \ge \omega(H) \ge \chi(H) - 1 = \chi(G) - 1$. By Lemmas 3.4 and 3.5, \overline{G} must contain a clique of size at least $\overline{\chi} - 1$, a contradiction to the choice of G.

<u>Case 2</u>. Assume that $\chi(G-x) = \chi - 1$ and $\overline{\chi}(G-x) = \overline{\chi} - 1$ for every vertex x of G. This implies that $d_G(x) \ge \chi - 1$ and $d_{\overline{G}}(x) \ge \overline{\chi} - 1$; otherwise, x could be restored to G - x and colored the same as some nonadjacent vertex, giving G a chromatic number less than χ , a contradiction.

Therefore, for each vertex x of G, $n-1 = d_G(x) + d_{\overline{G}}(x) \ge \chi + \overline{\chi} - 2 = n-1$. In order to achieve this, we must have $d_G(x) = \chi - 1$ and $d_{\overline{G}}(x) = \overline{\chi} - 1$ for every vertex x of G, which means that both G and \overline{G} are regular. By Lemma 3.3, G must be isomorphic to K_1 or C_5 , a contradiction as these both satisfy the statement of the lemma.

We now prove Theorem 3.1, the characterization of the case $\chi + \overline{\chi} = |V(G)| + 1$, which we restate here for convenience.

<u>Theorem 3.8.</u> Let G and \overline{G} be complementary graphs on n vertices. Then $\chi + \overline{\chi} = n + 1$ if and only if V(G) can be partitioned into three sets S, T, and $\{x\}$ such that G[S] is isomorphic to $K_{\chi-1}$ and $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}-1}$.

<u>Proof.</u> First assume that V(G) can be partitioned into three sets S, T, and $\{x\}$ such that G[S] is isomorphic to $K_{\chi-1}$ and $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}-1}$. We merely need to count vertices: $|V(G)| = |S \cup T \cup \{x\}| = (\chi - 1) + (\overline{\chi} - 1) + 1 = \chi + \overline{\chi} - 1$. Thus, $\chi + \overline{\chi} = n + 1$.

Now assume that $\chi + \overline{\chi} = n + 1$. By Lemma 3.7, we have $\omega(G) \geq \chi - 1$ and $\overline{\omega}(G) \geq \overline{\chi} - 1$. First, if $\omega(G) = \chi - 1$, then the theorem holds by Corollary 3.6. Second, if $\omega(G) = \chi$, then by Lemma 3.4, G can be partitioned into a χ -clique S' and an independent set T of size $\overline{\chi} - 1$. Let $x \in V(S')$, and put $S = V(S') - \{x\}$. Then G[S] is isomorphic to $K_{\chi-1}$ and $\overline{G}[T]$ is isomorphic to $K_{\overline{\chi}-1}$.

Capobianco [2] incorrectly states, "The only graphs that attain the upper bound $[\chi + \overline{\chi} = n + 1]$ are K_n , $\overline{K_n}$, and C_n ." Theorem 3.1 gives the means to construct counterexamples; one simple counterexample is $G = K_4 \bigcup \overline{K_3}$.

The following theorem completes the characterizations of the graphs in the extreme cases of Theorem 1.2.

<u>Theorem 3.9.</u> Let G be a graph on n vertices. Then $\chi \cdot \overline{\chi} = \left(\frac{n+1}{2}\right)^2$ if and only if $\chi + \overline{\chi} = n+1$ and $\chi = \overline{\chi}$.

<u>Proof.</u> Since $4\chi \cdot \overline{\chi} = (n+1)^2 \ge (\chi + \overline{\chi})^2$, we must have $(\chi - \overline{\chi})^2 \le 0$. Therefore, $\chi = \overline{\chi}$, and the inequality is actually an equality. Thus, $\chi + \overline{\chi} = n+1$.

4. Conclusion. A natural extension of Theorem 2.1 would be to characterize those graphs H where $\chi(H)$ and $\chi(\overline{H})$ are factors of |V(H)|, but $\chi(H) \cdot \chi(\overline{H}) > |V(H)|$.

Alavi and Behzad [1] proved bounds for edge chromatic numbers and Cook [3] proved bounds for total chromatic numbers similar to the bounds of Nordhaus and Gaddum. It is hoped that the approach presented here will shed light on a characterization of the graphs that attain those bounds.

References

- Y. Alavi and M. Behzad, "Complementary Graphs and Edge Chromatic Numbers," SIAM J. Appl. Math., 20 (1971), 161–163.
- 2. M. Capobianco, *Examples and Counterexamples in Graph Theory*, North-Holland, New York, 1978.
- R. J. Cook, "Complementary Graphs and Total Chromatic Numbers," SIAM J. Appl. Math., 27 (1974), 626–628.
- 4. R. Diestel, *Graph Theory*, 2nd Edition, Springer-Verlag, New York, 2000.
- H. J. Finck, "On the Chromatic Number of a Graph and its Complements," *Theory of Graphs, Proceedings of the Colloquium, Tihany, Hungary*, 1966, 99–113.
- E. A. Nordhaus and J. W. Gaddum, "On Complementary Graphs," Amer. Math. Monthly, 63 (1956), 175–177.
- A. A. Zykov, "On Some Properties of Linear Complexes," Math. Sbornik. NS, 24 (1949), 163–188, [AMS Translation No. 79].

Mathematics Subject Classification (2000): 05C15

Colin L. Starr Department of Mathematics Willamette University Salem, OR 97301 email: cstarr@willamette.edu

Galen E. Turner III Mathematics and Statistics Program Louisiana Tech University Ruston, LA 71272 email: gturner@coes.LaTech.edu