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Abstract—In this paper, a new finding related to the well-known
root locus method that is covered in the introductory control sys-
tems books is presented. It is shown that some of the complemen-
tary root locus rules and properties are not valid for systems with
loop transfer functions that are not strictly proper. New definitions
for root locus branches have been presented which divide them
into branches passing through infinityand branches ending at or
starting from infinity. New formulations for calculating the number
of branches passing through infinity, point of intersection of the
asymptotes on the real axis, and angles of these asymptotes with
the real axis have been introduced. It has been shown this type of
system with the order of will have at least one and at most
branches which will pass through infinity. The realization and sta-
bility of these systems have been investigated, and their gain plots
have been presented. The new finding can be used by educators to
complement their lecture materials of the root locus method. By
using problems similar to examples presented in the paper, ana-
lytical understanding of the students in a classical control systems
course can be tested.

Index Terms—Control systems, gain, root locus, stability,
transfer functions.

I. INTRODUCTION

T HE ROOT locus plot was introduced for the design of
feedback control systems by Evans in 1948 [1] and since

then has become a standard and commonly used tool in control
system education and practice. Almost all the introductory text-
books for control system analysis and design used in most of the
undergraduate engineering disciplines have devoted one chapter
to the root locus construction rules and properties [1]–[7]. It is
a set of theorems and techniques that calculates the locations
of the closed-loop poles in the-plane as a changing param-
eter (gain) in the open-loop transfer function varies over some
defined range. The plot of positive gain is known as root locus
(RL), and the locus of negative gain is referred to as comple-
mentary root locus (CRL).

The root locus plot has been the center of numerous edu-
cational and research activities [8]–[29]. Undergraduate con-
trol systems textbooks still give emphasis to root locus plot-
ting [5]–[7], and research papers present computational methods
[14], [15], computer implementations [16], [17], and new ap-
proaches [18]–[22] for the root locus method. The method is an
essential design and analysis tool in most of the control system
software [16], [17]. This technique has been a valuable tool
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in characterizing response and stability of linear systems and
has been utilized extensively for designs in control engineering
practices [23]–[29].

Although use of RL is more common than CRL, it has been
shown that the latter can be very valuable in design studies via
the principle of continuation [22], can be utilized for changing
time constants [8], and can be used when large loop gain is re-
quired in inner loops [6].

In this paper, first a couple of examples are presented to show
that some of the construction rules for the root locus plot are
not valid for a specific class of feedback control systems with
a negative gain. Then, new definitions are provided for root
locus branches and new formulations are given for calculating
the number of branches passing through infinity, point of inter-
section of the asymptotes on the real axis, and angles of these
asymptotes with the real axis for the root locus plot.

The examples provide a foundation for those who are
teaching introductory control systems course to design their
own exercises to test the student understanding of the analytical
concepts of the root locus technique.

Consider the following closed-loop transfer function with
negative gain:

(1)

The complementary root locus is obtained by changing the value
of from zero to infinity.

From the root locus construction rules [1]–[7], it is known
when the number of poles and zeros of the loop transfer func-
tion is equal; there is no root at infinity. Therefore, there are no
asymptotes in the locus when the loop transfer function is not
strictly proper.

This conclusion is true for all different types of negative feed-
back control systems, but it is not valid for positive feedback
systems with loop transfer functions that are not strictly proper.

To see this, use (1) to obtain the complementary root locus
for the following two systems whose loop transfer functions are
not strictly proper:

1)

The root locus of this system is shown in Fig. 1. Since
there should not be any roots at infinity;

however, as shown in Fig. 1, there is a root at infinity in
the locus.

2)
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Fig. 1. Root locus of example 1.

Fig. 2. Root locus of example 2.

The root locus of this system is shown in Fig. 2. The order
of the numerator and the denominator are the same in
this system, but as shown in Fig. 2, there are four roots
at infinity in this locus.

With these examples, it is obvious that the root locus
construction rules have to be modified. For this purpose, the
branches of locus are divided into two groups. The first group
contains branches ending at or starting from infinity, and the
second group consists of branches passing through infinity.

Definition 1: The branch ending at or starting from infinity
either starts from a finite pole and ends at an imaginary zero at
infinity or starts from an imaginary pole at infinity and ends at
a finite zero. In this branch, the value of at infinity is either
zero or infinity.

Definition 2: The branch passing through infinity starts from
a finite point, goes through infinity, and ends at another finite
location. In this branch, the value of at infinity is a finite
value.

The branch ending at or starting from infinity is the same
branch that is familiar and has been introduced in various con-
trol books and papers [1]–[7]. However, root locus of positive

feedback systems whose loop transfer function has the same
number of poles and zeros consists of branches that are passing
through infinity. This type of branch has not been introduced in
any books and publications until now. In the next section, formu-
lations will be introduced for calculating the number of branches
passing through infinity, point of intersection of the asymptotes
on the real axis, and angles of these asymptotes with positive
direction of the real axis.

In this paper, the branches with a point at infinity will be
called “infinite branches.”

II. PROPERTIES OFBRANCHESPASSING THROUGHINFINITY

Use the following loop transfer function, which is not strictly
proper, in (1):

(2)

The root locus of this system has properties defined by the fol-
lowing theorems.

Theorem 1—Gain of System for Poles at Infinity:The gain of
these systems approaches a constant and finite value for infinite
poles.

As a result, infinite branches in the locus of these systems are
branches passing through infinity.

Proof 1: The characteristic equation of the system defined
in (2) is

(3)

From (3) is calculated as follows:

(4)

When a pole of the system goes to infinity, (4) is written as

(5)

The value of for infinite poles will be called critical gain, ,
and is obtained from (5) as

(6)

So infinite branches of these systems are branches passing
through infinity.

It is concluded from the proof of this theorem that positive
feedback systems with loop transfer functions that are not
strictly proper do not have any branches ending at or starting
from infinity, but they have one or more branches passing
through infinity.

Theorem 2—Locus on the Real Axis:In these systems, both
ends of the real axis are located on the root locus.

Proof 2: In positive feedback systems with loop transfer
functions that are not strictly proper, the total number of
poles and zeros of loop transfer function is and it is even.
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Therefore, as it was shown in [5]–[7], the right side of the last
pole/zero on the right and the left side of the last pole/zero
on the left of the real axis are parts of the root locus plot. As
a result, there is always at least one branch passing through
infinity in the root locus of these systems.

Theorem 3—The Number of Branches Passing through In-
finity in Root Locus: The number of branches passing through
infinity is related to the corresponding coefficients of the same
power of s in numerator and denominator of the loop transfer
function and is equal to the maximum index numberof the
ratios in the following orderly relation:

(7)

Proof 3: For a specific value of , the order of the charac-
teristic equation may reduce to which means the order
of the characteristic equation reducesdegrees. This value of

corresponds to points in the locus that of them are lo-
cated at infinity. If the value of is substituted in the char-
acteristic equation given by (3), the following relation will be
obtained:

(8)

Combining (6) and (8) gives

(9)

Substituting (2) into (9) results in

or

(10)

It is concluded from (10), that for , the coefficient of
always becomes zero, then the root locus of sys-

tems indicated with (2) has a branch passing through infinity.
This result confirms theorem 2.

Also for , if the coefficient of becomes
zero, then

or

(11)

Therefore, there are two branches passing through infinity in
root locus.

If (11) is satisfied and for , the coefficient of
becomes zero, then

or

(12)

So, there are three branches passing through infinity in root
locus.

Thus, if coefficients of where
are all zero, then

(13)

Therefore, the root locus of this system containsbranches
passing through infinity. With the result of this theorem, the
locus of these systems always contains at least a branch passing
through infinity, and the order of their characteristic equation
for is at most .

Theorem 4—The Asymptotes of Branches Passing through In-
finity: If branches passing through infinity exist in the root
locus of a system defined by (2), then the root locus of this
system contains asymptotes, asymptotes for that part of
the branches going to infinity, and asymptotes for that part of
the branches coming from infinity. All of these asymptotes
are centered at a point on the real axis given by

(14)

The angles of the asymptotes of the branches passing through
infinity that are going to infinity with respect to the real-axis are

where (15)

The angles of the asymptotes of the branches passing through
infinity that are coming from infinity with respect to the real
axis are

where (16)

Proof 4: The system given by (2) contains passing
through the infinity branches. If (13) is written as

where (17)

then (3) can be written as follows:

(18)

or as shown in (19) at the bottom of the next page.
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Equation (19) is reversed by dividing the numerator of the
right part by its denominator. Whengoes to infinity, the term

and the terms after it can be eliminated. Thus, (19) is
approximated as

(20)

By using the binomial series to approximate (20) and substi-
tuting in it, the following relation will be obtained:

(21)

For going to the infinity part of the branch, goes to from
the left side, so is positive.

By replacing and from (17) and using the Demoivre
theorem with the assumption of , the following
equation is obtained from (21):

(22)

For coming from the infinity part of the branch, goes to
from the right side, so is negative. Use of

the Demoivre theorem results in an equation similar to (22) for
coming from the infinity part of the branch as follows:

(23)

Equations (22) and (23) are the asymptotes equations of root
locus of these systems. According to (22) and (23), when the

locus of these systems hasbranches passing through infinity,
there are asymptotes that are centered at a point on the real
axis with the following coordinate:

(24)

The angles of the asymptotes of branches passing through in-
finity that are going to infinity with respect to the real axis are
given by

where (25)

The angles of the asymptotes of the branches passing through
infinity, which are coming from infinity with respect to the real
axis, are obtained as follows:

where (26)

Equations (25) and (26) are similar to the corresponding equa-
tions for obtaining the angles of the asymptotes in the root locus
of positive and negative feedback systems, respectively.

Now, these theorems are applied to the examples that were
presented at the beginning of this paper.

For the first example, the critical gain is

Therefore, there is only one branch passing through infinity and
two asymptotes in the root locus of this system. The intersection
point of the asymptotes with each other on the real axis is

. The angle of the asymptote that is going to infinity is
, and the angle of the asymptote that is coming from

infinity is .
For the second example, the critical gain is

Thus, there are four branches passing through infinity and eight
asymptotes in the root locus of this system. The intersection
point of the asymptotes with each other on the real axis is

. The angles of the asymptotes that are going to infinity
are , , , , and the angles
of the asymptotes that are coming from infinity are ,

, , .
The plots shown in Figs. 1 and 2 can verify the above results

for each example.

(19)
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III. REALIZATION CONSIDERATION

Consider a system with a unity positive feedback whose
closed-loop transfer function is as follows and satisfies (13):

(27)

Substituting (2) into (27) gives (28) as shown at the bottom of
the page.

is a proper function and can be realized because

constant (29)

When the system’s gain approaches the critical gain ac-
cording to (6), becomes as shown in (30) at the bottom
of the page. In this case, becomes an improper func-
tion, and there exists no realization for this system because

.

IV. STABILITY CONSIDERATION

In this section, a theorem is presented about the stability of
these systems for critical gain.

Theorem 5: A system with a loop transfer function given by
(2) is unstable when the gain is on an open interval centered at
the critical gain.

Proof 5: Since the right end of the real axis is always part
of the positive feedback root locus, there exists an infinite point
in the right side of the real axis that belongs to the root locus
of these systems. Infinite points of locus are caused only by
critical gain. So, this infinite pole on the right side of the real
axis corresponds to critical gain. Thus, it is concluded that these
types of systems are certainly unstable for critical gain.

It is interesting to point out that if the characteristic equation
of the system for critical gain is calculated, it would be a poly-
nomial with the order of at most which may have poles
all possessing negative real parts and, therefore, appears to be
stable for the critical gain. But one has to make a note that the
cause of system instability at the critical gain is the positive infi-
nite pole that exists on a real axis and causes the order reduction
of a characteristic equation for critical gain.

V. GAIN PLOTS

The gain plots were introduced by Kurfess and Nagurka [10]
in 1991. These plots consist of a magnitude–gain plot and an
angle–Gain plot. In a magnitude–gain plot, the-axis represents

Fig. 3. Magnitude–Gain plot of example 1.

Fig. 4. Magnitude–Gain plot of example 2.

gain and the -axis denotes the magnitude of the closed-loop
poles. Whereas, in an angle–Gain plot, the-axis shows gain
and the -axis is the angle of closed-loop poles. The relationship
between gain plots and a root locus diagram is similar to the
relation that exists between Bode plots and a Nyquist plot.

For systems considered in this paper, there existbranches
in a magnitude–gain plot that are going to infinity and coming

(28)

(30)
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Fig. 5. Angle–Gain plot of example 1.

Fig. 6. Angle–Gain plot of example 2.

back from infinity at the same critical gain. The angles of
asymptotes for these branches are 90. The angle–Gain plot for
these systems has branches that approach the critical gain
with the angles defined by (25), and leave critical gain with the
angles defined by (26). Since each branch in the angle–Gain
plot has two different values at the critical gain, there are
discontinuities in the plot at the critical gain. Figs. 3 and 4
show the magnitude–gain plot, and Figs. 5 and 6 present the
angle–Gain plot for the first and second examples, respectively.

VI. CONCLUSION

In this paper, we have shown some of the steps in the method
of constructing complementary root locus are not valid for sys-
tems with loop transfer functions that are not strictly proper.
New branches called “branches passing through infinity” have
been introduced, and their properties have been demonstrated in
four theorems. The investigations of the realization and stability
of these systems show they are neither realizable nor stable for

critical gain. The gain plots demonstrate clear pictures of how
critical gain makes these systems unstable.

The branches passing through infinity have not been previ-
ously investigated and could be presented to students through
educational activities and exercises in the classroom. It is recom-
mended that first a few examples based on the examples shown
in this paper be generated to bring the attention of the students
to the shortcoming of the Evans root locus method and then the
formulations provided here be presented. These activities would
complement the lectures on the root locus topic.

Most of the software that provide root locus plots use an algo-
rithm which generates a table by changing the gain in the spec-
ified range and then finds the roots of the characteristic equa-
tion. But, if the value used for gain in these algorithms becomes
equal to the critical gain of the system, the software would have
a division by zero situation that would cause the computer to
halt. Thus, the selection of any value equal to critical gain of the
system should be avoided in software design.
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