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ABSTRACT The permanent magnet linear servo system is usually susceptible to uncertainties, such as

parameter variations, external disturbances, and friction forces. To address this problem, a complementary

sliding mode control (CSMC) via Elman neural network (ENN) was presented in this paper. First, the math-

ematical model of the permanent magnet linear synchronous motor (PMLSM) with a lumped uncertainty

was established. Second, on the basis of the traditional sliding mode control (SMC), CSMC was designed

by combining the integral sliding surface with the complementary sliding surface. CSMC is generally used

to reduce the chattering phenomenon and, consequently, to improve the tracking performance. However,

the values of the switching gain and the boundary layer thickness are difficult to select in CSMC. To deal

with this problem, ENNwas adopted in the proposed CSMC system to replace the switching control law. Due

to its strong learning ability, ENN can estimate the value of the lumped uncertainty and adjust the parameters

online, thus further improving the robustness of the system. In addition, to verify the control performance

of the proposed method, a digital signal processor (DSP) was implemented as the experimental platform

to control the mover of the PMLSM for the tracking of different reference trajectories. The experimental

results show that the proposed control strategy not only improves tracking accuracy but also guarantees the

robustness of the system.

INDEX TERMS Permanent magnet linear synchronous motor (PMLSM), complementary sliding mode

control (CSMC), Elman neural network (ENN), lumped uncertainty, tracking performance, robustness.

I. INTRODUCTION

In manufacturing systems, high precision servo machining

field is widely employed in many applications such as semi-

conductor manufacturing, industrial robots, machine tools

and computer numerical control (CNC) [1], [2]. However,

as mentioned in [3], the traditional rotary motors equipped

with gears and ball screws have the disadvantages of low

stiffness, long response time and friction loss, which cannot

satisfy the precise specifications of manufacturing processes.

Compared with the rotary motors, permanent magnet linear

synchronous motor (PMLSM) has a simpler mechanical con-

struction, which can directly generate larger electromagnetic

thrust and reduce mechanical loss [4], [5]. Moreover, it can

The associate editor coordinating the review of this manuscript and
approving it for publication was Giambattista Gruosso.

also improve the frame stiffness of the system and reduce the

mechanical friction of the motor [6], [7]. Therefore, PMLSM

is suitable for high-performance servo applications.

Although PMLSM can directly obtain the linear motion by

eliminating the mechanical structure of the motor, PMLSM is

highly affected by the lumped uncertainty such as parameter

variations, friction forces and external disturbances. Conse-

quently, the system controller should be robust enough to

tolerate these uncertainties [8], [9]. Especially in the fields of

CNCwith high speed and precision, the requirements of servo

system are even higher. In order to eliminate the uncertainties

existing in the system and realize high precision servo per-

formance of PMLSM, some researchers have proposed many

control strategies, such as sliding mode control (SMC), back-

stepping control, adaptive control, and other intelligent con-

trol including expert control and neural network [10], [11].
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It’s well known that SMC has a strong robustness, which is

insensitive to system parameter variations, friction forces and

external disturbances when the system trajectory reaches and

stays on the sliding surface [12]. The design process of SMC

consists of two relatively independent parts: sliding surface

design and control law design, which can ensure different

state trajectories stay on the sliding surface in finite time.

However, the robustness of the SMC is guaranteed by using

the strategy of a large switching control law. It will lead to

chattering phenomenon which is caused by switching func-

tion in control law, and chattering may excite the neglected or

un-modeled high-frequency dynamics [13]–[15]. Thus, chat-

tering has become the major disadvantage of SMC, the way

to reduce chattering becomes a popular research issue.

In [16], [17], integral sliding mode control (ISMC) is

used to guarantee the global robustness of the control sys-

tem, though the chattering is weakened by this method effi-

ciently, the system instability will be caused by ISMC when

the system state deviates from the reference trajectories.

In [18], [19], a fuzzy sliding mode control (FSMC) method

is proposed to reduce the chattering, but when the lumped

uncertainty of the nonlinear system is excessive, the method

to improve the tracking performance of the system will be

out of effect. In [20], [21], a neural network compensa-

tion is applied to combine with SMC to further optimize

the performance. In [22], an adaptive backstepping fuzzy

SMC strategy is developed to approximate the upper bound

of lumped uncertainties and adjust the unknown parame-

ters online. By introducing complementary generalized error

transformation, Su and Wang proposed a complementary

sliding mode control (CSMC) to replace the switching func-

tion of SMC to improve the tracking precision and reduce

chattering in [23]. In [24], CSMC is designed to improve

the tracking performance and the robustness of the PMLSM

servo system. However, the values of switching gain and

boundary layer thickness are difficult to select, only through

trial and error method can the appropriate parameters be

selected. To solve the problem of parameter selection, Lin

proposed an intelligent CSMC which combines the CSMC

with RBFNN in [25], RBFNN is used to estimate the lumped

uncertainty. However, RBFNN is a static neural network and

it is easy to occur local optimization problems.

In this paper, a complementary sliding mode con-

trol (CSMC) via Elman neural network (ENN) is proposed to

improve the performance of permanent magnet linear servo

system. By establishing the dynamic mathematical model

of PMLSM with a lumped uncertainty including parame-

ter variations, external disturbances and others, CSMC is

designed on the basis of SMC to suppress the influences of

uncertainties, thereby reducing the chattering phenomenon

and achieving excellent performance. However, the values of

the boundary layer and switching gain in CSMC are diffi-

cult to select. Therefore, ENN is introduced into the control

system to replace the switching control law of CSMC and

estimate the lumped uncertainty. Experiments based on a

digital signal processor (DSP), TMS320 F28335 show that

the proposed control method is effective. From the experi-

mental results, the PMLSM servo system based on CSMC via

ENN possesses the advantages of good tracking accuracy and

robustness for the tracking of different reference trajectories.

II. MODEL OF PMLSM

PMLSM is an electromagnetic device that directly generates

linear motion. It can be seen as a rotary motor which is cut

along the radial direction and expanded the circumference

into a straight line [26]. The structure of a rotary motor and a

PMLSM is shown in Fig.1.

FIGURE 1. The structure of a rotary motor and a PMLSM.

With the implementation of field-oriented control, the elec-

tromagnetic thrust is simplified as

Fe = Kf iq (1)

Kf = 3πpnψf /2τ (2)

where Fe is the electromagnetic thrust, Kf is the thrust coef-

ficient, iq is the q-axis current, pn is the number of pole pairs,

ψf is the magnet flux, τ is the pole pitch.

The mover dynamic equation of the PMLSM using the

electromagnetic thrust shown in (1) can be

Mv̇ = Fe − Bv− FL (3)

where M is the mass of the mover, B is the viscous friction

coefficient; v is the linear velocity of the mover, FL is lumped

uncertainty including external disturbances, friction forces

and parameter variations. In addition, friction forces consist

of the static friction, Coulomb friction and vicious friction.

The friction forces can be formulated as [27]

Ffri =

[

fc + (fm − fc) e
−(v/vs)

2
]

sgn (v)+ Bv (4)

where Ffri is the friction force, fc is the Coulomb friction, fm is

the static friction, vs is the Stribeck velocity, sgn (·) is a sign

function.

The following equation can be obtained by substituting (1)

into (3)

v̇ = −Bv/M + Kf iq/M − FL/M (5)

III. PROPOSED CONTROL SYSTEM

In order to suppress the influence of the lumped uncertainty

on the permanent magnet linear servo system and achieve

high-precision tracking performance and strong robustness,
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FIGURE 2. Structure diagram of CSMC via ENN for PMLSM servo system.

a control strategy combining CSMC with ENN is proposed.

The structure diagram of CSMC via ENN for PMLSM servo

system is shown in Fig.2.

A. CSMC DESIGN

To simplify the calculation, the following state variables are

defined: x1 = dm − d , x2 = ẋ1. By using the mathematical

model of PMLSM, the error state equation of PMLSM can be

obtained
[

ẋ1
ẋ2

]

=

[

0 1

0 a

] [

x1
x2

]

+

[

0

b

]

u+

[

0

c

]

FL (6)

where a = −B/M , b = Kf /M , c = −1/M , u = iq is the

control effort.

Considering the existence of the parameter variations,

external disturbances and friction forces of the PMLSM servo

system, the field-oriented control PMLSM servo system can

be formulated as follows

ẋ2 = (an +1a) x2 + (bn +1b) u+ (cn +1c)FL

= anx2 + bnu+ β (7)

where an, bn, cn are the nominal value of a, b, c, 1a, 1b,

1c denote the uncertainties introduced by system parameters

M and B, β = 1ax2 + 1bu + (cn +1c)FL is the lumped

uncertainty, and β is assumed to be bounded

|β| ≤ ρ (8)

where ρ is a given positive constant, and it is also considered

as the switching control gain of CSMC.

Compared with SMC, CSMC has two sliding surfaces

which are integral sliding surface and complementary sliding

surface. The existence condition of sliding surface is that the

system state point can reach the sliding surface in finite time.

When the state point is above the sliding surface, the control

result shouldmake the state point go down through the sliding

surface. Conversely, when the state point is below the sliding

surface, the control result should make the state point go up

through the sliding surface [28]. Thus, the arrival condition

of sliding mode is defined as

lim ṡ
s→0+

< 0, lim ṡ
s→0−

> 0 (9)

This means within the range of the sliding surface, the tra-

jectory will reach the sliding surface in finite time and satisfy

the local arrival condition. The equivalent form of the arrival

condition is expressed as

sṡ < 0 (10)

In order to ensure the arrival within finite time and avoid

asymptotic approximation, (10) can be modified as [29]
{

ṡ > ε, s < 0

ṡ < ε, s > 0
or sṡ < −ε |s| (11)

where ε > 0, which enables the system state point to reach

the sliding surface in finite time.

In order to eliminate the steady-state error of the system,

the integral of tracking error x1 is introduced into switching

function, and the integral sliding surface s1(x) is defined as

s1 (x) =

(

d

dt
+ λ

)2 ∫ t

0

x1dτ (12)

where λ is a given positive constant.

The following equation can be obtained by substituting

(6)-(7) into (12) and taking the derivative

ṡ1 (x) = ẍ1 + 2λẋ1 + λ2x1

= d̈m − anx2 − bnu− β + 2λẋ1 + λ2x1 (13)
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In CSMC, complementary sliding surface s2 (x) is defined

as follows

s2 (x) =

(

d

dt
+ λ

) (

d

dt
− λ

) ∫ t

0

x1dτ (14)

The following equation can be obtained by substituting

(6)-(7) into (14)

ṡ2 (x) = ẍ1 − λ2x1

= d̈m − anx2 − bnu− β − λ2x1 (15)

Corresponding to the same positive constant λ, the rela-

tionship between s1 (x) and s2 (x) can be obtained as follows

σ (x) = s1 (x)+ s2 (x) (16)

The following equation can be obtained by substituting

(12) and (14) into (16)

σ (x) =

(

d

dt
+λ

)2 ∫ t

0

x1dτ+

(

d

dt
+λ

) (

d

dt
−λ

) ∫ t

0

x1dτ

= 2 (ẋ1 + λx1) (17)

The following equation can be obtained by using (13), (15)

and (17)

ṡ2(x) + λσ (x) = ṡ1(x) (18)

In order to ensure the stability of the system, the first

Lyapunov function candidate for the CSMC system is

chosen as

V =
1

2

(

s21 + s22

)

(19)

The following equation can be obtained by taking the time

derivative of (19) and using (13)-(15)

V̇ = s1ṡ1 + s2ṡ2

= (s1+s2)
[

d̈m−anx2−bnu−β+2λẋi+λ
2xi−λs2

]

(20)

CSMC control law u is designed by using (20)

u = ueq + uv (21)

ueq = b−1
n

(

d̈m − anx2 + 2λẋ1 + λ2x1 + λs1 (x)
)

(22)

uv = b−1
n

[

ρsat

(

σ (x)

Φ

)]

(23)

where ueq is the equivalent control law, uv is the switching

control law, Φ is the boundary layer thickness, and sat(� ) is

a saturation function, which is designed as follows

sat

(

σ (x)

Φ

)

=















1, σ (x) ≥ Φ

σ (x)

Φ
, −Φ < σ (x) < Φ

−1, σ (x) ≤ −Φ

(24)

The following equation can be obtained by using (20)-(24)

V̇ = s1ṡ1 + s2ṡ2

= (s1 + s2) (−Bnuv)− λ (s1 + s2)
2 + (s1 + s2) (−β)

≤ (s1 + s2) (−Bnuv)− λ (s1 + s2)
2 + |s1 + s2| (|β|)

≤ |s1 + s2| (|β| − ρ)− λ (s1 + s2)
2 (25)

Due to |β| ≤ ρ, V̇ ≤ 0 can be obtained. Therefore,

the system satisfies the Lyapunov stability condition. In other

words, the system can converge to the boundary layer within

any finite time [30]. The convergence trajectory of CSMC is

shown in Fig.3.

FIGURE 3. Convergence trajectory of CSMC.

FIGURE 4. Structure diagram of CSMC.

The structure diagram of CSMC is shown in Fig.4. In prac-

tical applications, it is difficult to measure the parameters of

the system and the external disturbances, so the switching

control gain ρ and the thickness of the boundary layer Φ are

difficult to select the appropriate values. To reduce chattering

and improve tracking accuracy of the PMLSM servo system,

the value of ρ and Φ is usually chosen by the method of

experience or trial.

B. ELMAN NEURAL NETWORK DESIGN

In order to solve the problem of parameter selection in CSMC

and improve the system performance, a method combined

CSMC with ENN is proposed. In the proposed method, ENN

is used to replace the switching control in CSMC and estimate

the lumped uncertainty of the PMLSM servo system. The

control law un of the proposed method can be obtained as

follows

un = ueq + uenn (26)

uenn = b−1
n yo (k) (27)

where uenn is the control law of the CSMC via ENN, yo (k) is

the output of ENN, which is used to replace the function

relation between ρ and Φ in (23). The structure diagram of
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FIGURE 5. Structure diagram of ENN.

ENN is shown in Fig.5. ENN has two inputs and one output,

which includes input layer, context layer, hidden layer and

output layer. Compared with RBFNN, ENN has a context

layer, which enables the network to have a strong ability to

memory dynamic information. The signal propagation and

the basic function in each layer of the ENN are introduced

as follows.

1) LAYER 1. INPUT LAYER

In this layer, the input and the output of the node are repre-

sented as

xi (k) = neti, i = 1, 2 (28)

where neti is the input of the ith node, xi (k) is the output of

the ith node at the time of k .

2) LAYER 2. HIDDEN LAYER

In this layer, the input and the output of the node are repre-

sented as

xh (k) = S (neth) (29)

S (neth) =
1

1 + e−λneth
(30)

where neth is the input of hidden layer, xh (k) is the output of

hidden layer. S function is selected as the activation function

of the hidden layer. The input of the hidden layer neth contains

two parts and it is represented as follows

neth =
∑

c

xc (k)+
∑

i

Wih × xi (k) (31)

where
∑

c
xc (k) is the output of context layer,Wih is the con-

nective weight between input neurons and hidden neurons.

3) LAYER 3. CONTEXT LAYER

In this layer, the input and the output of the node are repre-

sented as

xc (k) = xh (k − 1) (32)

where xh (k − 1) is the output of hidden layer at the time of

k − 1, and it is also as the input of context layer at the time

of k .

4) LAYER 4. OUTPUT LAYER

In this layer, the input and the output of the node are repre-

sented as

yo (k) = neto (k) (33)

neto (k) =
∑

h

Who × xh (k) (34)

where yo (k) is the output of this layer,Who is the connective

weight between hidden neurons and output neurons.

In practical applications, the update of connective weight

can be modified by static back propagation (BP) algorithm,

but the output of ENN is not only related to the input of the

time of k , but also related to the input of the time of k − 1.

Therefore, the dynamic learning law is adopted when the

accurate calculation results are required. The error function

of the time of k is defined as follows

E (k) =
1

2
(dm (k)− d (k))2 =

1

2
e2 (k) (35)

The error term to be propagated is computed as

δo = −
∂E

∂yo (k)
= −

∂E

∂e

∂e

∂yo (k)
= −

∂E

∂e

∂e

∂d

∂d

∂yo (k)
(36)

The update law of the connective weight is defined as

W (k + 1) = W (k)+1W (k) (37)

whereW is the connective weight of input layer, hidden layer

and output layer.

The update of Who is defined as

1Who = −η1 ×
∂E (k)

∂Who

= −η1 ×
∂E (k)

∂yo (k)
×

∂yo (k)

∂neto (k)
×
∂neto (k)

∂Who

= −η1 × δ0 × xh (k) (38)

δ0 =
∂E (k)

∂yo (k)
(39)

where η1 is the learning rate of Who.

The update of Wih is defined as

1Wih = −η2 ×
∂E (k)

∂Wih

= −η2 ×
∂E (k)

∂yo (k)
×
∂yo (k)

∂neto (k)
×
∂neto (k)

∂Who
×
∂xh (k)

∂Wio

= −η2 × δ0 ×Who × xi (k) (40)

where η2 is the learning rate of Wih.

ENN can be trained by train function. The connective

weights are calculated and adjusted by the BP algorithm of

errors to complete online learning. By using (37) and (38),

the training block diagram of the connection weightWho from

hidden neurons to output neurons is shown in Fig.6. In the

training process, the error gradient of the connective weight
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FIGURE 6. Training block diagram of Who from hidden neurons to output
neurons.

can be determined by the BP algorithm of the error to adjust

the connective weight.

The selection of the learning rate in neural network has

a great influence on network performance. In order to train

ENN effectively, discrete Lyapunov function is used to ensure

error convergence. The convergence analysis of the network

is as follows.

Define η1 as the learning rate between hidden neurons and

output neurons, and P1max = max ‖P1(k)‖, where P1(k) =

∂yo/∂Who and ‖·‖ is the Euclidean Norm defined on ℜn.

Assume η1 = λ/(P1max)
2 = λ/Rn, where 0 < λ ≤

e2 (k)/(δo + εo), Rn is the neurons of hidden layer, εo is a

positive constant.

Proof: According to

P1(N ) =
∂yo

∂Who
=

∂yo

∂neto
×
∂neto

∂Who
= xh (41)

The following inequality can be obtained

‖P1(N )‖ <
√

Rn (42)

The discrete Lyapunov function is defined as follows

V (k) =
1

2
e2 (k) (43)

During adjacent sampling time, the Lyapunov function can

be represented as

1V (k)=V (k + 1)− V (k)=
1

2

[

e2 (k + 1)− e2 (k)
]

(44)

The error can be described as

e (k + 1) = e (k)+1e (k) = e (k)+

[

∂e (k)

∂Who

]T

×1Who

(45)

where 1e and 1Who are the variation of tracking error and

connective weight, respectively. The following equation can

be obtained by using (37), (38) and (45)

‖e (k + 1)‖

=

∥

∥

∥
e (k)+ [(−1/e (k)) δoP1 (k)]

T [η1δoP1 (k)]

∥

∥

∥

=

∥

∥

∥
e (k)+

[

1 − η1 (δo/e (k))
2 PT1 (k)P1 (k)

]
∥

∥

∥

≤ ‖e (k)‖

∥

∥

∥
1 − η1 (δo/e (k))

2 PT1 (k)P1 (k)

∥

∥

∥
(46)

By using η1 = λ/(P1max)
2 = λ/Rn and 0 <

λ ≤ e2 (k)/(δo + εo), one can be obtained that

∥

∥1 − η1 (δo/e (k))
2 PT1 (k)P1 (k)

∥

∥ < 1. Consequently, V >0

and V̇ < 0 are satisfied in the system by adopting Lyapunov

stability theory. Thus, it can be implied that the tracking error

will converge to zero as t → ∞. Similarly, the tracking error

of system will converge to zero under the specific network

learning parameters [31].

IV. EXPERIMENTAL RESULTS

A. EXPERIMENT SYSTEM

To test the feasibility and the validity of the proposed method,

a PMLSM servo system based on DSP, TMS320 F28335

experiment platform is set up in Fig.7. The control-based

servo system consists of PMLSM, PC, DSP, intelligent power

module (IPM) and detection units. The hardware structure

diagram of PMLSM control system based on DSP is shown

in Fig.8.

FIGURE 7. Experimental setup of control system. (a) The structure of
PMLSM (b) PMLSM servo system based on DSP.

A detailed description of the PMLSM servo system based

on DSP can be found as follows.

(1) PMLSM: The control object of the experimental sys-

tem is the PMLSM produced by Kollmorgen, American, its

maximum distance can be reached 260 mm.

(2) DSP: The control chip is TMS320 F28335 DSP with

a sampling period 100 µs, which is specially designed for

motor control with the peripheral circuit driven by a motor.

Therefore, it is extremely suitable for the development of

all-digital servo controller. Its operation speed can reach up
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FIGURE 8. Hardware structure diagram of PMLSM control system based
on DSP.

TABLE 1. Parameters of PMLSM.

to 30MIPS, whichmakes it possible to implement somemore

complex modern control.

(3) IPM inverter: The power conversion unit is PS21865

IPM (20A/600V) produced by Mitsubishi, Japan. It has a

built-in IGBT drive circuit, overload protection and power

supply under-voltage protection function, all of those can

contribute to the reliable operation of the system.

(4) Current detection unit: Three-phase current signals of

PMLSM are obtained by LT 58-S7 Hall current sensors to

constitute a current feedback control with a ratio of 1000:1.

(5) Linear grating sensor detection unit: A linear grating

sensor with resolution 1 µm is used to detect position of the

moving table.MicorE linear grating sensor isMII1600, which

can directly pick up position signals and velocity signals, and

offer feedback to the system.

The main PMLSM servo system parameters are given

in Table 1.

The parameters in CSMC via ENN are given in Table 2.

For the selection of parameters in CSMC, the trial and error

method is adopted to obtain the best control performance by

continuously debugging parameters, whereas in the proposed

CSMCvia ENN, ENN is used to replace the switching control

law, thus avoiding the selection of parameters in CSMC.

In addition, the selection of parameters in ENN mainly

TABLE 2. Parameters in CSMC via ENN.

depends on the experience. In order to achieve the optimal

transient and steady-state control performance, the parame-

ters are selected to satisfy the stability requirements of the

experiment.

B. LINEAR MOTION TRAJECTORY

COMPARATIVE EXPERIMENTS

In order to verify the effectiveness of the proposed method,

CSMC, CSMC via RBFNN, CSMC via ENN are imple-

mented in the experimentation for the comparison of the con-

trol performance, respectively. Different from ENN, RBFNN

is a static neural network with two inputs and one output.

It contains input layer, hidden layer and output layer. The

Gauss basis function is selected as the activation function of

hidden layer. In addition, RBFNN has 2, 9 and 1 neurons at

the input, hidden, and output layers, respectively. To verify

the effectiveness of CSMC via ENN with different reference

trajectories, external disturbances and parameter variations,

experimental cases of permanent magnet linear servo system

are shown in Table 3.

In case 1, a non-periodic trapezoidal signal is given as

the reference trajectory. In the case of nominal parameters,

some experimental results are provided to demonstrate the

effectiveness of the proposed method. Fig.9 and Fig.10 are

the position tracking curves and the tracking error curves of

PMLSM servo system for non-periodic trapezoidal signals

when using CSMC, CSMC via RBFNN and CSMC via ENN,

respectively. By comparing these curves, it can be seen that

the tracking error curves are almost invariant in a certain

range during the rising and stable stages of the position,

while at the turning points of the given trapezoidal signal,

the tracking error curves fluctuate greatly, which is caused

by the sudden change of v at the turning points and the

existence of the system inertia. From Fig.10, it can be seen

that the position tracking error based on CSMC is at the range

of −2.0-12.5 µm, and the one under CSMC via RBFNN
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TABLE 3. Experimental cases of permanent magnet linear servo system.

FIGURE 9. Position tracking curves of PMLSM servo system for
non-periodic trapezoidal signals when using (a) CSMC (b) CSMC via
RBFNN (c) CSMC via ENN.

is about −3.2-9.0 µm. However, the position error curve

under the control of the proposed method is approximately

at the range of −1.8-6.0 µm. In addition, by observing the

fluctuation of curves, it is found that the proposedmethod can

effectively reduce chattering. Therefore, CSMC via ENN for

FIGURE 10. Position tracking error curves of PMLSM control system for
non-periodic trapezoidal signals when using (a) CSMC (b) CSMC via
RBFNN (c) CSMC via ENN.

the PMLSM servo system has a good tracking performance

among the three controllers.

In case 2, a sinusoidal input signal with a period of 2s

and an amplitude of 10mm is given as a reference trajectory

for the PMLSM servo system. 50N external disturbance is
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FIGURE 11. Position tracking error curves of PMLSM servo system with
sudden external disturbance for sinusoidal signal when using (a) CSMC
(b) CSMC via RBFNN (c) CSMC via ENN.

applied to the system at the time of 2.5s. Fig.11 is the posi-

tion tracking error curves of CSMC, CSMC via RBFNN,

and the proposed method, respectively. By observing the

error curves of PMLSM servo system under sudden exter-

nal disturbance, it can be seen that the tracking error of

CSMC via ENN is about 0.5 µm, which is 25%, 13% of

the CSMC and CSMC via RBFNN. It shows that the pro-

posedmethod can effectively suppress the influence of distur-

bances on the system, thereby enhancing the robustness of the

system.

In case 3, under the condition of parameter variations,

the PMLSM system is given the same reference trajectory

as case 2. Since actual position response curves coincide

FIGURE 12. Position tracking error curves of PMLSM servo system with
parameter variations for sinusoidal signal when using (a) CSMC (b) CSMC
via RBFNN (c) CSMC via ENN.

with the reference trajectory, only the position tracking error

curves are shown in Fig.12 to verify the effectiveness of the

control method. It can be seen from Fig.12 that the proposed

method can also achieve precise position tracking when the

parameters change.

In order to demonstrate the improvement of the proposed

strategy clearly, a quantified data is given as follows. The

performance measures of these three methods for the tracking

of different cases are shown in Fig.13. From the bar chart

of tracking error, it can be seen clearly that compared with

CSMC and CSMC via RBFNN, the amplitude of tracking

error is significantly reduced under the proposed method.

Therefore, the effectiveness and necessity of CSMC via ENN

are verified.
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FIGURE 13. Performance measures of PMLSM servo system for different cases.

V. CONCLUSIONS

This paper has proposed a reliable control strategy for per-

manent magnet linear servo system, which can suppress the

influence of the lumped uncertainty and provide satisfactory

performance. By implementing DSP as the core control unit

to control the mover of PMLSM for the tracking of differ-

ent reference trajectories, the tracking performance and the

robustness of the PMLSM servo system have been verified.

In addition, the proposed method can also be applied to

the multi-axis motion system such as H-type gantry stage,

dual linear motors and five-axis linkage motion system.

For further works, the following issues are deserved to be

considered.

(1) The sliding mode surfaces used in the paper can only

guarantee the asymptotic convergence of the tracking errors.

To improve the performance of the proposed CSMC via ENN

in practice, the integral terminal sliding surfaces such as the

one in [32], [33] should be used to guarantee the fast and

finite-time convergence.

(2) In the designed controller, the friction force is consid-

ered as a part of the lumped uncertainty, and the influence of

friction force on the system is not properly analyzed. In order

to establish a more perfect controller, disturbance observer

such as the one in [34] should be combined to further improve

the system performance.
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