REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 9, número 2: 1996 http://dx.doi.org/10.5209/rev_REMA.1996.v9.n2.17565

Complemented subspaces of sums and products of copies of $L^1[0, 1]$.

A. A. ALBANESE and V. B. MOSCATELLI*

Abstract

We prove that the direct sum and the product of countably many copies of $L^{1}[0, 1]$ are primary locally convex spaces. We also give some related results.

For a while it was an open problem whether a complemented subspace of a countable product of Banach spaces can be written as a product of Banach spaces. This question has been solved in negative by M. I. Ostrovskii [12], but it is still open for X^N where X is a classical Banach space. The only countable products of classical Banach spaces whose complemented subspaces have been fully described are: $\omega; (l^p)^N, 1 \leq p \leq \infty$, and $(c_0)^N$ ([5], [9]) and for these the answer is positive. Moreover, in [1] it was shown that, for $1 , <math>(L^p[0,1])^N$ is primary, i.e. if $(L^p[0,1])^N = F \bigoplus G$, then either F or G is isomorphic to $(L^{p}[0,1])^{N}$; it follows, by reflexivity, that also the direct sum of countably many copies of $L^{p}[0, 1]$ is primary. The purpose of this note is to extend these results to the case $L^{1}[0, 1]$, i.e. we will prove that the direct sum and the product of countably many copies of $L^{1}[0, 1]$ are also primary spaces. However it remains an open problem whether both the complements F and G of a direct decomposition of $(L^{p}[0,1])^{N}$, with $1 \le p < \infty$, are isomorphic to a product of Banach spaces. Note that $(L^p[0,1])^N$ is isomorphic to $L^p_{loc}(\mathbf{R}), 1 \le p \le \infty$.

Our proof is completely different from the one in [1]: the technique of that proof cannot be applied to the case when p = 1, as it based

¹⁹⁹¹ Mathematics Subject Classification: 46E30, 46A13.

Servicio Publicaciones Univ. Complutense. Madrid, 1996.

^{*}The authors acknowledge partial support from M.U.R.S.T

on some special features of the spaces $L^p[0, 1], 1 , and on the fact that the Haar-system is an unconditional basis in such spaces (the Haar-system is only a basis of <math>L^1[0, 1]$; there is no unconditional basis in $L^1[0, 1]$!). Actually, in order to obtain our results we will use some known facts about a special class of operators on $L^1[0, 1]$, the so-called E – operators (see [6]), together with a method given in [9].

For other examples of primary non-Banach Fréchet spaces, we refer the reader to [1], [2], [4], [5], [9] and [10].

We will use standard terminology (like e.g. [7], [8] and [9]). In particular, for two locally convex spaces E and F, we write $E \simeq F$ and E < F to mean respectively that E is topologically isomorphic to For to a complemented subspace of F. Finally, we put $L^1 = L^1[0, 1]$.

1 Preliminaries

We recall some definitions and facts which will be used later on.

Definition 1 ([6]). A bush is a sequence (E_i^n) , $i = 1, \dots, M_n$, $n = 0, 1, \dots$, of Lebesgue measurable subsets of [0, 1] such that

- (a) $M_0 = 1$ and $|E_1^0| > 0$,
- (b) for each $n \cup_{i=1}^{M_n} E_i^n = E_1^0$,
- (c) for each $n \quad E_i^n \cap E_j^n = \emptyset$ if $i \neq j$,
- (d) for each n and each $j, 1 \leq j \leq M_{n+1}$, there exists an $i, 1 \leq i \leq M_n$, with $E_j^{n+1} \subset E_i^n$,
- (e) $\max_{1 \le i \le M_n} |E_i^n| \to 0 \text{ as } n \to \infty.$ Here |E| denotes the Lebesgue measure of a mesurable subset $E \subset [0, 1].$

Definition 2 ([6]). Let $T: L^1 \to L^1$ be a bounded linear operator. T is called an E- operator if there exist $\delta > 0$ and a bush (E_i^n) with

$$\frac{1}{\mid E_{1}^{0}\mid}\int_{0}^{1}\max_{1\leq i\leq M_{n}}\left|T\left(\chi_{E_{i}^{n}}\right)\right|dx>\delta$$

for each n, where χ_E denotes the characteristic function of a measurable subset $E \subset [0,1]$.

Enflo and Starbid [6] proved the following useful fact:

Theorem 0. Let $T: L^1 \to L^1$ be a bounded linear operator. T is an Eoperator if and only if there exists a subspace Y of L^1 with Y isomorphic to L^1 , with $T_{|Y}$ an isomorphism onto, and with TY complemented in L^1 .

Remark. (1) If $T_1 + T_2$ is an *E*-operator, then either T_1 or T_2 must be an *E*-operator. (2) Obviously, the identity map of L^1 is an *E*-operator.

For more about such operators the reader is referred to [6].

2 Complemented subspaces of $(L^1)^N$

We denote by $(L^1)^N$ the product of countably many copies of L^1 . In particular, the space $(L^1)^N$ can be represented as the projective limit of the Banach spaces $\prod_{i=1}^{n} L^1$ with respect to the linking maps

$$p_{n-1,n}:\prod_{i=1}^{n}L^{1}\rightarrow\prod_{i=1}^{n-1}L^{1},\ (x_{1},\cdots,x_{n-1},x_{n})\rightarrow(x_{1},\cdots,x_{n-1}),$$

which are surjective. It is clear that, for each increasing sequence $(k(n)) \subset \mathbf{N}$, we have $(L^1)^N = proj_n \left(\prod_{i=1}^{k(n)} L^1, p_{k(n-1),k(n)}\right)$, where $p_{k(n-1),k(n)} = p_{k(n-1),k(n-1)+1} \cdots p_{k(n)-1,k(n)}$.

Now, let $p_n: (L^1)^N \to \prod_{i=1}^n L^1$ be the canonical projection $(x_i)_i \to (x_1, \dots, x_n)$. Then $p_{n,n+1}p_{n+1} = p_n$.

Now we are ready to prove

Theorem 1. The space $(L^1)^N$ is primary.

Proof. Suppose that $(L^1)^N = F \bigoplus G$ with P projection from $(L^1)^N$ onto F and kerP = G. Put Q = I - P.

Because F and G are closed subspaces of $(L^1)^N$, by Lemma 1.1 of [9], we may write $F = proj_n(F_n, p_{n-1,n})$ and $G = proj_n(G_n, p_{n-1,n})$, where F_n (resp. G_n) denotes the closure of $p_n(F)$ (resp. $p_n(G)$) in $\prod_{i=1}^n L^1$ and $p_{n-1,n}$ also denotes the restriction of $p_{n-1,n}$ to F_n (resp. G_n). Moreover, since F_n (resp. G_n) is Banach every map $p_n P$ (resp. $p_n Q$) factors canonically through $\prod_{i=1}^{k(n)} L^1$. Therefore, we can find two sequence $(k(n))_n$ and $(h(n))_n$ of integer numbers with 1 = h(1) < k(1) < $h(2) < \cdots < h(n) < k(n) < h(n+1) < \cdots$ such that the diagrams

$$(L^{1})^{N} \xrightarrow{p_{h(n)}}^{P} F_{h(n)} \qquad (L^{1})^{N} \xrightarrow{p_{h(n)}}^{Q} G_{h(n)}$$

$$p_{k}(n) \downarrow \nearrow r_{n} \qquad \text{and} \qquad p_{k}(n) \downarrow \swarrow s_{n} \qquad (1)$$

$$\prod_{i=1}^{k(n)} L^{1} \qquad \qquad \prod_{i=1}^{k(n)} L^{1}$$

commute, where r_n (resp. s_n) denotes the map associated with $p_{h(n)}P$ (resp. $p_{h(n)}Q$).

Put $E_{0,1} = \prod_{i=1}^{k(1)} L^1$, $E_{n-1,n} = \{0\}^{k(n-1)} \times \prod_{i=k(n-1)+1}^{k(n)} L^1$, and $p_{h(n),k(n)} = p_{h(n),h(n)+1} \cdots p_{k(n)-1,k(n)}$. Then, by (1), as it is easy to verify, we obtain that, for each $x \in E_{n-1,n}$, $(r_n + s_n)(x) = p_{h(n),k(n)}(x)$, i.e.

$$r_n + s_n = p_{h(n),k(n)|E_{n-1,n}} : E_{n-1,n} \to \prod_{i=1}^{h(n)} L^1$$

is the canonical projection $(\neq 0 \text{ as } k(n-1) < h(n) < k(n))$ and hence is an *E*-operator as it follows from Theorem 0. This implies that, by Remark 1, either $r_{n|E_{n-1,n}}$ or $s_{n|E_{n-1,n}}$ is an *E*-operator for each *n*. Therefore, we can suppose that $r_{n|E_{n-1,n}}$ is an *E*-operator for infinite indices *n*.

Now, for the sake of simplicity, we assume that for each $n r_{n|_{E_{n-1,n}}}$ is an *E*-operator and k(n) = n + 1, h(n) = n. Thus, we have that the following diagram

$$\prod_{i=1}^{n+2} L^1 \xrightarrow{p_{n+1,n+2}} \prod_{i=1}^{n+1} L^1$$

$$r_{n+1} \downarrow \qquad \qquad \downarrow r_n$$

$$F_{n+1} \xrightarrow{p_{n,n+1}} F_n$$

commutes for each n.

Because $r_{1_{|E_{0,1}}}$ is an *E*-operator, by Theorem 0 there exists a closed subspace $M_1 \subset E_{0,1} = L^1$ with $r_{1_{|M_1}}$ an isomorphism into, with $H_1 =$

 $r_1(M_1) < L^1$ and, with $H_1 \simeq L^1$. Since $p_{n,n+1}r_{n+1} = r_n p_{n+1,n+2}$, it is clear that also the maps

$$p_{n,n+1}: r_{n+1}(M_1) \to r_n(M_1)$$

are isomorphism onto.

Now, note that $p_{1,2}(x_1, x_2) = x_1$ and hence $N = \ker p_{1,2} = F_2 \cap (\{0\} \times L^1)$. Because $p_{1,2} : r_2(M_1) \to r_1(M_1) = H_1$ is an isomorphism onto, there exists a continuous linear map $A : H_1 \to \{0\} \times L^1$ with $r_2(M_1) = \{(x, Ax) : x \in H_1\}$. It follows that, if $t_1 : L^1 \to H_1$ is a projection, then the map $r : L^1 \times L^1 \to r_2(M_1)$ defined by $r(x_1, x_2) = (t_1x_1, At_1x_1)$ is a projection onto $r_2(M_1)$ with $\ker r = \{(x_1, x_2) : t_1x_1 = 0\} = \ker t_1 \times L^1$. Now, we observe that $r_2^{-1}(N) \subset E_{1,2}$ and $r_{2|E_{1,2}}$ is an E-operator. Then, again Theorem 0 gives that there exists a closed subspace $M_2 \subset E_{1,2}$ with $r_{2|M_2}$ an isomorphism into, with $H_2 = r_2(M_2) < \{0\} \times L^1$ and with $H_2 \simeq L^1$. As before, all the maps $p_{n,n+1} : r_{n+1}(M_2) \to r_n(M_2)$ are isomorphism onto. If I is the identity map of $L^1 \times L^1$ and $q : \{0\} \times L^1 \to H_2$ is a projection onto H_2 , we consider the diagram

$$L^1 \times L^1 \xrightarrow{I-r} \ker t_1 \times L^1 \xrightarrow{I-p_{1,2}} \{0\} \times L^1 \xrightarrow{q} H_2.$$

Then the map

$$s = qp_{1,2}(I-r): L^1 \times L^1 \rightarrow H_2$$

is a projection onto H_2 and rs = 0 = sr. It follows that $r_2(M_1) + H_2$ is a closed subspace of F_2 , hence equal to $r_2(M_1) \oplus r_2(M_2) \simeq L^1 \oplus L^1$, and the map $t_2 = r + s$ is clearly a projection from $L^1 \times L^1$, hence from F_2 , onto $r_2(M_1) \oplus r_2(M_2)$ such that $p_{1,2}t_2 = t_1p_{1,2}$.

Continuing in this way, we inductively obtain that for each *n* there exists a closed subspace $X_n = \bigoplus_{i=1}^n r_n(M_i) \simeq \prod_{i=1}^n L^1$ of F_n and a projection $t_n : \prod_{i=1}^n L^1 \to X_n$ such that

$$p_{n,n+1}t_{n+1} = t_n p_{n,n+1} \tag{2}$$

so that $p_{n,n+1}(X_{n+1}) = X_n$. Now, if we form the projective limit X of the spaces X_n with respect to the restriction maps $p_{n-1,n}: X_n \to X_{n-1}$,

we see that $X \subset F, X \simeq (L^1)^N$. Moreover, by using (2), we see that the map

$$t:(L^1)^N o X$$
 , $x=(x_n)_n o (t_np_n(x_n))_n$

is a projection onto X. Therefore, we have the situation $(L^1)^N < F < (L^1)^N$ which gives, by using Pelczyinski's decomposition method, that $F \simeq (L^1)^N$ and hence the proof is complete. Moreover

Proposition 1. If $F < (L^1)^N$ then one of the following cases occurs: (i)F is a complemented subspace of $L^1 \cdot (ii)F \simeq \omega \cdot (iii)F \simeq \omega \oplus X$ where X is a complemented subspace of $L^1 \cdot (iv)F'_{\beta} \simeq (l^{\infty})^{(N)}$, moreover in this case F contains a complemented copy of $(l^1)^N$.

In order to prove Proposition 1, we need the following Lemma

Lemma. Let E be a quojection (i.e., E is a projective limit of a projective sequence $(E_n, r_{n,n+1})$ of Banach spaces E_n and surjective linking maps $r_{n,n+1} : E_{n+1} \to E_n$). If E'_{β} has a subspace isomorphic to $(l^{\infty})^{(N)}$, then E contains a complemented copy of $(l^1)^N$.

Proof. First, we write $E'_{\beta} = ind E'_{n}$, where the increasing sequence (E'_{n}) of Banach spaces is strict since E is a quojection.

Now, we assume that E'_{β} contains a copy of $(l^{\infty})^{(N)}$. Put $X_n = l^{\infty}$ for all $n, (l^{\infty})^{(N)} = \bigoplus X_n$. Then there is a k(1) such that $X_1 \subset E'_{k(1)}$ since X_1 is Banach. By Proposition 2.e.8 of [8] it follows that $E_{k(1)}$ contains a complemented copy of l^1 , i.e. there is a subspace G_1 of $E'_{k(1)}$ with $G_1 \simeq l^1$ and a projection $t_1 : E_{k(1)} \to G_1$. We denote by (e_j) the unit vectors basis of G_1 : because E is a quojection there is a bounded sequence $(x_j) \subset E$ such that $r_{k(1)}x_j = e_j$ (for each n, r_n denotes the map $r_n : E \to E_n$ defined by $r_n x = x_n$). Therefore, the map $s_1 : G_1 \to E$, $\sum_{j=1}^{\infty} a_j e_j \to \sum_{j=1}^{\infty} a_j x_j$ is an isomorphism onto $\tilde{G}_1 = [x_j]$. Actually, $s_1 = (r_{k(1)|G_1})^{-1}$. It follows that the composition map

$$\widetilde{t}_1 = s_1 t_1 r_{k(1)} : E \to E_{k(1)} \to G_1 \to \widetilde{G}_1$$

is also a projection from E onto $\widetilde{G}_1 \simeq l^1$. So, $E = \widetilde{G}_1 \oplus ker \widetilde{t}_1 \simeq l^1 \oplus ker \widetilde{t}_1$ and, hence, $E'_{\beta} = \widetilde{G}_1 \oplus (ker \widetilde{t}_1)'_{\beta}$, where $F = ker \widetilde{t}_1$ is also a quojection as a quotient of a quojection (see Proposition 3 of [3]).

280

In order to complete the proof, we observe that $(l^{\infty})^{(N)}$ is also a complemented subspace of E'_{β} (it is an easy consequence of the fact that l^{∞} is injective (see Proposition 2.f.2 of [8]) and that E'_{β} is a strict LB-space). Then, we denote by p a projection from E'_{β} onto $(l^{\infty})^{(N)}$: because \tilde{G}'_1 is a Banach subspace of E'_{β} there is a $k \in N$ such that $q_{kp} \left(\tilde{G}'_1 \right) = 0$, where q_k denotes the canonical k-th projection from $(l^{\infty})^{(N)} = \bigoplus_n X_n$ onto $\bigoplus_{n>k} X_n$. By noting that $q_k p$ is a projection from E'_{β} onto $\bigoplus_{n>k} X_n$, it follows that, for $x \in \bigoplus_{n>k} X_n, x = \left(id_E - \tilde{t}_1 \right)' x + \tilde{t}'_1 x$ and hence $x = q_k p x = q_k p \left(id_E - \tilde{t}_1 \right)' x + q_k p \tilde{t}'_1 x = q_k p \left(id_E - \tilde{t}_1 \right)' x$, i.e. $q_k p \left(id_E - \tilde{t}_1 \right)'_{|\bigoplus_{n>k} X_n} = id_{\bigoplus_{n>k} X_n}$. Therefore, the composition map

$$\left(id_E - \widetilde{t}_1\right)' q_k p: F'_\beta \to \bigoplus_{n>k} X_n \to \left(id_E - \widetilde{t}_1\right)' \left(\bigoplus_{n>k} X_n\right) \subset F'_\beta$$

is a projection from F'_{β} onto $Y = (id_E - \tilde{t}_1)' (\bigoplus_{n>k} X_n)$ and $Y \simeq (l^{\infty})^{(N)} \subset F'_{\beta}$.

Since F'_{β} contains also a (complemented) copy of $(l^{\infty})^{(N)}$, as before, we find a subspace \tilde{G}_2 of F with $\tilde{G}_2 \simeq l^1$ and a projection \tilde{t}_2 : $F \to \tilde{G}_2$ so that $E = \tilde{G}_1 \oplus F = \tilde{G}_1 \oplus \tilde{G}_2 \oplus \ker \tilde{t}_2 \simeq l^1 \oplus l^1 \oplus \ker \tilde{t}_2$, where $\tilde{t}_1 + \tilde{t}_2(id_E - \tilde{t}_1)$ is a projection from E onto $\tilde{G}_1 \oplus \tilde{G}_2$. Iterating this procedure, for each n we find a subspace \tilde{G}_n of $\ker \tilde{t}_{n-1}$ with $\tilde{G}_n \simeq l^1$ and a projection $\tilde{t}_n : \ker \tilde{t}_{n-1} \to \tilde{G}_n$ so that E = $\oplus_{i=1}^n \tilde{G}_i \oplus \ker \tilde{t}_n \simeq \oplus_{i=1}^n l^1 \oplus \ker \tilde{t}_n$. Then, if we form the projective limit G of the Banach spaces $\oplus_{i=1}^n \tilde{G}_i$ with respect to the maps s_n , where s_n is the restriction of the map $\sum_{i=1}^n \tilde{t}_i \left(id_E - \tilde{t}_{i-1} \right) \cdots \left(id_E - \tilde{t}_1 \right)$ to $\bigoplus_{i=1}^{n+1} \tilde{G}_i$, we obtain that $G \subset E$ and $G \simeq (l^1)^N$. Moreover, the map $s = \sum_{i=1}^{\infty} \tilde{t}_i \left(id_E - \tilde{t}_{i-1} \right) \cdots \left(id_E - \tilde{t}_1 \right)$ is a projection from E onto G. This completes the proof.

Proof of Proposition 1.

It follows from assumption that F is a quojection (because it is a quotient of $(L^1)^N$) and $F'_{\beta} < (L^{\infty})^{(N)} \simeq (l^{\infty})^{(N)}$. Thus Theorem 2.1 of [9] implies that one of the cases $(i) \div (iv)$ must occur. In particular, when the case (iv) occurs, by the above lemma, we get that F contains a complemented copy of $(l^1)^N$.

Remark. We observe that, for a Fréchet space E, the fact the dual of E is a countable direct sum of Banach spaces (thus the bidual is a contable product of Banach spaces) does not necessarily imply that Eis a countable product of Banach spaces. The second author and Metafune [11] constructed examples of quojections which are not countable products of Banach spaces but whose duals are countable direct sums of Banach spaces. Thus case (*iv*) need not imply that the complemented subspace F is a countable product of Banach spaces.

3 Complemented subspaces of $(L^1)^{(N)}$

We denote by $(L^1)^{(N)}$ the sum of countably many copies of L^1 . In particular, the space $(L^1)^{(N)}$ can be represented as the inductive limit of the Banach spaces $\bigoplus_{i=1}^{n} L^1$ with respect to the linking maps

$$i_{n+1,n}: \bigoplus_{i=1}^n L^1 \to \bigoplus_{i=1}^{n+1} L^1, (x_1 \cdots, x_n) \to (x_1, \cdots, x_n, 0),$$

which are isomorphism into. Clearly, if (k(n)) is an increasing sequence of integer numbers, we have also that $(L^1)^{(N)} = ind_n \left(\bigoplus_{i=1}^{k(n)} L^1, i_{k(n+1),k(n)} \right)$, where $i_{k(n+1),k(n)} = i_{k(n+1),k(n+1)-1\cdots} i_{k(n)+1,k(n)}$.

Also recall that if E a complemented subspace of $(L^1)^{(N)}$, E is an LB-space and hence we may represent it as the strict inductive limit of the Banach spaces $E_n = E \cap (\bigoplus_{i=1}^n L^1)$.

Theorem 2. The space $(L^1)^{(N)}$ is primary.

Proof. We suppose that $(L^1)^{(N)} = F \oplus G$ with P projection from $(L^1)^{(N)}$ onto F and kerP = G. Put Q = I - P. Then, $F = ind_nF_n$ (resp. $G = ind_nG_n$), where $F_n = F \cap (\bigoplus_{i=1}^n L^1)$ (resp. $G_n = G \cap (\bigoplus_{i=1}^n L^1)$). Clearly $(L^1)^{(N)} = ind_nF_n \oplus G_n$.

Now, let $P_1 = P_{|L^1}$ (resp. $Q_1 = Q_{|L^1}$) be. Then there exists an h(1) > 1 such that the maps $P_1 : L^1 \to F_{h(1)}, Q_1 : L^1 \to G_{h(1)}$ are bounded and $F_{h(1)} \oplus G_{h(1)} \supset L^1$. Put $P_2 = P_{|\oplus_{i=1}^{h(1)+1}L^1}$ and $Q_2 =$

 $Q_{|\bigoplus_{i=1}^{h(1)+1}L^1}$, we also find an h(2) > h(1) + 1 such that the maps P_2 :

 $\oplus_{i=1}^{h(1)+1} L^1 \to F_{h(2)} \text{ and } Q_2 : \oplus_{i=1}^{n(1)+1} L^1 \to G_{h(2)} \text{ are bounded and}$ $F_{h(2)} \oplus G_{h(2)} \supset \oplus_{i=1}^{h(1)+1} L^1.$

282

Continuing in this way, we inductively find a sequence (h(n)) of integer numbers with h(n) > h(n-1) + 1, h(0) = 1, such that the maps

$$P_n = P_{|\bigoplus_{i=1}^{h(n-1)+1} L^1} : \bigoplus_{i=1}^{h(n-1)+1} L^1 \to F_{h(n)}$$

 and

$$Q_{n} = Q_{|\bigoplus_{i=1}^{h(n-1)+1}L^{1}} : \bigoplus_{i=1}^{h(n-1)+1}L^{1} \to G_{h(n)}$$

are bounded and $F_{h(n)} \oplus G_{h(n)} \supset \bigoplus_{i=1}^{h(n-1)+1} L^1$ for each $n \ge 1$. Now, we note that the following diagram

$$\begin{array}{c} \bigoplus_{i=1}^{h(n-1)+1} L^1 \xrightarrow{P_n+Q_n} F_{h(n)} \oplus G_{h(n)} \xrightarrow{q_n} \frac{F_{h(n)} \oplus G_{h(n)}}{F_{h(n-1)} \oplus G_{h(n-1)}} \simeq \frac{F_{h(n)}}{E_{h(n-1)}} \oplus \frac{G_{h(n)}}{G_{h(n-1)}} \\ \widetilde{p}_{n-1} \downarrow \qquad \qquad \downarrow p_n \\ \xrightarrow{\bigoplus_{i=1}^{h(n-1)+1} L^1} \simeq L^1 \qquad \xrightarrow{j_n} \frac{F_{h(n)} \oplus G_{h(n)}}{\bigoplus_{i=1}^{h(n-1)} L^1} \end{array}$$

commutes for each n > 1, where q_n, p_n and \tilde{p}_{n-1} are the quotient maps and j_n is the canonical isomorphism into. Moreover, for n = 1,

$$P_1 + Q_1 = i_{h(1),1} : L^1 \to \bigoplus_{i=1}^{h(1)} L^1$$

is the canonical inclusion. By Remark 1 $i_{h(1),1}$ is an *E*-operator and, hence, either P_1 or Q_1 is an *E*-operator. Also, $j_n \tilde{p}_{n-1}$ is an *E*-operator and, as follows from the above diagram, $p_n q_n (P_n + Q_n)$ is an *E*-operator. Then, by Remark 1 either $p_n q_n P_n$ or $p_n q_n Q_n$ is an *E*-operator, where, clearly,

$$\oplus_{i=1}^{h(n-1)+1} L^1 \xrightarrow{P_n} F_{h(n)} \xrightarrow{q_n} \frac{F_{h(n)}}{F_{h(n-1)}} \xrightarrow{p_n} \frac{F_{h(n)} \oplus G_{h(n)}}{\oplus_{i=1}^{h(n-1)} L^1}$$

and

$$\oplus_{i=1}^{h(n-1)+1} L^1 \xrightarrow{Q_n} G_{h(n)} \xrightarrow{q_n} \frac{G_{h(n)}}{G_{h(n-1)}} \xrightarrow{p_n} \frac{F_{h(n)} \oplus G_{h(n)}}{\bigoplus_{i=1}^{h(n-1)} L^1}.$$

Therefore, we can suppose that $p_n q_n P_n$ (for n = 0 q_0 denotes the identity map of $F_{h(1)} \oplus G_{h(1)}$) is an *E*-operator for infinite indices *n*.

For the sake of simplicity, we assume that $p_n q_n P_n$ is an *E*-operator for each *n*.

Because P_1 is an *E*-operator, by Theorem 0 there exists a closed subspace $M_1 \,\subset\, L^1$ with $P_{1|M_1}$ an isomorphism into, with $P_1(M_1) =$ $H_1 \simeq L^1$ and, with $H_1 < \bigoplus_{i=1}^{h(1)} L^1$. Also $p_2q_2P_2$ is an *E*-operator and, hence, by Theorem 0 there exists a closed subspace $M_2 \subset \bigoplus_{i=1}^{h(1)+1} L^1$, with $M_2 \simeq L^1$, on which $p_2q_2P_2$ is an isomorphism onto a complemented subspace of $\frac{F_{h(2)} \oplus G_{h(2)}}{\bigoplus_{i=1}^{h(1)} L^1}$. Putting $H_2 = P_2(M_2)$, we then have $H_2 \subset$ $F_{h(2)}, H_2 \simeq L^1$ and $p_2q_2(H_2) < \frac{F_{h(2)} \oplus G_{h(2)}}{\bigoplus_{i=1}^{h(1)} L^1}$. Point $H_2 = P_2(M_2)$ and $H_2 \cap F_{h(1)} = \{0\}, H_1 + H_2$ is closed in $F_{h(2)}$, hence equal to $H_1 \oplus H_2 \simeq$ $L^1 \oplus L^1$.

Continuing in this way, we inductively obtain for each *n* a closed subspace $M_n \subset \bigoplus_{i=1}^{h(n-1)+1} L^1$ with $P_{n|M_n}$ an isomorphism into, $P_n(M_n) = H_n \subset F_{h(n)}$, with $H_n \simeq L^1$ and $p_n q_n(H_n) < \frac{F_{h(n)} \oplus G_{h(n)}}{\bigoplus_{i=1}^{h(n-1)} L^1}$ and $H_n \cap F_{h(n-1)} = \{0\}$, with $H_n + F_{h(n-1)}$ closed subspace of $F_{h(n)}$, hence $H_n + H_{n-1} = H_n \oplus H_{n-1}$ closed subspace of $F_{h(n)}$.

Clearly, if we now form the inductive limit X of the Banach spaces $X_n = \bigoplus_{i=1}^n H_i$ with respect to the canonical inclusions $X_n \to X_{n+1}$, we see that $X \subset F$ and $X \simeq (L^1)^{(N)}$.

To conclude the proof we have to show that X < F and again to apply Pelczynski's decomposition method. Then we proceed as follows.

Let $r_i: \bigoplus_{i=1}^{h(1)} L^1 \to H_1$ be a projection. Now, recall that $p_2q_2(H_2)$ is a complemented subspace of $\frac{F_{h(2)} \oplus G_{h(2)}}{\bigoplus_{i=1}^{h(1)} L^1}$ and $p_2q_2(H_2) \simeq H_2$. Moreover, the following diagram

$$\begin{array}{c} \oplus_{i=1}^{h(2)} L^1 \xrightarrow{\overline{p}_2} \oplus_{i=1}^{\oplus_{i=1}^{h(2)}} L^1 \\ \oplus_{i=1}^{h(2)} & \xrightarrow{} \swarrow & t_{2,1} \\ \oplus_{i=h(1)+1}^{h(2)} L^1 \end{array}$$

ł

commutes, where $s_{2,1}$ denotes the canonical inclusion, $t_{2,1}$ denotes the canonical isomorphism and \overline{p}_2 denotes the quotient map (we note that $\overline{p}_{2|F_{h(2)}\oplus G_{h(2)}} = p_2q_2$). Then $s_{2,1}(H_2) \simeq H_2$ and $s_{2,1}(H_2) < \bigoplus_{i=h(1)+1}^{h(2)} L^1$. It follows that there exists a continuous linear map A: $s_{2,1}(H_2) \rightarrow \bigoplus_{i=1}^{h(1)} L^1$ with $H_2 = \{(Ay, y) : y \in s_{2,1}(H_2)\}$. Moreover, if r_2 :

284

 $\oplus_{i=h(1)+1}^{h(2)} L^1 \to s_{2,1}(H_2)$ is a projection, then the map $\tilde{r}_2 : \oplus_{i=1}^{h(2)} L^1 \to H_2$ defined by $\tilde{r}_2(x, y) = (Ar_2y, r_2y)$ is a projection onto H_2 with $ker \tilde{r}_2 = \oplus_{i=1}^{h(1)} L^1 \oplus ker r_2$. Now, if I is the identity map of $\oplus_{i=1}^{h(2)} L^1$, we consider the diagram

$$\oplus_{i=1}^{h(1)}L^1 \oplus \oplus_{i=h(1)+1}^{h(2)}L^1 \xrightarrow{I-\widetilde{r}_2} \oplus_{i=1}^{h(1)}L^1 \oplus \ker r_2 \xrightarrow{I-s_{2,1}} \oplus_{i=1}^{h(1)}L^1 \oplus \{0\} \xrightarrow{r_1} H_1.$$

It is immediate to verify that the composition map $v_2 = r_1(I - s_{2,1})(I - \tilde{r}_2)$ is a projection onto $H_1, v_2\tilde{r}_2 = 0 = \tilde{r}_2v_2$ and $v_2|_{\bigoplus_{i=1}^{h(1)}L^1} = r_1 = (v_2 + \tilde{r}_2)|_{\bigoplus_{i=1}^{h(1)}L^1}$. Therefore, $v_2 + \tilde{r}_2$ is a projection from $\bigoplus_{i=1}^{h(2)}L^1$ onto $H_1 \oplus H_2$ which extends r_1 .

Also the diagram

$$\begin{array}{c} \oplus_{i=1}^{h(3)} L^1 \xrightarrow{\overline{p}_3} \xrightarrow{\bigoplus_{i=1}^{h(3)} L^1} \\ \oplus_{i=1}^{h(2)} L^1 \xrightarrow{\swarrow} \swarrow t_{3,2} \\ \oplus_{i=h(2)+1}^{h(3)} L^1 \end{array}$$

commutes, where $s_{3,2}$ denotes the canonical inclusion, $t_{3,2}$ denotes the canonical isomorphism and \overline{p}_3 denotes the quotient map $(\overline{p}_{3|F_{h(3)}\oplus G_{h(3)}} = p_{3}q_3)$. Then $s_{3,2}(H_3) \simeq H_3$ and $s_{3,2}(H_3) < \bigoplus_{i=h(2)+1}^{h(3)} L^1$. As before, it follows that there exists a continuous linear map (which, for simplicity, we again denotes by A) $A : s_{3,2}(H_3) \to \bigoplus_{i=1}^{h(2)} L^1$ with $H_3 = \{(Ay, y) : y \in s_{3,2}(H_3)\}$. Moreover, if $r_3 : \bigoplus_{i=h(2)+1}^{h(3)} L^1 \to s_{3,2}(H_3)$ is a projection onto H_3 with $ker \tilde{r}_3 = \bigoplus_{i=1}^{h(3)} L^1 \oplus ker r_3$. Then, again denoting by I the identity map of $\bigoplus_{i=1}^{h(3)} L^1$, the composition map $v_3 = (v_2 + \tilde{r}_2)(I - s_{3,2})(I - \tilde{r}_3)$ is a projection from the space $\bigoplus_{i=1}^{h(3)} L^1$ onto $H_1 \oplus H_2$ such that $v_3 \tilde{r}_3 = 0 = \tilde{r}_3 v_3, v_3 |_{\bigoplus_{i=1}^{h(2)} L^1} = v_2 + \tilde{r}_2 = (v_3 + \tilde{r}_3) |_{\bigoplus_{i=1}^{h(2)} L^1}$.

Therefore, $v_3 + r_3$ is a projection from $\oplus_{i=1} D$ onto $H_1 \oplus H_2 \oplus H_3$ extends $v_2 + \tilde{r}_2$.

Continuing in this way, for each *n* we find a projection t_n from $\bigoplus_{i=1}^{h(n)} L^1$ onto X_n satisfying $t_n |_{\bigoplus_{i=1}^{h(n-1)} L^1} = t_{n-1}$. To complete the proof

it is enough to notice that the map $t: (L^1)^{(N)} \to X \simeq (L^1)^{(N)}$, defined by the sequence (t_n) , is the desired projection.

Moreover

Proposition 2. ([9]). If $F < (L^1)^{(N)}$ then one of the following cases occurs: (i) F is a complemented subspace of L^1 . (ii) $F \simeq \varphi$. (iii) $F \simeq \varphi \oplus X$ where X is a complemented subspace of L^1 . (iv) $F'_{\beta} \simeq (l^{\infty})^N$, moreover in this case F contains a complemented copy of $(l^1)^{(N)}$.

References

- A. A. Albanese, Primary products of Banach spaces, to appear in Arch. Math. 66 (1996), 397-405.
- [2] A. A. Albanese and V. B. Moscatelli, The spaces $(l^p)^N \cap l^q(l^q), 1 \le p < q \le \infty$ or q = 0, are primary, preprint.
- [3] S. F. Bellenot and A. Dubinsky, Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579-594.
- [4] J. C. Díaz, Primariness of some universal Fréchet spaces, preprint.
- [5] P. Domanski and A. Ortynski, Complemented subspaces of product Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231.
- [6] P. Enflo and T. W. Starbird, Subspaces of L^1 containing L^1 , Studia Math. **65** (1979), 203-225.
- [7] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.
- [8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
- [9] G. Metafune and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. (4) 153 (1988), 175-190.
- [10] G. Metafune and V. B. Moscatelli, On the space $l^{p^+} = \bigcap_{q>p} l^p$, Math. Nachr. 147 (1990), 47-52.
- [11] G. Metafune and V. B. Moscatelli, On twisted Fréchet and (LB)spaces, Proc. Amer. Math. Soc. 108 (1990), 145-150.

Complemented subspaces of sums and products...

[12] M. I. Ostrovskii, On complemented subspaces of sums and products of Banach spaces, preprint.

Dipartimento di Matematica Recibido: 16 de Agosto de 1995 Universitá di Lecce Revisado: 11 de Diciembre de 1995 C. P. 193 73100 Lecce, Italy.

· .

.