
REVISTA MATEMÁTICA de la
Universidad Complutense de Madrid
Volumen 9, número 2: 1996

Complemented subspaces of sums and

products of copies of L’[O, 1].

A. A. ALBANESE and V. B. MOSCATELLI*

Abstract

We prove that the direct sum and the product of countably
many copies of L1¡O, 1] are prirnary locally convex spacn. We also
give sorne related results.

For a whule it was an open problem whether a complemented sub-
space of a countable product of Banach spaces can be written as a prod-
uct of Banach spaces. This question has been solved in negative by
M. 1. Ostrovskii [12], but it is still open for XN where X is a cias-
sical Banach space. The only countable products of classical Banaeh
spaces whose complemented subspaces have been fully described are:
¿o; (iP)N, 1 =p =oc, aud (co)N ([5], [91)and for these the answer is
positive. Moreover, in [11it was shown that, for 1 <p < oc, (¡i~[O, i])N

is prima~q, i.e. if (VIO, i])N = F ®G, then either F or O is isomor-
phic to (LP[O, 11)’~’; it follows, by reflexivity, that also the direct sum of
countably many copies of VIO, 11 is primary. The purpose of this note
is to extend these results to the case L’IO, 1], i.e. we will prove that
the direct sum and the product of countably many copies of L’[O, 11 are
also primary spaces. However it remains an open problem wliether both
the complements F and O of a direct decomposition of (L~[O, iDN, with
1 =p < oc, are isomorphic to a product of Banach spaces- Note that
(LP[O, i])N is isomorphic to LL(R), 1 =p =oc.

Qur proof is compietely dlifferent from the one in [11: the technique
of that proof cannot be applied to the case when p = 1, as it based
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en sorne special features of the spaces LP[0, 11,1 < p < oc, and en flie
fact that the Haar-system is an unconditional basis in such spaces (the
Haar-system is only a basis of L’[0, 1]; there is no unconditional basis
in L’ [0,1]!). Actually, ja order to obtain our results we will use sorne
known facts abont a special class of operators on L’[0, 1], the so-called
E — operators (see [6]), together with a method given in [9].

For other examples ofprirnary non-Banacli Fréchet spaces, we refer
the reader te [1], [2], [4], 151, [9] and [10].

We will use standard tenninology (like e.g. 171, [8] and [9]). lix
particular, br two locally convex spaces E and F, we write E ~ F and
E < F to mean respectively that E is topologically isornorphic to F
or te a complernented subspace of F. Finally, we put L’ — L’[0, 11.

1 Preliminaries

We recail sorne definitions and facís which will he used later on.
Definition 1 ([6]). A bush is a sequence (Eg), i = 1,•••, Al,,, n =

0,1,•-•, of Lebesgue measurable subsets of [0,1] such that

(a) Mo=land IE?I>0,
(b) foreachn UMnEn~E?,

(c) foreaclin E?flE)= ~ifi~j,

(d) for each n and each j, 1 =J =Mn+i, there exists an i 1 <
i=M,,, with E’~~1 G E!’

.1
(e) max j E~’ —.0 as n—.oc.

1<t<Mn
Here E j denotes the Lebesgue measure ola mesurable subset
E C /0,11.

Definitian 2 ([6]). Let T : —* 0 be a bounded linear operator. T is
called att E- operator if there ez-ist 6> 0 and a bush (Sg) with

IÁnj’l~~LJT (xEMdx>s

for each it, where ~g denotes the characteristie funetion of a measurable
subset E c [0,1/.
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Enfio ami Starbid /6/ proved the fo¿lowing use.ftd fact:

Theorem O. Let T: L’ -. L’ be a bounded Linear operator. T is att E-
operator ji ami only if there ezists a subepace Y of 0 with Y isomorphic
toP, with T¡y att isomorphism mito, ami with TY comnplemented itt L’.

Remark. (1) TíT1 + T2 is an E-operator, then either Ti or ~‘2 mnst be
an E-operator. (2) Obviously, the identity map of L

1 is an E-operator.
For more about snch operators the reader is referred to [6].

2 Complemented subspaces of (Lí)N

We denote by (Lí)N the product of countably many copies of L’. In
particular, the space (Lí)N can be represented as tlie projective limit of
the Banach spaces H?=í L’ with respect to the linking maps

n nl

Pn—1,n II L’ * fl 0, (ti,. - •, xn~í, x,,) —. (rí,. ..

which are surjective. It is clear that, for each increasing sequence
(¡«it)) c N, we have (Lí)N = proj,, (ii~ú2 L’,Pkc,.Á),kc..))~ where
Pk(n—1),k(n) = Pk(n—1>,k(n—1)+1 - Pk(n)—1,k(n)

Now, let p,,.: (Lí)N —. I~
4 L’ be the canonical projection (xí)i —+

(zi, . - . , x,,). Then P,,,,,-+-iPn+i = Pn~
Now we are ready to prove

Theorem 1. The space (Lí)N is priman,.

Proof. Suppose that (Lí)N — E’ ®G with 9 projection from (Lí)N
onto E’ and kerP = G. Put Q = 1 — P.

Because E’ and O are closed subspaces of (Lí)N, by Lemma 1.1 of
[9], we may write E’ = projn(F,,,pna,n) and O = projn(Gn,pn—í,n),
where E’,, (resp. O,,) denotes the closure of p,dF) (resp. p,,(G)) lii
[fl$ 0 and Pn—í,n also denotes the restriction of pn—~,n to E’,, (resp.
(1,,). Moreover, since E’,, (resp. O,,) is Banach every map pj (resp.
p,,Q) factors canonically through H~<~~) L

1 Therefore, we can find two
sequence (k(n))n and (h(nfln of integer numbera with 1 = h(1) < k(1> <
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h(2> < ... < h(n) < k(n) .c h(it + 1) < ... such that the diagrams

(L~jN pM,t)P Fh(fl) (Lí)N PA<n)Q

pk(n) 1 /rn and pdn) 1 (1)
k(n) k(n)

II L’ IIL’
1=1 1=1

comnute, where r,, (resp. s,,) denotes the map associated with Ph(,,)P
(resp. Ph(rOQ).

Put E0,1 = H~’!’2 L
1, E,,~,,, = {

0}k(n—1) x H~1’~{,.1>+1 L’, and
Ph(n>,k(n) = Ph(n),h~n)+l . . Pk(n)—i,k(n). Tben, by (1), as it 18 easy to
veri~r, we obtain that, br each x E En—i,n, (r,, + s,,)(r) = Ph(n),k<n>(X),
te.

h(n)

r,, + S,, = Ph(n),k(n)¡Éi ~,,í,,, —> fl L’
i=1

is the canonical projection (# O as )~«n —1) < )4n) c k(n)) and hence is
aix E-operator as it follows from Theorem O. Ihis implies that, hy Re—
mark 1, either rflIE~ ~= or is aix E-operator br each it. There-
foro, we can suppose that r,,IE is aix E-operator for infinite indices
it.

Now, for the sake of simplicity, we assume that for each
is aix E-operator and ¡«it) = ti + 1, hQi) = u. Thus, we have that the
following diagram

n+2 n+1

H L’ Pn+ln+2

i=1

rn± í1
Pn,n+l

commutes for each it.

Because rllsot is aix E-operator, by Theorem O diere exists a closed
sujbspace M1 c = L

1 with aix isomorphism unto, with H
1 =
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ri(Mi) < 0 and, witb Si L’. Since p,,,,,+ír,,+í = TnPn+1,n+2, it 15

clear that amo the maps

are isomorphism onto.
Now, note that pí,2(xl,z2) xi and hence N = kerpí,2 = F2fl

({0} x L’). Because Pí,2 : r2(Mí) —* rdMí) = H1 isan isomor-
phism onto, there exists a continuous linear map A : Hi —4 {O} x
L’ with r2(Mí) = {(x, Ax) : x E Hí}. It follows that, if ti : O —*

~í is a projection, then the map r : x —. r2(Mí) defined by
r(rl,z2) = (tíxí,Atíxi) is a projection onto r2(Mi) with kerr —

{ (ti~ x2) tíxí = O} = ker ti x L’. Now, we observe that r~’(N) C ~i,2
and r21s12 15 an E-operator. Then, again Theorem O gives that there
exists a closed subspace M2 CE Eí,2 with r2IM aix isomorphism unto, with

= r2(M2) c {O~ x L’ and with ~2 L
1. As before, all the maps

Pn,it+1 r,,+í(M2) -.. r,,(M~) are isomorphism onto. If ¡ is the identity
map of L’ >< O and q : {O} >< -.. H2 is a projection onto ~2, we
consider the diagram

q
LkcLít~TkertíxL 1I~~2 {Q} ~<~

Ihen the map

1

s=qpi,
2(I—r):L’XL -..H2

is a projection onto ~2 and rs = O = ar. It follows that r2(Mí) + H2
is a closed subspace of F2, hence equal to r2(M1) e r2(M2) L

1 e L’,
and the map t

2 = r + s is clearly a projection from L’ x L’, hence from
E’2, onto r2(Mí) S r2(M2) such that pí,2~2 = t1pí,2.

Continuing un this way, we inductively obtain that for each u there
exists a closed subspace X,, = ®~b1r,,(M~) T=í O of E’,, aud a pro-

so that p,,,,,~1(X,,+í) = X,,. Now, u we form the projective limit X of
the spaces Xn with respect to the restriction maps Pn—1,n X,, —.
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we see that X c E’, X (Ll)N. Moreover, by using (2), we see that the
map

t: (Lí)N X ,x = (x,,),, 4

is a projection onto X. Therefore, we have the situation (Lí)N < E’ <
(Ll)N which gives, by using Pelczyinski’s decomposition method, that
E’ (Lí)N and hence the proof is complete.

Moreover
Propositian 1. If E’ < (Lí)Ñ then one of dic following cases occurs:
(i)F isa complemented subepace of L’43i)F w-(iii)F weX where
X is a compleménted subapace of L’ - (iv)F,~ (¿fl(N), moreover itt thia
case E’ containa a complemented copy of (¿1)N.

In order to prove Proposition 1, we need the following Éemma

Lemma. Let E be a quojection (i.e., E is a projective ¿imit of a pro-
jeetive sequence (E,,, r,.,,,+í) of Banach apoces E,, atid suriective linking
mapa i-,,,,~

1 : E,,+í —i E,,). ¡f Eh has a subspace isomorphic to (¡OO)(N),

thai E containa a complemented copy of (¡1)N.

Proof. First, we write Eh = md E4, where the increasing sequence
(E4) of Banach spaces is strict since E us a quojection.

Now, we assume that Eh contains a copy of (¿co)(N). Put X,, =

for ah it, (ico)(N) = ~X,,. Then there is a k(1) such that Xi G
smce X1 is Banach. By Proposition 2.e.8 of [8] it follows that Ek(í)
contains a complementad copy of 0, i.e. there is a subspace G~ of

with G~ O and a projection fi : Ek(í) -4 Gí. We denote by
(es) the unit vectors basis of Gí: because E is a quojection there is
a bounded sequence (x¡) G E such that = ej (br each it, r,,
denotes the map r,,: E ~ E,, defined by r,,x = x,,). Therefore, the map

E, rg1 ajej -4

2~1í a¡xj is an isomorphism onto G~ = [xj.
,~—1

Actually, sí = (rk(1)
10) . It fohlows that the composition map

ti = s1t1r~(1) : E ~ Ek(o — 01 —4

is also aprojection from E onto Gí 0. So, E = Giekerti ~ 1’ekertí
and, hence, Eh = G1 e (kertí)~, where E’ = kert1 is also a quojection
as a quotient of a quojection (see Proposition 3 of [3]).



Comp¡emented sub,spaces of sums and products. . - 281

In order to complete the proof, we observe that (¡co)(N) is also a
complemented subspace of Eh (it is an easy consequence of the fact
that 1~ is injective (seo Proposition 2.f.2 of [8]) and that Eh is a strict
LB-space). Then, we denote by p a projection from Eh onto (LOO)(N):

because O~ is a Banacb subspace of Eh there is a k E N such that

q~> (o) = a, where q¡~, denotes the canonical k-th projection from
(jOo)(N) e,,X,, onto @,,>kXn. By noting that q~p is a projection from

Eh onto e,,>kX,,, it follows that, for x E @,,>kX,,,X = (ide — ei)x +

tlx and hence x = q¡~,px = ~ (ide — ~1)’x+qk~7’ix qkp (ide —

~<IE — ti)1 — ide~>~x~. Therefore, the composition map

(ide — ii)’qkp: Eh @,,>kX,, —~ (úie — ñ)’ (e,,>kX,,) c Eh

is a projection from E’h onto Y = (ide — 71) (e,,>kX,,) and Y
(jOO)(N) CE E’~.

Since E’h contains also a (complemented) copy of (¿co)(N), as be-
fore, we find a subspace 02 of E’ with 02 ¡1 and a projection t2
E + 02 so that E = Cíe E’ = Gí® 02@ kert2 L’<® líe kert2,
where t1 + t2(ide — Li) is a projeetion from E onto Gi e 02. Iter-
ating this procedure, for each u we fluid a snbspace O,, of kert,,1
wuth 0,, l~ and a projection t,, : kert,,1 —* 0,, so that E —

eLiGe e kert,, eL11’ e kert,,. Then, if we form the projective limit
O of the Banach spaces @~L1G1 with respect to the maps s,,, where

of the map _ 7 (ide — .. - (icie — ¡1)
we obtain that O CE E and O “~ (ií)N. Moreover, the map

z~ 7 (icís — -.. (icie — ñ) is a projection from E onto O.
Ibis completes the proof.

Proof of Proposition 1.
It follows ftom assuinption that E’ is a quojection (because it is a

quotient of (Lí)N)) and Eh < (LCÍI(N) (¡oo)(N). Ihus Theorem 2.1
of [9] implies that one of the cases (1) e (iv) mnst occur. lii particijiar,
when the case (iv) occurs, by the aboye lemnia, we get that E’ contains
a complemented copy of (1)N.
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Remark. We observe that, for a Ftéchet space E, the fact the dual
of E is a countable direct snm of Banach spaces (thus the bidual is a
contable product of Banach spaces) ¿oes not necessarily imply that E
is a countable product of Banach spaces. The second author and Meta-
fune [11] constructed examples of quojections which are not countable
products of Banach spaces but whose duals are countable direct sums of
Banach spaces. Thus case (iv) need not imply that tlie complemented
subspace E’ is a countable product of Banach spaces.

3 Complemented subspaces of (Li)(N)

We denote by (Lí)(N) the sum of countably many copies of L’. In
particular, the space (Lí)(Ñ) can be represented as the inductive limit
of the Banach spaces e~L1L’ with respect to the linking maps

2..+1,n: eb1L’ -4 e?t’L’, (tí’•~ x,,) (tí~~ xn, O),

which are isomorphism unto. Clearly, uf (k(n)) is aix increasing sequence
of integer numbers, we have siso that <Lí)(N> — md,-, (StWL’, Zk(n+1>k(n>),

where
tk(4.+i),k(n> = k(n+1),k(n± l)—1...2k(n).4-i,k(n)~

Also recail that if E a complemented subspace of (Lí)(N>, E is 811
LB-space and hence we may represent it as the strict inductuve limit of
the Banach spaces E,, = En (eL

1L’).
Theorem 2. The space (Lí)(N) is priman,.

Proof. We suppose that (Lí)(N) = E’ e O with P projection from
(Lí»IN> onto E’ and kerP = O. Put Q = I—P. Then, E’ = iitd ,,F,, (resp.
O = ind,,G,j, where E’,, E’ n (eL1L’) (resp. 0,, = G n (e;1L

1)).
Clearly (Ll)(N) = ir¿d,,F,, e o,,.

Now, let P
1 = ~íL’ (resp. Qí = Q¡r) be. Then there exists aix

¡«1) > 1 such that the maps P1 : L
1 Fh(í), Qí : L’ 0h(1) are

baunded aud E’hcl) e E> 2. Put ~‘2 = and Q2 =

we also fincí aix h(2) > h(1) + 1 such that the maps ~‘2

e~2j’L’ —~ and Q2 e~~<V+í L1 0h(2) are bounded and

Fh(
2) ~

0h(2) E>
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Continning un this way, we inductively BM a sequence (h(n)) of
integer numbers with h(n) > h(r¿ — 1) + 1, h(O) — 1 such that the maps

= : e~1Yí)+íLí ~
and

= Q1Shfl~O+ILI : e~4
1>~’L’ ~.+

are bounded and E’h(,,) e 0h(n) E> e~tfí>+íLí for each ti > 1.
Now, we note that the following diagram

e~7V’t1L1 ~ Fh(~) ech(n)— ~~t-~0:(:l> F«r.~ e 0h<n
9h(n—I) 0a(n..I)

~— 1 1 ~
a,.

~WWT~L -4 ~Ui<Wi) 1_ @i-1- L

commutes for each ir> 1, where q,,,p,, and .i are the quotient maps
and j,, is the canonical isomorphism unto. Moreover, for it = 1,

P
1 + Qí =

th(1),l : —~ e«í)L1
is the canonical inclusion. By Remark 1 th(1),i us aix E-operator and,
hence, either P

1 or Qi is aix E-operator. Also, jnÑ—í is aix E-operator
ami, as follows from the aboye diagram, p,,q,, (P,, + Q,,) is an E-operator.
Then, by Remark 1 either p,,q,,P,, or p,,q,,Q,, is aix E-operator, where,
clearly,

_ E’ q,. E’h(,,) ,,,, F,«,,> e Oh(n

1 h(n) E’h(,,1)

and

e~LV’>~ LL1 t ~ q,.
0h(n> p~ F,«,,> e 0h<n

Therefore, we can suppose that p,,q,,P,, (for u = O qo denotes the identity
map of E’h(í) e Oh(í)) is aix E-operator for inñnite indices u.
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For the sake of simplicity, we assume that p,,q,,P,, is an E-operator
for each ti.

Because ¡‘í is an E-operator, by Theorem O there exists a closed
subspace M1 CE L

1 wuth ¡‘hM
1 an isomorphism into, with J’1(M1) =

L’ and, with H1 < eLtjLl. Also p2q2P2 is aix E-operator and,
hence, by Theorem O there exists a closed suhspace 1v!2 CE
with M2 ~ L

1, 011 which p2q2¡’2 is aix isoinorphism onto a complemented
sulispace of ~1~i2. Putting H

2 = ¡‘2(M2), we then have FI2 CE

Fh(2)~ FI2 ~ 0 and p2q2(H2) c Fh<nec412 ¡‘2¡M2 an isomorphism into
¿=1

and H2flFh<l) = {O} , Hi±H2is closed lix E’,«2>, hence equaltoH1eH2s=~
L

1 e L’.
Continuing un this way, we inductively obtain for eacb n a closed

sulispace M,, CE ®~trí>+íLí with an isomorphism into, P,,(M,,) =

H,, CE with FI,, L’ and p,,q,,(H,,) < and FI,, fl
®j~~ 12

= {O}, with FI,, + Fh(,,
1) closed subspace of Fh<,,), hence H,, +

= H, e H,,1 closed subspace of E’hc,,).
Clearly, ff we now form the unductuve limit X of the Banach spaces

>4, = eL1H~ with respect to the canonical inclusions X,, —~ X,,~q, we
see that X CE E and X (Ll)(N).

To conúlude the proof we have to show that X < E’ and again to
apply Pelczynski’s decomposition method. Then we proceed 88 follows.

Let r eh(í>Lí H1 be a projection. Now, recail that p2q2(H2) 15

a complemented subspace of N~G~~l2 and p2q2(H2) H2. Moreover,
L

the following diagram

~ e~SVr«1V
82,1 .1 ,// t21

II’

commutes, where ~2,í denotes the canonical inclusion, t2,1 denotes
the canonical isomorphism and p2 denotes the quotient map (we
note that — p2q2). Then s2,1(H2) FI2 and s2,í(H2) <

eh(
2> L’ It follows that there exists a continuous linear map Ai=h(1)+1

¡./1~-

S2,i(H2) -4 eg7L’ with H2 = {(Ay,y) : y E 52,i(FI
2)}. Moreover, ifr2
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-4 s2,i(H2) is a projection, then the map F2: h(2) 1 —* H2
e1—1 L

defined by r2(x, y) = (ArQy, r2y) is a projection onto FI2 with ¡ver r~ =

e ¡ver r~. Now, if 1 is the identity map of e~l?L1, we consider
the diagram

e~S\jL’ e e~2~<í)+íLí I~Z2 e~Q3L’ e ¡ver u’2 ‘t~’ eh(l>L1 e {O} ~ FI1.

It is imníediate to verify that the composition map v2 = rí(I — 82;í)(1 —

1-2) is a projection onto FI1, V2r2 = O = r2v2 and V2 = =

(v2 + F2) Therefore, v2 + ~ is a projection from e~S~)L’ onto

FIi e FI2 which extends 1-1
Also the diagram

h(3) 1 ~n eh(a)L1

e _1L

83.2 .1 7/ t3,2

eh~> L’
1=h(2)+1

commutes, where ~a,2 denotes the canonical inclusion, ta,2 denotes the
canonical isomorphism and ¡% denotes the quotient map (~síreo —

paqs). Tlien sa,2(Ha) FI¿ and sa,2(FIa) < e~«
3> L’. As before,

it follows that there exists a continnons linear map (which, for sim-
plicity, we again denotes by A) A : sa,

2(FIa) —~ e~VL
1 with FI

3 =

{(Ay, y) : y E sa,2(Hs)}. Moreover, if r~ ~i—h(2)±1 L’ —~ sa2(FIa) is

a projection, then the map Fa : e=~)L
1 —> FI

3 defined by Fa(x,y) =

(Aray, ray) isa projection onto ji3 with ¡ver ra — eh(
2>Líeker r~. Then,

again denoting by 1 the identity map of e~ti~)L’, the composition map
V3 (v

2+F2)(I—sa,2)(I—Fa) isa projection from the space eISN>LI onto
FI1@H2 such that vaFa O = r3v~, V3¡h<~l — V2+r2 = (va+Fs) h(2)LV

Therefore, v~ +?~ is a projection from e~)L’ onto H1e H2 e FI3 which
extends V2 + F2.

Contirníing iii this way, for each ti we flnd a projection t,, from
e~t~>Lí onto X,, satisfying ~ = t,,1. To complete the proof
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it is enough to notice that the map t: (Lí)(N> -4 X (Ll)(N>, defined
by the sequence (t,,), is the desired projection.

Moreover
Proposition 2. ([9]). IlE’ < (Lí)(N) theit one of the following cases
occura: (i) E is a complemented subapace of 0. (Ii) E’ s=cp (iii) E’

e X where X is a complemented subapace of L’• (iv) É¡3
moreover itt this cose E’ contoine a complemented copy of (i1)(N).

fleferences

[1] A. A. Albanese, Primar-y products of Banach spaces, to appear ir
Arch. Math. 66 (1996), 397-405.

[2] A. A. Albanese aixd V. 13. Moscatelli, Tire spacea (LP)Ñ fl l~Q~) 1 =
p < q =oc or q = O, are primary, preprint.

[3] 5. F. Bellenot aud A. Dubinsky, Fréchet apoces with nuclear Kdthe
quotienta, Trans. Amer. Math. Soc. 273 (1982), 579-594.

[4] J- O. Díaz, Primarinesa of sorne universal fl-échet apoces, preprint.

[5] P. Domanski and A. Ortynski, Complemented aitbspacea of product
Banacir apoces, Trans. Amer.. Math. Soc. 316 (1989), 215-231.

[6] P. Enflo and T. W. Starburd, Subapaces of L’ containing L’, Studia
Math. 65 (1979), 203-225.

[7] H. Jarchow, Locolly convez apoces, Teubuier, Stuttgart, 1981.

[8J 3. Lindenstrauss and L. Tzafriri, Classi cal Bonacir Spacea 1,
Springer-Verlag, Berlin, 1977.

¡9] 0. Metafune and y. B. Moscatel]], Complemented aubapacea of suma
ond producta of Banacir apaces, Ann. Mat. Pura AppL (4) 153
(1988), 175-190.

[10] 0. Metafune and V. fi. Moscatel]], On tire apoce — ~ >jp
Math. Nadir. 147(1990), 47-52.

[ti] 0. Metafune and V. 13. Moscatel]], On twisted FI-échet ami (LS)-
apoces, Proc. Amer. Math. Soc. 108 (1990), 145-150.



Complemented subapaces of sums and producta. . - 287

[12]M. 1. Ostrovskii, Oit complemented subspaces of sums asid products
of Banacir spaces, preprint.

Dipartimento di Matematica Recibido: 16 de Agosto de 1995
Universitá di Lecce Revisado: 11 de Diciembre de 1995
C. P~ 193
73100 Lecce, Italy.


