Complemented subspaces of sums and products of copies of $L^{1}[0,1]$.

A. A. ALBANESE and V. B. MOSCATELLI*

Abstract

We prove that the direct sum and the product of countably many copies of $L^{1}[0,1]$ are primary locally convex spaces. We also give some related results.

For a while it was an open problem whether a complemented subspace of a countable product of Banach spaces can be written as a product of Banach spaces. This question has been solved in negative by M. I. Ostrovskii [12], but it is still open for X^{N} where X is a classical Banach space. The only countable products of classical Banach spaces whose complemented subspaces have been fully described are: $\omega ;\left(l^{p}\right)^{N}, 1 \leq p \leq \infty$, and $\left(c_{0}\right)^{N}([5],[9])$ and for these the answer is positive. Moreover, in [1] it was shown that, for $1<p<\infty,\left(L^{p}[0,1]\right)^{N}$ is primary, i.e. if $\left(L^{p}[0,1]\right)^{N}=F \oplus G$, then either F or G is isomorphic to $\left(L^{P}[0,1]\right)^{N}$; it follows, by reflexivity, that also the direct sum of countably many copies of $L^{p}[0,1]$ is primary. The purpose of this note is to extend these results to the case $L^{1}[0,1]$, i.e. we will prove that the direct sum and the product of countably many copies of $L^{1}[0,1]$ are also primary spaces. However it remains an open problem whether both the complements F and G of a direct decomposition of $\left(L^{p}[0,1]\right)^{N}$, with $1 \leq p<\infty$, are isomorphic to a product of Banach spaces. Note that $\left(L^{p}[0,1]\right)^{N}$ is isomorphic to $L_{l o c}^{p}(\mathbf{R}), 1 \leq p \leq \infty$.

Our proof is completely different from the one in [1]: the technique of that proof cannot be applied to the case when $p=1$, as it based

[^0]on some special features of the spaces $L^{p}[0,1], 1<p<\infty$, and on the fact that the Haar-system is an unconditional basis in such spaces (the Haar-system is only a basis of $L^{1}[0,1]$; there is no unconditional basis in $L^{1}[0,1]!$). Actually, in order to obtain our results we will use some known facts about a special class of operators on $L^{1}[0,1]$, the so-called E - operators (see [6]), together with a method given in [9].

For other examples of primary non-Banach Fréchet spaces, we refer the reader to $[1],[2],[4],[5],[9]$ and $[10]$.

We will use standard terminology (like e.g. [7], [8] and [9]). In particular, for two locally convex spaces E and F, we write $E \simeq F$ and $E<F$ to mean respectively that E is topologically isomorphic to F or to a complemented subspace of F. Finally, we put $L^{1}=L^{1}[0,1]$.

1 Preliminaries

We recall some definitions and facts which will be used later on.
Definition 1 ([6]). A bush is a sequence $\left(E_{i}^{n}\right), i=1, \cdots, M_{n}, n=$ $0,1, \cdots$, of Lebesgue measurable subsets of $[0,1]$ such that
(a) $M_{0}=1$ and $\left|E_{1}^{0}\right|>0$,
(b) for each $n \quad U_{i=1}^{M_{n}} E_{i}^{n}=E_{1}^{0}$,
(c) for each $n \quad E_{i}^{n} \cap E_{j}^{n}=\emptyset$ if $i \neq j$,
(d) for each n and each $j, 1 \leq j \leq M_{n+1}$, there exists an $i, 1 \leq$ $i \leq M_{n}$, with $E_{j}^{n+1} \subset E_{i}^{n}$,
(e) $\max _{1 \leq i \leq M_{n}}\left|E_{i}^{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Here $|E|$ denotes the Lebesgue measure of a mesurable subset $E \subset[0,1]$.

Definition 2 ([6]). Let $T: L^{1} \rightarrow L^{1}$ be a bounded linear operator. T is called an E - operator if there exist $\delta>0$ and a bush $\left(E_{i}^{n}\right)$ with

$$
\frac{1}{\left|E_{1}^{0}\right|} \int_{0}^{1} \max _{1 \leq i \leq M_{n}}\left|T\left(\chi E_{i}^{n}\right)\right| d x>\delta
$$

for each n, where χ_{E} denotes the characteristic function of a measurable subset $E \subset[0,1]$.

Enflo and Starbid [6] proved the following useful fact:

Theorem 0. Let $T: L^{1} \rightarrow L^{1}$ be a bounded linear operator. T is an E operator if and only if there exists a subspace Y of L^{1} with Y isomorphic to L^{1}, with $T_{\mid Y}$ an isomorphism onto, and with $T Y$ complemented in L^{1}.
Remark. (1) If $T_{1}+T_{2}$ is an E-operator, then either T_{1} or T_{2} must be an E-operator. (2) Obviously, the identity map of L^{1} is an E-operator.

For more about such operators the reader is referred to [6].

2 Complemented subspaces of $\left(L^{1}\right)^{N}$

We denote by $\left(L^{1}\right)^{N}$ the product of countably many copies of L^{1}. In particular, the space $\left(L^{1}\right)^{N}$ can be represented as the projective limit of the Banach spaces $\prod_{i=1}^{n} L^{1}$ with respect to the linking maps

$$
p_{n-1, n}: \prod_{i=1}^{n} L^{1} \rightarrow \prod_{i=1}^{n-1} L^{1},\left(x_{1}, \cdots, x_{n-1}, x_{n}\right) \rightarrow\left(x_{1}, \cdots, x_{n-1}\right)
$$

which are surjective. It is clear that, for each increasing sequence $(k(n)) \subset \mathbf{N}$, we have $\left(L^{1}\right)^{N}=\operatorname{proj}_{n}\left(\prod_{i=1}^{k(n)} L^{1}, p_{k(n-1), k(n)}\right)$, where $p_{k(n-1), k(n)}=p_{k(n-1), k(n-1)+1} \cdots p_{k(n)-1, k(n)}$.

Now, let $p_{n}:\left(L^{1}\right)^{N} \rightarrow \prod_{i=1}^{n} L^{1}$ be the canonical projection $\left(x_{i}\right)_{i} \rightarrow$ $\left(x_{1}, \cdots, x_{n}\right)$. Then $p_{n, n+1} p_{n+1}=p_{n}$.

Now we are ready to prove
Theorem 1. The space $\left(L^{1}\right)^{N}$ is primary.
Proof. Suppose that $\left(L^{1}\right)^{N}=F \Theta G$ with P projection from $\left(L^{1}\right)^{N}$ onto F and $k e r P=G$. Put $Q=I-P$.

Because F and G are closed subspaces of $\left(L^{1}\right)^{N}$, by Lemma 1.1 of [9], we may write $F=\operatorname{proj}_{n}\left(F_{n}, p_{n-1, n}\right)$ and $G=\operatorname{proj}_{n}\left(G_{n,} p_{n-1, n}\right)$, where F_{n} (resp. G_{n}) denotes the closure of $p_{n}(F)$ (resp. $p_{n}(G)$) in $\prod_{i=1}^{n} L^{1}$ and $p_{n-1, n}$ also denotes the restriction of $p_{n-1, n}$ to F_{n} (resp. G_{n}). Moreover, since F_{n} (resp. G_{n}) is Banach every map $p_{n} P$ (resp. $p_{n} Q$) factors canonically through $\prod_{i=1}^{k(n)} L^{1}$. Therefore, we can find two sequence $(k(n))_{n}$ and $(h(n))_{n}$ of integer numbers with $1=h(1)<k(1)<$
$h(2)<\cdots<h(n)<k(n)<h(n+1)<\cdots$ such that the diagrams

\[

\]

commute, where r_{n} (resp. s_{n}) denotes the map associated with $p_{h(n)} P$ (resp. $p_{h(n)} Q$).

Put $E_{0,1}=\prod_{i=1}^{k(1)} L^{1}, E_{n-1, n}=\{0\}^{k(n-1)} \times \prod_{i=k(n-1)+1}^{k(n)} L^{1}$, and $p_{h(n), k(n)}=p_{h(n), h(n)+1} \cdots p_{k(n)-1, k(n)}$. Then, by (1), as it is easy to verify, we obtain that, for each $x \in E_{n-1, n},\left(r_{n}+s_{n}\right)(x)=p_{h(n), k(n)}(x)$, i.e.

$$
r_{n}+s_{n}=p_{h(n),\left.k(n)\right|_{\mid E_{n-1, n}}}: E_{n-1, n} \rightarrow \prod_{i=1}^{h(n)} L^{1}
$$

is the canonical projection ($\neq 0$ as $k(n-1)<h(n)<k(n))$ and hence is an E-operator as it follows from Theorem 0 . This implies that, by Remark 1, either $r_{n_{\mid E_{n-1, n}}}$ or $s_{n_{\mid E_{n-1, n}}}$ is an E-operator for each n. Therefore, we can suppose that $r_{\eta_{\mid E_{n-1, n}}}$ is an E-operator for infinite indices n.

Now, for the sake of simplicity, we assume that for each $n r_{\left.n\right|_{E_{n-1, n}}}$ is an E-operator and $k(n)=n+1, h(n)=n$. Thus, we have that the following diagram

$$
\begin{array}{cll}
\prod_{i=1}^{n+2} L^{1} & \xrightarrow{p_{n+1, n+2}} & \prod_{i=1}^{n+1} L^{1} \\
r_{n+1} \downarrow & & \downarrow r_{n} \\
F_{n+1} & \xrightarrow{p_{n, n+1}} & F_{n}
\end{array}
$$

commutes for each n.
Because $r_{1_{\mid E_{0,1}}}$ is an E-operator, by Theorem 0 there exists a closed subspace $M_{1} \subset E_{0,1}=L^{1}$ with $r_{1_{\mid M_{1}}}$ an isomorphism into, with $H_{1}=$
$r_{1}\left(M_{1}\right)<L^{1}$ and, with $H_{1} \simeq L^{1}$. Since $p_{n, n+1} r_{n+1}=r_{n} p_{n+1, n+2}$, it is clear that also the maps

$$
p_{n, n+1}: r_{n+1}\left(M_{1}\right) \rightarrow r_{n}\left(M_{1}\right)
$$

are isomorphism onto.
Now, note that $p_{1,2}\left(x_{1}, x_{2}\right)=x_{1}$ and hence $N=\operatorname{ker} p_{1,2}=F_{2} \cap$ $\left(\{0\} \times L^{1}\right)$. Because $p_{1,2}: r_{2}\left(M_{1}\right) \rightarrow r_{1}\left(M_{1}\right)=H_{1}$ is \cdot an isomorphism onto, there exists a continuous linear map $A: H_{1} \rightarrow\{0\} \times$ L^{1} with $r_{2}\left(M_{1}\right)=\left\{(x, A x): x \in H_{1}\right\}$. It follows that, if $t_{1}: L^{1} \rightarrow$ H_{1} is a projection, then the map $r: L^{1} \times L^{1} \rightarrow r_{2}\left(M_{1}\right)$ defined by $r\left(x_{1}, x_{2}\right)=\left(t_{1} x_{1}, A t_{1} x_{1}\right)$ is a projection onto $r_{2}\left(M_{1}\right)$ with ker $r=$ $\left\{\left(x_{1}, x_{2}\right): t_{1} x_{1}=0\right\}=k e r t_{1} \times L^{1}$. Now, we observe that $r_{2}^{-1}(N) \subset E_{1,2}$ and $r_{2 E_{1,2}}$ is an E-operator. Then, again Theorem 0 gives that there exists a closed subspace $M_{2} \subset E_{1,2}$ with $r_{\left.\right|_{\mid M_{2}}}$ an isomorphism into, with $H_{2}=r_{2}\left(M_{2}\right)<\{0\} \times L^{1}$ and with $H_{2} \simeq L^{1}$. As before, all the maps $p_{n, n+1}: r_{n+1}\left(M_{2}\right) \rightarrow r_{n}\left(M_{2}\right)$ are isomorphism onto. If I is the identity map of $L^{1} \times L^{1}$ and $q:\{0\} \times L^{1} \rightarrow H_{2}$ is a projection onto H_{2}, we consider the diagram

$$
L^{1} \times L^{1} \xrightarrow{I-r} \text { ker } t_{1} \times L^{1} \xrightarrow{I-p_{1,2}}\{0\} \times L^{1} \xrightarrow{q} H_{2} .
$$

Then the map

$$
s=q p_{1,2}(I-r): L^{1} \times L^{1} \rightarrow H_{2}
$$

is a projection onto H_{2} and $r s=0=s r$. It follows that $r_{2}\left(M_{1}\right)+H_{2}$ is a closed subspace of F_{2}, hence equal to $r_{2}\left(M_{1}\right) \oplus r_{2}\left(M_{2}\right) \simeq L^{1} \oplus L^{1}$, and the map $t_{2}=r+s$ is clearly a projection from $L^{1} \times L^{1}$, hence from F_{2}, onto $r_{2}\left(M_{1}\right) \oplus r_{2}\left(M_{2}\right)$ such that $p_{1,2} t_{2}=t_{1} p_{1,2}$.

Continuing in this way, we inductively obtain that for each n there exists a closed subspace $X_{n}=\oplus_{i=1}^{n} r_{n}\left(M_{i}\right) \simeq \prod_{i=1}^{n} L^{1}$ of F_{n} and a projection $t_{n}: \prod_{i=1}^{n} L^{1} \rightarrow X_{n}$ such that

$$
\begin{equation*}
p_{n, n+1} t_{n+1}=t_{n} p_{n, n+1} \tag{2}
\end{equation*}
$$

so that $p_{n, n+1}\left(X_{n+1}\right)=X_{n}$. Now, if we form the projective limit X of the spaces X_{n} with respect to the restriction maps $p_{n-1, n}: X_{n} \rightarrow X_{n-1}$,
we see that $X \subset F, X \simeq\left(L^{1}\right)^{N}$. Moreover, by using (2), we see that the map

$$
t:\left(L^{1}\right)^{N} \rightarrow X, x=\left(x_{n}\right)_{n} \rightarrow\left(t_{n} p_{n}\left(x_{n}\right)\right)_{n}
$$

is a projection onto X. Therefore, we have the situation $\left(L^{1}\right)^{N}<F<$ $\left(L^{1}\right)^{N}$ which gives, by using Pelczyinski's decomposition method, that $F \simeq\left(L^{1}\right)^{N}$ and hence the proof is complete.

Moreover
Proposition 1. If $F<\left(L^{1}\right)^{N}$ then one of the following cases occurs: (i) F is a complemented subspace of $L^{1} \cdot(i i) F \simeq \omega \cdot(i i i) F \simeq \omega \oplus X$ where X is a complemented subspace of $L^{1} \cdot($ iv $) F_{\beta}^{\prime} \simeq\left(l^{\infty}\right)^{(N)}$, moreover in this case F contains a complemented copy of $\left(l^{1}\right)^{N}$.

In order to prove Proposition 1, we need the following Lemma
Lemma. Let E be a quojection (i.e., E is a projective limit of a projective sequence ($E_{n}, r_{n, n+1}$) of Banach spaces E_{n} and surjective linking maps $r_{n, n+1}: E_{n+1} \rightarrow E_{n}$). If E_{β}^{\prime} has a subspace isomorphic to $\left(l^{\infty}\right)^{(N)}$, then E contains a complemented copy of $\left(l^{1}\right)^{N}$.
Proof. First, we write $E_{\beta}^{\prime}=$ ind E_{n}^{\prime}, where the increasing sequence (E_{n}^{\prime}) of Banach spaces is strict since E is a quojection.

Now, we assume that E_{β}^{\prime} contains a copy of $\left(l^{\infty}\right)^{(N)}$. Put $X_{n}=l^{\infty}$ for all $n,\left(l^{\infty}\right)^{(N)}=\oplus X_{n}$. Then there is a $k(1)$ such that $X_{1} \subset E_{k(1)}^{\prime}$ since X_{1} is Banach. By Proposition 2.e. 8 of [8] it follows that $E_{k(1)}$ contains a complemented copy of l^{1}, i.e. there is a subspace G_{1} of $E_{k(1)}^{\prime}$ with $G_{1} \simeq l^{1}$ and a projection $t_{1}: E_{k(1)} \rightarrow G_{1}$. We denote by $\left(e_{j}\right)$ the unit vectors basis of G_{1} : because E is a quojection there is a bounded sequence (x_{j}) $\subset E$ such that $r_{k(1)} x_{j}=e_{j}$ (for each n, r_{n} denotes the map $r_{n}: E \rightarrow E_{n}$ defined by $r_{n} x=x_{n}$). Therefore, the map $s_{1}: G_{1} \rightarrow E, \sum_{j=1}^{\infty} a_{j} e_{j} \rightarrow \sum_{j=1}^{\infty} a_{j} x_{j}$ is an isomorphism onto $\widetilde{G}_{1}=\left[x_{j}\right]$. Actually, $s_{1}=\left(r_{k(1)_{\mid G_{1}}}\right)^{-1}$. It follows that the composition map

$$
\tilde{t_{1}}=s_{1} t_{1} r_{k(1)}: E \rightarrow E_{k(1)} \rightarrow G_{1} \rightarrow \tilde{G}_{1}
$$

is also a projection from E onto $\tilde{G}_{1} \simeq l^{1}$. So, $E=\tilde{G}_{1} \oplus k e r \tilde{t}_{1} \simeq l^{1} \oplus k e r \tilde{t}_{1}$ and, hence, $E_{\beta}^{\prime}=\tilde{G}_{1} \oplus\left(\operatorname{ker} \tilde{t}_{1}\right)_{\beta}^{\prime}$, where $F=\operatorname{ker} \tilde{t}_{1}$ is also a quojection as a quotient of a quojection (see Proposition 3 of [3]).

In order to complete the proof, we observe that $\left(l^{\infty}\right)^{(N)}$ is also a complemented subspace of E_{β}^{\prime} (it is an easy consequence of the fact that l^{∞} is injective (see Proposition 2.f. 2 of $[8]$) and that E_{β}^{\prime} is a strict LB-space). Then, we denote by p a projection from E_{β}^{\prime} onto $\left(l^{\infty \infty}\right)^{(N)}$: because \tilde{G}_{1}^{\prime} is a Banach subspace of E_{β}^{\prime} there is a $k \in N$ such that $q_{k} p\left(\widetilde{G}_{1}^{\prime}\right)=0$, where q_{k} denotes the canonical k-th projection from $\left(l^{\infty}\right)^{(N)}=\oplus_{n} X_{n}$ onto $\oplus_{n>k} X_{n}$. By noting that $q_{k} p$ is a projection from E_{β}^{\prime} onto $\oplus_{n>k} X_{n}$, it follows that, for $x \in \oplus_{n>k} X_{n}, x=\left(i d_{E}-\tilde{t_{1}}\right)^{\prime} x+$ $\tilde{t}_{1}^{\prime} x$ and hence $x=q_{k} p x=q_{k} p\left(i d_{E}-\tilde{t}_{1}\right)^{\prime} x+q_{k} p \tilde{T}_{1}^{\prime} x=q_{k} p\left(i d_{E}-\tilde{t}_{1}\right)^{\prime} x$, i.e. $q_{k} p\left(i d_{E}-\tilde{t_{1}}\right)_{\mid \oplus_{n>k} X_{n}}^{\prime}=i d_{\oplus_{n>k} X_{n}}$. Therefore, the composition map

$$
\left(i d_{E}-\tilde{t}_{1}\right)^{\prime} q_{k} p: F_{\beta}^{\prime} \rightarrow \oplus_{n>k} X_{n} \rightarrow\left(i d_{E}-\tilde{t_{1}}\right)^{\prime}\left(\oplus_{n>k} X_{n}\right) \subset F_{\beta}^{\prime}
$$

is a projection from F_{β}^{\prime} onto $Y=\left(i d_{E}-\tilde{t}_{1}\right)^{\prime}\left(\oplus_{n>k} X_{n}\right)$ and $\dot{Y} \simeq$ $\left(l^{\infty}\right)^{(N)} \subset F_{\beta}^{\prime}$.

Since F_{β}^{\prime} contains also a (complemented) copy of $\left(l^{\infty}\right)^{(N)}$, as before, we find a subspace \tilde{G}_{2} of F with $\widetilde{G}_{2} \simeq l^{1}$ and a projection \tilde{t}_{2} : $F \rightarrow \widetilde{G}_{2}$ so that $E=\widetilde{G}_{1} \oplus F=\widetilde{G}_{1} \oplus \widetilde{G}_{2} \oplus$ kert $\widetilde{t}_{2} \simeq \tilde{l}^{1} \oplus l^{1} \oplus$ kert \tilde{t}_{2}, where $\tilde{t}_{1}+\tilde{t}_{2}\left(i d_{E}-\tilde{t}_{1}\right)$ is a projection from E onto $\tilde{G}_{1} \oplus \tilde{G}_{2}$. Iterating this procedure, for each n we find a subspace \tilde{G}_{n} of $\dot{k e r} \widetilde{t}_{n-1}$ with $\tilde{G}_{n} \simeq \tilde{l}^{1}$ and a projection $\tilde{t}_{n}: \operatorname{ker} \tilde{t}_{n-1} \rightarrow \widetilde{G}_{n}$ so that $E=$ $\oplus_{i=1}^{n} \widetilde{G}_{i} \oplus k e r \tilde{t}_{n} \simeq \oplus_{i=1}^{n} l^{i} \oplus k e r \tilde{t}_{n}$. Then, if we form the projective limit G of the Banach spaces $\oplus_{i=1}^{n} \widetilde{G}_{i}$ with respect to the maps s_{n}, where s_{n} is the restriction of the map $\sum_{i=1}^{n} \tilde{t}_{i}\left(i d_{E}-\tilde{t}_{i-1}\right) \cdots\left(i d_{E}-\tilde{t_{1}}\right)$ to $\oplus_{i=1}^{n+1} \tilde{G}_{i}$, we obtain that $G \subset E$ and $G \simeq\left(l^{1}\right)^{N}$. Moreover, the map $s=\sum_{i=1}^{\infty} \tilde{t}_{i}\left(i d_{E}-\widetilde{t}_{i-1}\right) \cdots\left(i d_{E}-\tilde{t_{1}}\right)$ is a projection from E onto G. This completes the proof.

Proof of Proposition 1.

It follows from assumption that F is a quojection (because it is a quotient of $\left.\left(L^{1}\right)^{N}\right)$) and $F_{\beta}^{\prime}<\left(L^{\infty}\right)^{(N)} \simeq\left(l^{\infty}\right)^{(N)}$. Thus Theorem 2.1 of [9] implies that one of the cases $(i) \div(i v)$ must occur. In particular, when the case (iv) occurs, by the above lemma, we get that F contains a complemented copy of $\left(l^{1}\right)^{N}$.

Remark. We observe that, for a Fréchet space E, the fact the dual of E is a countable direct sum of Banach spaces (thus the bidual is a contable product of Banach spaces) does not necessarily imply that E is a countable product of Banach spaces. The second author and Metafune [11] constructed examples of quojections which are not countable products of Banach spaces but whose duals are countable direct sums of Banach spaces. Thus case (iv) need not imply that the complemented subspace F is a countable product of Banach spaces.

3 Complemented subspaces of $\left(L^{1}\right)^{(N)}$

We denote by $\left(L^{1}\right)^{(N)}$ the sum of countably many copies of L^{1}. In particular, the space $\left(L^{1}\right)^{(N)}$ can be represented as the inductive limit of the Banach spaces $\oplus_{i=1}^{n} L^{1}$ with respect to the linking maps

$$
i_{n+1, n}: \oplus_{i=1}^{n} L^{1} \rightarrow \oplus_{i=1}^{n+1} L^{1},\left(x_{1} \cdots, x_{n}\right) \rightarrow\left(x_{1}, \cdots, x_{n}, 0\right)
$$

which are isomorphism into. Clearly, if $(k(n))$ is an increasing sequence of integer numbers, we have also that $\left(L^{1}\right)^{(N)}=\operatorname{ind}_{n}\left(\oplus_{i=1}^{k(n)} L^{1}, i_{k(n+1), k(n)}\right)$, where $i_{k(n+1), k(n)}=i_{k(n+1), k(n+1)-1 \ldots} i_{k(n)+1, k(n)}$.

Also recall that if E a complemented subspace of $\left(L^{\mathrm{t}}\right)^{(N)}, E$ is an LB-space and hence we may represent it as the strict inductive limit of the Banach spaces $E_{n}=E \cap\left(\oplus_{i=1}^{n} L^{1}\right)$.
Theorem 2. The space $\left(L^{1}\right)^{(N)}$ is primary.
Proof. We suppose that $\left(L^{1}\right)^{(N)}=F \oplus G$ with P projection from $\left(L^{1}\right)^{(N)}$ onto F and ker $P=G$. Put $Q=I-P$. Then, $F=\operatorname{ind}_{n} F_{n}$ (resp. $\left.G=i n d_{n} G_{n}\right)$, where $F_{n}=F \cap\left(\oplus_{i=1}^{n} L^{1}\right)$ (resp. $G_{n}=G \cap\left(\oplus_{i=1}^{n} L^{1}\right)$). Clearly $\left(L^{1}\right)^{(N)}=$ ind $_{n} F_{n} \oplus G_{n}$.

Now, let $P_{1}=P_{i L^{1}}$ (resp. $Q_{\mathrm{I}}=Q_{\mid L^{1}}$) be. Then there exists an $h(1)>1$ such that the maps $P_{1}: L^{1} \rightarrow F_{h(1)}, Q_{1}: L^{1} \rightarrow G_{h(1)}$ are bounded and $F_{h(1)} \oplus G_{h(1)} \supset L^{1}$. Put $P_{2}=P_{\oplus_{i=1}^{h(1)+1} L^{1}}$ and $Q_{2}=$
 $\oplus_{i=1}^{h(1)+1} L^{1} \rightarrow F_{h(2)}$ and $Q_{2}: \oplus_{i=1}^{n(1)+1} L^{1} \rightarrow G_{h(2)}$ are bounded and $F_{h(2)} \oplus G_{h(2)} \supset \oplus_{i=1}^{h(1)+1} L^{1}$.

Continuing in this way, we inductively find a sequence $(h(n))$ of integer numbers with $h(n)>h(n-1)+1, h(0)=1$, such that the maps

$$
P_{n}=P_{\left.\right|_{i=1} ^{h(n-1)+1} L^{1}}: \oplus_{i=1}^{h(n-1)+1} L^{1} \rightarrow F_{h(n)}
$$

and

$$
Q_{n}=Q_{\oplus_{i=1}^{n(n-1)+1} L^{1}}: \oplus_{i=1}^{h(n-1)+1} L^{1} \rightarrow G_{h(n)}
$$

are bounded and $F_{h(n)} \oplus G_{h(n)} \supset \oplus_{i=1}^{h(n-1)+1} L^{1}$ for each $n \geq 1$.
Now, we note that the following diagram

$$
\begin{aligned}
& \oplus_{i=1}^{\boldsymbol{h}^{h(n-1)+1}} L^{1} \xrightarrow{P_{n}+Q_{n}} F_{h(n)} \oplus G_{h(n)} \xrightarrow{q_{n}} \frac{F_{h(n)} \oplus G_{h(n)}}{F_{h(n-1)} \oplus G_{h(n-1)}} \simeq \frac{F_{h(n)}}{F_{h(n-1)}} \oplus \frac{G_{h(n)}}{G_{n(n-1)}} \\
& \widetilde{p_{n-1}} \downarrow \\
& \frac{\oplus_{i=1}^{h(n-1)+1} L^{1}}{\oplus_{i=1}^{h(n-1)} L^{1}} \simeq L^{1} \quad \stackrel{j_{n}}{\rightarrow} \quad \frac{F_{h(n)} \oplus G_{h(n)}}{\oplus_{i=1}^{h(n-1)} L^{1}}
\end{aligned}
$$

commutes for each $n>1$, where q_{n}, p_{n} and \widetilde{p}_{n-1} are the quotient maps and j_{n} is the canonical isomorphism into. Moreover, for $n=1$,

$$
P_{1}+Q_{1}=i_{h(1), 1}: L^{1} \rightarrow \oplus_{i=1}^{h(1)} L^{1}
$$

is the canonical inclusion. By Remark $1 i_{h(1), 1}$ is an E-operator and, hence, either P_{1} or Q_{1} is an E-operator. Also, $j_{n} \widetilde{P}_{n-1}$ is an E-operator and, as follows from the above diagram, $p_{n} q_{n}\left(P_{n}+Q_{n}\right)$ is an E-operator. Then; by Remark 1 either $p_{n} q_{n} P_{n}$ or $p_{n} q_{n} Q_{n}$ is an E-operator, where, clearly,

$$
\oplus_{i=1}^{h(n-1)+1} L^{1} \xrightarrow{P_{n}} F_{h(n)} \xrightarrow{q_{n}} \frac{F_{h(n)}}{F_{h(n-1)}} \xrightarrow{p_{n}} \frac{F_{h(n)} \oplus G_{h(n)}}{\oplus_{i=1}^{h(n-1)} L^{1}}
$$

and

$$
\oplus_{i=1}^{h(n-1)+1} L^{1} \xrightarrow{Q_{n}} G_{h(n)} \stackrel{q_{n}}{\rightarrow} \frac{G_{h(n)}}{G_{n(n-1)}} \xrightarrow{p_{n}} \frac{F_{h(n)} \oplus G_{h(n)}}{\oplus_{i=1}^{h(n-1)} L^{1}} .
$$

Therefore, we can suppose that $p_{n} q_{n} P_{n}$ (for $n=0 q_{0}$ denotes the identity map of $\left.F_{h(1)} \oplus G_{h(1)}\right)$ is an E-operator for infinite indices n.

For the sake of simplicity, we assume that $p_{n} q_{n} P_{n}$ is an E-operator for each n.

Because P_{1} is an E-operator, by Theorem 0 there exists a closed subspace $M_{1} \subset L^{1}$ with $P_{1 \mid M_{1}}$ an isomorphism into, with $P_{1}\left(M_{1}\right)=$ $H_{1} \simeq L^{1}$ and, with $H_{1}<\oplus_{i=1}^{h(1)} L^{1}$. Also $p_{2} q_{2} P_{2}$ is an E-operator and, hence, by Theorem 0 there exists a closed subspace $M_{2} \subset \oplus_{i=1}^{h(1)+1} L^{1}$, with $M_{2} \simeq L^{1}$, on which $p_{2} q_{2} P_{2}$ is an isomorphism onto a complemented subspace of $\frac{F_{h(2)} \oplus G_{h(2)}}{\oplus_{i=1}^{h(1)} L^{1}}$. Putting $H_{2}=P_{2}\left(M_{2}\right)$, we then have $H_{2} \mathrm{C}$ $F_{h(2)}, H_{2} \simeq L^{1}$ and $p_{2} q_{2}\left(H_{2}\right)<\frac{F_{h(2)} \oplus G_{h(2)}}{\oplus_{i=1}^{(t)} L^{1}}, P_{2_{\mid M}}$ an isomorphism into and $H_{2} \cap F_{h(1)}=\{0\}, H_{1}+H_{2}$ is closed in $F_{h(2)}$, hence equal to $H_{1} \oplus H_{2} \simeq$ $L^{1} \oplus L^{1}$.

Continuing in this way, we inductively obtain for each n a closed subspace $M_{n} \subset \oplus_{i=1}^{h(n-1)+1} L^{1}$ with $P_{n_{\mid M_{n}}}$ an isomorphism into, $P_{n}\left(M_{n}\right)=$ $H_{n} \subset F_{h(n)}$, with $H_{n} \simeq L^{1}$ and $p_{n} q_{n}\left(H_{n}\right)<\frac{F_{h(n)} \oplus G_{h(n)}}{\oplus_{i=1}^{h(n-1)} L^{1}}$ and $H_{n} \cap$ $F_{h(n-1)}=\{0\}$, with $H_{n}+F_{h(n-1)}$ closed subspace of $F_{h(n)}$, hence $H_{n}+$ $H_{n-1}=H_{n} \oplus H_{n-1}$ closed subspace of $F_{h(n)}$.

Clearly, if we now form the inductive limit X of the Banach spaces $X_{n}=\oplus_{i=1}^{n} H_{i}$ with respect to the canonical inclusions $X_{n} \rightarrow X_{n+1}$, we see that $X \subset F$ and $X \simeq\left(L^{1}\right)^{(N)}$.

To conclude the proof we have to show that $X<F$ and again to apply Pelczynski's decomposition method. Then we proceed as follows.

Let $r_{i}: \oplus_{i=1}^{h(1)} L^{1} \rightarrow H_{1}$ be a projection. Now, recall that $p_{2} q_{2}\left(H_{2}\right)$ is a complemented subspace of $\frac{F_{h(2)} \oplus G_{h(2)}}{\oplus_{i=1}^{h(1)} L^{1}}$ and $p_{2} q_{2}\left(H_{2}\right) \simeq H_{2}$. Moreover, the following diagram

$$
\begin{aligned}
& \oplus_{i=1}^{h(2)} L^{1} \xrightarrow{\bar{p}_{2}} \frac{\oplus_{i=1}^{h(2)} L^{1}}{\oplus_{i=1}^{h 1+} L^{1}} \\
& s_{2,1} \downarrow \\
& \Theta_{i=h(1)+1}^{h(2)} L^{1}
\end{aligned}
$$

commutes, where $s_{2,1}$ denotes the canonical inclusion, $t_{2,1}$ denotes the canonical isomorphism and \bar{p}_{2} denotes the quotient map (we note that $\left.\bar{p}_{2_{\mid F_{h(2)} \oplus G_{h(2)}}}=p_{2} q_{2}\right)$. Then $s_{2,1}\left(H_{2}\right) \simeq H_{2}$ and $s_{2,1}\left(H_{2}\right)<$ $\oplus_{i=h(1)+1}^{h(2)} L^{1}$. It follows that there exists a continuous linear map A : $s_{2,1}\left(H_{2}\right) \rightarrow \oplus_{i=1}^{h(1)} L^{1}$ with $H_{2}=\left\{(A y, y): y \in s_{2,1}\left(H_{2}\right)\right\}$. Moreover, if r_{2} :
$\oplus_{i=h(1)+1}^{h(2)} L^{1} \rightarrow s_{2,1}\left(H_{2}\right)$ is a projection, then the $\operatorname{map} \widetilde{r}_{2}: \oplus_{i=1}^{h(2)} L^{1} \rightarrow H_{2}$ defined by $\tilde{r}_{2}(x, y)=\left(\operatorname{Ar} r_{2} y, r_{2} y\right)$ is a projection onto H_{2} with $\operatorname{ker} \tilde{r}_{2}=$ $\oplus_{i=1}^{h(1)} L^{1} \oplus k e r r_{2}$. Now, if I is the identity map of $\oplus_{i=1}^{h(2)} L^{1}$, we consider the diagram
$\oplus_{i=1}^{h(1)} L^{1} \oplus \oplus_{i=h(1)+1}^{h(2)} L^{1} \xrightarrow{I-\widetilde{\tau_{2}}} \oplus_{i=1}^{h(1)} L^{1} \oplus \operatorname{ker~r~}_{2} \xrightarrow{I-s_{2}, 1} \oplus_{i=1}^{h(1)} L^{1} \oplus\{0\} \xrightarrow{r_{1}} H_{1}$.
It is immediate to verify that the composition map $v_{2}=r_{1}\left(I-s_{2,1}\right)(I-$ $\left.\tilde{r}_{2}\right)$ is a projection onto $H_{1}, v_{2} \widetilde{r}_{2}=0=\widetilde{r}_{2} v_{2}$ and $v_{2} \oplus_{i=1}^{h(1)} L^{1}=r_{1}=$ $\left.\left(v_{2}+\widetilde{r_{2}}\right)\right|_{\oplus_{i=1}^{h(1)} L^{1}}$. Therefore, $v_{2}+\widetilde{r_{2}}$ is a projection from $\oplus_{i=1}^{h(2)} L^{1}$ onto $H_{1} \oplus H_{2}$ which extends r_{1}.

Also the diagram

commutes, where $s_{3,2}$ denotes the canonical inclusion, $t_{3,2}$ denotes the canonical isomorphism and \bar{p}_{3} denotes the quotient map $\left(\bar{p}_{3_{\mid F_{h(3)} \oplus G_{h(3)}}}=\right.$ $\left.p_{3} q_{3}\right)$. Then $s_{3,2}\left(H_{3}\right) \simeq H_{3}$ and $s_{3,2}\left(H_{3}\right)<\oplus_{i=h(2)+1}^{h(3)} L^{1}$. As before, it follows that there exists a continuous linear map (which, for simplicity, we again denotes by A) $A: s_{3,2}\left(H_{3}\right) \rightarrow \oplus_{i=1}^{h(2)} L^{1}$ with $H_{3}=$ $\left\{(A y, y): y \in s_{3,2}\left(H_{3}\right)\right\}$. Moreover, if $r_{3}: \oplus_{i=h(2)+1}^{h(3)} L^{1} \rightarrow s_{3,2}\left(H_{3}\right)$ is a projection, then the map $\widetilde{r_{3}}: \oplus_{i=1}^{h(3)} L^{1} \rightarrow H_{3}$ defined by $\widetilde{r}_{3}(x, y)=$ $\left(A r_{3} y, r_{3} y\right)$ is a projection onto H_{3} with $\operatorname{ker} \widetilde{r_{3}}=\oplus_{i=1}^{h(2)} L^{1} \oplus k e r r_{3}$. Then, again denoting by I the identity map of $\oplus_{i=1}^{h(3)} L^{1}$, the composition map $v_{3}=\left(v_{2}+\widetilde{r}_{2}\right)\left(I-s_{3,2}\right)\left(I-\widetilde{r}_{3}\right)$ is a projection from the space $\oplus_{i=1}^{h(3)} L^{1}$ onto $H_{1} \oplus H_{2}$ such that $\left.v_{3} \widetilde{r_{3}}=0=\widetilde{r_{3}} v_{3}, v_{3} \mid \oplus_{i=1}^{h(2)} L^{1}\right)=v_{2}+\widetilde{r_{2}}=\left(v_{3}+\widetilde{r_{3}}\right) \mid \oplus_{i=1}^{h(2)} L^{1}$.
Therefore, $v_{3}+\widetilde{r}_{3}$ is a projection from $\oplus_{i=1}^{h(3)} L^{1}$ onto $H_{1} \oplus H_{2} \oplus H_{3}$ which extends $v_{2}+\widetilde{r}_{2}$.

Continuing in this way, for each n we find a projection t_{n} from $\oplus_{i=1}^{h(n)} L^{1}$ onto X_{n} satisfying $t_{\left.\right|_{\oplus_{i=1}^{h(n-1)} L^{1}}}=t_{n-1}$. To complete the proof
it is enough to notice that the map $t:\left(L^{1}\right)^{(N)} \rightarrow X \simeq\left(L^{1}\right)^{(N)}$, defined by the sequence $\left(t_{n}\right)$, is the desired projection.

Moreover
Proposition 2. ([9]). If $F<\left(L^{1}\right)^{(N)}$ then one of the following cases occurs: (i) F is a complemented subspace of L^{1}. (ii) $F \simeq \varphi$. (iii) $F \simeq$ $\varphi \oplus X$ where X is a complemented subspace of L^{1}. (iv) $F_{\beta}^{\prime} \simeq\left(l^{\infty}\right)^{N}$, moreover in this case F contains a complemented copy of $\left(l^{1}\right)^{(N)}$.

References

[1] A. A. Albanese, Primary products of Banach spaces, to appear in Arch. Math. 66 (1996), 397-405.
[2] A. A. Albanese and V. B. Moscatelli, The spaces $\left(l^{p}\right)^{N} \cap l^{q}\left(l^{q}\right), 1 \leq$ $p<q \leq \infty$ or $q=0$, are primary, preprint.
[3] S. F. Bellenot and A. Dubinsky, Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579-594.
[4] J. C. Díaz, Primariness of some universal Fréchet spaces, preprint.
[5] P. Domanski and A. Ortynski, Complemented subspaces of product Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231.
[6] P. Enflo and T. W. Starbird, Subspaces of L^{1} containing L^{1}, Studia Math. 65 (1979), 203-225.
[7] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.
[8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
[9] G. Metafune and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl (4) 153 (1988), 175-190.
[10] G. Metafune and V. B. Moscatelli, On the space $l^{p^{+}}=\cap_{q>p} l^{p}$, Math. Nachr. 147 (1990), 47-52.
[11] G. Metafune and V. B. Moscatelli, On twisted Fréchet and (LB)spaces, Proc. Amer. Math. Soc. 108 (1990), 145-150.
[12] M. I. Ostrovskii, On complemented subspaces of sums and products of Banach spaces, preprint.

Dipartimento di Matematica Recibido: 16 de Agosto de 1995
Universitá di Lecce Revisado: 11 de Diciembre de 1995
C. P. 193

73100 Lecce, Italy.

[^0]: 1991 Mathematics Subject Classification: 46E30, 46 A13.
 Servicio Publicaciones Univ. Complutense. Madrid, 1996.
 *The authors acknowledge partial support from M.U.R.S.T

