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Complemented subspaces of sums and
products of copies of L0, 1].

A. A. ALBANESE and V. B. MOSCATELLI*

Abstract

We prove that the direct sum and the product of countably
many copies of L1[0, 1] are primary locally convex spaces. We also
give some related results.

For a while it was an open problem whether a complemented sub-
space of a countable product of Banach spaces can be written as a prod-
uct of Banach spaces. This question has been solved in negative by
M. L Ostrovskii [12], but it is still open for X~ where X is a clas-
sical Banach space. The only countable products of classical Banach
spaces whose complemented subspaces have been fully described are:
wi(IP)¥,1 < p < o0, and (co)™ ([5], [9]) and for these the answer is
positive. Moreover, in [1] it was shown that, for 1 < p < oo, (LP[0, 1))V
is primary, i.e. if (LP[0,1))N = F @G, then either F or G is isomor-
phic to (Z7[0,1])¥; it follows, by reflexivity, that also the direct sum of
countably many copies of LP[0,1] is primary. The purpose of this note
is to extend these results to the case L'[0,1], i.e. we will prove that
the direct sum and the product of countably many copies of L![0, 1] are
also primary spaces. However it remains an open problem whether both
the complements F and G of a direct decomposition of (L?[0, 1Y, with
1 < p < oo, are isomorphic to a product of Banach spaces. Note that
(120, 1)V is isomorphic to L{ (R),1 < p < co.

Qur proof is completely different from the one in [1]: the technique
of that proof cannot be applied to the case when p = 1, as it based
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on some special features of the spaces L?[0,1],1 < p < oo, and on the
fact that the Haar-system is an unconditional basis in such spaces (the
Haar-system is only a basis of L![0, 1]; there is no unconditional basis
in L1[0,1]!). Actually, in order to obtain our results we will use some
known facts about a special class of operators on L[0, 1], the so-called
E — operators (see [6]), together with a method given in [9].

For other examples of primary non-Banach Fréchet spaces, we refer
the reader to (1], {2], [4], [5], [9] and [10].

We will use standard terminology (like e.g. [7], [8] and [9]). In
particular, for two locally convex spaces E and F, we write E ~ F and
E < F to mean respectively that E is topologically isomorphic to F
or to a complemented subspace of F. Finally, we put L} = L1[0, 1].

1 Preliminaries

We recall some definitions and facts which will be used later on.
Definition 1 ([6]). A bush is a sequence (ET'),i = 1,---,Mp,n =
0,1,---, of Lebesgue measurable subsets of [0,1] such that

(a) Mo=1and | E{|> 0,
(b) foreach n UMr pr = gD,
(c) for each n E}NE] =0ifi+#j,

(d) for each n and each 7,1 € j < My, there exists an i,1 <
i < My, with E7H! c EP,

() max |El|—0asn— oo.

: 1<i<M,
Here | E | denotes the Lebesgue measure of @ mesurable subset
E C [0,1].

Definition 2 ([6]). Let T : L' — L! be a bounded linear operator. T is
called an E- operator if there exist § > 0 and a bush (EP) with

dr > &

1 1
T n
5oy oz |7 ()

for each n, where x p denotes the characteristic function of a measurable
subset E C [0,1].
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Enflo and Starbid [6] proved the following useful fact:

Theorem 0. Let T : L1 — L! be a bounded linear operator. T is an E-
operator if and only if there exists a subspace Y of L} with Y isomorphic
to L1, wiih T)y an isomorphism onto, and with TY complemented in L.

Remark. (1) If T} + T2 is an E-operator, then either T} or T2 must be
an E-operator. (2) Obviously, the identity map of L' is an FE-operator.

For more about such operators the reader is referred to [6].

2 Complemented subspaces of (L')"
We denote by (L1)" the product of countably many copies of L. In

particular, the space {L}¥ can be represented as the projective limit of
the Banach spaces T[T, L! with respect to the linking maps

n n—1
Pn-1mn - HLl — H Ll: (Ila T '1zn—1:xn) - (Il’ Tt !xﬂ—l)s
i=1 i=1

which are surjective. It is clear that, for each increasing sequence
(k(rn)) C N, we have (LYY = projn fi'{) Ll,Pk(n-i),k(n)), where
Pk(n—1)k(n) = Pk(n—1),k(n—1)+1" "~ Pk(n)-1,k(n)"

Now, let pn : (L)Y — [, L! be the canonical projection (x:)i —
(3:1: fty xn)- Then Pnn+1Pnt+l = Pn-

Now we are ready to prove

Theorem 1. The space (L1)V is primary.

Proof. Suppose that (L)Y = F @G with P projection from (LYY
onto F and kerP=G. Put Q =1 - P.

Because F and G are closed subspaces of (L)Y, by Lemma 1.1 of
[9], we may write F' = projn(Fn,Pn—1,n) 80d G = projn{Gn, Pn-1n),
where Fy, (resp. G,) denotes the closure of pn(F) (resp. pn{G)) in
[T, L! and pn_1,» also denotes the restriction of pp_1n to Fpn (resp.
Gyn). Moreover, since Fp (resp. Gp) is Banach every map ppP (resp.
pn@) factors canonically through Hfgi) L1, Therefore, we can find two
sequence (k(n))n and (h(n))n of integer numbers with 1 = (1) < k(1) <
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h(2) < --- < h(n) < k(n) < h{n + 1) < -- - such that the diagrams

Ph(n ' Phin Q
(LHN Fhn) IHY T ey
pk(ﬂ) 1 /rﬂ and Pk(ﬂ-) l /sﬂ (1)
k(n) k(n)

I 1+
i=1 i==1

commute, where r, (resp. sy,) denotes the map associated with Ph(n) P
(resp. Ph(n)Q)'
k(1 - ki
Put Eg; ZAHiil) LY En 10 = {O}k(n D x Hii’l?(n—l)ﬂ L', and
Ph(n)k(n) = Ph(n)h(n)+1" " Pk(n)—1,k(n)- Then, by (1), as it is easy to
verify, we obtain that, for each z € En—1,n, (rn + 3n}(2) = Phn) k(m) (),
ie.
hin)
Tn + Sn = ph(n),k(ﬂ)|gn_1 n : En—l,n - H Ll
' =1
is the canonical projection (# 0 as k(n— 1) < h(n) < k(n)) and hence is
an E-operator as it follows from Theorem (. This implies that, by Re-
mark 1, either Trg, .. OF Smg_ is an E-operator for each n, There-
fore, we can suppose that Tng _1' _is an E-operator for infinite indices
n.
Now, for the sake of simplicity, we assume that for each n Tnls, _,

is an E-operator and k(n) = n + 1,h(n) = n. Thus, we have that the
following diagram

ni2 » n+1
1,n+2
I | O
i=1 =1
Tr+l l l n
Pn,n+1
Fp - F,

commutes for each n.
Because T1 g, , is an E-operator, by Theorem 0 there exists a closed

subspace M1 C Eg) = L' with T1p, 80 isomorphism into, with H; =
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r1(M1) < L! and, with Hy ~ L), Since ppn+iTn+1 = TnPr+in+2, it is
clear that also the maps

Prntl : Tne1(M1) — ro(M1)

are isomorphism onto.

Now, note that p; 2(%1,z2) = z1 and hence N = kerp12 = F2 N
({0} x L'). Because p12 : r2(M1) — r1(Mi1) = H; is-an isomor-,
phism onto, there exists a continuous linear map A : H; — {0} x
L' with ro(M1) = {{z,Az) : = € Hy}. It follows that, if ¢ : L' —
Hy is a projection, then the map r : L! x L — ro(M;) defined by
r(z1,z9) = (t1x1,At;z)) is a projection onto ro(M;) with kerr =
{(z1, z3) : t1z1 = 0} = kert;x L!. Now, we observe that ra (N) C Ei2
and rg Eis is an E-operator. _Then, again Theorem 0 gives that there
exists a closed subspace My C E) o with T3y, 81 isomorphism into, with
Hy = ro(M2) < {0} x L! and with Hy ~ L1. As before, all the maps
Prn+tl : Trr1(M2) — rn(Mz2) are isomorphism onto. If I is the identity
map of L' x L' and ¢ : {0} x LY — Hgy is a projection onto Hs, we
consider the diagram

— I—
L' x LV S kerty x LY B {0} x L1 Ho,
Then the map
s=gpip(I—r): L1x L' — Ho

is a projection onto Hg and 7s = 0 = sr. It follows that ro(M1) + H2
is a closed subspace of Fy, hence equal to ro(Mi) & ro(Ma) ~ Lle Lt
and the map ts = r + s is clearly a projection from L' x L1, hence from
Fg, onto ro( M1) & ro(M2) such that pj ote = t1p1,2.

Continuing in this way, we inductively obtain that for each n there
exists a closed subspace X, = ®F ;rn(M;) ~ [t L} of Fy, and a pro-
jection ty : [[%1 L' = Xy, such that

Prnntllntl = tnPnntl (2)

50 that ppni1(Xns1) = Xn. Now, if we form the projective limit X of
the spaces Xp, with respect to the restriction maps pn—1,n : Xn — Xn—1,
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we see that X C F, X ~ (L')". Moreover, by using (2), we see that the
map

t: (LI)N —~ X, x= (xn)n — (tnpn(xn))n

is a projection onto X. Therefore, we have the situation (L)Y < F <
(L')N which gives, by using Pelczyinski’s decomposition method, that
F ~ (L')" and hence the proof is complete.

Moreover

Proposition 1. If F < (L)Y then one of the following cases occurs:
(i)F is a complemented subspace of L' - (1i)F ~ w- (iii)F ~ w® X where
X is a complemented subspace of L'- (iv)Fg =~ (1Y), moreover in this
case F' contains a complemented copy of (11},

In order to prove Proposition 1, we need the following Lemma

Lemma. Let E be a quojection (i.e., F is a projective limit of a pro-
Jjective sequence (En,rnny1) of Banach spaces En and surjective linking
maps Tnni1 @ Enyx — Ep). If Eb has a subspace isomorphic to (1°°)(N),
then E contains a complemented copy of (11)V.

Proof. First, we write Ej = ind E;, where the increasing sequence
(Ep) of Banach spaces is strict since E is a quojection.

Now, we assume that Eb contains a copy of (I°°)(N ). Put X, = I®
for all n, (1°)") = @X,,. Then there is a k(1) such that X, C E"c(l)
since X is Banach. By Proposition 2.e.8 of [8] it follows that Ey)
contains a complemented copy of !, i.e. there is a subspace Gy of
E;c(l) with Gy ~ I! and a projection ¢ : Ep1y = G1. We denote hy
(ej) the unit vectors basis of Gi: because E is a quojection there is
a bounded sequence (z;} C E such that riyz; = e; (for each n, rp
denotes the map r, : E — E, defined by rp,x = x,). Therefore, the map
s1:G1— B, 372, aje; — 3,22, ajz; is an isomorphism onto Gy = [x;].

Actually, s; = (T'k(l)'| 01) . It follows that the composition map
1= sititk(ly + B — By — G1 —~ Gy
is also a projection from £ onto Gy =~ I1. So, E = éleakcrﬁ ~ @ kert;

and, hence, E,’G = G1 & (ker?l)b, where F = keri; is also a quojection
as a quotient of a quojection (see Proposition 3 of {3]).
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In order to complete the proof, we observe that (l°°)(N ) is also a
complemented subspace of Ej (it is an easy consequence of the fact
that I°° is injective (see Proposition 2.£.2 of [8]) and that Ej is a strict

LB-space). Then, we denote by p a projection from Ej onto (19°) (™).
because G is a Banach subspace of Ej there is a k¥ € N such that
qkp (6’1) = 0, where gi denotes the canonical k-th projection from
(1°YN) = @, X onto GnskXn. By noting that gep is a projection from
Eﬁ onto @p>kXn, it follows that, for £ € GpoiXn, z = (sz - tl) z+
1:1; and hence z = qppr = qrp (sz — tl) .7:+qkpt1:a: = gip (sz - tl)'x,

— 1

ie qep (id E— tl) = idg,,,X,- |herefore, the composition map

l@n)kxn
. Y I ) ~ '
(tdE - tl) grkp : Fg— OnseXn — (sz - tl) (®n>kXn) C Fg

~y 1
is a projection from FE; onto ¥ = (idE—-tl) (Bp>kXpn) and ¥ ~
(=) c Ff.
Since Fj contains also a (complemented) copy of (I°) M) as be-

fore, we find a subspace Gy of F with G2 ~ I' and a projection %3 :
F = G2 so that E = G ® F = Gl®Gg®kert2 ~ lleal.'lEBkertg,
where 1 + t2(idE - t1) is a projection from E onto G1 & G’g Iter—
ating this procedure, for each n we find a subspace Gn of kertn_,
with Gn ~ [! and a pro_]ectlon tn kert, | — Gp so that E =
@','_IG @ kert, ~ @, I' @ kertn Then, if we form the projective limit
& of the Banach spaces ®,=101 with respect to the maps sn, where
sn i the restriction of the map E?=12; (idE—- ;i—l) (idE - ?1) to

e;’-‘j}léi, we obtain that @ C F and G = (Il)N. Moreover, the map

s = 32 t; (idE - E;;el) .- (idE - ?1) is a projection from E onto G.
This completes the proof.

Proof of Proposition 1.

it follows from assumption that F is a quojection (because it is a
quotient of (L!)V)) and Fj < (L°)M) ~ (1°°)(M). Thus Theorem 2.1
of [9] implies that one of the cases (i) < (iv) must occur. In particylar,
when the case (iv) occurs, by the above lemma, we get that F contains
a complemented copy of (I1)¥.
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Remark. We observe that, for a Fréchet space E, the fact the dual
of E is a countable direct sum of Banach spaces (thus the bidual is a
contable product of Banach spaces) does not necessarily imply that E
is a countable product of Banach spaces. The second author and Meta-
fune [11] constructed examples of quojections which are not countable
products of Banach spaces but whose duals are countable direct sums of
Banach spaces. Thus case (iv) need not imply that the complemented
subspace F is a countable product of Banach spaces.

3 Complemented subspaces of (L')(V)

We denote by (L1)™) the sum of countably many copies of L. In
particular, the space (L1)V) can be represented as the inductive limit
of the Banach spaces @7 ,L! with respect to the linking maps

- . mn 1 n+lg1
Int+in -« S L° — @i L7, (2’:1 ""xﬂ) - (xl""azn: 0)’

which are isomorphism into. Clearly, if (k(n)) is an increasing sequence
ofmteger numbers, we have also that (L1)™) = ind, (@ (1 LY ik(may, k(n)),
Where i 11) k(n) = Th(np1) k(nt-1)— 1 Fk(n)-+1,k(n)-

Also recall that if £ a complemented subspace of (LYW E is an
LB-space and hence we may represent it as the strict inductive limit of
the Banach spaces E, = E N (@7, L).

Theorem 2. The space (L1)Y) is primary.

Proof. We suppose that (L' )(N ) = F& G with P projection from
(LY)N) onto F and ker P = G. Put Q = I—P. Then, F = indnFy (resp.
G = indpGyp), where Fy, = F N (&2 L") (tesp. G, = GN (&2 ,L)).
Clearly (LYYW) = ind, F, © Gy,

Now, let Py = P (resp. Q1 = Q| rt) be. Then there exists an
A(1) > 1 such that the maps P1 Ll — Fpay, @1 0 LY — Gy are
bounded and Fp(1y) ® Gry D L. Put Py = Pefill)“Ll and Q; =

Q gL we also find an A(2) > A(1) + 1 such that the maps P :

h(1)+ L — Fpo) and Q2 : ®:=(11)+1L1 — Gj2) are bounded and

Fh(g) & Gh(g) D @iil)_HLl.
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Continuing in this way, we inductively find a sequence (h(n)) of
integer numbers with h(n) > k(n — 1) + 1, h(0) = 1, such that the maps

_ h{n—~1)+1 .1
Pn' = P iﬂ. 1)+1L1 * e‘l“f{ ) L*— Fh(ﬂ)
and
hi{n—1)+1
Qn=Q L@ L - Gnm)

GB?S-I)H FA!

are bounded and Fyn) @ Gpn) O @:"E; U171 for each n > 1.
Now, we note that the following diagram

hA{n—1)+1 71 Pn+Qn n Fp.( 27] Gh( ) ~ Fh(ﬂ) Grin
e!_l L Fh(“) & Gh(“) Fh("::-z & Gh(:— 1) = Eppme1) @ Eu.(:%

;nul l l P
h(n—1)+1 .
@‘-h’(;—lrlf— ~ L 3 ﬂ"%’(?%?)ﬂ?l
&7 'L &=, L

commutes for each n > 1, where gn,pn and py_1 are the quotient maps
and j, is the canonical isomorphism into. Moreover, for n = 1,

PL+ Q1 =iy LN — GBh(l)Ll

is the canonical inclusion. By Remark 1 ih(l),l is ap F-operator and,
hence, either Py or Q1 is an E-operator. Also, jnPn—1 18 an E-operator
and, as follows from the above diagram, pngn (Pn + Qn) is an E-operator.
Then, by Remark 1 either ppgnPn 0T pngn@n is an E-operator, where,
clearly,

_ ,,_E;.gn;ﬂﬁb.gn
®h(n 1)+1L1 Py Fhn) q_) P )

=l Frin- 1) :"E’I Ry
and
An-1)+11 @ o Ghn) _pn Fhin) ® Ghn)

69,1 —'Gh()

Ert-1) —e%(’;—_”-bl

Therefore, we can suppose that pngnFn (for n = 0 g denotes the identity
map of F(1) & Gh(l)) is an E-operator for infinite indices n.
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For the sake of simplicity, we assume that p,gn,P is an E—operator
for each n.

Because Py is an E-operator, by Theorem 0 there exists a closed
subspace My C Ll with Py)p, an isomorphism into, with Pj(M;) =
H; ~ L! and, with H, < @h(l)Ll Also p2qaP2 is an E-operator and,
hence, by Theorem 0 there exists a closed subspace My C @h(l)ﬂ
with My ~ L1 on which P2g2Ps is an isomorphism onto a complemented

subspace of "2,,615 22 Putting Hy = Po(Mo , we then have Hy C
LI

G,
Fpeey, Hy =~ Il and pago(Ho) < %ﬁ%@ PQIM an 1somorphlsm into

and HgﬂFh(l) = {0}, H;+Hyis closed in Fp(2), hence equal to H1€BH2 ~
L'e Ll
Continuing in this way, we inductively obtain for each n a closed

subspace M,, C EBh("' SRR with Pr,

Hn C Fpn), with Hp =~ L' and pngn(Hyp) < ﬂ‘,}‘(’;f—cfi(lﬂl and H, N

Fpn—1) = {0}, with Hy, + Fp(,,_1) closed subspace of Fh(n), hence H, +
Hp_ ) = Hp ® Hn 1 closed subspace of Fh(n)-

Clearly, if we now form the inductive limit X of the Banach spaces
Xn = @] H; with respect to the canonical inclusions X, — Xn11, we
see that X C F and X ~ (L1)(V),

To conclude the proof we have to show that X < F and again to
apply Pelczynskl’s decomposition method. Then we proceed as follows.

an isomorphism into, P,(My,) =

Let r; ,_( AN Hi be a projection. Now, recall that page(H?) is
a complemented subspace of —"‘%I&@- and pago(Hz) ~ Hg. Moreover,

the following diagram

commutes, where sg; denotes the canonical inclusion, 27 denotes
the canonical isomorphism and 5, denotes the quotient map (we
note that Py Pty ®5nc) = pagqz). Then s91(H2) ~ Hy and so1(Ha) <

69:‘,(_33(1) _HLl It follows that there exists a continuous linear map A :

32,1(H2) — &ai_il)Ll with Ho = {(Ay,y) : y € s0,1(H32)}. Moreover, ifrg :
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@?ﬁi)(l)HLl — s9,1{Hz) is a projection, then the map 7o : ®; (2)L1 — Ho

defined by 72(z,y) = (Aroy, roy) is a projection onto Hp with kerrp =
@h(l)Ll @ ker ro. Now, if I is the identity map of @; (2)L1, we consider
the diagram
—r I-
!Vloel, 1P el ekerr el e (0} B H
It is immediate to verify that the composition map vg = r1{f—s21)(I —
73) is a projection onto Hj,vofs = 0 = rovp and vg‘ ) 1 =r =

h(2) Ll

(vo + 72) P Therefore, vo + 72 is a projection from &, onto
i=1

Hi ® Ho which extends r;.
Also the diagram

h(3)L1 Pz @ S

o
83,21 ( Ve ./ t3,2
h(3)
CR O A

commutes, where s32 denotes the canonical inclusion, {32 denotes the
canonical isomorphism and p5 denotes the quotient map (P =
P P3 q P (P35, 0,000

pags). Then s3o(H3) =~ Hs and s3 2(H3) < Ga:l(?@)HLl. As before,

it follows that there exists a continuous linear map (which, for sim-
plicity, we again denotes by A) A : s32(Ha) — ea"( )Ll with H3 =

{(Ay,y) : y € s32(H3)}. Moreover, if r3 : @ffi)(mﬂl..l — s3o(Ha) is
a projection, then the map 73 : ( )Ll — Hi defined by 7a(z,y) =

(Aray,ray) is a projection onto H3 w1th kerra = h(2)L1®ker r3. Then,
again denoting by I the identity map of ®; (3)L1 the composition map
va == (vo+7r2){I—s3 2) (I—73) is a projection from the space & M1 onto

=1

H,@ Ho such that vsra = 0 = rava, v3 o = vo+7o = (va+r3) M@ 1"

Therefore, va + 73 is a projection from EB]'('?’)L1 onto Hy @ Hy&® H3 which
extends vp + T2
Continuing in this way, for each n we find a projection ty from
GB?S;)LI onto X, satisfying t, ohn-T1p = tn—1. To complete the proof
i=1
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it is enough to notice that the map ¢: (L})™) o X ~ (LHM™) defined
by the sequence (t,), is the desired projection.
Moreover

Proposition 2. (91). If F < (LY}™) then one of the following cases
occurs: (i) F is a complemented subspace of L'- (ii) F ~ - (i) F ~
¢ @ X where X is a complemented subspace of L. (iv) Fé ~ (1),
moreover in this case F contains a complemented copy of ( 1)(N ).
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