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Introduction

The idea of deleting a hyperplane from a geometric structure is not new. It
has been applied in various contexts starting from an affine space as a result
of deleting a hyperplane from a projective space. In [3] the complement of a
geometric hyperplane, i.e. a proper subspace that either meets each line in a
unique point or contains that line, in a Grassmann space, also known as a space
of pencils, is investigated.

Instead of a hyperplane any subspace can be deleted to obtain a more inter-
esting structure, which in the case of projective geometry is called a slit space
(cf. [5,6]). Just to mention [11] which deals with the so called partial geometry
that consists of points of a finite projective space P not contained in a fixed
secundum (a subspace of codimension 2) W of P and lines of P which do not
intersect W. In [7] configurations that arise from finite affine planes by remov-
ing a pencil of lines are investigated. The authors generalise the result of [13]
that the complement of a line in a finite affine plane can be embedded into a
projective plane of the same order. The next example is the affine space of rec-
tangular matrices, introduced in [12, Ch. 3], which resembles the structure of
subspaces in a projective space that are complementary to a distinguished sub-
space. Two different approaches to this structure are delivered by [1] and [10].
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In both papers it is shown that the structure of complements is embeddable
into an affine space and not all lines of that affine space arise as lines of this
structure.

Another good reason (frankly the real reason) to play with complements or
slit spaces is as follows. Consider a finite dimensional projective space P coor-
dinatized by an even characteristic field and endowed with a non-symplectic
projective polarity ⊥, a pseudopolarity. Let W be the set of all self-conjugate
points of P w.r.t. ⊥. Then W is known to be a proper subspace of P. If p is a
point in P we write p⊥ for the set of all points conjugate to p; for a subspace
U we have then U⊥ :=

⋂
p∈U p⊥. We say that a subspace U is regular when

its radical U ∩ U⊥ is void. Note that U ∩ U⊥ ⊂ W and those subspaces that
are skew (disjoint) to W are regular. So, our present result moves us closer to
solving a similar problem of recovering the ambient projective Grassmannian
from the Grassmannian of regular subspaces w.r.t. a pseudopolarity.

In spaces of pencils interval subspaces, i.e. those induced by intervals in
the lattice of subspaces of the underlying space, form a very important class.
Each of them carries the structure of a space of pencils and any subspace
with this property is an interval subspace (see [15]). This is the reason to call
such subspaces Grassmann subspaces. Grassmannians are similar geometries to
spaces of pencils in that they have the same point set while lines are “thicker”,
they are not pencils of subspaces in the underlying space but bases (upper
covers) of these pencils, the incidence being inclusion not the membership
relation. Interval substructures in Grassmannians have analogous properties
to those of spaces of pencils.

On the other hand a subspace W can be identified with the principal ideal
(W] which is a specific interval [Z,W], where Z is the zero (bottom) in the
lattice of subspaces of P. This motivated us to investigate the complement of
a Grassmann substructure in a projective Grassmannian. Skew subspaces lose
their nice meaning in this general setting, so instead we take outer subspaces,
i.e. those not contained in the deleted interval. We begin with a general case of a
Grassmannian of outer subspaces w.r.t. a fixed interval substructure and show
that the ambient projective space can be recovered from this Grassmannian.
Later, we discuss a more specific case where an ideal is deleted and we prove
that also from a skew Grassmannian the outer Grassmannian and thus, the
underlying projective space, can be recovered.

1. Basic notions

Let us consider a point-line incidence structure A = 〈S,L, |〉, where S is a
non-empty set whose elements are called points, L is a non-empty set whose
members are called lines, and | ⊆ S × L is an incidence relation. We say that
a point a ∈ S is incident to (or lies on) a line l ∈ L and write a | l. It is said
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that A is a partial linear space, when no two distinct points are incident to
two distinct lines (cf. [2]).

Now, let S′ ⊆ S and L′ ⊆ L. We call A′ = 〈S′,L′〉 a closed substructure of
A (or a Baire substructure) iff the following two conditions for a ∈ S, l ∈ L are
met:

(A) if two points of A′ are incident to a line l, then l is a line of A′, and dually
(B) if two lines of A′ are incident to a point a, then a is a point of A′.

This definition can be stated equivalently in this way

Lemma 1.1. 〈S′,L′〉 is a closed substructure of A iff the following two condi-
tions are met:

(C) If a ∈ S \ S′, then there is at most one line l ∈ L′ such that a | l.
(D) If l ∈ L \ L′, then there is at most one point a ∈ S′ such that a | l.

A triangle in A is a system of three points called vertices, and three lines,
called sides, where every vertex is incident to exactly two sides (or dually,
every side is incident to exactly two vertices). If A contains a triangle, then we
call it non-trivial.

We write Δ−
A(a1, a2, a3) when a1, a2, a3 are the vertices of a triangle in A

and we write Δ+
A(l1, l2, l3) when l1, l2, l3 are the sides of a triangle in A. To a

triangle of vertices a1, a2, a3 we associate two sets of points:

λ−
A(a1, a2, a3) := {p ∈ S : Δ−

A(a1, a2, p) ∨ Δ−
A(a2, a3, p) ∨ Δ−

A(a3, a1, p)}, (1)

Λ−
A(a1, a2, a3) :=

⋃{
λ−

A(b1, b2, b3) : Δ−
A(b1, b2, b3) ∧ b1, b2, b3 ∈λ−

A(a1, a2, a3)
}
.

(2)

Note that the condition defining λ−
A(a1, a2, a3) is simply a requirement that

two specific lines joining p with two of the vertices a1, a2, a3 exist. Formally
we can drop Δ−

A(·, ·, ·) and write a bit more complex formula:

λ−
A(a1, a2, a3) =

{
p ∈ S : (∃m1,m2 ∈ L)[p | m1,m2 ∧
∨{i,j,k}={1,2,3}(ai | m1 ∧ aj | m2 ∧ m1,m2 �= lk)]

}
. (3)

By (1) it is clear that a1, a2, a3 ∈ λ−
A(a1, a2, a3). Hence in view of (2) we get

λ−
A(a1, a2, a3) ⊆ Λ−

A(a1, a2, a3). (4)

Similarly, for a triangle of the sides l1, l2, l3 we define:

λ+
A(l1, l2, l3) := {m ∈ L : Δ+

A(l1, l2,m) ∨ Δ+
A(l2, l3,m) ∨ Δ+

A(l3, l1,m)}, (5)

Λ+
A(l1, l2, l3) :=

⋃{
λ+

A(k1, k2, k3) : Δ+
A(k1, k2, k3) ∧ k1, k2, k3 ∈ λ+

A(l1, l2, l3)
}
,

(6)
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and have
λ+

A(l1, l2, l3) ⊆ Λ+
A(l1, l2, l3). (7)

The meaning of these notions will become clearer later when we use maximal
cliques of adjacencies of points and lines in an incidence structure, which our
paper is devoted to.

1.1. Grassmannians

Grassmann spaces frequently appear in the literature, just to mention [2,9].
The most general definition could be probably as follows. Let X be a non-
empty set and let P be a family of subsets of X. Assume that there is a
dimension function dim : P → {0, . . . , n} such that 〈P,⊂,dim〉 is an incidence
geometry. Write Pk for the set of all U ∈ P with dim(U) = k. For H ∈ Pk−1

and B ∈ Pk+1 with H ⊂ B the set

p(H,B) := {U ∈ Pk : H ⊂ U ⊂ B} (8)

is called a pencil ; Pk stands for the family of all such pencils. If 0 < k < n,
then the k-th Grassmann space is a partial linear space

Pk(P) := 〈Pk,Pk,∈〉.
This is the most common understanding of a Grassmann space. We used to
call it a space of pencils for its specific line set and to distinguish it from a
closely related point-line geometry consisting of Pk as points and Pk+1 as lines.
Namely, if 0 < k < n − 1, then

Gk(P) := 〈Pk,Pk+1,⊂〉,
is a partial linear space which we call a k-th Grassmannian (cf. [8, Section
1.1.2]). Points U1, U2 ∈ Pk are collinear in Gk(P) if there is B ∈ Pk+1 such
that U1, U2 ⊂ B.

When P is the family of subspaces in a projective (resp. affine) space, then
we say that Gk(P) is a projective (or resp. an affine) Grassmannian.

2. Slit spaces and their Grassmannians

In the paper we shall follow a rather old-fashioned tradition of investigations
on a projectively embeddable geometry G where all the considered objects are
projective; some of them are referred to as proper, and these are, strictly speak-
ing, the objects of G, and the others are referred to as improper. Nevertheless,
the incidence is one and fixed: the projective one.

Let P be a finite dimensional projective space coordinatized in a vec-
tor space V with dim(V ) = n. We write H(V ), or H in short, for the set
of all subspaces of V and Hk(V ), or just Hk, for the set of all k-subspaces
(k-dimensional subspaces) of V . The null subspace of V will be denoted by
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Θ. For convenience we identify P with the lattice of subspaces of V , so that
P ∼= 〈H1,H2,⊂〉 and generally, k-subspaces of P are (k + 1)-subspaces of V .
Two k-subspaces U1, U2 in V are said to be adjacent if their meet U1 ∩ U2 is a
(k − 1)-subspace, or equivalently, their join U1 + U2 is a (k + 1)-subspace. For
Z,W ∈ H an interval is the set [Z,W ] = {U ∈ H : Z ⊆ U ⊆ W}.

It is folklore that

Fact 2.1. The underlying projective incidence geometry, i.e. (Hi : 0 ≤ i ≤ n),
can be recovered up to isomorphism and duality in terms of the Grassmann
space Pk(H) if 0 < k < n and it can be recovered in terms of the Grass-
mannian Gk(H) if 0 < k < n − 1.

2.1. Triangles in Grassmannians

Let us recall a known but quite essential fact.

Fact 2.2. Three pairwise adjacent k-subspaces in P either cover a (k − 1)-
subspace, or they are covered by a (k + 1)-subspace.

Consider a projective Grassmannian M :=Gk(H) and let U1, U2, U3 ∈ Hk

be points of M such that Δ−
M(U1, U2, U3). Then they are pairwise dis-

tinct, pairwise adjacent in M, and not collinear in M. Hence in view of
2.2 there is H ∈ Hk−1 with H ⊂ U1, U2, U3 and there are lines Y1, Y2,
Y3 ∈ Hk+1 of M with Yi = Uj +Ul,where {i, j, l} = {1, 2, 3}. This means that
Δ+

M(Y1, Y2, Y3) and again by 2.2 there is B ∈ Hk+2 with Y1, Y2, Y3 ⊂ B. We
can say even more: H =U1∩U2∩U3 =Ui∩Uj and B=Y1+Y2+Y3 =Yi+Yj for 1≤
i < j ≤3.

In other words we have an interval [H,B] that contains the vertices and
sides of our triangle Δ. This interval is of length 3 hence it can be viewed as
a projective plane (more precisely G1(B/H) = G1(H(B/H)) is a projective
plane). Hence Δ is a triangle on some projective plane.

2.2. Complement of a Grassmann substructure

Let us fix two subspaces Z and W in V so that [Z,W] �= ∅ (in other words
Z ⊆ W). We will analyze the following class of outer subspaces:

D :=
{
U ∈ H : U /∈ [Z,W]

}
= {U ∈ H : Z � U or U � W}.

Set Dk :=D∩Hk. Note that Dk =∅ iff [Z,W]=H, that is iff Z = Θ and W = V .
So, to avoid an empty Dk we assume in the sequel that

Z �= Θ or W �= V. (9)

On the other hand we have:
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Dk =

⎧
⎪⎨

⎪⎩

Hk, if k < dim(Z) or dim(W) < k,

Hk \ {Z}, if k = dim(Z),
Hk \ {W}, if k = dim(W).

(10)

Consider the k-th Grassmannian

Dk := Gk(D) = 〈Dk,Dk+1,⊂〉.

It is a non-trivial partial linear space for 1 ≤ k ≤ n − 2. Now let us have a
look at the case where k = 1. If dim(Z) = 0, then D1 is a slit space, i.e. a
projective space with one of its subspaces deleted (cf. [5,6]) and if additionally
codim(W) = 1, then D1 simply becomes an affine space. If dim(Z) = 1, then
we delete from P the point Z and some bundle of lines through Z, so D1 is a
variant of a punctured projective space. If dim(Z) = 2, then D1 is P with the
line Z deleted. So, further we assume that

2 ≤ k ≤ n − 2. (11)

Generally, Dk is not a gamma space in the sense of [2] as it does not
need to satisfy none-one-or-all of the axioms. To verify this take a triangle of
vertices U,U1, U2 so that U ⊂ W,Z �⊂ U (which implies Z �= Θ), and W∩U1, U2

contains some point U0 of Dk. Then the potential line U0, U may lie in [Z,W].
So, instead Dk satisfies none-one-all except one-or-all of the axioms. If Z = Θ,
or dually when W = V , the Grassmannian Dk is a gamma space.

We can think of Dk in a bit different way. The set [Z,W]k of k-subspaces in
the interval [Z,W] will be of interest for us. Note that the elements of [Z,W]
uniquely determine both Z and W, contrariwise to the elements of [Z,W]k.
The problem is when dim(Z) = k or dim(W) = k (comp. (10)). Then [Z,W]k
becomes {Z} or {W} respectively and the other end of the interval is meaning-
less. For this reason we introduce the maximal Zmax and minimal Wmin such
that [Z,W]i = [Zmax,Wmin]i for i = k, k + 1, formally,

Zmax =
∧(

[Z,W]k ∪ [Z,W]k+1

)
and Wmin =

∨(
[Z,W]k ∪ [Z,W]k+1

)
,

where
∧

is a meet operation and
∨

is a join operation in the lattice of sub-
spaces of V . Most of the time they are not needed but sometimes they are
indispensable. For projective Grassmannians the following is known or could
be easily obtained (cf. [4,14]).

Fact 2.3. For any Z,W ∈ H with Z ⊂ W we have

Gk(H)
∣
∣[Z,W] =

〈
[Z,W]k, [Z,W]k+1

〉
(12)

and under a lax embedding the image of any other projective Grassmannian in
Gk(H) is of the form (12).

It is clear that (12) is a closed substructure of Gk(H). We call such a
substructure a Grassmann substructure (cf. [15]). Now, take the complement
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of the Grassmann substructure (12) in Gk(H) to get our Grassmannian
Gk(D).

Fact 2.4. The Grassmannian Gk(H) with the substructure (12) distinguished,
that is the Grassmannian Dk, satisfies (C) and (D) formulated in 1.1.

2.3. Stars and tops

Let H ∈ Hk−1. The set

S(H) := {U ∈ Dk : H ⊂ U} (13)

will be called a star. It is a set of points of Dk. Dually, with each B ∈ Hk+2

we associate the set

T(B) := {Y ∈ Dk+1 : U ⊂ B} (14)

called a top. It is a set of lines of Dk. One observation is trivial:

Fact 2.5. Let H ∈ Hk−1, B ∈ Hk+2. If Z ⊆ H and W = V, then S(H) = ∅,
and if Z = Θ and B ⊆ W, then T(B) = ∅.

These are the only cases when a star or a top can be void. Otherwise, every
star and every top contains some triangle in Dk. Before we prove that in 2.7,
a key observation is in order.

Fact 2.6. For H ∈ Hk−1, if Z � H or W �= V , i.e. if S(H) �= ∅, then

DH := Gk(D)|S(H) =
〈
[H)k \ [H + Z,W]k, [H)k+1 \ [H + Z,W]k+1

〉
, (15)

which means that a star induces a projective space with an interval of its sub-
spaces deleted. More precisely,

(i) if dim(H + Z) = k − 1, i.e. Z ⊆ H, then DH is a slit space,
(ii) if dim(H + Z) = k, then DH is a projective space with the point H + Z

and a bundle of lines contained in W through the deleted point,
(iii) if dim(H + Z) = k + 1, then DH is a projective space with the line H + Z

deleted,
(iv) if dim(H + Z) ≥ k + 2, then DH is a projective space.

Thanks to duality as well, a top is either void or a projective space with
an interval of its subspaces deleted.

Proposition 2.7. Let H ∈ Hk−1, B ∈ Hk+2.
(i) If Z � H or W �= V , then there is a triangle of Dk with its vertices in

S(H).
(ii) If Z �= Θ or B � W, then there is a triangle of Dk with its sides in T(B).

Proof. (i) is immediate by 2.6 and (ii) requires noting that it is dual to (i). �
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In view of Sect. 2.1 three points U1, U2, U3 that are vertices of a trian-
gle in Dk, i.e. Δ−

Dk
(U1, U2, U3) holds, span a unique star S(H), where H =

U1 ∩ U2 ∩ U3 ∈ Hk−1. This justifies writing S(U1, U2, U3) := S(H).
The key observation is that stars can be defined purely in terms of the

incidence structure Dk. To prove this it is convenient to prove some auxiliary
lemma first.

Lemma 2.8. If Δ−
Dk

(U1, U2, U3), then

(i) λ−
Dk

(U1, U2, U3) ⊆ S(U1, U2, U3),
(ii) Λ−

Dk
(U1, U2, U3) ⊆ S(U1, U2, U3).

Proof. (i) Let U ∈ λ−
Dk

(U1, U2, U3). According to (5) we have Δ−
Dk

(Ui, Uj , U)
for some 1 ≤ i < j ≤ 3 but it means that U1 ∩ U2 ∩ U3 = Ui ∩ Uj ⊂ U
which is sufficient for an argument.

(ii) Set H := U1 ∩ U2 ∩ U3. If W1,W2,W3 ∈ λ−
Dk

(U1, U2, U3) are such that
Δ−

Dk
(W1,W2,W3), then by (i) we get S(H) = S(W1,W2,W3). Now for

U ∈ Λ−
Dk

(U1, U2, U3), in view of (6) and (i) we have

U ∈ λ−
Dk

(W1,W2,W3) ⊆ S(W1,W2,W3) = S(H).
�

Proposition 2.9. Let Δ−
Dk

(U1, U2, U3) and distinguish a special case where
(∗) the ground field is Z2, n = k + 2, and dim(U1 ∩ U2 ∩ U3 + Z) = k.

(i) If (∗) does not hold, then
S(U1, U2, U3) = Λ−

Dk
(U1, U2, U3).

(ii) If (∗) holds and Y1, Y2, Y3 are the sides of the triangle U1, U2, U3, then

S(U1, U2, U3) = Λ−
Dk

(U1, U2, U3) ∪
{

U ∈ Dk : (∃W ∈ Dk)(∃Y ∈ Dk+1)
[
U,W ⊂ Y ∧

(
∨1≤i<j≤3(U ⊂Yi ∧ W ⊂Yj ∧ W �⊂ Yi)

)]}
.

Consequently, stars are definable in terms of Dk.

Proof. Let us write Δ for the triangle of vertices U1, U2, U3 and sides Y1, Y2, Y3.
Set H := U1 ∩ U2 ∩ U3. We begin with (i).

⊇ : By 2.8(ii).
⊆ : Let U ∈ S(H). By (4) it suffices to show that U ∈ λ−

Dk
(U1, U2, U3).

First, consider the case where U is on no side of Δ. Suppose on the contrary
that U /∈ λ−

Dk
(U1, U2, U3), i.e. none of the possible triples Ui, Uj , U forms a

triangle in Dk. In Gk(H) however all of these three triangles exist. So, some
side of each of those three triangles must be in the deleted interval. It means
that there are distinct i, j ∈ {1, 2, 3} such that U + Ui, U + Uj /∈ Dk+1. A
contradiction to 2.4.

Now, let us consider the case where U is on some side of Δ. We can
assume that U is not a vertex of Δ as otherwise U ∈ λ−

Dk
(U1, U2, U3). With
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Figure 1. The case where the ground field is not Z2

Figure 2. The case where the projective space DH is not a plane

no loss of generality, assume that U ⊂ U1 + U2. If U + U3 ∈ Dk+1, then
U ∈ λ−

Dk
(U1, U2, U3). So, assume that U + U3 /∈ Dk+1. In view of 2.6, four

possibilities need to be examined.
In case 2.6(i) the line U + U3 is deleted together with its points U and U3,

which is impossible.
In case 2.6(ii) the sole deleted point H + Z is on the deleted line U + U3.

If the ground field is not Z2, then the size of lines in our projective space
DH is at least 4. So, there are two additional points U ′, U ′′ on the side U2 +
U3 (see Fig. 1). The line U1 + U ′′ could be in the deleted bundle through
H + Z but then U ′ ∈ Dk and U ′ + U1, U

′ + U ∈ Dk+1. This means that
U ′ ∈ λ−

Dk
(U1, U2, U3) and U ∈ λ−

Dk
(U1, U2, U

′) which by (2) gives that U ∈
Λ−

Dk
(U1, U2, U3).

If n �= k + 2, i.e. if our projective space DH is not a plane, then take a
point U ′ not in the plane of Δ (see Fig. 2). There are three lines U ′ +U1, U

′ +
U2, U

′ + U ∈ Dk+1 as H + Z is on none of them. We proceed as above for U ′.
In case 2.6(iii), as the lines are of size at least 3, take an additional point

U ′ on the side U2 + U3 (see Fig. 3). As the sole line U + U3 is deleted we have
U ′ as in the previous case.

In case 2.6(iv) no line is deleted so the proof is complete.
Now, consider (ii). Note that DH is a Fano projective plane (lines are of

size 3) where either (a): a pencil of lines through H + Z is deleted, or (b): the
point H + Z and the line W through that point are deleted.
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Figure 3. The case where the line H + Z = U + U3 is deleted

Figure 4. The case where a pencil of lines through H + Z is deleted

⊇ : In view of 2.8(ii) we need to show that if a point U is on one of the
sides Yi of Δ and on a line Y crossing some other side Yj of Δ in W , then
U ∈ S(H). Observe that, U,W together with some vertex, say Ul, form a
triangle which shares two sides with Δ. Hence, by 2.2, k-subspaces U,W,Ul

cover a (k−1)-subspace, actually U∩W ∩Ul = H, which means that U ∈ S(H).
⊆ : Let U ∈ S(H). We can assume that U is not a vertex of Δ as otherwise

we are through.
In case (a) note that the point H + Z cannot be on any side of Δ, so U

must be on some side of Δ. Moreover, U is on a line Y which crosses another
side of Δ (see Fig. 4).

In case (b) we have three possibilities (see Fig. 5):
(1) H + Z is on some side of Δ and W goes through a vertex of Δ,
(2) H + Z is on some side of Δ but W misses all the vertices of Δ,
(3) H + Z is on no side of Δ and W goes through a vertex of Δ.

In any of them it is easy to verify that U ∈ Λ−
Dk

(U1, U2, U3). �

Dually, three lines Y1, Y2, Y3 that are sides of a triangle in Dk, i.e. such that
Δ+

Dk
(Y1, Y2, Y3), uniquely span a top T(B), where B = Y1 + Y2 + Y3 ∈ Hk+2,

so we write T(Y1, Y2, Y3) := T(B). We have the dual to 2.9 here:
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Figure 5. The case where the point H + Z and the line W
through that point are deleted

Proposition 2.10. Let Δ+
Dk

(Y1, Y2, Y3) and distinguish a special case where
(∗) the ground field is Z2, k = 2, and dim((Y1 + Y2 + Y3) ∩ W) = k + 1.

(i) If (∗) does not hold, then
T(Y1, Y2, Y3) = Λ+

Dk
(Y1, Y2, Y3).

(ii) If (∗) holds and U1, U2, U3 are the vertices of the triangle Y1, Y2, Y3, then

T(Y1, Y2, Y3) = Λ+
Dk

(Y1, Y2, Y3) ∪ {Y ∈ Dk+1 : (∃W ∈ Dk+1)(∃U ∈ Dk)

[U ⊂ Y,W ∧
(
∨1≤i<j≤3(Ui ⊂ Y ∧ Uj ⊂ W ∧ Uj �⊂ Y )

)
]}.

Consequently, tops are definable in terms of Dk.

Note that when W = V for H ∈ Hk−1 to have S(H) �= ∅ we need Z � H
but this means that H ∈ Dk−1. Dually, for Z = Θ and B ∈ Hk+2 we have
T(B) �= ∅ iff B � W. Hence, as an immediate consequence of 2.7, 2.9, and 2.10
we get

Proposition 2.11. (i) If W �= V , then
{
S(H) : H ∈ Hk−1

}
=
{
S(U1, U2, U3) : Δ−

Dk
(U1, U2, U3)

}
. (16)

(ii) If W = V , then
{
S(U1, U2, U3) : Δ−

Dk
(U1, U2, U3)

}
=
{
S(H) : H ∈ Dk−1

}
. (17)

So, we can say that in the corresponding cases the classes Hk−1 and Dk−1

are (up to the map H �−→ S(H)) definable in Dk.
(iii) If Z �= Θ, then

{
T(B) : B ∈ Hk+2

}
=
{
T(Y1, Y2, Y3) : Δ+

Dk
(Y1, Y2, Y3)

}
. (18)

(iv) If Z = Θ, then
{
T(Y1, Y2, Y3) : Δ+

Dk
(Y1, Y2, Y3)

}
=
{
T(B) : B ∈ Dk+2

}
. (19)

So, now we can say that in the corresponding cases the classes Hk+2 and
Dk+2 are (up to the map B �−→ T(B)) definable in Dk.
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3. Reconstructions and automorphisms

Lemma 3.1. If W �= V , then the underlying projective space P can be recovered
from the Grassmannian Gk(D).

Proof. Assume that W �= V . The class Hk−1 is definable in Dk by 2.11(i). This
means that we get the structure M = 〈Hk−1,Dk,⊂〉 defined in Dk.

In case k > 2, applying the operation Λ− in M we find that
{Λ−

M(U1, U2, U3) : Δ−
M(U1, U2, U3)} = {S(H) : H ∈ Hk−2}

as the same operation Λ− applied in a substructure Dk−1 of M would give the
class Hk−2 according to 2.11(i). Hence the class Hk−2 is defined in Dk. So,
the projective Grassmannian Gk−2(H) = 〈Hk−2,Hk−1,⊂〉 can be recovered
in Dk. In view of 2.1 we are done.

If k = 2, then since Dk
∼= Dn−k and by (11) we have n ≥ 5, so we can apply

Λ+ in D2. By 2.11(iii),(iv) we get the class H4 or D4 defined. Then, applying
Λ− on 〈D3,H4〉 or 〈D3,D4〉, respectively, in view of 2.11(i) the class H2 is
defined. So, we have just recovered the projective space 〈H1,H2,⊂〉 ∼= P. �

Theorem 3.2. The underlying projective space P and the interval [Zmax,Wmin]
can be recovered from the Grassmannian Gk(D).

Proof. By 3.1 only the case where W = V needs to be solved to have P recov-
ered. In that case, however, note that Z �= Θ and we can use the reasoning
dual to that of 3.1. Now, we actually have the underlying space with an addi-
tional structure, i.e. (P,Dk,Dk+1) the projective space P with two families
Dk and Dk+1 of its subspaces distinguished. For U ∈ Hi it is trivially seen
that U ∈ [Zmax,Wmin] iff U /∈ Di for i = k, k + 1. Consequently, both Zmax

and Wmin are definable. �

The above statement can be rephrased in the language of automorphisms.
Recall that an automorphism of a Grassmannian Gk(P) = 〈Pk,Pk+1,⊂〉 is
a pair (f, g) where f : Pk −→ Pk, g : Pk+1 −→ Pk+1, and f(U) ⊂ g(Y ) iff
U ⊂ Y .

Theorem 3.3. Each automorphism F = (f, g) of the Grassmannian Gk(D) can
be extended to an automorphism F ′ = (f ′, g′) of the projective Grassmannian
Gk(H) such that f ′ preserves [Z,W]k and g′ preserves [Z,W]k+1. Hence f and
g are both induced by a semilinear map on V that preserves [Zmax,Wmin].

4. A special case of ideals (and dually of filters)

One specific case, or two if we also think of the dual one, is worth taking a
closer look at. If Z = Θ, then our interval [Z,W] becomes the principal ideal
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(W] which can be basically identified with W. The dual case is when we take
W = V , then we get the principal filter [Z).

Besides the class D = {U ∈ H : U �⊂ W} of outer subspaces, in this specific
case here, the class of skew subspaces:

G := {U ∈ H : U ∩ W = Θ}, Gk := G ∩ Hk,

seems to be interesting. Note that D1 = G1 and an element of D is contained
in an element of G or it contains an element of G. Moreover

Gk �= ∅ iff 1 ≤ k ≤ codim(W), Dk �= ∅ iff 1 ≤ k ≤ n.

The integer

ind := ind(P,W) := max{k : Gk �= ∅} (20)

is well defined, and ind = codim(W).
Recall that the class Gk consists of the strong k-subspaces of the projective

slit space

G1 := G1(G) = 〈G1,G2,⊂〉.
If W is a secundum in P, then P\W is a partial geometry (or its generalization
to an arbitrary ground field) in the language of [11].

Evidently, the structure

D1 := G1(D) = 〈D1,D2,⊂〉
called a slit space (cf. [5,6]), is a restriction of P to the set D1. If ind = 1,
then it is an affine space. For a line Y in D1 we always have dim(Y ∩ W) ≤ 1,
so there is a natural parallelism, namely if Y1, Y2 are lines in D1, then

Y1 ‖ Y2 iff Y1 ∩ W = Y2 ∩ W.

This is an equivalence relation but it does not need to satisfy Euclid’s postulate
in full. If D1 is not an affine space, then there is a point U and a line Y in
D1 such that no line through U is parallel to Y . In the class of affine lines
A1 = {Y ∈ D2 : Y ‖ Y } = {Y ∈ D2 : dim(Y ∩ W) = 1}, however, the
parallelism satisfies Euclid’s postulate.

Clearly, 3.2 remains true in these more specific settings but we can do a
bit more here for a new k-th Grassmannian Gk := Gk(G) over skew subspaces
in P with distinguished W as well as for our k-th Grassmannian Dk = Gk(D)
over outer subspaces. Let us begin with a routine observation for k = 1.

Proposition 4.1. Assume that 2 ≤ ind, i.e. G2,D2 �= ∅ which means that G1

and D1 make sense. Then the three structures: (P,W),G1(G), and G1(D) are
mutually definable.

When 1 ≤ k ≤ ind−1, n − 2 the skew Grassmannian Gk is a non-trivial
partial linear space. It can be easily checked that Gk is not a gamma space (cf.
[2]) in general but it satisfies none–one–all except one–or–all of the axioms.
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Stars and tops are key tools when it comes to Grassmannians and we have
seen that already, but in this case their internal definitions in Dk become a lot
more simple: for U1, U2, U3 ∈ Dk with Δ−

Dk
(U1, U2, U3)

S(U1, U2, U3)=
{
U ∈ Dk : Δ−

Dk
(U1, U2, U)∨Δ−

Dk
(U2, U3, U)∨Δ−

Dk
(U3, U1, U)

}

(21)

and for Y1, Y2, Y3 ∈ Dk+1 with Δ+
Dk

(Y1, Y2, Y3) we have

T(Y1, Y2, Y3)=
{
Y ∈ Dk+1 : Δ+

Dk
(Y1, Y2, Y )∨Δ+

Dk
(Y2, Y3, Y )∨Δ+

Dk
(Y3, Y1, Y )}.

(22)

Recall that by 3.2 we can recover P and [Z,W] from our Grassmannian Dk.
So, when k ≤ dim(W), i.e. when both Gk(D) and Gk(G) are not Gk(H), we
immediately get the following theorem. We will give, however, a direct proof
without the assumption on the size of lines in P.

Theorem 4.2. If 2 ≤ k ≤ n − 2, ind −1, then the Grassmannian Gk(G) can be
recovered from the Grassmannian Gk(D).

Proof. The reasoning runs through a sequence of simple steps.
(i) Let Y1, Y2 ∈ Dk+1 be lines in Dk. We write

Y1 ‖ Y2 ⇐⇒ (∃T ∈ T(Dk))[Y1, Y2 ∈ T ] ∧ ¬(∃U ∈ Dk)[U ⊂ Y1, Y2], (23)

where T(Dk) stands for the class of tops over Dk. Assume that Y1 ‖ Y2. Then
Y1, Y2 ⊂ B for some B ∈ Dk+2 and U := Y1 ∩Y2 ∈ Hk \Dk. Note that U /∈ Dk

means that U ⊂ W and hence U = Y1 ∩ W = Y2 ∩ W. So, dim(Y ∩ W) = k iff
Y ‖ Y ′ for some Y ′.

(ii) Let U1, U2 ∈ Dk be points of Dk. We write

U1 ‖ U2 ⇐⇒ (∃Y1, Y2, Y0 ∈ Dk+1)[Y1 ‖ Y2 ∧ U1 ⊂ Y0, Y1 ∧ U2 ⊂ Y0, Y2].
(24)

Observe that if U1, U2 ∈ Dk, Y1, Y2 ∈ Dk+1, Y1 ‖ Y2, and there is Y0 ∈ Dk+1

such that Ui ⊂ Y0, Yi, then dim(U1 ∩ U2) = k − 1, as U1, U2 are collinear in
Dk, and U1 ∩U2 ⊂ Y1 ∩Y2 ⊂ W which, according to (23), formally means that
U1 ‖ U2 for U1, U2 are treated as lines of Dk−1.

(iii) Let us write
Fl,m :=

{
X ∈ Dl : dim(X ∩ W) = m

}
for 0 ≤ m ≤ min{l, dim(W)}.

In view of (i), Fk+1,k =
{
Y ∈ Dk+1 : (∃Y ′)[Y ‖ Y ′]

}
is definable in Dk. Also

Fk,k−1 =
{
U ∈ Dk : (∃Y ∈ Fk+1,k)[U ⊂ Y ]

}
is definable in Dk.

(iv) Let Y ∈ Fk+1,m and Dk � U ⊂ Y . Set Y0 = Y ∩ W; by assumption,
dim(Y0) = m. Clearly, U ∩W = U ∩Y0. Then U is a hyperplane in Y and thus
dim(U ∩ Y0) ∈ {m,m − 1}. Finally,

Fk,m−1 =
{
U ∈ Dk : U /∈ Fk,m ∧ (∃Y ∈ Fk+1,m)

[
U ⊂ Y

]}
. (25)
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(v) Let U ∈ Fk,m and U ⊂ Y ∈ Dk+1. Set U0 = U ∩ W; from the
assumption, dim(U0) = m. Then, U0 ⊂ Y ∩ W and thus dim(Y ∩ W) ≥ m.
This yields

Fk+1,m =

{

Y ∈ Dk+1 : Y /∈
(

k⋃

i=m+1

Fk+1,i

)

∧ (∃U ∈Fk,m)
[
U ⊂ Y

]
}

. (26)

(vi) Strictly speaking, in (25) and (26) only inclusions ⊃ were justified in
(iv) and (v), respectively. The converse inclusions are evident, though. So, we
have got the following inductive definability schemata:

– Fk,m−1 is definable, when Fk+1,m and Fk,m are given,

and
– Fk+1,m−1 is definable, when Fk,m−1 and Fk+1,m, . . . Fk+1,k are given.

Taking (iii) into account we conclude with the following: Fk,m and Fk+1,m are
definable in Dk for each admissible m, in particular, for m = 0, when Gk �= ∅,
which completes the proof. �
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