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Abstract

Demographers emphasize decreased mortality and ‘economic development’ as the

main contributors generating the demographic transition. Contrary to previous find-

ings, we show that simple dynastic models à la Barro-Becker can reproduce observed

changes in fertility in response to decreased mortality and increased productivity

growth if the intertemporal elasticity of substitution is low enough. We show that

this is largely due to number and welfare of children being substitutes in the utility

of parents in this case. We find that with an IES of one-third, model predictions of

changes in fertility amount to two-thirds of those observed in U.S. data since 1800.
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Special thanks are owed to Michèle Tertilt whose many comments and suggestions were invaluable. We are
also grateful for the comments made by three anonymous referees. Finally, we also thank David Hacker as
well as Michael Bar and Oksana Leukhina for making their data available to us and Anderson Schneider for
valuable research assistance.



1 Introduction

Between 1800 and 2000, fertility choice in the U.S. underwent a dramatic transition. Depend-

ing on estimates, it fell from about 6 children per woman to around 2 children per woman.

This demographic transition—from a state of high fertility and high mortality to low fertil-

ity and low mortality—has been documented by demographers and historians in the U.S.,

and in every other developed country in the world. Over this same period, natural rates of

population growth (net of immigration) also fell, but less substantially. Demographers have

not reached a consensus on the root causes of this transformation, but list several changes

as likely main contributors. These include reductions in Infant and Child Mortality Rates

(IMR’s and CMR’s) and the process of industrialization and economic development. The

work in demography and history on this topic has largely been limited to empirical studies

with almost no choice based modeling of the type seen in economics. Even there, issues of

the timing of changes has lead to controversy about which of these causes is most important.1

Much of the economic literature on the topic has focused on estimating the effects of

these causal variables on fertility within optimizing models. There is an added difficulty

that must be faced to do this however. While it is straightforward to include changes in

IMR’s and CMR’s in the analysis, it is unclear how to study the effects of the ‘process of

industrialization and development.’ For example, does this phrase mean changes in the levels

of income, or changes in the growth rate of income? Both of these occurred over this period.

Early work on the demographic transition in economics was done by Barro and Becker

(Becker and Barro 1988 and Barro and Becker 1989) who developed an intuitive and an-

alytically tractable model based on dynastic altruism—parents have children because they

themselves receive utility benefits from the happiness of their descendants. Because of the

construction, the model has a natural recursive structure, with time consistent preferences

across generations. This allows the model to be studied using standard techniques in eco-

nomics.

Despite this intuitive appeal, the Barro-Becker model, in its original version, has short-

comings as a model of the demographic transition. These can be summarized by three

properties of the model: 1) certainty equivalent versions of the model have the property that

surviving fertility always increases in response to reductions in IMR and CMR, births can

go either up or down under usual parameterizations, but when they do go down, this change

is usually quite modest (see Doepke 2005 for a useful summary); 2) in its usual incarnations

(with constant elasticities), the model has a balanced growth path and hence, changes in

1See Chesnais (1992) for a useful discussion of a literature that dates back to at least Notestein (1945).

1



income levels per se, have no effect on fertility; 3) while increases in income growth rates

imply reductions in fertility in partial equilibrium (i.e., fixed interest rates) they imply in-

creased fertility under usual parameterizations when general equilibrium effects are included

(i.e., interest rates are endogenous). In this sense, the demographic transition is a challenge

in the Barro-Becker framework. Because of these weaknesses authors attempting to build

quantitative models of the demographic transition have been forced to make serious changes

in the model (e.g., non-homothetic preferences) and/or look for other forcing variables (e.g.,

changes in child-labor laws, etc.) (see below).

In this paper, we revisit the ability of versions of the Barro-Becker model to match

the basic facts of the demographic transition. We show that previous failures are in large

part due to important, but unnecessary, restrictions in parameterizations. In brief, most

of the authors who have examined the quantitative properties of the Barro-Becker model

(including Barro and Becker themselves) have restricted attention to flow utility functions

with very low curvature (i.e., high intertemporal elasticity of substitution, IES), typically

less than log utility.2 This has two important implications. First, it implies that family size

and descendant welfare are complements in the utility of the parent. (More generally, it

implies that family size and child ’quality’ are complements—see below). Since the changes

suggested by demographers above typically increase descendant welfare, it follows that the

demand for children increases in response to these changes. In contrast, we focus on versions

of the model built on high curvature in utility (i.e., low IES)—more in line with the growth

and real business cycle literatures. In this case, family size and descendant welfare are

substitutes in the utility of the parent (or family size and child quality are substitutes).

Because of this, increases in productivity growth rates cause population growth rates and

births to fall (substantially) in keeping with what is seen in the data.

Second, high IES has another direct implication which is primarily important for quanti-

tative reasons. The properties of the Barro-Becker model are much like those of any growth

model (indeed this analogy is exact in some cases). In particular, when the IES is high,

reductions in the costs of investment goods are met with large increases in growth rates.

In the Barro-Becker model, the analogues are the costs of raising surviving children (which

decrease when IMR’s and CMR’s decrease) and population growth. Thus, if the IES is high,

when IMR’s and CMR’s fall, the number of surviving children increases substantially and

the reduction in births is modest. In contrast, when IES is low, reductions in IMR’s and

2Examples include Becker et al. (1990), Tamura (1994, 1996), Doepke (2004, 2005) and Manuelli and

Seshadri (forthcoming); Fernandez-Villaverde (2001), Lucas (2002), Bar and Leukhina (2007) and Doepke

and Tertilt (forthcoming) use unitary elasticity.
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CMR’s are met with small increases in surviving fertility and population growth rates and

large reductions in overall birth rates.

To build intuition for these results, we derive simple comparative statics at the household

level in Section 2. These highlight the effect of the complementarity versus substitutability

assumption for changes that exogenously increase children’s utility. For simplicity, we ab-

stract from bequests and assume (exogenously growing) labor income throughout Sections 2

to 5, but, as is shown in Section 6, the same effects are present in versions of the model with

a child quality choice (either in the form of direct bequests or education). Indeed, when the

IES is low, fertility and child quality itself are substitutes in the value function of the family

head and hence similar comparative statics go through.

In Section 3, we introduce longevity through random survival of adults and child mor-

tality to derive the dynasty’s utility and law of motion for population. The simplicity of the

model then allows us to derive analytical comparative statics across balanced growth paths

in Section 4. In keeping with the discussion above, we analyze the fertility response to per-

manent changes in productivity growth rates, longevity and youth mortality and distinguish

between population growth rates and total births. We contrast the results for an IES above

or below unity in this case. Our findings are summarized in Proposition 1. First, when the

IES is below (above) one, we find that all measures of fertility fall (increase) in response to

increases in productivity growth. Second, the size of fertility responses to increases in sur-

vival probabilities is decreasing in the IES (i.e., smaller increases in the population growth

rate and larger reductions in birth rates as the IES decreases).

In Section 5, we study quantitative predictions of the simple model. We calibrate child

costs in the model to match the recent fertility experience in the U.S. given its economic

circumstances. We find that with standard parameterizations (an IES of two), calibrated

costs as a fraction of income are unrealistically high—the maximum number of children a

two-parent household could feasibly have is less than three. The corresponding maximum for

an IES of one third is twelve children—thus, a lower IES resolves a commonly encountered

puzzle in the fertility literature. We then simulate the U.S. experience since 1800, taking

the timing of events and all three changes in economic environment into account. We find

that with an IES of one third, the model accounts for about two-thirds of the observed

decrease in the Crude Birth Rate. In terms of population growth rates, the model accounts

for about one half of observed changes in the U.S.. From these two findings, we conclude

that the changes emphasized by demographers were definitely important forces behind the

demographic transition. Moreover, the model also has implications that speak to the debate

about which of these causes was most important and when. Interestingly, about 90 percent of
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model predicted changes in fertility before 1880 are accounted for by changes in productivity

growth rates, while changes in mortality account for about 90 percent of the predicted fertility

decrease thereafter. Thus, we find: it was a combination of both mortality and development

with the latter being the most important factor early in the transition and mortality being

the most important factor later on. We find that changes in longevity alone have only a small

effect on fertility choice. Finally, these changes do not account for all of the reduction in

fertility seen in the data. Thus, there is ample room for changes in child costs and education

policies as emphasized by other authors (see below).

In Section 6, we generalize the model and study the inclusion of various types of invest-

ments into the model. First, we show that dynasty size and quality per surviving descendant

are substitutes versus complements depending on whether the IES is above or below unity as

before. We then interpret quality as physical capital (or bequests). The findings shed light on

the original result in the Barro-Becker papers, namely that holding the interest rate fixed, an

increase in productivity growth decreases fertility, independently of the IES.3 What we find

is that, when the interest rate is determined in equilibrium, the effect of productivity growth

depends on the size of the IES again. That is, for low values of IES, population growth

rates fall when productivity growth rates increase. However, the IES threshold for which

the sign of this effect changes is now less than one. As before, the size of effects of mortality

is decreasing in the IES. Quantitatively, with a Cobb-Douglas production function, labor

augmenting technological change and an IES of one-third, overall effects are slightly larger

than without capital. This result suggests that even this model bypasses important channels

such as investments in human capital or complementarities in the production function. We

briefly address such channels and show that similar results go through.

Many other economists have also studied trends in fertility but have focused on different

channels and setups.4 We view these channels as complementary to those studied here.

First, Becker et al. (1990) and Tamura (1994, 1996) use standard Barro-Becker preferences

(with high IES) but the crucial feature for the fertility decrease is an increase in the rate of

return to human capital across multiple equilibria in models with increasing returns. Low

IES brings about a utility version of Becker’s quantity-quality trade-off because number and

utility of children are now substitutes. Hence, under this assumption, the requirements on

technology to generate the demographic transition may well be weaker.

Second, our findings also help clarify the results of several authors who have recently

studied quantitative versions of the Barro-Becker model to examine its ability to track the

3See Becker and Barro (1988, pp. 19) and Barro and Becker (1989, pp.494).
4See Galor (2005) for a recent survey.
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basic trends over the last 200 years in fertility choices in response to increases in productivity

growth and decreases in mortality. These include Mateos-Planas (2002), Doepke (2005), and

Bar and Leukhina (2007). We show that the differences in their assumptions, regarding

the IES, and hence, implicitly, complementarity versus substitutability between number and

utility of children, is key to reconciling their seemingly contradictory results. Further, in a

Barro-Becker model with IES above one and non-convexities in education choice, Doepke

(2004) generates the change in fertility by increases in the importance of skill intensive

technologies. The speed of the transition is analyzed resulting from the timing of changes in

child labor laws and education subsidies (see also Doepke and Zilibotti 2005). In a Barro-

Becker type model with unitary elasticity, Fernandez-Villaverde (2001) uses falling capital

prices when capital and skilled labor are complements as a key feature. The quantitative

results in these papers may well change if lower values of IES were allowed.

Finally, as noted, our model, like many based on dynastic altruism, has a balanced growth

path property. Therefore changes in the level of productivity has no permanent effect on

fertility choice. Rather it is the acceleration in income growth that causes permanent changes

with low IES. This distinguishes our theory from many others in the field, including Galor

and Weil (2000) and Greenwood and Seshadri (2002). Both ultimately generate the decrease

in fertility by increased levels of income with non-homotheticities in utility. Our theory

is based on growth rates in conjunction with family size and descendants welfare being

substitutes in utility. The distinction between levels versus growth rates provides a new

focus of study to the demography literature.

This list is necessarily incomplete of course, but we think that the key role played by the

IES highlighted in our results suggests that further study of the traditional explanations in

demography with these other channels is warranted.

Our finding that the model predictions are so much more in line with the data when

family size and descendant welfare are substitutes is suggestive, but, does not mean that

this is the correct specification of preferences. There is a small literature that uses micro

data to try to determine whether family size and child quality are complements or substitutes

(see Schultz 2005 for a recent review). This research is ongoing, but does not rule out the

possibility that family size and child quality are substitutes in the value function—the key

property that we exploit here.
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2 Barro-Becker altruism revisited:

complements versus substitutes

In this section, we discuss Barro-Becker type preferences and show how one implicit restric-

tion, namely positive utility, has lead to the assumption of complementarity between number

and utility of children. We also show why this assumption is crucial in determining the fer-

tility response to permanent changes in productivity growth, youth mortality and longevity.

The standard presentation of the Barro-Becker model usually begins with a description

of the preferences of a period-t adult. It is assumed that parents care about three sepa-

rate objects:

i) their own consumption in the period, ct;

ii) the number of children they have, nt;

iii) the average utility of their children, Ut+1.

This is usually specialized further. It is assumed that utility of the typical time-t household

is of the form:

Ut = u(ct) + βg(nt)
∑nt

i=1
1
nt
Uit+1

where Uit+1 is the utility of the ith child of the parent. Assuming equal treatment and no

heterogeneity Uit+1 = Ui′t+1 = Ut+1 for all i, i′, this simplifies to:

Ut = u(ct) + βg(nt)Ut+1.

Intuitively, the following are desirable properties of utility:

1.) Parents like the consumption good:

utility is increasing and concave in own consumption, ct;

2.) Parents are altruistic (with respect to born children):

holding nt fixed and increasing Ut+1 increases (strictly) the utility of the parent;

3.) Parents like having children:

holding Ut+1 fixed and increasing nt increases (strictly) the utility of the parent.

4.) The increase described in 3.) is subject to diminishing returns.
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The first property is satisfied as long as u is increasing and concave. The second has

implications for what g can be. Since ∂(u(c) + βg(n)U)/∂U = βg(n), it follows that (2.)

implies that g(n) > 0 for all n. The third requirement is less straightforward. Although

this requirement makes intuitive sense, some issues arise because of the special restrictions

implicit on functional forms. For example, suppose that Ut+1 > 0. Then (3.) implies that

g(n) must be increasing in n. On the other hand, if Ut+1 < 0, (3.) implies that g(n) should be

decreasing in n. It follows that if it is possible for Ut+1 to be either positive OR negative, it is

impossible to satisfy all of these requirements simultaneously. In sum, (1.)-(3.) are mutually

inconsistent without some sort of restrictions on the possible values for Ut+1. Similar issues

arise with respect to (4.). If Ut+1 is restricted to be positive, (4.) requires g to be concave

while if Ut+1 is restricted to be negative, (4.) requires that g is convex.

This is not to say that these conditions cannot be satisfied. We must simply assume that

either Ut+1 > 0 always or Ut+1 < 0 always and then make the appropriate assumptions on

g.5 Without an assumption like this, the natural monotonicity properties of utility cannot

be guaranteed. Thus, we are left with two options:

I. Assume g(n) is non-negative, strictly increasing and concave and U > 0.

II. Assume g(n) is non-negative, strictly decreasing and convex and U < 0.

As it turns out, the choice between these two alternatives has important implications for

the properties of the model. This can be illustrated in a simple example. First, consider how

the solution of the problem of a time zero parent changes when the growth rate in wages is

changed. In the simplest case, they face a problem of the form:

max
{c0,n0}

u(c0) + βg(n0)U1

s.t. c0 + θ0n0 ≤ w0,

where θ0 is the cost of raising a child to survive to adulthood and w0 is the wage rate in

period 0. Increased wage growth only enters this problem through the indirect effect of

changing U1. That is, if wages grow faster, future generations will have larger choice sets

5One issue that arises here is whether or not, with negative utility of born children, parents are necessarily

making potential children worse off by having them. This will not be true if the utility of unborn potential

children is a large enough negative number. Further, the same representation for the choice problem of the

individual parent will hold (approximately) if the fraction of potential children that can feasibly be born is

small. See the additional appendix, Jones and Schoonbroodt (2009), for more details on this point.
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and hence, U1 will be larger. The first order condition for this problem is:

(1) LHS(n0) ≡ θ0u
′(w0 − θ0n0) = βU1g

′(n0) = RHS(n0).

The left-hand side of this equation is the marginal cost in terms of period 0 consumption

of having an extra child and is increasing in n0, while the right hand side is the marginal

benefit and is decreasing.

A change in U1 has different effects depending on which case we are in. In particular,

whether an increase in U1 increases or decreases the right hand side depends on whether U1

is positive or negative. That is:

(2)
∂RHS(n0, U1)

∂U1

= βg′(n0) =
∂2U0

∂n0∂U1

.

When U1 is positive, g is increasing and hence, the cross partial in (2) is positive—

children and the utility of children are complements in the utility of the parent.6 In this

case, it follows that a change in wage growth shifts the right hand side up causing n0 to

increase. Fertility is increasing in the rate of growth of wages. When U1 is negative, g is

decreasing and hence, this is negative—children and the utility of children are substitutes in

utility. In this case, it follows that the right hand side shifts down and n0 falls. Fertility is

decreasing in the rate of growth of wages. Thus, whether an increase in wage growth (i.e., an

acceleration of industrialization) increases or decreases fertility is completely determined by

this assumption. Also clear is that this effect is quite general—it is not restricted to changes

in the rate of growth of wages.

I. If U1 > 0, increasing U1 increases the marginal utility of children. Because of this,

anything that increases U1 will lead to a greater desire for children (unless something

else changes to offset that).

II. If U1 < 0, increasing U1 (smaller number in absolute value) lowers the marginal utility

of children, making larger family sizes LESS desirable. Again, this is holding everything

else equal.

From this discussion, we can also get a sense about how changes in the survival rates

of children depend on this choice. It is common in the literature (e.g., Barro and Becker

6Note that in this simple version U1 is endogenous to the child or period-1 adult, but exogenous to the

period-0 parent. Hence, ”complements” and ”substitutes” are a slight abuse of language. In Section 6, we

introduce bequests which gives parents some control over children’s utility alleviating the abuse of language.
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1989, Doepke 2005, Bar and Leukhina 2007) to model decreases in youth mortality as a

reduction in the cost of producing a surviving child—a reduction in θ0. Notice that this

will also typically increase U1 if the reduction in mortality is permanent (i.e., future costs of

producing surviving children also decrease). A decrease in θ0 causes the left-hand side of the

equation to shift down. Hence, when children and their utility are complements (U1 > 0),

it follows that fertility will increase. In the opposite case (U1 < 0), there are off-setting

effects and the sign of the change cannot be predicted without more detailed analysis. This

discussion is complicated by the fact that U1 is not exogenous. Below we derive a planner’s

problem with explicit mortality formulations to generalize these intuitions. Finally, note that

in this simple case, the parent has no direct method of affecting U1, and hence, although

one part of a quality-quantity trade-off is present—the direct preference part—other aspects

of it are missing (e.g., increasing U1 through leaving a larger bequest or spending more on

the education of the child). This is a weakness in some ways, but allows us to focus our

attention on the importance of the role of preferences much more transparently. In Section 6,

we address extensions in which the parent has some control over children’s utility and show

that the main results derived so far go through.

We conclude that the assumption one makes about whether children and their utility are

substitutes or complements in the utility of the parent—and with it the implicit assumptions

about both the sign of U and the properties of g—has important qualitative implications

about the predictions of such models. Almost all work based on the Barro-Becker model to

date has focused on the first case and this has had important implications about quantitative

results using these extensions.

One question that comes to mind is: Are children and their well-being really substitutes

in parent’s utility? To provide some intuition, suppose the utility of the child is positively

related to the purchase, by the parent of an investment good, say private education. And

suppose the price of private education falls. When family size and utility are complements

in utility, it follows that both education and family size increase, while when they are sub-

stitutes, education increases substantially, but family size falls. In Section 6, we include

such investments as choice variables into the model and review empirical evidence. To the

best of our knowledge, there is currently no good evidence for assuming that number and

well-being of children are complements—at least not in the context of the nineteenth and

early-twentieth century U.S.. Instead, we find indirect evidence to the contrary since with

low elasticity and substitutability, the model is able to generate trends in fertility similar to

those observed over the past 200 years in response to observed changes in productivity growth

rates, mortality and longevity. These are also the drivers most emphasized by demographers.
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3 A simple dynastic model of fertility choice

In this section we lay out the basic model we will analyze for the remainder of the paper

and link choices for the IES in dynastic planner’s problems to the discussion in Section 2.

The model we study is a version of the Barro-Becker model with two changes. The first is to

include adult survival. The second is to restrict attention to wage income (for simplicity).

3.1 Youth mortality and longevity

To address the effect on fertility choice of changes in mortality rates, we introduce child

mortality and adult longevity by adopting a certainty equivalence formulation—thereby ab-

stracting from precautionary fertility motives due to risk aversion.7

We follow the original Barro-Becker work and assume that parents care only about sur-

viving children, ns,t = πsnb,t, where πs is survival rate of a birth to adulthood and nb,t is

the number of births. The total cost to the household of all births is then given by θb,tnb,t,

where θb,t is the cost, in terms of goods, of the birth of each child.8 Thus, even children that

do not survive to adulthood can be costly.

We assume that the survival probability for adults is age independent and given by

π < 1 (see Blanchard 1985). This formulation allows us to perform comparative statics

with respect to longevity (or, expected working life) and calibrate to reasonable life lengths

without adding additional state variables.9

To simplify preference aggregation below, and keep the number of state variables in the

model to a minimum, it is useful to impose some structure to the preferences of parents over

their own future utility (if they survive) and that of their surviving children. We assume

that the parent’s continuation utility is a function only of expected family size and future

per capita utility:

Ut = u(ct) + βg(π + πsnb,t)Ut+1.

7This is a departure from the axioms of expected utility. Kalemli-Ozcan (2002, 2003) analyzes the effect

of decreased child mortality in a stochastic fertility model focusing on the decreased risk that follows when a

binomial probability approaches 1. She concludes that changes in survival probabilities significantly decrease

fertility. Doepke (2005), however, shows that this effect is greatly diminished when sequential fertility choices

are allowed. We therefore abstract from these effects. See also Ben-Porath (1976), Sah (1991), Wolpin (1997)

and Eckstein et al. (1999) for models where family level uncertainty is included.
8Although we write the costs of children here in terms of goods, it is straightforward to reinterpret it as

requiring the time of the parent. In this case, θb,t is directly proportional to the wage.
9Barro and Sala-i-Martin (1995, Chapter 9), introduce longevity in a similar manner in a continuous time

version of the Barro-Becker model.

10



For example, when π = 0 these preferences revert to those used in the original Barro-Becker

model. At the other extreme, π = 1, people live forever and care about themselves exactly

as much as they care about each surviving child.10

Finally, the household’s budget constraint is:

ct + θb,tnb,t ≤ wt.

Notice that all the intuitive results relating to complementarity and substitutability derived

in the previous subsection go through with these changes. An additional effect is also present.

This is that increased longevity (i.e., π) decreases the marginal utility of having an extra

child, regardless of the sign of Ut+1.

3.2 Dynasty utility and intertemporal elasticity

To fully specify the model we need an explicit mechanism for the determination of the utility

of subsequent generations. Note that by construction, any time-t preferences have a natural

time consistency property: there is no inherent conflict in preferences between the agents in

period t and period t+ 1. Therefore, the sequence of decisions made by the individual time

t agents are exactly the same as what would be decided for them by the time 0 agent. To

study this version of the problem, we can sequentially substitute U1, U2, ..., Ut+1, ... into the

utility function of the time 0 agent, the dynasty head, to get:

U0 =
∞∑

t=0

βt
[
Πt−1

k=0g(π + πsnb,k)
]
u(ct).

Because of the term Πt−1
k=1g(π+πsnb,k), this utility function is typically not concave as written.

However, as discussed in Alvarez (1999), under certain conditions, this can be rewritten as

a concave problem in dynasty aggregate variables. Assume that g(x) = xη, η < 1, and

let N0 = 1 and Nt = Πt−1
k=0(π + πsnb,k), the expected total number of adults (parent and

descendants) alive during period t evaluated in t − 1. Assuming certainty equivalence/law

of large numbers, we get the following law of motion for population:

Nt+1 = πNt +Ns,t = Πt
k=0(π + πsnb,k)

10We treat parental longevity in this reduced form way for simplicity. An interesting extension would be

to the case in which there are two outcomes, survival and not, with expected utility over the two as the

parents utility function.
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where Ns,t = ns,tNt is the total number of surviving children born in period t. Then

Πt−1
k=1g(π+ πsnb,k) = g(Πt−1

k=1(π + πsnb,k)) = g(Nt), and so preferences for the dynasty head

can be rewritten as:

(3) U0 =

∞∑

t=0

βtg(Nt)u

[
Ct

Nt

]

where Ct = Ntct is total (or aggregate) consumption in period t. Note that this assumes that

consumption is the same for all adults in a period. Ut for t > 0 is defined similarly.

Following the discussion above, since g(N) = Nη is always positive, there are two possible

ways to satisfy conditions (1.)-(4.) above:

I. Assume that u(c) ≥ 0 for all c ≥ 0, that u is strictly increasing and strictly concave

and that 0 < η < 1;

II. Assume that u(c) ≤ 0 for all c ≥ 0, that u is strictly increasing and strictly concave

and that η < 0.

Either of these are consistent with the entire set of intuitive requirements laid out in

the original Barro-Becker papers. Typically we want more, however. For existence and

uniqueness of a solution to the planner’s problem below, the extra desirable properties are

that U0 as written here is increasing and concave in (C,N). We therefore specialize further

and assume that and u(c) = c1−σ

1−σ
, σ > 0. Let V (Ct, Nt) ≡

Nη+σ−1
t C1−σ

t

1−σ
denote the period-

t flow utility in aggregates. Given this functional form, there are two sets of parameter

restrictions that satisfy the natural monotonicity and concavity restrictions of V :11

AI. The first completes the standard assumption in the fertility literature:

0 < 1 − σ ≤ η < 1

In this case, Ut > 0 for all (C,N) ∈ R2
+.

AII. The second allows for intertemporal elasticities of substitution in line with the growth

and business cycle literatures:

0 > 1 − σ ≥ η

11The low elasticity case, η < 0, has also been considered in Alvarez (1999, Proposition 2), and mentioned

in Barro and Sala-i-Martin (1995, Chapter 9, footnote 18). Mateos-Planas (2002) used σ = 3 and η = −2.78

in his quantitative analysis. None of these papers pointed out the relationship between IES and complements

versus substitutes, nor did they derive the comparative statics across these two parameter configurations.
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In this case, Ut < 0 for all (C,N) ∈ R2
+.12

The conditions in assumption AI can be read as follows: if V is positive (first inequality)

then for VN > 0, we need η + σ− 1 ≥ 0 (second inequality). To ensure overall concavity, we

need VCC < 0, VNN < 0, and VCCVNN −VCNVNC > 0. This requires η < 1 (third inequality).

In case AI, VCN = VNC > 0 and hence C and N are complements in utility. The conditions

in configuration AII can be read as follows: if V is negative (first inequality) then for VN > 0,

we need η + σ − 1 ≤ 0 (second inequality). This immediately ensures overall concavity. In

case AII, VCN = VNC < 0 and hence C and N are substitutes in utility.13

We also consider the limiting case where σ → 1, separating the two configurations. To

do this, let ψ ≡ η
1−σ

, where ψ ≥ 1 in both cases, AI and AII. Now, use the monotone

transformation of the planner’s utility in equation (3) given by Û0 ≡
∑∞

t=0 β
t (Nψ−1

t Ct)1−σ−1

1−σ

and take the limit to get Ũ0 ≡
∑∞

t=0 β
t(logCt + (ψ − 1) logNt). In this case, Ṽ (Ct, Nt) ≡

logCt +(ψ− 1) logNt, C and N are neither substitutes nor complements and the parameter

restriction needed is ψ ≥ 1.14

Finally, in the case where, η = 1 − σ (respectively ψ = 1), utility becomes a function of

aggregate consumption only (under all configurations). Hence, conditions for monotonicity

12One concern is that, for π = 0 and σ > 1, U0 = −∞ if for any i and t, nit = 0. From the dynastic

point of view, if at any point in time, any descendant has zero children that branch of the dynasty has

−∞ continuation utility implying that the time 0 decision maker also has −∞ utility. This is particularly

relevant for questions such as those in Doepke (2005) and Kalemli-Ozcan (2003) where the probability of

all born children dying is strictly positive. One can get around this problem by adding small constants to

consumption and children in the utility and thereby preserve the properties of the model to a large extent

while bounding utility away from −∞. Using π > 0 also prevents this problem.
13Note that, with this utility function, high elasticity is always associated with complementarity and vice

versa. An alternative formulation that would allow us to disentangle these two effects at the household level

is given by:

u(c) = ū +
c1−σ

1 − σ
.

By adjusting ū appropriately, one can consider σ > 1 but non-negative utility (i.e. complements) or σ < 1

and negative utility (i.e. the substitutes case) with the assumptions on g(.) adjusted appropriately. One

disadvantage of this formulation is that there is no balanced growth path in the sense that fertility and

population growth will have a trend as long as ū 6= 0. Given this, we chose to derive analytical comparative

statics across balanced growth paths with ū = 0. Hall and Jones (2007) use this formulation to generate a

trend to the health spending share of GDP.
14Note that using the definition of Nt and normalizing N0 = 1, this leads to Ũt = log ct+φ log(π+πsnb,t)+

βŨt+1 as the utility for a household of generation t, where φ ≡ βψ
1−β = βη

(1−β)(1−σ) . A detailed derivation

is available in the additional appendix, Jones and Schoonbroodt (2009). For π = 0, this boils down to the

utility function used in Lucas (2002) and Bar and Leukhina (2007) and is also a special case of the one used

in Razin and Ben-Zion (1975).
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and concavity of V involve VC and VCC (respectively ṼC and ṼCC) only.15

3.3 The planner’s problem

Using the dynasty’s preferences derived above, we follow the approach from Alvarez (1999) in

which a time zero dynastic head chooses the time paths of aggregate, dynasty level variables.

The problem solved is:

max
{Ct,Nb,t,Ns,t,Nt}

∞∑

t=0

βtN
η+σ−1
t C1−σ

t

1 − σ
(4)

s.t. Ct + θb,tNb,t ≤ wtNt

Nt+1 ≤ πNt +Ns,t

Ns,t ≤ πsNb,t,

N0 given

This problem can be reformulated by eliminating Nb,t and defining θs,t ≡
θb,t
πs

, the cost of

producing a surviving child. Thus, the cost of raising a child to working age depends on the

survival probability—an increase in πs decreases θs,t. Further one can eliminate Ns,t and Ct

and solve for Nt+1, the period-(t+ 1) stock of population, given Nt.

Under either of the sets of parameter restrictions given above (AI and AII), this (time

zero) maximization problem has a concave objective function and a convex constraint set.

Thus, the problem has a unique solution, concave value functions, etc. (see Alvarez and

Stokey 1998).

4 Equilibrium and comparative statics

In this section, we describe the solution to the model and present analytical comparative

statics results across balanced growth paths. We discuss how fertility changes when produc-

tivity growth rates and survival rates are changed exogenously. We find that both the sign

and size of these effects depend critically on which parameter configuration holds.

15Note that the intertemporal elasticity of substitution in consumption is only partially expressed in σ.

The actual elasticity also involves Nt. In the case where η = 1−σ, the analogy is exact. We will nevertheless

stick to this abuse of language for the remainder of the paper.
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4.1 Equilibrium populations

The first order condition for the stock of population in period (t+ 1), Nt+1, is given by:

θs,tN
η+σ−1
t C−σ

t

= β [wt+1 + θs,t+1π]Nη+σ−1
t+1 C−σ

t+1︸ ︷︷ ︸
A

+ β
(η + σ − 1)

(1 − σ)
Nη+σ−2

t+1 C1−σ
t+1

︸ ︷︷ ︸
.

B

(5)

The intuition for this is as follows. On the left is the marginal cost in terms of changed

current utility of increasing Nt+1 (i.e., of producing an extra child). This cost is just the

direct utility cost of reduced consumption today (rescaled by the fact that it only takes θs,t

units of C to make one extra unit of N). On the right hand side are the two pieces of the

marginal benefits next period from increasing Nt+1. These are: (A.) the value of the extra

output the dynasty will have next period; (B.) the marginal value of utility from having

extra (surviving) children.

To gain some more insight, consider the special case in which η = 1−σ. In this case, N is

exactly like a capital good since the following two effects of increasing N , holding aggregate

consumption, C, fixed, exactly cancel out: first, the direct benefit of having extra children

in the utility function, g(N)
1−σ

= Nη

1−σ
; second, the direct cost of having children by diluting per

capita consumption in the utility function,
[CN ]

1−σ

1−σ
. As we can see in the first order condition

(5), two simplifications result. The first is that (η + σ − 1) = 0 and so term (B) disappears

entirely, and second, that Nη+σ−1
t = Nη+σ−1

t+1 = 1, i.e., the marginal value of increased total

consumption by the dynasty in periods t and t+1 no longer depend on the size of the dynasty

in the period. Hence, equation (5) simplifies to:

(6)

[
Ct+1

Ct

]σ

= β

[
wt+1

θs,t
+
θs,t+1

θs,t
π

]
.

This is the standard Euler Equation from an endogenous growth (Ak) model in terms of

aggregate consumption and the stock of people, N , as the investment good with (1 − π)

corresponding to depreciation, and time varying costs and benefits of flow investments (fer-

tility), i.e., wt and θs,t. Equation (5) or (6) together with the feasibility constraint and the

initial condition N0 completely describe the equilibrium path.
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4.2 Fertility measures

Next, we make an analytically and quantitatively useful distinction between several fertility

measures. The first fertility measure we consider is the population growth rate between

period t and period t+ 1 given by γN,t = Nt+1

Nt
. Adjusting for the length of the period, this

easily maps into annual population growth rates (net of immigration) observed in the data.

Further, we discuss two other measures of fertility related to common measures used

in demography. These are: the Crude Birth Rate (CBR) and the Cohort Total Fertility

Rate (CTFR). CBR is defined as the number of births in a period per person. Typically

it is a yearly measure. Since our model period will be 20 years below, we adapt this to

include those children born in the early part of a period and that have survived to the end

of the period. Since it will be useful below to distinguish between overall births (CBR)

and those births that actually survive to adulthood, we introduce one further concept, the

Surviving Crude Birth Rate (CBRs): CBRt =
Nb,t

Nt+Ns,t
and CBRs,t = Ns,t

Nt+Ns,t
.

Finally, the Cohort Total Fertility Rate (CTFR) is the number of children an adult woman

in a particular birth cohort had over her lifetime. Since the model only makes predictions

about how many children are born, not to whom they are born, we compute the model

analog by dividing all births this period, Nb,t, by the number of women of childbearing age,

0.5 ∗Ns,t−1. When a period is 20 years, which we will assume below, this assigns all births

to women age 20 to 40. Thus the model analog of CTFR is CTFRt =
Nb,t

0.5Ns,t−1
.16

4.3 Balanced growth

One advantage of the version of the model with labor income only is that it delivers simple

analytic comparative statics results across balanced growth paths.17

Assume that wages and costs of children grow at rate γ, i.e., wt = γtw and θs,t = γtθs. In

this case, it can be shown directly that, both γN,t = Nt+1

Nt
and Ct

γtNt
are independent of t (see

Jones and Schoonbroodt 2007). Because of this, it follows that γC,t = Ct+1

Ct
(the growth rate

in aggregate consumption) and γc,t = Ct+1/Nt+1

Ct/Nt
(the growth rate in per capita consumption)

are also independent of t and that γc = γC
γN

= γ. Using this, the feasibility constraint and

16A more common measure in demography is the Total Fertility Rate (TFR). This is a point in time

measure constructed by adding age specific fertility rates of woman of different cohorts alive fecund at a

point in time. CTFR and TFR coincide when age specific fertility rates are constant over time. In the

model, TFR and CTFR are the same since one model period also corresponds to the entire fertile period

(e.g., from age 20 to age 40). In the data we will compare this object to CTFR whenever data is available.
17Similar results carry over to generalized versions of the model with capital or education. See Section 6

for a more detailed discussion.
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θs ≡ θb/πs in equation (5), after dividing both sides by γt+1Nη+σ−1
t+1 C−σ

t+1 and rearranging,

we get

(7)
1

β
γ1−η

N γσ−1 +
(η + σ − 1)

(1 − σ)
γN =

η

(1 − σ)

[
πsw

θb
+ π

]
.

Further, equation (7) simplifies considerably when η = 1 − σ. In fact,

(8) γσ
N = βγ1−σ

[
πsw

θb
+ π

]
.

We use this version of the Euler equation in our quantitative analysis below.

Given parameters, equation (7) or (8) can be solved for the balanced growth path pop-

ulation growth rate, γN . The other fertility measures are then given by CBRs = γN−π
1+γN−π

,

CBR = CBRs
πs

and CTFR = 2γN
πs

. Since these are all increasing functions of the population

growth rate, γN , the comparative statics analysis below simplifies greatly.

4.4 Comparative statics

In this section, we derive analytic comparative statics across balanced growth paths for all the

fertility measures given above. We focus on three distinct changes leading to the quantitative

experiments we explore in the next section, which correspond to three commonly discussed

driving forces of the demographic transition over the period from 1800 to 1990: 1) the

increased growth rate of labor productivity that came with industrialization (γ); 2) the

substantial reduction in infant and youth mortality rates (πs); and 3) the increase in (adult)

life expectancy (π).

Note that the only endogenous variable in equation (7) is the population growth rate,

γN , which only enters on the left-hand side. Moreover, the productivity growth rate, γ, only

enters on the left-hand side while survival rates, πs and π, only enter on the right-hand side.

That is, holding (σ, β, η, w, θb) fixed, this equation is of the form: LHS(γN ; γ) = D(πs, π),

where D(πs, π) = η
(1−σ)

[
πsw
θb

+ π
]

(see Figure 1). LHS(γN ; γ) is increasing in γN , for all

values of γ, since in both parameter configurations, AI and AII, we have that η ∈ [−∞, 1)

and (η+σ−1)
(1−σ)

> 0. Similarly, D(πs, π) > 0 since η
(1−σ)

> 0.

It is easy to see that in response to an increase in γ, LHS(γN ; γ) decreases (shifts right)

if σ < 1 and increases (shifts left) if σ > 1. Hence, γN is increasing in γ if σ < 1 (AI)

and decreasing in γ if σ > 1 (AII). That is, the sign of first order effect of productivity

growth on population growth changes across the parameter configurations AI and AII. Since
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all other fertility measures are increasing functions of the population growth rate, one can

see that whether CBR, CBRs and CTFR increase or decrease in response to an increase in

γ analogously depends on the parameter configuration.

0

0

γ
N

L
H

S
,D

 

 
LHS
D
LHS increase γ, σ<1 → AI
LHS increase γ, σ>1 → AII
D increase π

s
 or π

AII
AI

D

Figure 1: Comparative statics of γN

D, on the other hand, is increasing in both survival rates, πs and π, for either parameter

configuration, and hence, so is γN . That is, a decrease in either youth or adult mortality

always leads to an increase in the population growth rate. The effect of mortality on the

other fertility measures differs, however.

An increase in survival to adulthood, πs, will also increase the crude birth rate in terms

of surviving children, CBRs, for AI and AII. The effects of youth mortality on total births,

CBR = CBRs
πs

, however, depends on the size of the response in CBRs to an increase in

πs, relative to the increase in πs itself. A similar relationship holds between the size of the

change in γN and the sign of the response of CTFR. Similarly, even though an increase in

π always causes γN and CTFR to increase, whether or not it increases CBRs and CBR

depends on the size of ∂γN
∂π
.

While the sign of the effects of πs and π on γN is the same under AI and AII, the
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LHS σ<1 → AI
LHS  σ>1 → AII
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RHS increase π

s
 or π

AI

AII

Figure 2: Increase in γN is smaller for AII than for AI

parameter configuration matters for the size of these effects. To see this, note that the left-

hand side of equation (7) is increasing in γN . Further, it is concave if 1 > η ≥ 1−σ > 0 (i.e.,

under AI), and convex in γN if η ≤ 1 − σ < 0 (i.e., under AII) (see Figure 2). This implies

that in the range where γN ≥ 1 the slope of LHS is larger under AII than it is under AI.

Because of this, the response of γN to a given change inD(πs, π) is smaller under AII than AI.

More precisely, the empirically relevant ranges for parameters are when productivity

growth is positive but small, γ ≈ 1, and the same holds for γN . It is therefore of special

interest to know the properties of the model when γ = 1 and γN ≥ 1 (i.e., βD ≥ 1). Suppose

for simplicity that η = 1−σ. In this case, holding all parameters but σ fixed, it follows that

a given size change in πs and π has larger effects on γN in the low curvature case, AI, than

in the high curvature case, AII. This is also true for CBRs in response to a change in πs.

Because of this, it follows that when βD = 1, we have ∂CBR
∂πs

|σ<1 >
∂CBR

∂πs
|σ>1. For example,

if CBR falls from a given change in πs when σ < 1, it falls more when σ > 1. It can also be

shown that, in the special case where π = 0, ∂CBR
∂πs

< 0 under both AI and AII.

In sum then, when γ and γN are both near one and π is not too large, an increase in πs
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will cause CBR to fall under both AI and AII, and this fall will be larger when σ > 1 (AII).

Similar results hold for CTFR.

Finally, we know that under AI, ∂γN
∂π

is larger than under AII. Hence, as above, if pa-

rameters are such that CBRs and CBR fall in response to an increase in adult survival, π,

when AI holds, they fall more when AII holds. When γ = 1, βD = 1, η = 1− σ, and σ > 1,

it can be shown that an increase in π causes CBRs and CBR to fall.

We summarize the results most relevant for the quantitative analysis in a proposition:

Proposition 1. The following comparative statics results hold across balanced growth paths:

1. If AI holds, then, ∂γN
∂γ

, and ∂CBR
∂γ

are positive, while if AII holds, then ∂γN
∂γ

, and ∂CBR
∂γ

are negative.

2. (a) In both cases AI and AII, ∂γN
∂πs

> 0. However, when γ = 1, η = 1−σ and βD ≥ 1

(i.e., γN ≥ 1), then, ∂γN
∂πs

|σ<1 >
∂γN
∂πs

|σ>1.

(b) If γ = 1, η = 1−σ and βD = 1 then, ∂CBR
∂πs

|σ<1 >
∂CBR

∂πs
|σ>1. If in addition, π = 0

then, ∂CBR
∂πs

< 0 for AI and AII.

3. In both cases AI and AII, ∂γN
∂π

> 0. However, when γ = 1, η = 1−σ and βD ≥ 1 (i.e.,

γN ≥ 1), then, ∂γN
∂π

|σ<1 >
∂γN
∂π

|σ>1 and ∂CBR
∂π

|σ>1 < 0.

It also follows that ∂γN
∂β

> 0 and ∂γN
∂w

> 0 if θb = a (goods cost) and ∂γN
∂w

= 0 if θb = bw

(time cost). We do not emphasize these because they play no role in the quantitative dis-

cussion we focus on below.18 Note, however, that this, like many models based on dynastic

altruism, is a balanced growth model. Thus, increases in income (wages) do not, by them-

selves, trigger a change in fertility (at least, as long as costs change proportionally). Rather,

it is a change in growth rates that is required. This feature brings focus to the hypothesis in

demography that the fertility transition is in part caused by ‘industrialization’. That is, in

this particular model at least, it was the acceleration of productivity growth that mattered,

not the change in levels per se.19 Further, when η = 1 − σ and σ → 1, the utility function

18If all child costs are goods costs, increases in labor income taxes are equivalent to reductions in w. Thus,

it follows that increasing the labor income tax rates will decrease both population growth rates and fertility

on the balanced growth path, see also Manuelli and Seshadri (forthcoming). At the other extreme, if all

costs are in terms of time (θ = bw), fertility and population growth rates are independent of labor income

taxes, short of child care allowances in the tax code.
19Galor and Weil (2000) and Greenwood and Seshadri (2002) generate the decrease in fertility by increased

levels of income with non-homotheticities in utility.
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we use converges to
∑
βt log(Ct). All of the results from this Proposition go through in this

case. In particular, there is no change in γN when γ is changed.20

These comparative statics have important implications for studying demographic tran-

sitions using this type of model. From the beginning of the 19th century to the end of the

20th century, CBR fell substantially, while population growth rates (net of immigration)

decreased less dramatically. Since the rate of growth of productivity has increased over the

period describing these demographic changes, it follows from the proposition that we would

expect population growth rates to fall as a result as long as low IES and substitutabil-

ity between number and utility of children are assumed (AII). Offsetting this effect is the

fact that both youth and adult survival rates rose over this period. Thus, under AII, in-

creases in population growth in response to changes in mortality declines (through πs or π)

will mitigate the negative effect from increases in productivity growth, but these effects are

small. As we shall see, overall the model predicts a decrease in γN in this case. Under AI,

however, population growth rates increase in response to all, increased productivity growth,

decreased youth mortality and longevity. Hence, the model has no shot at reproducing ob-

served changes in population growth rates. With respect to CBR, the effect of productivity

growth is the same as for population growth rates, while the effect of decreases in mortality

could, in principle, be either an increase or a decrease. As we shall see, the model predicts,

from this source alone, a small decrease in CBR under AI and hence, as in the proposition,

a larger decrease under AII. Because of this, the combined effect will be to increase CBR

when AI holds, and decrease CBR when AII holds.

5 The U.S. experience 1800-1990

Our next objective is to assess the quantitative realism of the model by computing estimates

of the model predictions in terms of population growth rate and CBR in response to perma-

nent (unanticipated) changes in productivity growth (γ), longevity (π), and youth mortality

(πs) as observed in U.S. data. To do this, in keeping with previous sections, we assume that

the only source of income is from labor. In Section 6.2 we introduce physical capital in the

model and show that the quantitative results are similar.

First, we discuss how the model can be calibrated to match (current) levels of fertility

and/or population growth rates in the U.S.. Most of the parameters needed can be taken

20A similar result for low versus high IES holds when physical capital is added to the model. The threshold

IES is typically below one, however. In particular, γN is typically decreasing in γ in the limiting case with

logarithmic utility. See Section 6 for details.
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directly from the quantitative growth and RBC literatures. The exceptions to this are θ, the

cost of raising a child, and η the utility parameter governing curvature over dynasty size. For

simplicity we set η = 1 − σ throughout.21 One puzzle in the quantitative growth literature

with endogenous fertility has been that calibrated costs of children were unrealistically high.

We find that when σ > 1 (AII), the needed calibrated costs to match any given fertility

level are substantially lower.

Next, we simulate the predicted effects on fertility from changing all three of the above

driving forces with the appropriate timing of events in the U.S. over the last 200 years. We

find that how well the model does at reproducing the historical facts depends critically on

the size of the IES. When the IES is high, as is commonly assumed in the fertility literature,

the model (counterfactually) predicts large increases in both CBR and γN . On the other

hand when the IES is low, the model captures two-thirds of the decrease in CBR observed in

the data and about half of the decrease in population growth rates—and with similar timing.

Finally, we decompose the contribution of each factor separately for the low IES case

and find that the increase in the growth rate of productivity accounts for about 90 percent

of the predicted fall in fertility before 1880, and changes in (youth) mortality account for 90

percent of the predicted change from 1880 to 1990.

Overall, these results are consistent with the qualitative comparative statics results given

in Proposition 1. This must be interpreted with caution however since the results in the

Proposition hold
(

θ
w

)
fixed, while here we are recalibrating this so as to match final levels

of fertility for different values of σ.

We also performed the experiments using data for the United Kingdom (England and

Wales for the most part).22 The fertility experience in the U.K. over the past 200 years is

similar to that of the U.S., except that fertility levels in 1800 were lower already. Mortality

was also lower in the U.K. than it was in the U.S. around that time. Finally, our estimates

of productivity growth suggest the latter was higher in the U.K. than in the U.S. in 1800.

Since, fertility, mortality and productivity growth are very similar in the two countries in

1990, one would expect the model to capture a smaller absolute decrease but the same

fraction of changes in fertility and population growth. This is indeed the case.23 Given these

similarities, we concentrate on the U.S. in what follows. Of course, it would be of interest to

21Note that without this assumption, given our two admissible parameter configurations, η would have to

satisfy η < 1 − σ whenever σ > 1 or η > 1 − σ whenever σ < 1. Hence, the assumption that η = 1 − σ

makes results more readily comparable. In this case, the two utility effects of increasing dynasty size cancel

out—independently of σ. We report sensitivity results in footnote 32 below.
22We thank Michael Bar and Oksana Leukhina for help with data sources.
23Details can be found in the additional appendix, Jones and Schoonbroodt (2009), available online.
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perform these experiments for a larger set of countries but this is beyond the scope of this

paper.

5.1 Calibration: fertility levels and costs of children

In this subsection we use the Euler equation in (8) (where η + σ = 1) to calibrate costs

of children given all other parameters and targeting 0.65 annual population growth. This

target roughly corresponds to choosing a cost of children that matches the U.S. fertility

experience over the 1970 to 1990 period (about 17 births per 1000 population or 2.3 children

per woman).24

Suppose there are T years in a period. Then we can rewrite equation (8) in annual terms

as (the subscript ann denotes annual values):

γT
N,ann =

[
βT

ann

[
w
θs

+ πT
ann

]]1/σ [
γT

ann

]1/σ−1
.

Solving for θs
w

gives

θs
w

= 1
»

γσ
N,ann

βannγ
(1−σ)
ann

–T

−πTann

.

where the relevant πT
ann is the probability of an adult surviving (in the workforce) for T

years. We choose T = 20 and hence πann = 0.977 to match an expected adult (working)

life, T
1−π

, of 53 years. Moreover, we assume an annual discount factor of βann = 0.96 and

compute an annual productivity growth rate of γann = 1.018 from wage data (see Table 4).

Note that over the period 1970 to 1990 survival to adulthood is close to certain, i.e., πs ≈ 1

and hence θs ≈ θb. We introduce additional layers of complexity below so that we can use

detailed data on infant, child and youth mortality rates in the time series experiments in the

next subsection. Throughout, we consider values of σ ∈ {0.5, 1, 3}.

We report our results in Table 1. The units of θs
w

are the fraction of one periods per capita

output that it costs to raise one child. To get a sense of how costly children must be in the

model in order to match realistic growth rates of population, it is more convenient to express

it in terms of the number of years of output that are required to raise a child, i.e., T× θs
w

. Our

choice of T = 20 also corresponds to assuming that it takes 20 years for a newborn to become

a productive worker. In addition, we report the maximal number of children a two parent

household can (feasibly) have over one (fertile) period (Max CTFR = 2T/
(
T × θs

w

)
= 2 w

θs
).

24Note that reasonable life lengths (π > 0) are crucial to bring population growth rates in line with CBR

in the calibration. With π = 0 population growth of 0.65% per year would correspond to a CBR of 26.6.

With our definition of CBR in the model, with π > 0, we match the U.S. fertility experience over the 1970

to 1990 period much more closely (see Figure 3).
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σ θs
w

T × θs
w

Max CTFR

0.5 0.72 14.32 2.80

1.0 0.51 10.25 3.90

3.0 0.16 3.24 12.34

Table 1: Calibration of Costs of children circa 1970s in the U.S.

Clearly, the values of the costs of raising children—in the range of 3 to 14 years of one

person’s output—are very sensitive to the choice of the IES. The intuition for this is as

follows. When σ is high (i.e., there is a strong desire to smooth consumption), high growth

in aggregate consumption is not valuable (since η = 1 − σ and the two direct utility effects

of dynasty size in equation (5) cancel out this is the only effect that matters). Aggregate

consumption grows at rate (γγN). Hence, everything else equal, the population growth rate

is decreasing in the desire to smooth consumption, σ. Vice versa, to get a given population

growth rate (i.e., fertility level) to be the optimal choice, one needs higher costs of children

when σ is lower. With σ = 0.5, a two parent household can maximally have 2.8 children

during one 20 year period, while with σ = 3.0 as many as 12.34 are feasible. This shows

that with low IES, costs of children lie in a much more reasonable range.25

In the historical experiments we perform below we will examine how these costs change

over time due to changes in mortalities. Since age specific mortality rates changed unevenly

since 1800, we follow Doepke (2005) and assume that there are three relevant subperiods of

childhood: infancy (up to age 1), childhood (ages 1 to 5) and youth (from age 5 to adulthood

at age 20). Let πi, πic and πcy and θi, θc, and θy denote the three conditional survival rates

and costs for these sub-periods. Then, the cost of producing one surviving child is:

(9)
θs

w
=

θi/w

πiπicπcy

+
θc/w

πicπcy

+
θy/w

πcy

.

25There are (at least) two issues that arise with respect to this discussion of the calibration of child

costs. First, our approach here is to choose costs so that the model correctly fits current fertility rates—

given the IES. An alternative would be to take estimates of expenditures directly from micro data (e.g.,

using adult equivalents) and calibrate the IES to fertility rates. This would be a useful extension of this

work. A second issue concerns the difficulty of matching current fertility data when σ < 1 is fixed. An

alternative to increasing the time costs of children unrealistically would be to introduce other features into

the model. Examples include using non-homothetic utility (e.g., Greenwood and Seshadri 2002, Hall and

Jones 2007) or, alternatively, distinguishing between the discounting applied to one’s own consumption

in different periods (intertemporal) versus that which applies between own utility and the utility of one’s

children (intergenerational). This is the approach adopted in Manuelli and Seshadri (forthcoming).

24



As in Doepke (2005) we assume that θy = 0 and costs are the same for every year age 0 to 5,

i.e., θc
θi

= 4. Given these assumptions, the calibrated values of θs/w given σ, and historical

data on mortality rates, we can back out θi/w and θc/w from equation (9) for each value

of σ. Over time, we assume that the base costs as a fraction of wages (θi/w, θc/w, θy/w)

remained constant, while survival rates (πi, πic, πcy) have increased—decreasing the effective

cost of surviving children, θs/w.26

5.2 U.S. Fertility decline: model versus data

Next, we examine the model predictions for fertility and population growth from changing

γ, θs (through changes in πi, πic, and πcy) and π in line with the experience of the U.S. over

the period from 1800 to 1990. These predictions are then to be compared with their data

counterparts. All data series and sources can be found in Table 4 in the Appendix.

In the data provided by Hacker (2003), CBR was roughly constant at 45 births per 1000

population from 1800 to 1860, then decreased to 19 in 1930.27 From Haines (1994b), we get

that from 1930, the bottom of the pre–WWII baby bust, CBR increased to 23 in the 1950s

and 1960s, the peak of the post–WWII baby boom, and finally fell to 15.8 in 1990.28 CTFR

and TFR show similar patterns. Finally, also from Haines (1994b), population growth rates

(net of immigration) decreased from 2.6 percent population growth per year to 0.65 percent

per year, again with a down then upward swing from 1930 to 1960.

We use data on productivity growth, survival probabilities to adulthood and expected

lifetimes in the U.S. from 1800 to 1990. This data implies that productivity growth, γann,

increases from zero to 1.8 percent per year, adult survival, πann, increases from 0.964 to 0.977

and survival to adulthood, πs,ann, increases from 0.632 to 0.989. Note that, in the model,

agents assume that current values of these parameters will prevail forever.29

26See footnote 32 for sensitivity with respect to changes in base costs.
27Note that earlier estimates of CBR in the 19th century were higher, at about 55 births per 1000 popu-

lation in 1800 to 45 in 1850 (e.g., Haines 1994b). Hacker (2003) did extensive work to improve upon these

earlier estimates using backward projections from 1850 Census data and better mortality estimates than

previously assumed. See Hacker (2003) for a complete discussion.
28For an application of a stochastic version of the present model to address these fertility fluctuations, see

Jones and Schoonbroodt (2007).
29The assumption that agents believe that productivity growth, mortality and longevity will be constant

forever is an extreme one but greatly simplifies the analysis. An alternative extreme would be to assume that

agents perfectly foresee the exact future path of parameter changes. The results of this exercise for σ = 3

can be found in the additional appendix, Jones and Schoonbroodt (2009). The predictions are virtually

identical.
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Figure 3: The U.S. experience from 1800 to 1990, CBRann and CBRs,ann

γN,ann CBRann CTFR

1800 1880 1990 1800 1880 1990 1800 1880 1990

Data 1.027 1.016 1.006 45.4 35.2 15.8 7.04 4.90 1.97

σ = 0.5 0.965 0.979 1.006 0.59 10.6 17.2 1.54 2.04 2.30

σ = 1.0 0.994 .995 1.006 22.7 22.3 17.2 2.79 2.79 2.30

σ = 3.0 1.014 1.005 1.006 36.3 29.6 17.2 4.20 3.45 2.30

Table 2: Time Series Experiment: Data versus Model, for several values of σ

The results of this experiment are shown in Table 2, while Figure 3 plots data and model

predictions for CBRann and CBRs,ann to illustrate the different effects on surviving fertility

versus total births on a similar scale.30 As can be seen, for high IES (σ = 0.5) the model

predicts a substantial increase in CTFR and CBR. The model also predicts a large increase

in population growth rates in this case. These predictions are in part due to the increase

in survival to adulthood and in part due to the increased growth rate in productivity, both

of which always imply an increase in population growth rates for σ < 1. This finding is

consistent with Doepke (2005) (who also uses σ = 0.5 and labor income only) and is the

30Annual values per 1000 population are computed as CBRann = 1000 × CBR/T and CBRs,ann =

1000×CBRs/T. For plots of detailed predicted time paths for all other measures of fertility, see the additional

appendix, Jones and Schoonbroodt (2009).
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reason for his conclusion that the basic Barro-Becker model does not fit the facts (even

though a more sophisticated model with sequential fertility choice performs better).31

For σ = 1, the model predicts a sizable fall in CTFR and CBR. However, since the

probability of surviving to adulthood is increasing over the period, the number of surviving

children (CBRs) increases even though the number of all births (CBR) falls. This property

of CBRs is directly reflected in the predicted time path of population growth rates (see

Table 2). This is partly due to the fact that changes in productivity growth do not affect

CBRs or population growth rates when σ = 1. These results are in keeping with Bar and

Leukhina (2007) who use a more elaborate version of this model with a utility specification

equivalent to σ = 1 and find that changes in productivity have only a small effect on fertility

while changes in mortality have a relatively large effect.

Finally, for low IES (σ = 3), the overall changes give rise to a predicted fall in CTFR

from 4.2 in 1800 to 3.8 in 1850 (the 1826 birth cohort) and 2.3 in 1980 (the 1958 birth

cohort) and a predicted fall in CBR from 36.3 in 1800 to 17.2 in 1990. In this case, CBRs

is decreasing over the period (see Figure 3). This is mainly due to increased productivity

growth. In terms of population growth rates, the model predicts a fall from 1.4 to 0.6 percent

per year. This follows from the effect of changing productivity growth which overturns the

effect of decreased mortality. Hence, changes in CBR predicted by the model capture about

two-thirds of changes observed in the data, while model predictions of changes in CTFR

and population growth rates, γN , capture about one half of observed changes. These findings

are consistent with Mateos-Planas (2002) who focuses on population growth rates (rate of

natural increase) only and therefore, as shown next, understates the importance of mortality

to understand the facts relating to births of the demographic transition.32

31The present version of the model overstates the poor performance when σ = 0.5 to some degree. When

physical capital is also included, there is only a small increase in CBR over the period from about 15.7 to

17.2. See the discussion in Section 6.
32Here, we have assumed that the base costs (relative to wage income) of raising a child to adulthood

have been unchanged over the period. However, when one adopts a broad view of what determines these

costs—e.g., subtracting out any direct input from the child on a farm—this is clearly a strong assumption.

Indeed, the relative availability of land in the U.S. and the resulting implications for the size of net costs of

children may be one of the key reasons why the model predicts too low fertility for the early years. Mateos-

Planas (2002) adjusts base costs residually in order to match the entire path of population growth rates

in several European countries and finds large increases in these costs since 1900. A similar exercise in the

present model with U.S. data would require base costs, θb/w, to have increased threefold over and above

the assumed increase proportional to wages to capture the full change in CBR or twofold to capture the

full change in population growth rates when σ = 3. Clearly the analysis would benefit greatly from a more

direct accounting of the costs of children along these dimensions but is beyond the scope of this paper.

We have also experimented with even higher values for σ (not shown here). Although the implied levels
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5.3 Productivity versus mortality: decomposition

Next, we decompose the sources of these changes (for σ = 3) into the components separately.

That is, we ask what the model would predict for CTFR, CBR and γN if two of the

three forcing variables had stayed at their 1800 levels, while the other changed as per the

experiment above. The results from these calculations are shown in Table 3.

We find that, taken one at a time, both changes productivity growth (γ) and changes

in survival probability to adulthood (πs) have sizable impacts on both CTFR and CBR.

Changes in expected lifetime (π) generate a hardly noticeable increase in CTFR and account

for a relatively small decrease in CBR. As can be seen, the effect is largest for changes in πs

which by itself shows a decrease in CTFR from 4.2 to 2.9 and in CBR from 36.3 to 24.7.

The effect of changing γ alone is smaller but still significant, reducing CTFR from 4.2 to

3.3 and CBR from 36.3 to 28.6. The effect of a change in π is substantially smaller, causing

a reduction in CBR from 36.3 to 33.0.33

σ = 3 γN,ann CBRann CTFR

1800 1880 1990 1800 1880 1990 1800 1880 1990

Data 1.027 1.016 1.006 45.4 35.2 15.8 7.04 4.90 1.97

Productivity (γ) 1.014 1.005 1.002 36.3 30.3 28.6 4.20 3.49 3.30

Mortality (πs) 1.014 1.014 1.018 36.3 35.9 24.7 4.20 4.15 2.90

Longevity (π) 1.014 1.014 1.015 36.3 35.9 33.0 4.20 4.20 4.23

Table 3: Decomposition: Productivity (γ) vs. Mortality (πs) and Longevity (π)

On the other hand, the changes in both πs and π cause population growth, γN , to increase.

It is the increase in productivity growth, γ, that alleviates this so that, in sum, the effect of

for the CBR are even higher in the earlier periods, this change is not large, and even levels of σ close to

1,000 do not generate the entire change seen in the data.

We performed sensitivity with respect to η as well and found that, for η < 1− σ < 0, results are not very

sensitive to the value of η, holding σ = 3. For the case, η = 0.8 > 1 − σ = 0.5, the effect of mortality on

CBR starts to be negative, so that the model predicts an upward hump until 1880 and a slight decrease

thereafter.
33The range for survival probabilities conditional on reaching age 20, π, are deduced from measures of

expectation of life (EL) at age 20 (see Table 4, column g). One issue related to this is that expected time

in retirement has increased dramatically over the past 150 years (see Lee 2001). We performed the same

experiment using expected working life at age 20 (EWL) (i.e. the difference between expected lifetime

and expected years of retirement) and obtained very similar results; details are available in the additional

appendix, Jones and Schoonbroodt (2009).
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the three changes taken together on γN is negative, i.e., the increase in γN from increases in

πs and π is more than offset by the decrease in γN resulting from the increase in γ.

The results of the decomposition exercise are also interesting because of their implication

about the timing of fertility decline. Previous authors have criticized the hypothesis that the

fertility decline was a byproduct of a reduction of infant mortality rates because of questions

about the relative timing of these two changes (see for example, Van de Walle 1986, Doepke

2005, Fogel 1990). The model predictions here also show that the decrease in youth mortality

has very little effect before 1880. Then, from 1880 to 1990, changes in youth mortality (from

survival to age 20 of πs = 0.64 in 1880 to πs = 0.99 in 1990) account for 90 percent of

the total model predicted change in CBR (where the total model predicted change captures

two-thirds of changes observed in the data).34 However, changes in productivity growth rates

(from 0 in 1800 to 1.4 percent per year in 1880) account for about 90 percent of the total

model predicted change in CBR for the early period.35

In sum then, both, changes in youth mortality and productivity growth rates, are quanti-

tatively important in understanding the model predictions about the history of fertility and

population growth over the last 200 years. An important requirement for the success of the

model is low values for the IES in consumption.

6 Investments in children

In the model laid out so far, parents have no control over children’s well being or quality, Ut+1.

This simplification allowed us to derive simple intuitions and analytic comparative statics.

There are various ways, however, in which parents can affect children’s initial conditions.

Three ways addressed frequently in the literature using dynastic models are bequests (e.g.,

Becker and Barro 1988, Barro and Becker 1989), human capital investments (e.g., Becker

et al. 1990, Manuelli and Seshadri forthcoming) and investments in children’s health (e.g.,

Cigno 1998, de la Croix and Licandro 2007, Manuelli and Seshadri forthcoming).

In this section, we show that even when these choices and more elaborate production

functions are introduced, the effects of increased productivity growth and decreased mortality

on fertility still depend on the choice of the IES. While in the model with labor income only,

the most relevant threshold was an IES above or below unity, this threshold may well be

different depending on the exact assumptions about the aggregate production function. The

basic result goes through, however: there exists a threshold, σ∗, such that, below this value

34Using Tables 2 and 3, we get 35.9−24.7
29.6−17.2 ≈ 90%.

35Using Tables 2 and 3, we get 36.3−30.3
36.3−29.6 ≈ 90%.
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comparative statics are in line with case AI in Proposition 1, while above this threshold

comparative statics follow case AII.

Consider the model analyzed so far but assume that households can invest in some

assets (e.g., leave bequests or educate children). That is, the household’s budget constraint

becomes:

ct + θs,tns,t + πx,txt ≤ wt + rtqt;

(ns,t + π)qt+1 ≤ xt + (1 − δ)qt.

where xt is parent’s investment in next period’s quality per surviving adult (worker), qt.

Multiplying by Nt, the dynasty budget constraint and aggregate law of motion for quality

are given by

Ct + θs,tNs,t + πx,tXt ≤ wtNt + rtQt;

Qt+1 ≤ (1 − δ)Qt +Xt.

Note that the resulting Planner’s problem is well defined under both assumption AI and

AII derived in Section 2.36 To close the model, prices are determined in equilibrium by

a representative firm hiring labor and quality to maximize profits with a constant returns

to scale production function and labor augmenting technological progress, F (Qt, Zt), where

Zt = γtNt denotes effective labor.

6.1 Complements versus substitutes

In the model above, quality, qt, can be interpreted either as physical capital (bequests) in

which case, πx,t = 1 and rt is the interest rate on physical capital,37 or, if π = 0, as human

capital investments, in which case, wt + rtqt can be interpreted as the wage per unit of

labor where πx,t ≤ 1 takes into account that some human capital already invested may

die with a non-surviving child.38 The problem of maximizing the dynastic head’s utility in

36To ensure interiority in partial equilibrium, we have to (1) either rule out η = 1− σ or, (2) if η = 1− σ,

make the necessary parameter assumptions so that rates of returns to children and assets are equalized. In

general equilibrium, prices will adjust to achieve this.
37Notice that since as before one implicit assumption is that all alive adults are identical in this model,

we have to assume that parents share their assets equally among all surviving family members (including

themselves), so that initial conditions of all households are the same.
38If adults live for more than one period, π > 0, and πs different from π, the model becomes a vintage

human capital model with many state variables.
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expression (4) subject to aggregate feasibility and laws of motion can be written recursively

as a Bellman equation with two state variables: the detrended aggregate stock of quality,

Q̂t = Qt/γ
t, and the stock of population, Nt. The value function, V (Q̂, N) can be shown to

be homogeneous of degree η in (Q̂, N). Thus, V (Q,N) = NηV (Q/N, 1) ≡ Nηv(q). Below

we show that the stock of population (fertility), N , and quality per survivor, q, are still

complements in the utility of the parent under AI, the high IES case, and substitutes under

AII, the low elasticity case.

First, it is straightforward to show that V > 0 under AI and V < 0 under AII, while V1 =

v′ > 0 and V2 = ηNη−1v(q) > 0 under both AI and AII. It follows that V21 = ηNη−1v′(q) > 0

under AI because η > 0 and V21 = ηNη−1v′(q) < 0 under AII because η < 0.

This alone is not enough however to fully determine the effect of productivity growth on

population growth as before. The properties of the production function also play a role.

As to empirical evidence about the “right” utility specification, findings are mixed (see

Schultz 2005 for a useful summary). While the relationship between family size and various

measures of child quality—in terms of investments or outcomes—is clearly negative, whether

this is a missing variables problem or a true quantity-quality trade-off is still controversial.

One regularity seems to carry through most studies using twin births as exogenous variations

in family size: the negative relationship between number and quality of children is more

strongly negative in developing countries (e.g., Rosenzweig and Wolpin 1980 for India, Li et

al. 2007 for rural China) than it is in more advanced societies (e.g., Angrist et al. (2005) for

Israel, Black et al. (2005) for Norway). Yet, Cáceres-Delpiano (2006) finds that a twin on

a later birth reduces the likelihood that older children attend private school in U.S. Census

data from 1980. One reason for the discrepancies between rich and poor countries might

be the availability of high quality public schools in developed countries. For example, de la

Croix and Doepke (Forthcoming) find that the negative relationship between fertility and

private schooling choices flattens as the quality of public schooling goes up.

In sum then, the assumption of substitutes performs better at replicating the facts of the

demographic transition than does the commonly used assumption of complements. However,

more direct evidence on the correct specification of preferences would be useful.

6.2 Physical capital and bequests

Here we interpret quality Q as physical capital and let K ≡ Q. Quality per child can then

be interpreted as bequests, k ≡ q. We distinguish between the partial equilibrium version as

in Becker and Barro (1988) and general equilibrium version where interest rates and wages
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are determined in equilibrium as in Barro and Becker (1989). The findings shed light on the

original Barro-Becker papers and extend findings from Section 4.

Quantitatively, with a Cobb-Douglas production function, labor augmenting technolog-

ical change and an IES of one-third, effects are slightly larger than without capital—still

leaving room for costs of children and education to matter.

6.2.1 Partial versus general equilibrium

The first order condition with respect to Ct, Kt+1 and Nt+1 for the dynasty and the firm

together with the budget constraint and the laws of motion for capital and population fully

describe the equilibrium path. On a balanced growth path, we have γc,t = γc = γ, γN,t = γN ,

γC = γK = γγN , wages grow at γ and interest rates are constant. From the first-order

conditions for Ct, Ct+1 and Kt+1, we get the usual equation relating population growth and

the interest rate:39

(10) γN =
[β (r + 1 − δ)]

1
1−η

γ
σ

1−η

From equation (10), it is clear that—as usual in Barro-Becker type models—higher inter-

est rates are typically associated with higher population growth. In light of the comparative

statics results above, suppose the rate of productivity growth, γ, increases. Holding the

interest rate fixed (i.e., in partial equilibrium), this decreases the population growth rate.40

However, the interest rate may be endogenous. In response to an increase in productivity

growth the balanced growth path level of the capital to effective labor ratio, k̂ = (Kt/Zt),

decreases (unless the production function is of the form F (Kt, Zt) = min {Kt, Zt}) and hence

the interest rate, r, increases which tends to increase population growth. Whether the pop-

ulation growth rate increases or decreases depends on all parameters, in particular the side

of the parameter space one chooses:

I. Under AI, the positive effect from the interest rate is large since 1
1−η

> 1. However,

since in this case, we also have σ
1−η

≥ 1, the direct negative effect from an increase in

productivity growth is also large.

II. Under AII, the positive effect from the interest rate is small since 1
1−η

< 1. However,

since in this case, we also have σ
1−η

≤ 1, the direct negative effect from an increase in

productivity growth is also small.

39See the additional appendix, Jones and Schoonbroodt (2009), for details.
40See also Becker and Barro (1988, pp. 19) and Barro and Becker (1989, pp.494).
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Again, consider the special case where η = 1−σ. Then, as long as K and Z are somewhat

substitutable in production, there exists a threshold σ∗ such that for σ > σ∗ the direct

negative effect of an increase in γ dominates the indirect positive effect through r so that
∂γN
∂γ

< 0, while for σ < σ∗ the opposite is true. In addition, the more substitutable K and

Z are in production, the larger is the decrease in k̂ in response to an increase in γ and the

larger the increase in r. Hence, the threshold σ∗ is increasing in the degree of substitutability

in production. Finally, σ∗ is decreasing in the capital share.

Decreases in mortality tend to increase the rate of return on population, N, relative to

capital, K, and hence decreases the capital to effective labor ratio. Again, this causes an

increase in the interest rate. From equation (10) and as in Proposition 1, the effect from

mortality on population growth rates is larger under AI than under AII.

To gain more intuition, consider the following special case. Let η = 1 − σ and let the

production function be of the Cobb-Douglas variety, F (Kt, Zt) = AKα
t (γtNt)

1−α. A sufficient

condition for the population growth rate to be decreasing in productivity growth is σ > 1−α.

This condition is necessary and sufficient in the case where there is full depreciation in phys-

ical capital and people live for only one period, i.e., 1− δ = γπ = 0 (i.e., σ∗ = 1− α). Since

α > 0, it is possible that the net effect on population growth from an increase in productivity

is negative even if σ < 1. Nevertheless, the typical values used in the fertility literature,

σ ≈ 0.5 and π = 0, with a capital share of α ≈ 0.3 do not satisfy this condition. On the

other hand, the log utility case, η = 1−σ and σ → 1, often used in the growth and business

cycle literatures will produce a decrease in γN in response to an increase in γ in this model.

6.2.2 Quantitative experiments: the U.S. experience

Quantitative experiments analogous to those in Section 5 (calibrating to 1990 and changing

youth mortality, longevity and productivity growth as observed in the U.S. since 1800), give

results that are quite similar in magnitude as before. Let T = 20, η = 1−σ and σ ∈ {0.5, 3}

and fix survival rates, πs = πiπicπcy and π, and productivity growth, γ, as observed in the

data in 1990 (see Table 4). The values for δ = 1− (1−0.088)T and β = 0.96T are taken from

McGrattan (1994) and adjusted for period length, while A, θs and α are chosen to match

an annual population growth rate of 0.65 percent, annual interest rate net of depreciation of

roughly 4 percent and an annual capital-output ratio of 2.7. The latter two targets are also

taken from McGrattan (1994). For σ = 3, we find θs = 0.144, A = 3.7, α = 0.33.

Changing productivity growth and mortality as per the experiment in Section 5, the

model predicts a fall in CBR from 38.3 to 17.2 (compared to 36.3 to 17.2 in the model
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Figure 4: The U.S. experience from 1800 to 1990, CBRann and CBRs,ann; Model with

physical capital

without capital). When σ = 0.5, we could recalibrate costs to θs = 1.19 to match the

population growth rate holding all other parameters fixed. In this case, CBR increases from

12.6 to 17.2 (compared to 0.6 to 17.2 in the model without capital). However, the capital-

output ratio rises to 12.2 while the interest rate drops to -2 percent. Instead, recalibrating

θs, β and A to reproduce the three targets again, gives θs = 0.115, β = 0.903T and A = 3.48.

In this case, CBR increases only slightly, from 15.7 to 17.19.

For population growth rates, the effects are also larger than in the experiment without

capital. When σ = 3, the population growth rate decreases from 1.75 percent per year to

0.65 percent (compared to 1.4 to 0.65 in the model without capital) and increases from -1.6

percent to 0.65 percent per year when σ = 0.5 (compared to -3.5 to 0.65 in the model without

capital).

The fact that the results for both values of σ are better than in Section 5 is partly due to

the finding that the threshold σ∗ = 0.66 for which the effect of γ changes sign, is lower than

in Section 5, where σ∗ = 1, increasing the distance of σ = 3 from above, while decreasing

the distance for σ = 0.5 from below.

Hence, the choice of IES is just as crucial for qualitative and quantitative predictions of

dynastic models when parents have some control over children’s initial conditions (through

bequests in this case) and hence, their well-being, Ut+1. However, the model still does not
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capture the full extent of the demographic transition.

6.3 Human and health capital

Many of the authors who have worked on the history of fertility have emphasized the role

of changes in education over the last 200 years. Examples include Becker et al. (1990),

Rosenzweig (1990), Benhabib and Nishimura (1993), Galor and Weil (2000), Fernandez-

Villaverde (2001), Galor and Moav (2002), Doepke (2004), Soares (2005), Manuelli and

Seshadri (forthcoming) and many others. These channels may well be important to account

for the entire demographic transition in this model. However, even if these channels are

taken into account, qualitative and quantitative results still depend on the size of the IES.

To see this, consider the model above but assume that households can invest in human

capital of their children in addition to physical capital. Now, as long as physical capital is an

alternative, the first order conditions still generate equation (10). Hence, the same intuitions

about the interest rate will go through here. However, the threshold σ∗ now depends on

the complementarities/substitutabilities and input shares in the production functions for

human capital, for effective labor and for final output. An important and interesting exercise

suggested by the results in this paper is to revisit channels analyzed by others with low

elasticity. In particular, the necessary conditions on technology to generate a decrease in

population growth and fertility in these models may well be weaker than in Becker et al.

(1990), for example, once low elasticity is allowed.

Furthermore, the results suggest that focusing on the acceleration of productivity growth

rates in conjunction with low IES may be an alternative theory to those based on increases

in productivity levels and non-homotheticities in utility as in Galor and Weil (2000) and

Greenwood and Seshadri (2002). Also, the quantitative importance of policies including the

kinds of regulatory changes that have taken place, e.g., child labor laws and compulsory

schooling (see Doepke 2005 for example) might well change.

Finally, in our analysis, we have assumed that survival probabilities are exogenous to

the decision maker. While this is probably a reasonable assumption about many of the

improvements in health over the period (the development of the germ theory of disease,

the advent of pasteurization of milk and vaccinations), many aspects of health that affect

these probabilities are in fact chosen. Indeed, some authors have explicitly modeled this

choice (e.g., Cigno 1998, Fernandez-Villaverde 2001, Kalemli-Ozcan 2002, 2003, Manuelli

and Seshadri forthcoming, de la Croix and Licandro 2007, Hall and Jones 2007). Revisiting

previous results along the lines of this paper would probably also be fruitful.
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7 Conclusion

In this paper, we have studied a class of dynastic models à la Barro-Becker and have shown

that it can be used as the basis of a quantitative theory of the demographic transition if

the appropriate preference parameter configuration is adopted. This requires a low IES

in flow utility over consumption as is used in the growth and business cycle literatures.

The success of the models is tightly connected to a utility driven quantity-quality trade-off

because number and quality of children are substitutes rather than complements. In versions

of the model in which child quality (e.g., bequests or education) is not under the control of

the parent, this requires that family size and descendant utility are directly substitutes in

the utility function. In generalizations in which child quality is chosen by the parent, this

condition follows directly from assumptions on the flow utility function over consumption.

Thus, this approach gives an alternative, complementary, route to building a quantita-

tively successful model of the demographic transition. It differs from earlier approaches in

that different driving forces are important. For example, here important factors are changes

in the survival rates of children at different ages and the overall pace of growth. In others,

it is changes in income levels in the presence of non-homotheticities in utility or choice sets.

This suggests new ways to look at the data with these differences in mind.

As we have emphasized, the key issue here is whether quantity and quality are comple-

ments or substitutes in the value function of a parent. Existing reduced form evidence does

not shed much light on this question. Because of this, structural estimates are needed to

determine whether the demographic transition was driven by preferences or properties of

technology, such as increasing returns to human capital or capital-skill complementarities.

It is not until these questions are answered more definitively that the welfare benefits of

various development policy recommendations (such as education subsidies, child-labor and

fertility restrictions (e.g., China’s one-child policy) can be reliably addressed by using models

like those analyzed in this paper.

36



A Appendix

A.1 Time series used in Section 5

Table 4: Annual Data Used for the Time Series Experiment in Section 5, U.S.

a b c d e f g h i j k
Y ear γ πi πic πcy

T
1−π

πann CBR PG CTFR BC

EL EL data data data

1800 1.000 0.771 0.895 0.916 38.41 0.964 45.40 1.027 7.04 —
1810 1.000 0.771 0.895 0.916 38.41 0.964 45.82 1.025 6.92 —
1820 1.000 0.771 0.895 0.916 38.41 0.964 45.12 1.027 6.73 —
1830 1.007 0.771 0.895 0.916 38.41 0.964 45.18 1.024 6.55 —
1840 1.007 0.771 0.895 0.916 38.41 0.964 48.17 1.023 6.14 —

1850 1.007 0.771 0.895 0.916 38.41 0.964 46.05 1.020 5.59 1828
1860 1.007 0.803 0.909 0.926 40.32 0.966 45.19 1.018 5.49 1838
1870 1.014 0.816 0.917 0.933 41.14 0.967 39.30 1.017 5.36 1848
1880 1.014 0.775 0.899 0.920 39.65 0.966 35.16 1.016 4.90 1858
1890 1.014 0.840 0.921 0.934 40.96 0.967 32.71 1.013 4.50 1868

1900 1.014 0.871 0.930 0.940 41.73 0.968 28.58 1.013 3.25 1878
1910 1.014 0.885 0.947 0.940 42.63 0.969 27.50 1.011 3.15 1888
1920 1.018 0.908 0.990 0.992 44.45 0.971 24.92 1.012 2.82 1898
1930 1.018 0.931 0.994 0.995 45.14 0.971 19.05 1.007 2.30 1908
1940 1.018 0.945 0.997 0.997 46.77 0.973 18.60 1.012 2.59 1918

1950 1.018 0.967 0.998 0.998 49.01 0.974 23.00 1.015 3.11 1928
1960 1.018 0.973 0.999 0.998 49.65 0.975 22.70 1.011 3.01 1938
1970 1.018 0.977 0.999 0.998 49.63 0.975 17.40 1.006 2.22 1948
1980 1.018 0.987 0.999 0.999 51.73 0.976 15.10 1.006 1.80 1958
1990 1.018 0.990 1.000 0.999 52.95 0.977 15.80 1.006 1.97 —

Data Sources for Table 4:

• Column b, γ (annual productivity growth rate): for the period from 1800 to 1830, we
follow Lucas (2002) in assuming γ = 1.00 and use data on real wages in Greenwood
and Vandenbroucke (2005), from 1830 to 1988;41

41Other estimates suggest slightly higher productivity growth for the early period. For example, Geib-
Gundersen and Zahrt (1996) estimate the annual growth rate in U.S. agriculture between 0.10-0.14 from the
1800-1820 period and between 0.44-1.33 in the 1820-1840 period. However, according to Lucas (2002), early
increases in productivity differ from those later on in that they were one-time improvements in technology,
rather than sustained growth–the relevant object for our argument. Note that our results are slightly sensitive
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• Column c, πi (survival probability from age 0 to age 1): is derived from data on Infant
Mortality Rates, IMRs from:

1850 to 1900 are from Haines (1994a), U.S. Model, Total Population Both Sexes;

1800 to 1840 are assumed to be the same as 1850;

1910 is taken from U.S. Department of Commerce, Bureau of the Census (1910);

1920 to 1990 are from National Center for Health Statistics (1998);

• Column d, πic (survival probability to age 5, conditional on surviving to age 1):

1850 to 1900 are derived from year by year death rates in Haines (1994a), U.S. Model,
Total Population Both Sexes;

1800 to 1840 are assumed to be the same as 1850;

1910 is derived from year by year death rates from U.S. Department of Commerce,
Bureau of the Census (1910);

1920 to 1990 are from National Center for Health Statistics (1998);

• Column e, πcy(survival probability to age 20,conditional on surviving to age 5):

1850 to 1900 are derived from year by year death rates in Haines (1994a), U.S. Model,
Total Population Both Sexes;

1800 to 1840 are assumed to be the same as 1850;

1910 is derived from year by year death rates from U.S. Department of Commerce,
Bureau of the Census (1910);

1920 to 1990 are from National Center for Health Statistics (1998);42

• Column f, T
1−π

(EL) (expectation of life at age 20): is taken from Lee (2001, Column
B);

• Column g, πann (EL) (annual adult survival rate): is derived from Column f;

• Column h, CBR (crude birth rate, annual):

1800 to 1930 are taken from Hacker (2003, Figure 1),

1940 to 1990 are from Haines (1994b, Table 3);

to the choice of the early growth rate. For example, assuming γann = 1.001 in 1800 changes the results for
σ = 3 in Table 2 from γann,N = 1.0142 to γann,N = 1.0135, from CBRann = 36.3 to CBRann = 35.9 and
from CTFR = 4.2 to CTFR = 4.14.

42Note that we could use data for the England and Wales to approximate πi, πic and πcy for 1800 to
1840, namely 1800 to 1830 from Wrigley et al. (1997, Table 6.1, pp.215), and 1840 from Human Mortality
Database. With this data, the results for σ = 3 for 1800 in Table 2 change from γann,N = 1.0142 to
γann,N = 1.0135, from CBRann = 36.3 to CBRann = 34.4 and from CTFR = 4.2 to CTFR = 4.0. Since
mortality rates are lower in England and Wales than in the U.S. in 1850 suggesting they may have been lower
before as well, these results should be taken with a grain of salt. Interestingly, since mortality rates decreased
from 1800 to 1820 but then sharply increased in 1830 and 1840, the predicted pattern of population growth
when only youth mortality changes (i.e. Table 3, column 1, line 3) is a slight increase from 1800 to 1820, a
sharp decrease from 1820 to 1830 followed by a sustained increase as in the baseline experiment.
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• Column i, PG (population growth rate, annual): are taken from Haines (1994b), Table
1, RNI=rate of natural increase (net of immigration).

• Column j, CTFR (cohort total fertility rate):

1800 to 1840 TFR taken from Haines (1994b, Table 3), Whites;

1850 to 1980 CEB taken from Jones and Tertilt (2006, Table A6);

1990 TFR taken from Haines (1994b, Table 3), Weighted average Whites-Blacks;

• Column j, BC (birth cohort): birth year of mothers, year midpoint for 5-year cohorts.
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