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Complete Analysis of Phase Transitions and Ensemble Equivalence for the
Curie-Weiss-Potts M odel

Marius Costeniué, Richard S. EIIisl,'H and Hugo Touchettd]

IDepartment of Mathematics and Statistics, University obséahusetts, Amherst, MA, USA 01003
2School of Mathematical Sciences, Queen Mary, Universityoofion, London, UK E1 4NS

Using the theory of large deviations, we analyze the phasssition structure of the Curie-Weiss-
Potts spin model, which is a mean-field approximation to tgsfnodel. This analysis is carried out
both for the canonical ensemble and the microcanonicahelnlee Besides giving explicit formulas
for the microcanonical entropy and for the equilibrium nuatates with respect to the two ensem-
bles, we analyze ensemble equivalence and nonequivaletioe lavel of equilibrium macrostates,
relating these to concavity and support properties of therananonical entropy. The Curie-Weiss-
Potts model is the first statistical mechanical model foroltsuch a detailed and rigorous analysis
has been carried out.

Keywords: Curie-Weiss-Potts model, equivalence of ensesnkarge deviation principle

[. INTRODUCTION

The nearest-neighbor Potts model, introduced_in [40],datseplace next to the Ising model as one of
the most versatile models in equilibrium statistical medbs [49]. Section I.C of.[49] presents a mean-
field approximation to the Potts model, defined in terms of amiateraction averaged over all the sites
in the model. We refer to this approximation as the Curiesa/ftotts model. Both the nearest-neighbor
Potts model and the Curie-Weiss-Potts model are defined dpyesees of probability distributions af
spin random variables that may occupy oneafifferent stateg’, ... 64, whereq > 3. Forq = 2 the
Potts model reduces to the Ising model while the Curie-Wetts model reduces to the much simpler
mean-field approximation to the Ising model known as the &Weiss model [14].

Two ways in which the Curie-Weiss-Potts model approxim#tedotts model, and in fact gives rigorous
bounds on quantities in the Potts model, are discussedl]rafgl[39]. Probabilistic limit theorems for the
Curie-Weiss-Potts model are provedlini[19], including @& bf large numbers and its breakdown as well
as various types of central limit theorems. The model is sladied in [20], which focuses on a statistical
estimation problem for two parameters defining the model.

In order to carry out the analysis of the modellinl [19, 20]adet information about the structure of
the set of canonical equilibrium macrostates is requineduding the fact that it exhibits a discontinuous
phase transition as the inverse temperatiinecreases through a critical valyg. This information plays
a central role in the present paper, in which we use the thefdiarge deviations to study the equivalence
and nonequivalence of the sets of equilibrium macrostateth& microcanonical and canonical ensembles.
An important consequence of the discontinuous phase ti@msixhibited by the canonical ensemble in the
Curie-Weiss-Potts model is the implication that the neamesghbor Potts model o#? also undergoes a
discontinuous phase transition whenexes sufficiently largell4, Thm. 2.1].

In [15] the problem of the equivalence of the microcanonarad canonical ensembles was completely
solved for a general class of statistical mechanical madelsding short-range and long-range spin models
and models of turbulence. This problem is fundamental itissigal mechanics because it focuses on the
appropriate probabilistic description of statistical tmeaical systems. While the theory developec.in [15]
is complete, our understanding is greatly enhanced by #ights obtained from studying specific models.
In this regard the Curie-Weiss-Potts model is an excelleaice, lying at the boundary of the set of models
for which a complete analysis involving explicit formulasavailable.

For the Curie-Weiss-Potts model ensemble equivalenceeahdtrmodynamic level is studied numer-
ically in [29, §3-5]. This level of ensemble equivalence focuses on whetteemicrocanonical entropy
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is concave on its domain; equivalently, whether the mianooécal entropy and the canonical free energy,
the basic thermodynamic functions in the two ensemblesgaah be expressed as the Legendre-Fenchel
transform of the other [15, pp. 1036—-1037]. Nonconcave ati@sin the microcanonical entropy partially
correspond to regions of negative specific heat and thumtitgmamic instability.

The present paper significantly extends [g8+5] by analyzing rigorously ensemble equivalence at the
thermodynamic level and by relating it to ensemble equivadeat the level of equilibrium macrostates via
the results inl[15]. As prescribed by the theory of large dgons, the sef* of microcanonical equilibrium
macrostates and the s€t of canonical equilibrium macrostates are definedinl (2.4) §3). These
macrostates are, respectively, the solutions of a consttaminimization problem involving probability
vectors onlR? and a related, unconstrained minimization problem. Thdibgum macrostates for the two
ensembles are probability vectors describing equilibraanfigurations of the model in each ensemble in
the thermodynamic limit. — oco. Foreach = 1,2, ..., g, theith component of an equilibrium macrostate
gives the asymptotic relative frequency of spins takingsihie-valued’.

Defined via conditioning orh,,, the microcanonical ensemble expresses the conservdtiphysical
guantities such as the energy. Among other reasons, thematitally more tractable canonical ensemble
was introduced by Gibbs [22] in the hope that in the» oo limit the two ensembles are equivalent; i.e., all
asymptotic properties of the model obtained via the mianoo&al ensemble could be realized as asymp-
totic properties obtained via the canonical ensemble. ocAltin most textbooks in statistical mechanics,
including [1,[22] 28| 35, 41, 44], claim that the two ensemlabvays give the same predictions, in general
this is not the case [48]. There are many examples of statistiechanical models for which nonequiva-
lence of ensembles holds over a wide range of model parasnatel for which physically interesting mi-
crocanonical equilibria are often omitted by the canon&celemble. Besides the Curie-Weiss-Potts model,
these models include the mean-field Blume-Emery-Griffittoglet [2,13,L 18], the Hamiltonian mean-field
model [12] 36], the mean-field X-Y model[11], models of tudnce [6) 16} 21, 33, 42], models of plasmas
[34,145], gravitational systems [23,124 25| 37, 47], and @lehof the Lennard-Jones gas [5]. It is hoped
that our detailed analysis of ensemble nonequivalenceeiCtirie-Weiss-Potts model will contribute to an
understanding of this fascinating and fundamental phenomé a wide range of other settings.

In the present paper, after summarizing the large deviaiwalysis of the Curie-Weiss-Potts model in
Section 2, we give explicit formulas for the elementg£gfand the elements &f* in Sections 3 and 4. This
analysis shows thals exhibits a discontinuous phase transition at a criticatlise temperaturg, and that
&* exhibits a continuous phase transition at a critical meanggn... The implications of these different
phase transitions concerning ensemble nonequivalenstuatied graphically in Section 5 and rigorously in
Section 6, where we exhibit a range of values of the mean griergvhich the microcanonical equilibrium
macrostates are not realized canonically. As describeldemtain theorem in_[15] and summarized here
in Theoren &1L, this range of values of the mean energy issaigahe set on which the microcanonical
entropy is not concave. The analysis of this bridge betweasarable nonequivalence at the thermodynamic
level and ensemble nonequivalence at the level of equilibrinacrostates is one of the main contributions
of [15] for general models and of the present paper for thaeeiss-Potts model. In a sequel to the
present papel[9], we will extend our analysis of the CurigidatPotts model to the so-called Gaussian
ensemblel]7.18, 26, 27, 130,146] to show, among other things, ftn each value of the mean energy for
which the microcanonical and canonical ensembles are movaent, we can find a Gaussian ensemble
that is fully equivalent with the microcanonical ensem(dlé)][

II. SETSOF EQUILIBRIUM MACROSTATESFOR THE TWO ENSEMBLES

Let ¢ > 3 be a fixed integer and define = {#',62,...,07}, where the§’ are anyq distinct vectors
in IR?. In the definition of the Curie-Weiss-Potts model, the @meaialues of these vectors is immaterial.
For eachn € IV the model is defined by spin random variahlgsws, . .. ,w, that take values ith. The



canonical and microcanonical ensembles for the model dieediein terms of probability measures on the
configuration spaceA™, which consist of the microstates = (w;, ...,w,). We also introduce the-fold
product measur#’,, on A™ with identical one-dimensional marginals

»Q»—\

1=1

Thus for allw € A", P, (w) = an Forn € IN andw € A™ the Hamiltonian for they-state Curie-Weiss-
Potts model is defined by

Ho) = 5 3 a0,

whered(w;,wy,) equals 1 ifw; = w;, and equals 0 otherwise. The energy per particle is defined by

o () = %Hn(w).

For inverse temperature € IR and subset® of A" the canonical ensemble is the probability measure
P, 5 defined by

Pos{B} = ! =Y exp[=nBhn(w)).

> wenr DR (@)] 2,

For mean energy. € IR andr > 0 the microcanonical ensemble is the conditioned probghitieasure
P defined by

PY"{B} = P{B|hy € [u—r1,u+7]}

The key to our analysis of the Curie-Weiss-Potts model ixpoess both the canonical and the microcanon-
ical ensembles in terms of the empirical vector

L, =Ly(w) = (Lpi(w), Lpa(w),...,Lyqw)),

theith component of which is defined by
w) = n 25(Wj,9 )
j=1

This quantity equals the relative frequency with whighj € {1,...,n}, equalsf’. L,, takes values in the
set of probability vectors

q
P = {1/ €eR":v=(v,uva,...,1,), €achy; > O,Zyi = 1}.
i=1
As we will see, each probability vector A represents a possible equilibrium macrostate for the model
There is a one-to-one correspondence betwemd the sefP(A) of probability measures on, v €
P corresponding to the probability measr&_; v;6,:. The elemenp € P corresponding to the one-
dimensional margingd of the prior measures,, is the uniform vector having equal componei}?ts
We denote by(-, -) the inner product odr?. Since

q n n

D2 0wy 30w &) = D d(wj,we),

i=1j=1 k=1 3k=1



it follows that the energy per particle can be rewritten as

) = =gz 32 0 ) = (e Lnfe)
=

hn(w) = H(Lp(w)), whereH(v) = —4(v,v) forv € P. (2.1)

We call H the energy representation function.

We appeal to the theory of large deviations to define the $etsanocanonical equilibrium macrostates
and canonical equilibrium macrostates. Sanov’s Theoratesthat with respect to the product measures
P, the empirical vectord.,, satisfy the large deviation principle (LDP) dhwith rate function given by
the relative entropyR(-|p) [14, Thm. VIII.2.1]. Forv € P this is defined by

R(vlp) = Z v; log(qu;).
i=1

We express this LDP by the formal notatid®{L,, € dv} ~ exp[—nR(v|p)]. The LDPs forL,, with
respect to the two ensemblé} 3 and P2 in the thermodynamic limit.. — oo, » — 0 can be proved
from the LDP for theP,-distributions ofL,, as in Theorems 2.4 and 3.2 In[15], in which minor notational
changes have to be made. We express these LDPs by the forratibno

P, s{Ly € dv} = exp[—nlg(v)] and P;""{L, € dv} = exp|—nl"(v)], (2.2)
where forv € P
I3(v) = R(v|p) — g(y, v) — const
and

() = R(v|p) —const if —3(v,v) =u
"7 otherwise.

The constants appearing in the definitions/gfand I* have the properties thaif,cp Ig(v) = 0 and
inf,cp I*(v) = 0. ThusIg andI* map?P into [0, co).

As the formulas inl(Z]2) suggest, fi§(v) > 0 or I*(v) > 0, thenv has an exponentially small proba-
bility of being observed in the corresponding ensemble enttlermodynamic limit. Hence it makes sense
to define the corresponding sets of equilibrium macrostates

Eg={rveP:Igv)=0} and " ={v e P: I"(v) = 0}.
A rigorous justification for this is given in_[L5, Thm. 2.4{d)sing the formulas foiz; andI“, we see that
Ep = {1/ € P : v minimizesR(v|p) — §<1/, 1/>} (2.3)
and
E' = {1/ € P : v minimizesR(v|p) subject to— 3 (v,v) = u} . (2.4)

Each element in £5 and£* describes an equilibrium configuration of the model in theresponding
ensemble in the thermodynamic limit. Thiln component; gives the asymptotic relative frequency of
spins taking the valué’.

The question of equivalence of ensembles at the level ofibuim macrostates focuses on the rela-
tionships betweeg", defined in terms of the constrained minimization problen@id), and€s, defined
in terms of the related, unconstrained minimization probla (Z3). We will focus on this question in
Sections 5 and 6 after we determine the structure&a@nd£™ in the next two sections.



[ll. FORM OF £3 AND ITSDISCONTINUOUS PHASE TRANSITION

In this section we derive the form of the s&t of canonical equilibrium macrostates for glic IR. This
form is given in Theoreri3l1, which shows that with respedhtocanonical ensemble the Curie-Weiss-
Potts model undergoes a discontinuous phase transititve atitical inverse temperature

2(g—1
b= 20"V 54— 1). (3.1)
q—2
In order to describe the form &f3, we introduce the functioy that mapg0, 1] into P and is defined by
I4(¢g—NDw 1—-w l—w).

w(w):( , ey

q q q

the lasty—1 components all equél;—w. Recalling thap is the uniform vector irP? having equal components
¢ We see thap = (0).

(3.2)

Theorem 3.1. For § > 0 let w(3) be the largest solution of the equation
1—ePw
YTITE (g —1)ePuw’

(3.3)

The following conclusions hold.
(a) The quantityw(3) is well defined and lies ifY), 1]. It is positive, strictly increasing, and differentiable

for 8 € (8., 00) and satisfiess(8.) = =5 andlimg .., w(B) = 1.

(b) For 3 > 3., definev! () = ¢ (w(B)) and letv?(B), i = 2, ..., q, denote the points ii? obtained
by interchanging the first andh components of'(3). Then the sef; defined infZ3) has the form

{p} for 5 < g,
Es =3 {p, v (Be), V2 (Be), ..., vU(Be)} for B =pe, (3.4)

{'(8),*(B),- .., (8)} for 3> f..
For 8 > 3., the vectors ir€; are all distinct and eachv’(3) is continuous. The vector' (3.) is given by
VI(BC) = P(w(Be)) = 1/1(32—?) = (1 - %7 q(q1_1)7--- ) q(ql_l)) ; (3.5)

the lastg — 1 components all equaél(ql_—l).

The form of &g for 3 > 0 is proved in Appendix B from a new convex-duality theoremwvei in
Appendix A and from the complicated calculation of the glabimimum points of a related function given
in Theorem 2.1 in.[19]. The form i3 for 3 < 0 is also determined in Appendix B.

For 3 > 0 the form of&; reflects a competition between disorder, as representduelglative entropy
R(v|p), and order, as represented by the energy representatiotioiun- (v, /). For smallg > 0, R(v|p)
predominates. SincB(v|p) attains its minimum of O at the unique vecjgrwe expect that for smaflf, £3
should contain a single vector. On the other hand, for large 0, —%(1/, v) predominates. This function
attains its minimum at! = (1,0,...,0) and at the vectors’, i = 1, ..., g, obtained by interchanging the
first andith components of'. Hence we expect that for large €5 should contairy distinct vectors/*(3)
having the property that’(3) — v* as/3 — co. The major surprise of the theorem is that for= ., &3
consists of they + 1 distinct vectors andv?(3.) fori = 1,2, ..., q.

The discontinuous bifurcation in the composition &f from 1 vector for3 < (. to ¢ + 1 vectors
for B = (. to q vectors for3 > (. corresponds to a discontinuous phase transition exhitiyethe
canonical ensemble. In Figure 2 in Section 5 this phaseiti@mss shown together with the continuous
phase transition exhibited by the microcanonical ensenitte latter phase transition and the form of the
set of microcanonical equilibrium macrostates are thedaifuhe next section.



IV. FORM OF £&“ AND ITSCONTINUOUSPHASE TRANSITION
We now turn to the form of the set* for all u € [, —5.], which is the set of for which £* is
nonempty. In the specific cage= 3 part (c) of Theoreri 412 gives the form &f, the calculation of which
is much simpler than the calculation of the form&f. The proof is based on the method of Lagrange
multipliers, which also works for general> 4 provided the next conjecture on the form of the elements in
£" is valid. The validity of this conjecture has been confirmederically for allg € {4,5,...,10*} and
all u € (—3, —5;) of the formu = —3 + 0.02k, wherek is a positive integer.

Conjecture4.1. Foranyqg > 4and allu € (—%,—i), there existss # b € (0,1) such that modulo

permutations, any € £ has the forn(a, b, ..., b); the lastg — 1 components of which all equal

Parts (a) and (b) of Theordm¥#.2 are proved for gengral3. Part (¢) shows that modulo permutations,
for ¢ = 3, v € £ has the form(a(u), a(u), b(u)) and determines the precise formulas d¢t) andb(u).

As specified in part (d), fo > 4 we can also determine the precise formulafes £ provided Conjecture
£ is valid.

TheorenZR shows that with respect to the microcanonicsgrable the Curie-Weiss-Potts model un-
dergoes a continuous phase transition, aecreases from the critical mean-energy valplie= —21—q. This
contrast with the discontinuous phase transition extdbiitg the canonical ensemble is closely related to
the nonequivalence of the microcanonical and canonicarehkes for a range af. Ensemble equivalence
and nonequivalence will be explored in the next section,re/iae will see that it is reflected by support and
concavity properties of the microcanonical entropy. Anliedpformula for the microcanonical entropy is
given in Theoreni 4]3.

Theorem 4.2. For u € IR we define€* by (Z.4). The following conclusions hold.
(a) For anyq > 3, £" is nonempty if and only it € [—%, —2—1(]]. This interval coincides with the range

of the energy representation functi¢f(v) = —{(v,v) onP.
(b)Foranyq >3, % = {p} = {(},,... 1)} and
£72 ={(1,0,...,0),(0,1,...,0),...,(0,0,...,1)}.

(c) Letg = 3. Foru € (—3, —5;), £* consists of the distinct vectors{v' (u), v?(u), v*(u)}, where

vi(u) = (a(u), b(u), b(u)),

14 2(=6u —1) 2 —/2(=6u — 1)
d = )
3 and b(u) 5

a(u) = (4.1)

The vectors/?(u) andv?(u) denote the points if2® obtained by interchanging the first and tita com-
ponents of/! (u).
(d) Letq > 4 and assume that ConjectUfe] is valid. Then foru € (—%, —2—1(1), E" consists of they

distinct vectors{v! (u), ..., v%(u)}, wherev! (u) = (a(u),b(u), ... ,b(u)),

a(u) = L via- 1;(_2% =Y and b(u) = 1— 1- \/EZ - 32—2% -1

The lastg — 1 components af!(u) all equalb(u), and the vectors(u),i = 2,.. ., q, denote the points in
IR obtained by interchanging the first and tita components of! (u).



We return to part (b) of Theoreln 4.2 in order to discuss thereaif the phase transition exhibited by the

microcanonical ensemble. The functiar() andb(u) given in [41) are both continuous fore [—1, 2—1q]
and satisfy
i a(u) = lim, b(u) = § = a(~5;) = b(~3;).
2q 2q
Therefore, fori = 1,...,q, lim, 1 v'(u) = p. It follows that the microcanonical ensemble exhibits a
2q
continuous phase transition aslecreases from, = _2qu the unique equilibrium macrostgdor v = u,

bifurcating continuously into the distinct macrostates(”) (u) asw decreases from its maximum value.
This is rigorously true foy; = 3. Provided Conjecture4.1 is true, it is also true for 4, as one easily
checks using part (d) of Theordm$.2.

Before proving Theorefdn4.2, we introduce the microcandrangropy

s(u) = —inf{R(u|p) v EeP,—3(vv) = u} . (4.2)

As we will see in the next section, this function plays a calioble in the analysis of ensemble equivalence
and nonequivalence for the Curie-Weiss-Potts model. SingeR(v|p) for all v € P, s(u) € [—o0,0]

for all «, and sinceR(v|p) > R(p|p) = 0 for all v # p, s attains its maximum of 0 at the unique value

—5; = —3(p: ).

The domaln ofs is defined by doms = {u € IR : s(u) > —oo}. SinceR(v|p) < oo forall v € P,

doms equals the range dff (v) = —%(y, v) on P, which is the interva(—1, —2—1(]] [Thm.Z2(@)]. As we
have seens(—zi) = 0. Foru € (— ,—2—1(1), according to parts (c)—(d) of Theordml4:2 consists of the

unique vecton/(l)(u) modulo permutations. Since for= 2,3,...,q, R(v®(u)|p) = RO (u)|p), we
conclude that

s(u) = =R (u)|p) = —a(u) log(g a(u)) — (g — 1)b(u) log(g b(u)).

Finally, foru = —%, modulo permutation§* consists of the unique vect¢t, 0, ..., 0) [see [4Y)], and so
s(—1) = —R((1,0,...,0)|p) = —log q. The resulting formulas fos(«) are recorded in the next theorem,
where we distinguish between= 3 andq > 4.

Theorem 4.3. We define the microcanonical entrop@u) in @3). The following conclusions hold.

(@) doms = [—3, —5.]; for anyu € doms, u # —5-, 5(u) < s(—5;) = 0;ands(—3) = —logg.
(b) Letq = 3. Then foru € (-1, %) = (—%,—%)
s(u) = R log(l +1/2(—6u — 1)) (4.3)
C2- (—6u— 1) log<2— 2(—6u — 1)) .
3 2
(c) Letg > 4 and assume that ConjectU#lis valid. Then foru € (—3, —5.)
s) = - 1 Vla- 1(1)(—2qu — U log<1 + /(g — 1)(—2qu — 1)> (4.4)

T VA U G Z Y 10g<q— - Vg =T)(=2qu - 1)) .

q q—1



We now turn to the proof of Theorelli#.2, which gives the forng'6f We start by proving part (a). The
set&" of microcanonical equilibrium macrostates consists ofall P that minimize the relative entropy
R(v|p) subject to the constraint that

H(v) = —%(V,V> = u.

Letu = —%rz. SinceP consists of all nonnegative vectorsikf satisfyingv, +- - -+ v, = 1, the constraint
set in the minimization problem definirgl* is given by

q q
C(u) = C(~4r?) = {uequ Vi >0, >0, Y vy =1, va=r2}- (4.5)
j=1 j=1

Geometrically,C(—%rz) is the intersection of the nonnegative orthantk, the hyperplane consisting of
v € IR? that satisfyr, + --- + v, = 1, and the hypersphere i? with center 0 and radius. Clearly,
C(u) # 0 if and only if u lies in the range of the energy representation funcfitiyv) = —1(v,v) onP.
Becausd) < R(v|p) < oo forall v € C(u), the range of onP also equals the set affor which £* # 0.
The geometric description @f (z) makes it straightforward to determine those values &r which
this constraint set is nonempty. The smallest value &dr which C(—3r?) # 0 is obtained when the
hypersphere of radius is tangent to the hyperplane, the point of tangency beinrg (q rIRRRE q) the

closest probability vector to the origin. The hyperspherd the hyperplane are tangent when= ﬁ
which coincides with the distance from the center of the hyjpieere to the hyperplane. It follows that the

largest value of: for which C(u) # 0, and thus™ # 0, isu = —1r* = —2—1(1. In this case

Cl-£)={pt ={(}, L.y =¢72. (4.6)

For all sufficiently large-, C (—%73) is empty because the hypersphere of radihas empty intersection
with the intersection of the hyperplane and the nonnegatitheant of[R?. The largest value far for which
this does not occur is found by subtracting the two equatitaising the hyperplane and the hypersphere.
Since eachy; € [0, 1], it follows that

vi(1 — 1) —1—7‘2

1 M@

and this in turn implies that?> < 1. Thusr = 1 is the largest value for for which C(—1r?) ;é 0. We
conclude that the smallest valuewfor which C(u) # 0, and thus€® # 0, isu = —3r? = —3. The set

£-% consists of the points at which the hyperplane interseatls efthe positive coordinate axes; i.e.,

&2 ={(1,0,...,0),(0,1,...,0),...,(0,0,..., 1)} 4.7)

This completes the proof of part (a) of Theoremd 4.2.
We now determine the forrf* as specified in parts (b)—(d) of Theoréml4.2. Part (b) considay

¢ > 3 and the valuess = —5. andu = —3, part (¢)¢ = 3 andu € (—3, —3;), and part (dy > 4 and
u € (-3, —2—1(1). Part (b) has already been proved; foe —21—q andu = —1, the setsC" are given in[Zb)
and [47).

We now considey > 3 andu € (—%, —2—1(1). Forv € P define



By definitionv = (v1,...,v,) € £ if and only if v minimizesR(v|p) = 3=9_, v; log(qv;) subject to the
constraintsk (v) = 1, H(v) = u,andv; > 0,...,v, > 0. Foru € (-3, —5-) we divide into two parts the
calculation of the form of € £*. First we use Lagrange multipliers to solve the constram@dmization
problem whens; > 0,...,11 > 0. Then we argue that the vectardound via Lagrange multipliers solve
the original constrained minimization problem whan> 0, ...,v, > 0.

We introduce Lagrange multiplierg and A. Any critical point of R(v|p) subject to the constraints
K(v) =1, H(v) = u,andv; > 0,15 >0,...,v, > 0 satisfies

VR(v|p) = yVK(v) + \VH(v)
Kv)=1

Hv)=u
vi>0forj=1,2,...,q

This system of equations is equivalent to

l—l—log(quj):7+)\1/j forj=1,2,....,¢q

1d 2 (4.8)
T3 2= 1Vj =Uu

vi>0forj=1,2,...,q

By properties of the logarithm, the first equation can hawaagt two solutions. Hence modulo permuta-
tions, there exista € {0,1,...,q} and distinct numbers,b € (0, 1) such that the first components of
any critical pointv all equala and the last —n components of all equalb. The second and third equations
in (@.8) take the form

na+ (¢ —n)b=1 and na® + (¢ — n)b*> = —2u. (4.9)
If n = 0, thenb = £, while if n = ¢, thena = ;. Both cases correspond to= (3, ..., 1) = p and
u = —5-, which does not lie in the open mter\,(alr— ——) currently under consideration.
We now considet <n < g — 1. Inthis case the two solutions &f8.9) are
n—/n(q —2qu —1 —n+vn(@g—n)(—2qu—1
an(n) = vn( =1 =1 vilg —n)(=2qu —1) (4.10)
ng (¢ —n)q
and
n+v/n(g—n)(—2qu —1 qg—n—+/n —2qu —1
aa(n) = vilg —n)(=2qu —1) by (1) — Vnlg —n)(=2qu — 1) (4.11)
ng (@q—n)q

Sinceu € (-3, —3-), these quantities are all well defined andn) # b;(n) providedu < —..
We now specialize tq = 3, the case considered in part (c) of Theolen 4.2. When3, the interval
(—3»—2;) equals(—3, —), and we have: € {1,2}. Equations[[£10) andTZ1L1) take the form

29
n—+/n(3 —6u — 1)

3—n+y/n(3—n)(—6u—1)

a(n) = 3n bl = 3(3—n)
and
a2(n):n—|—\/n(3—3:)(—6u—l)’ ba(n) = —n—\/g(g_n) 6u—1)

Any critical pointv either has: components equal t@, (n) andg — n components equal t@ (n) or hasn
components equal i@, (n) andg — n components equal @ (n).
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Modulo permutations, the value= 1 corresponds to

v =(a1(1),b1(1),b1(1)) or v = (az(1),b2(1),b2(1)),

and the value: = 2 corresponds to
v="(a1(2),a1(2),b1(2)) or v = (a2(2),a2(2),b2(2)).
Forj € {1,2}, one easily checks that
aj(1) =bs—;(2) and a;(2) = bs—;(1).

Thus, modulo permutatiofia;(1),b1(1),01(1)) = (a2(2),a2(2),b2(2)) and (a2(1),b2(1),b2(1)) =
(a1(2),a1(2),b1(2)), and so modulo permutations,= 1 andn = 2 yield the same points. This shows that
it suffices to consider only the case= 1. Since for allu € (—3, —#)

R((ag(1),b2(1),02(1)) | p) < R((a1(1),b1(1),b1(1))) | p),

we conclude that modulo permutation= (a2(1), b2(1), b2(1)) is the unique minimizer ofRR(v|p) subject
to the constraints< (1) = 1, H(v) = u, andv; > 0,15 > 0,3 > 0.

We now prove foly = 3 that the minimizers found via Lagrange multipliers whern> 0,15 > 0,v3 >
0 also minimizeR(v|p) subject to the constraint& (v) = 1, H(v) = u, andv; > 0,15 > 0,3 > 0. If
v = (11,19, v3) satisfies the constraints and has two components equaldpthen modulo permutations
v = (1,0,0) andF (v) = u = —3, which does not lie in the open intervg+3, —1) currently under
consideration. Thus we only have to consider the case whdras one component equal to zero; i.e,
v = (0, ag, bg) with ag > bg. In this case the second and third equation§id (4.8) havedio¢ion

1+v—4u—-1 b 1—+v—4u—1
= , U0 = .

@0 2 2

We now claim that modulo permutations the unique minimiZeR@-(p) subject to the constraints (v) =
1, Hv) = u, andv; > 0,v5 > 0,v3 > 0 has the form(ax(1),b2(1),b2(1)) found in the preceding
paragraph. The claim follows from the calculation

R((a(1),b2(1),02(1)) | p) < R((0,a0,b0)|p),

which is valid for allu € (—%, —%). This completes the proof of part (c) of Theorem 4.2, whiclegithe
formof v € €% forg = 3 andu € (—3,—1).

We now turn to part (d) of Theorem 4.2, which gives the forntéffor ¢ > 4 andu € (—%, —i).
If, as in the casg = 3, we knew that modulo permutations, the minimizers have th@f{a,b,...,b) as
specified in Conjecture4.1, then as in the case3 we would be able to derive explicit formulas for these
minimizers. If Conjectur€4l1 is true, then it is easily fied that modulo permutation§ consists of the
unique point = (as(1),b2(1), ..., b2(1)), whereas(1) andby (1) are defined in(Z11) for € (—3, —5.)-
This gives part (d) of Theorem3.2. The proof of the theoregoimplete.

At the end of Section 6 we will see that there exists an expliaiue ofuy € (—%, —2—1q) such that
Conjecturd 411 is valid for any > 4 and allu € (—%,uo]. Hence for these values af the form of

v € &* given in part (d) of Theorein 4.2 and the formula f¢t:) given in part (c) of Theoreiin 4.3 are both
rigorously true.
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V. EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

As we saw in Section 3, the s€ of canonical equilibrium macrostates undergoes a discootis

phase transition g8 increases through,. = % log(q — 1), the uniqgue macrostajebifurcating discon-
tinuously into they distinct macrostates”) (5). By contrast, as we saw in Section 4, the &&tof micro-
canonical equilibrium macrostates undergoes a continpbase transition as decreases from, = —%,
the unique macrostajebifurcating continuously into the distinct macrostates(® (). The different con-
tinuity properties of these phase transitions shows ajré@at the canonical and microcanonical ensembles
are nonequivalent. In this section we study this noneqgaivae in detail and relate the equivalence and
nonequivalence of these two sets of equilibrium macrostateoncavity and support properties of the mi-
crocanonical entropy defined in[[4R). This is done with the help of Figure 2, whislbased on the form
of s in Figure 1 and on the results on ensemble equivalence arajoalence in Theorem™.1. In Figures
3 and 4 at the end of the section we give, jo= 3, a beautiful geometric representationégfand&™ that
also shows the ensemble nonequivalence for a range of

We start by stating in Theorel’.1 results on ensemble dgoiva and nonequivalence for the Curie-
Weiss-Potts model. Analogous results are derived in Tieerk4, 4.6, and 4.8 in [115] for a wide range of
statistical mechanical models, of which the Curie-Weis#sPmodel is a special case. Ror doms the
possible relationships betweéf and&s, given in part (a) of Theoren 3.1, are that either the ensesrdnle
fully equivalent, partially equivalent, or nonequivaleBince by part (b) canonical equilibrium macrostates
are always realized microcanonically and since, by paftiifa)microcanonical equilibrium macrostates
are in general not realized canonically, it follows that thierocanonical ensemble is the richer of the two
ensembles.

Theorem 5.1. We defines by @2)and s and £ by (2.3) and (Z4). The following conclusions hold.
(a) For fixedu € doms one of the following three possibilities occurs.
(i) Full equivalence. There existg} € IR such that€" = £3. This is the case if and only fhas a
strictly supporting line at with slopeg; i.e.,

s(v) < s(u) + (v —wu) forall v # u.

(i) Partial equivalence. There exist$} € IR such that€" C £z but&™ # £3. This is the case if
and only ifs has a nonstrictly supporting line atwith slopeg; i.e.,

s(v) < s(u) + (v —u) forall v € IR with equality for some # w.

(i) Nonequivalence. Forall 3 € IR, £* N &z = (). This is the case if and only ¥ has no
supporting line ats; i.e., for anys € IR there exists such thats(v) > s(u) + B(v — u).
(b) Canonical isalwaysrealized microcanonically. For v € P we definel (v) = —%(u, v). Then for
anyg € IR

&= |J &
ueﬁ(é'/g)

We next relate ensemble equivalence and nonequivalenbecwritcavity and support properties ©in
the Curie-Weiss-Potts model. Fgr= 3 an explicit formula fors is given in part (b) of Theorein4.3. If
Conjecturd4l1 is true, then the formula fogiven in part (c) of Theorem4.3 is also valid fp> 4. All the
concavity and support features ofire exhibited in Figure 1. However, this figure is not the alcgraph
of s but a schematic graph that accentuates the shaptogether with the intervals of strict concavity and
nonconcavity ofs.
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u

FIG. 1: Schematic graph &{w), showing the sef’ = (—%, up) U {—2—{1} of full ensemble equivalence, the singleton
setP = {uo} of partial equivalence, and the sBt= (uo, —ﬁ) of nonequivalence. Far € F U P = (—1,ug] U

{=13}, s(u) = s**(u); foru € N, s(u) < s**(u) and the graph of** consists of the dotted line segment with slope
fc. The slope of at—1 is cc.

Concavity properties of are defined in reference to the double-Legendre-Fenchedftnans**, which
can be characterized as the smallest concave, upper seémimrs function that satisfies™(u) > s(u)
forall w € IR [10, Prop. A.2]. Foru € doms we say thats is concave at if s(u) = s**(u) and thats is
not concave at: if s(u) < s**(u). Also, we say that is strictly concave at. € doms if s has a strictly
supporting line at, and thats is strictly concave on a convex subséiof doms if s is strictly concave at
eachu € A.

According to Figure 1 and Theordmb.1, there exigts (—%, —%) with the following properties.

e s s strictly concave on the interval-3, uo) and at the point-.. Hence foru € F = (—3,ug) U
{—2—1q} the ensembles are fully equivalent [THILI5.1(a)()]. Intfdor u € (—3,uo), £* = &z with
3 given by the thermodynamic formula= s'(u).

e sis concave but not strictly concavewtand has a nonstrictly supporting linewgtthat also touches
the graph ofs over the right hand endpoim%q. Hence foru = ug the ensembles are partially
equivalent in the sense that there exjsts IR such that€* C 3 but&® # 5 [Thm.[BA(a)(ii)]. In
fact, 3 equals the critical inverse temperatutedefined in[[311).

e s is not concave on the intervdd = (uy, —2—1(]) and has no supporting line at amye N [10,
Thm. A.4(c)]. Hence for: € N the ensembles are nonequivalent in the sense that for alllR,
&' N &g = 0 [Thm.BA(a)(iii)].

We point out two additional features of Figure 1. First, altgh&" # () for u equal to the right hand
endpoint—% of doms, we do not include this point in the sét of full ensemble equivalence. Indeed,
is not strictly concave afe% because there is no strictly supporting IineLa}; as one can see in(5.1), the
slope ofs at—% is co. Nevertheless, by introducing the limiting set

500:{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)}zﬁhm Es,

we can extend full ensemble equivalence:te: —31 since€ ™% = &,

Second, for in the interval N of ensemble nonequivalence, the graplts'dfis affine; this is depicted
by the dotted line segment in Figure 1. The slope of the affarégn of the graph o8** equals the critical
inverse temperaturg. defined in[(31). This can be proved using concave-dualitiomships involving
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FIG. 2: Forq = 8 the top right plot showss, the top left plot the graph of (u) for v € doms = [ug, uc] =

[—%7 —ﬁ], and the bottom left plaf“. The discontinuous phase transitiongatin the top right plot and the continu-

ous phase transition at. in the bottom left plot imply that the ensembles are nonegeivt for allu € N = (ug, u.).
On this intervals is not concave ang** is affine with slopes.. The shaded area in the bottom left plot corresponds

to the region of nonequivalence of ensembles delineateddyV.

s** and the canonical free energy. The quantityalso satisfies an equal-area property, first observed by
Maxwell [28, p. 45] and explained in the context of anothenspodel in [18, p. 535].

The relationships stated in the three bulleted items aboxes \@aluable insight into equivalence and
nonequivalence of ensembles in the Curie-Weiss-Potts mdtese relationships are illustrated in Figure
2. In this figure we exhibit the graph ef and the set§z and£* in order to compare the phase transitions
in the two ensembles and to understand the implicationsrfeemble equivalence and nonequivalence. In
order to accentuate propertiessgf€s, andE" that are related to ensemble equivalence and nonequiealenc
we focus ong = 8. In presenting the graph of and the form o£“, we assume that fay = 8 Conjecture
7 is valid. We then appeal to part (c) of Theorem 4.3, whigkegan explicit formula fos, and to part
(d) of Theoren412, which gives an explicit formula for therakents of£“. The derivatives’, graphed in
the top left plot in Figure 2, is given by

s'(u) = _az1 [log<1 + \/(q —1)(—2qu —1) > —log <1 o )Pt )] . (5.1)

—2qu — 1 qg—1

The canonical phase diagram, given in the top right plot gufé 2, summarizes the description&f
given in Theoreni_3]1 and shows the discontinuous phaseiticenexhibited by this ensemble & =
% log(q — 1) = glog 7. The solid line in this plot for3 < (. represents the common valée)f each
of the components g, which is the unigque phase fgr < 5.. For > [, there are eight phases given
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by v!(3) together with the vectors’(3) obtained by interchanging the first aith components of*(3).
Finally, for 3 = 3. there are nine phases consistingpadnd the vectors(3,) fori = 1,2,...,8. The
solid and dashed curves in the top right plot in Figure 2 shmirst component and the last seven, equal
components of}(3) for 3 € [B.,00). The first component is a strictly increasing function ecjoa}

for 8 = (. and increasing td as3 — oo while the last seven, equal components are strictly deioigas
functions equal tcg—(). for 5 = . and decreasing t©as( — oc.

The microcanonical phase diagram, given in the bottom leftip Figure 2, summarizes the description
of £* given in Theoreniz4]2 and shows the continuous phase tr@mstihibited by this ensemble as
decreases from the maximum valug = —% = —L. The single phase for u = — - is represented
by the point lying over this value af. Foru € [—%, —%) there are eight phases given bY(u) together
with the vectorsv(u) obtained by interchanging the first anith components of!(u). The solid and
dashed curves in the bottom left plot in Figure 2 show the fisshponent(u) and the last seven, equal
components(u) of v (u) for u € [, —%). The first component is a strictly increasing function-ai
equal toé foru = —% and increasing to 1 as — —%, while the last seven, equal components are strictly
decreasing functions efu equal tog for u = —+ and decreasing to 0 as— —3.

The different nature of the two phase transitions — discamus in the canonical ensemble versus
continuous in the microcanonical ensemble — implies thatwo ensembles are not fully equivalent for all
values ofu. By necessity, the s&l; of canonical equilibrium macrostates must omit a set of auanonical
equilibrium macrostates. Further details concerning mie equivalence and nonequivalence can be seen
by examining the graph of, given in the top left plot of Figure 2. This graph, which ig tridge between
the canonical and microcanonical phase diagrams, shows fhatrictly decreasing on the interval iRt=
(—%,uo), which is the interior of the sef’ of full ensemble equivalence. The critical valdgequals the
slope of the affine portion of the graph of over the intervalV = (uy, —2i) of ensemble nonequivalence.
This affine portion is represented in the top left plot of Fay by the horizontal dashed line &t

Figure 2 exhibits the full equivalence of ensembles thattiébru € int F' = (—%,uo) [Thm.[E2(a)].
For v in this interval the solid and dashed curves representiagtimponents of'(u) € £ can be put
in one-to-one correspondence with the solid and dasheddsuepresenting the same two components of
vi(B) € &z for B € (Be,00). The values ofu and 8 are related by’(u) = 3. Full equivalence of
ensembles also holds far= —2—1q € F, the right-hand endpoint of the interval on whiglis finite. The
solid vertical line in the top right plot fop < f., which represents the unique phasds collapsed to

the single point representing the unique phager v = —% in the bottom left plot. This collapse shows

that the canonical notion of temperature is somewhat fiked atu = —% since loweringG down to 53,
changes neither the equilibrium macrostateor the associated mean enekgyThis feature of the Curie-
Weiss-Potts model is not present, for example, in the medahBlume-Emery-Griffiths spin model, which
also exhibits nonequivalence of ensembles [18].

By comparing the top right and bottom left plots, we see thatdlements of“ cease to be related to
those ofEs for u € N = (uo, —ﬁ), which is the interval on which is not concave. For any mean-energy
valuew in this interval nov € £3 exists that can be put in correspondence with an equivatgnlierium
empirical vector contained ifi“. Thus, although the equilibrium macrostates correspanttine € N are
characterized by a well defined value of the mean energyinitpsssible to assign an inverse temperattire
to those macrostates from the viewpoint of the canonicambge. In other words, the canonical ensemble
is blind to all mean-energy valuescontained in the intervalV of nonconcavity ok. This is closely related
to the presence of the discontinuous phase transition sgbe icanonical ensemble.

The quantityu, defined in [&R) plays a central role in the analysis of pheseasitions and ensemble
equivalence in the Curie-Weiss-Potts model. First, as wesaur discussion of Figure 1,y separates the
interval(—%,uo) of full ensemble equivalence from the intervab, —2—1q) of nonequivalence. Second, part
(a) of LemmdGlL shows thaty equals the limiting mean enerdy (v (3.)) in the canonical equilibrium
macrostate/' (3) as3 — (8.)*. In Figures 3 and 4 we present fgr= 3 a third, geometric interpretation
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FIG. 3: Graphical representation of the gtof canonical equilibrium macrostates f@e= 3 showing the maximal
circle of intersection corresponding t0 = ug; the vectorp; the unit-coordinate vectord, B, andC; and the
macrostatest. = v'(8.), B. = v*(.), andC. = v*(3.). The line segmentd A, B.B, andC.C represent the
elements o€ for 5 > ..

of ug that is also related to nonequivalence of ensembles.

Before explaining this third, geometric interpretation «af, we recall that according to part (a) of
TheoremZR.£" is nonempty, or equivalently the constraint set[in](4.5) amempty, if and only if
u € [—%,—%} = [~4,—1]. Geometrically, the energy constraifft(v) = —1(v,v) = u corresponds
to the sphere idR? with center 0 and radiug’/—2u. This sphere intersects the §eof probability vectors
if and only if u € [—-3,—%]. Foru = —£, the sphere is tangent ® at the unique poinp while for
u = —%, the hypersphere intersed®sat theq unit-coordinate vectors. The intersection of the spherk an
P undergoes a phase transitionugtin the following sense. Fai € [ug, —%) the sphere intersecf8 in a
circle while foru e [—%, ug), the sphere intersecf® in a proper subset of a circle; the complement of this
subset lies outside the nonnegative octani3f Foru = vy = —i, the circle of intersection is maximal
and is tangent to the boundary Bf

The set€; of canonical equilibrium macrostates fpr= 3 is represented in Figure 3. In this figure the
maximal circle of intersection correspondingu®o= uy = —% is shown together with the vecterat its
center; the points4, B, andC' representing the respective unit-coordinate vectors, 0), (0, 1,0), and
(0,0, 1); and the pointsi., B., andC, representing the respective equilibrium macrostat¢s,), v%(3.),
andr?(,.). These three macrostates lie on the maximal circle of iatgien sinced (v'(3,)) = ug [Lem.
B(b)]. Fors > 5. all v € £3 have two equal components, and@s- oo these vectors converge to the
unit-coordinate vectorsi, B, andC. Hence forg > j. the equilibrium macrostates'(3), v*(3), and
v3(3) are represented by the open line segmehtd, B.B, andC.C.

The set€" of microcanonical equilibrium macrostates fo& 3 is represented in Figure 4. In this figure
the maximal circle of intersection correspondinguto= 1y = —i is shown together with the vectar
at its center; the pointd, B, andC representing the unit-coordinate vectors; and the polgisB,, and
Cy representing the respective equilibrium macrostatés,), v2(uo), andv3(ug). Foru € (—3,—3)
all v € &* have two equal components, andwas— —% they converge to the unit coordinate vecters
B, andC'. Hence foru e (—%, —%) the equilibrium macrostates' (u), v?(u), andv?(u) are represented
by the open line segmentsd, pB, andpC. As we saw in the preceding section, for eack (—3,—3)
the macrostates (u), v?(u), andv3(u) lie on the intersection of the sphere of radigs-2u with P. In
particular,Ag = v'(ug), By = v?(ug), andCy = v3(ug) lie on the maximal circle of intersection.

The distinguishing feature of Figure 4 is the three open @ddine segmentp Ay, pBy, and pCy
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FIG. 4: Graphical representation of the $&t of microcanonical equilibrium macrostates fpr= 3 showing the
maximal circle of intersection correspondingito= wg; the vectorp ; the unit-coordinate vectord, B, andC’; and
the macrostatedy = v'(up), Bo = v*(ug), andCy = v3(ug). The solid-line segmentdyA4, BoB, andCyC
represent the elements 6f that are realized canonically. The dashed-line segmefis pB,, andpC| represent
the elements of“ that are not realized canonically.

representing the elements &f that are not realized canonically; namety,(u), v?(u), andv3(u) for
u € (up, —%). The three half open solid-line segmentgA, By B, andCyC represent the elements &
that are realized canonically; namel,(u), v2(u), andv3(u) for u € (—3,uo]. For each such the value
of g for which&* = &3 is determined by the equatidd(v!(3)) = « [Thm.[E2(a)]. Thus in Figure 3 the
corresponding elements 8§ lie on the intersection of the sphere of radigs-2u andP.

This completes our discussion of equivalence and nonelguiz@ of ensembles. In the next section we
will prove a number of statements concerning ensemble alpunge and nonequivalence that have been
determined graphically.

VI. PROOFSOF EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

Using the general results of [15], we stated in the precesé@ugion the equivalence and nonequivalence
relationships that exist betweelt and&z and verified these relationships using the plots of thesefeet
g = 8 given in Figure 2. Our purpose in the present section is teeptbese relationships using mapping
properties of the mean energy functio(3) defined forg +# [, by

{{(p)l = _é for B < Be, (61)

" ):{Hw (8) = ~${v' (8).v'(8) for 3> .

Herev!(3) is the unique canonical equilibrium macrostate modulo peations for3 > 3, [Thm.[31].
According to the next lemma, fg8 > 3., u(8) is continuous and strictly decreasing am@) < —%,
which equals the mean energy fér< .. It follows that ass increases through., «(3) is discontinuous,
jumping down from—2lq to H(v'(/3)). This discontinuity in:(3) mirrors in a natural way the discontinuity

in £3 asf3 increases through..

Lemma6.1. For 3 € 3., c0) we define/!(3) as in part(b) of TheorenBand we define

_ —¢*+3q—3

0T Tl —1) (©.2)
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The following conclusions hold. .
(a) —% <ug < —2—1q andlimﬁﬁ(ﬁcﬁ u(ﬁ) = H(I/l (ﬁc)) = ugp.
(b) The function mapping

B € (Bey00) = u(f) = HW(B)) = =51 (8), v (8))
is a strictly decreasing, differentiable bijection ontcetimterval(—%, up).

Proof. (a) The inequalities involvingy, follow immediately from the inequality; > 3. The rela-

tionship H (v1(8.)) = uy is easily determined using the explicit form of(3.) given in [3B). That

limg_,(5,)+ u(B) = H(v'(5.)) follows from the definition of.(3) and the continuity of! (3) for 8 > £..
(b) For3 € (8., 00) we use the formula for! (3) given in part (b) of Theoreidi3.1 to calculate

1 ([1 + (¢ — Dw(B)]” [1- w(ﬁ)P) .

u(ﬁ) = _5 q2 + (q - 1) (]2

Sincew(3) is positive, strictly increasing, and differentiable foe (5., o) [Thm.[3(a)] and since
(¢ — Dw(B)uw'(B)
q

u(p) is strictly decreasing fof € (3., 00). In addition, sincdimg_.., w(5) = 1 [Thm.[3A(a)], we have
limg_oo u(f) = —%, and by part (a) of this lemma

u(B) = — <0 for B € (B, o0),

lim w = lim f{I/C:’LL.
s ulB) =l HEAB)) = o

It follows that the function mapping € (5., ) — u(3) is a strictly decreasing, differentiable bijection

onto the interva(—%, —%uo). This completes the proof of part (H.

Mapping properties ofi(3) play an important role in the next theorem, in which we prdw the sets
F, P, and N defined in [&B) correspond to full equivalence, partialiegjence, and nonequivalence of
ensembles. For € F' we consider three subcases in order to indicate the valgefaf which £ = £g;
foru e intF = (—%,ug), B andu are related by = s'(u) andu = u(3). Part (c) shows an interesting
degeneracy in the equivalence-of-ensemble picture, th&“séor v = —2—1q corresponding to alEz for
B < B.. This is related to the fact that for all such valuesip€sz = {p} and thus the mean energy?3)
equals—..

Theorem 6.2. We defines(u) in @3), v(3) in @), &5 in @3), and&* in Z.4). We also defing, in @)
andug in &3). The sets

F= (_%7’“0) U {_2_1(1}7 P = {u0}7 andN = (_%u(]»_%) (63)
have the following properties.

(a) Full equivalenceonint F'. Foru € intF = (—%,uo), there exists a uniqug € (3., o) such that
EU = E; B satisfiesu(B) = H(v(B)) = u.

(b)Foru € intF = (—%,uo), s is differentiable. The valuesandj for which&" = £3 in part (a) are
also related by the thermodynamic formulgu) = 3.

(c) Full equivalence at —%. Foru=—5 €F, £ = &g forany 8 < ..

(d) Partial equivalenceon P. Foru € P = {ug}, £ C £, butE¥ # E3 . Infact,E5, = guoUE %,
(e)Nonequivalenceon N. For anyu € N = (ug, =), £* N €z = B forall § € IR.
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In reference to the properties efgiven in part (b), one can show that the function mapping
(—3%,up) — s'(u) is a strictly decreasing, differentiable bijection onte thterval (3., o) and that this
bijection is the inverse of the bijection mappifige (5., 00) — u(3).

Before we prove the theorem, it is instructive to comparastertions with those in Theoré€ml5.1, which
formulates ensemble equivalence and nonequivalencenrstef support properties of These support
properties can be seen in the schematic plot of the the griphiroFigure 1. We start with part (a) of
TheorenT&R, which states that for amye int F' = (—3,ug) there exists a uniqué € (3., co) such that
&* = &z. As promised in part (a)(i) of Theorelnb.1, thiss the slope of a strictly supporting line to the
graph ofs atu. The situation that holds when= —2—1q [Thm. [E2(c)] is also consistent with part (a)(i) of
TheorenTGll. For this value af, which is the isolated point of the sét of full equivalence, there exist
infinitely many strictly supporting lines to the graphspthe possible slopes of which are gl (—co, 5.).
On the other hand, when= uq, which is the only value lying in the sét of partial equivalence, we have
v C &g, but&ve # E5 [Thm.[&2(d)]. In combination with part (a)(ii) of Theordmlb it foIIows that
there exists a nonstrictly suppporting linewatvith slope .. Finally, foru € N = (ug, — we have
E'Nnéz = P forall g € R[Thm.[B2(e)]. In accordance with part (a)(iii) of Theord-ﬁ]Ss has no
supporting line at any € N, and by Theorem A.4 irn[1Q{ is not concave at any € V.

Proof of TheoremB2. (a) Fors > 3. part (b) of Theorerfiz3l1 and part (b) of Theorem 5.1 imply that
E={B), ... 0B)}= |J &

UGH(gﬁ)
The symmetry off7 with respect to permutations implies thd{(£s) = {H (v*(8))}. Thus for any3 > j.
Eg = EH0O), (6.4)

Since for anyu € int F' = (—3,ug) there exists a uniqué € (3, co) satisfyingu(3) = H(v'(3)) = u
[Lem.[&(b)], it follows thatt” = &g.

(b) According to part (b) of Theoreln 6.3, is differentiable at allx € int F. Sinces = s* in a
neighborhood of each sueh part (a) of Theorem A.3 in.[10] implies that(u) = 3.

(c) By (@.8) and part (b) of Theorein'8.1

S_ﬁ = {p} = &3 foranyp < g.. (6.5)
(d) By part (b) of Theoreri 311, symmetry, and part (a) of Leriiih
H(Ep,) = {H(p), HW' (B))} = {—; uo}-
Hence by[[6K) and(8.5)

E,= |J e =cmugm = {pjuc®.
UGg(gﬁc)

However,p ¢ £% sincep does not satisfy the constraiff(p) = uo. It follows thatE“ c &, but that

o £ &g . )
(e)lfueN, thenu ¢ (— ,uo), and so by part (a) of Lemnia®ul# H (v (3)) for any 8 € (B, o).
Since by [B¥E; = (ﬁ)) for all 3 > ., it follows that for all3 > 3,

gvn el ®) =g

and thus that" N &g = (0. For anyg < (. @3) states thafz = £ = {p}. Sinceu € N, we have
u # —2—1q and thus&‘ﬁ NEY = (. Itfollows that€* N &z = O for any 5 < B.. Finally, for 5 = g,
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part (b) of Theoreri31 states tt&y, = {p,v'(8.), ..., »(6.)}. However, since (p) = —5- ¢ N and

H(v'(8.)) = uo ¢ N, none of the vectors ifis, satisfies the constraiti (v) = u . Thus€* N &3, = 0.
We have proved™ N &z = () for all 5 € IR. The proof of the theorem is completl

We end this section by showing that for arbitrary 4 andw in the equivalence sefsUP = (—%, up|U
{—%} the formulas for€* and s(u) given in part (d) of Theorerh 4.2 and part (c) of Theorlen 4.3 are
rigorously true. Our strategy is to use the equivalence efntlicrocanonical and canonical ensembles for
u € F'UP and the fact that the form &3 is known exactly for al3. Thus, we translate the form ofc &3,
as given in part (b) of Theorefi8.1, into the formwo& £" for u € F U P. For3 € 3., ), the lasty — 1
components of!(3) € £z are given by

o) = =20, ©6)
q
and these components are not equal to the first componege Bireach: € FUP there exists$ € [(., o]
such that eithe€" = £z or £ C &g, it follows that modulo permutations all € £* have their lasty — 1
components equal to each other. That is, modulo permugatfere exist numbers andb in [0, 1] such
thaty = (a,b,...,b). The possible values af andb are easily determined by considering the constraints
satisfied by € £%. These constraints are

a+(g—1)b=1 and a® + (¢ — 1)b* = —2u.
The two solutions of these equations are

_1-Ve-D(R2qu-1) g—1+V(g-1)(=2qu 1)
q o (q—1)q

ai

and

gy V- D(2qu-1)  _g—1-(g—-1)(-2qu—1)
’ q e (¢—1)q '

Of the two value$; andb,, only by has the form given i {616) with

Vig—1)(=2qu—1)
qg—1

w(f) =

€ [0,1].

We conclude that modulo permutations eack £" has the form(as, bo, . .., b2), in which the lasy — 1
components all equab. This coincides with the formula far' () given in part (d) of Theoref 4.2, which
in turn gives the explicit formula fog(u) in part (c) of Theoreni’4l3. This information is summarized in
part (a) of the next theorem. The differentiability ©bn int F', which is stated in part (b), is an immediate
consequence of the explicit formula fefu).

Theorem 6.3. We definey in (&2). The following conclusions hold.

(a) For arbitrary ¢ > 4 andu in the equivalence sef8 U P = (—3, uo] U {—2—1(]} the formulas forg
ands(u) given in part(d) of Theoren.d and part(c) of Theoren#.3 are rigorously true.

(b) For arbitrary ¢ > 4, s is differentiable on the intervaht F' = (—%, ug) ands’(u) is given by(B.1).
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APPENDIX A: TWO RELATED MAXIMIZATION PROBLEMS

TheorenAL is a new result on the maximum points of certaictions related by convex duality. It is
formulated for a finite, differentiable, convex functiéhon IR° and its Legendre-Fenchel transform

F'(2) = sup {(2.2) ~ F(x)}.

With only minor changes in notation the theorem is also vhdida finite, Gateaux-differentiable, convex
function on a Hilbert space.

TheorenT AL will be applied in Appendix B to prove that for> 0, £ has the form given in part (b)
of Theoren31L. Another application of Theor€mlA.1 is giverProposition 3.4 in[17]. It is used there
to determine the form of the set of canonical equilibrium roatates for another important spin system
known as the mean-field Blume-Emery-Griffiths model.

Theorem A.1. Leto be a positive integer and’ a finite, differentiable, convex function mappifitf into

IR. Assume thatup, . o {F'(z) — 5|2||*} < oo and thatF(z) — || 2||? attains its supremum. The following
conclusions hold.

(@) sup {F(2) — 3llz?} = sup {3lz]* = F*(2)}.
z€IR° edomF*

z

(b) 1||z||> — F*(z) attains its supremum osom F*.

(c) The global maximum points &f(z) — 1| z(|* coincide with the global maximum points Hfz||> —
F*(z).

Proof. We define the subdifferential @f* atz, € IR’ by
OF*(z0) ={y € R° : F*(z) > F*(20) + (y,z — 20) forall z € IR?}.

We also define the domain ofF* to be the set of, € IR for which F*(zy) # (). The proof of the
theorem uses three properties of Legendre-Fenchel tramsfo

1. F* is a convex, lower semicontinuous function mappiRg into IR U {oc}, and for allz € IR?,
F*(z) = (F*)*(z) equalsF'(z) [14, Thm. V1.5.3(a),(e)].

2. If for somezy € IR” andz € IR° we havez = VF(z), thenF(zy) + F*(2) = (20, 2), and so
z € domF*. In particular, ifz = zg, thenzg € domF* and F(z) + F*(z0) = ||20]|?.

3. Forzg € domF* andy € 0F*(zy) we haveF' (y) + F*(z0) = (y, z0) [14, Thm. VI.5.3(c),(d)]. In
particular, ify = zg, thenF(z9) + F*(20) = ||20]|?.

We first prove part (a), which is a special case of Theorem €[13]. Let M = sup,cp-{F(z) —
|1z||?/2}. Since for any: € domF* andz in IR°

F*(2) + M > (z,2) = F(z) + M > (z,2) — |«|*/2,
we have
F(2) + M = sup {(z,2) l[1?/2} = 12117 /2.
It follows that M > ||z||?/2 — F*(z) and thus that\l > sup,cgomp~{l12]1?/2 — F*(2)}. To prove the
reverse inequality, IeN = sup,cgomp~{l/2]|?/2 — F*(2)}. Then for any: € IR° andz € domF*

1212/2 + N > (2, 2) = |2l?/2+ N > (z,2) = F*(a).
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SinceF*(z) = oo for x ¢ domF™, it follows from property 1 that

I21?/2+ N > sup {(z,2) - F*(2)} = F(2)

redomF*

and thus thatV > sup,¢ po {F(2) — ||2]|2/2}.

In order to prove parts (b) and (c) of TheorEmlA.1,4gtbe any point in[R° at which F'(z) — % | 2|2
attains its supremum. They = VF'(z;), and so by the last line of property 2, € domF* andF'(zy) +
F*(29) = ||20]|?. Part (a) now implies that

sup {F(2) = 51217} = F(20) — 3ll20]?
z€IR°

= sllzoll* = F*(20) = sup {z]lz[* = F*(2)}.

zedomF*

We conclude that ||z||? — F*(z) attains its supremum on doRf at zo. Not only have we proved part
(b), but also we have proved half of part (c); namely, any globaximizer of F'(z) — %Hsz is a global
maximizer of3||z||? — F*(z).

Now let zy be any point at whick||z||> — F*(z) attains its supremum. Then for amye R°

5(20,20) — F*(20) = 3(2,2) — F*(2).
It follows that for anyz € IR
F*(2) > F*(20) + %((z,z> —(20,20)) = F*(20) + (20,2 — 20)

and thus thaty, € 9F*(zp). By the last line of property 3 this implies th&(z) + F*(z) = ||z0]*>. In
conjunction with part (a) this in turn implies that

sup {3]l2[> = F*(2)} = gllzoll® — F*(20)

zedom

= F(20) — 5ll20l1> = sup {F(2) — 5/2(1*}.
z€IR°

We conclude that'(z) — %Hsz attains its supremum ap. This completes the proof of the theorenill

APPENDIX B: FORM OF &3

We first derive the form o€z for 3 > 0 as given in part (b) of Theorefn_B.1. We then prove that
Ez = {p} forall g <O0.
&3 is defined as the set of € P that minimizeR(v|p) — g(u, v). Sincef > 0, this is equivalent to

Ep = {u € P : v maximizes} (v, v) — %R(V’p)}. (B.1)
This maximization problem has the form of the right hand sitlpart (a) of Theorer’Al1; viz.,

1 1 1 2 *
sup 3 5(v,v R(vlp)r = su s||lv F* (v
VEP{Q( > B ( | )} zxedop *{QH H ( )}

with F*(v) = %R(V\p). Forz € IR? we define the finite, convex, continuous function

I'(z) = log( 7 e %) . (B.2)
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Since forv € IR? [14, Thm. VIII.2.2]

« _ ) R(vlp) forveP
(0" (v) = { 00 otherwise,

it follows that forz € R4

F(z) = sup {{z.v) = SR(vIp)} = sup {(02,v) = R(vlp)} = 3T(52).

Thus by part (a) of TheoremA.1

sup 1 +0(Bz) — L||z|2} = sup { (v, v) — LR(v ,

sup {57(52) = 3112/} = sup {30,v) — 3R(Ip)

and by part (b) of the theorem the global maximum points otwefunctions coincide.
Equation [B.]L) now implies that

£ = {z € R7: z maximizesT'(3z) — %Hz|]2}
— {z € R : z minimizesS | 2| — P(ﬁz)} .

We summarize this discussion in the following corollary.rth) of the corollary is proved in part (b) of
Theorem 2.1 inl[19].

Corollary B.1. We define the finite, convex, continuous funclian (B-2). The following conclusions hold.
(a) &3 coincides with the set of global minimum points of

q
Gp(z) = Sl1zI* —log Y~ e = J|lz||* — I'(82) — log q.
i=1

(b) For0 < 8 < 8., B = 3., and > j3. the set of global minimum points 6f; has the form given by
the right hand side ofZ2.4) [Thm B (b)]

Corollary[B-1 completes the proof of Theoréml3.1. Michaeddsling’s proof of this corollary based on
Lagrange multipliers is given in Appendix B of [20]. Contous analogues of the corollary are mentioned
in [32], [33], and [33], but are not proved there.

We now show that for alb < 0, £5 = {p}. This is obvious for? = 0 sincer = p is the unique vector
in P that minimizesR(v|p). Our goal is to prove that fof < 0, v = p is also the unique vector iR that
minimizesR(v|p) — §<u, v). Letw be a point inP at whichR(v|p) — §<u, v) attains its infimum. For any
1=1,2,...,q,

O(R(vp) - 5(v,v))
81/2‘

=logy; + 1 — Bu;,

which is negative for all sufficiently smadl; > 0. It follows that does not lie on the relative boundary
of P;i.e.,,v; > 0foralli =1,2,...,q. We complete the proof by showing that for ahy< j < £ < g,
v; = i, Sincep is the only point inP satisfying these equalities, we will be done.

Givena € (0, 1), we consider the reduced two-variable problem of miningzit(v|p) — §<y, v) over
v; > 0 andy, > 0 under the constraint; 4 v, = a; all the other components; are fixed and equal;.
Settingyy, = a — v, we define

F(vj) = R(vlp) = 5(v.v).
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Differentiating with respect te; shows that any global minimizer; must satisfy
F'(vj) =logv; —log(a — vj) — B(2v; — a) = 0.

Since

F"(v) = % + a_l,,j —23>0,
F'(v;) is strictly increasing from negative values for ajl near0 to positive values for all; neara. It
follows that the only root oF”(v;) = 0isv; = § and thus that;, = § = v;. Being a global minimizer of
R(v|p) —g(y, v) overP, v is also a global minimizer of the reduced two-variable peofl Since: € (0,1)
is arbitrary, it follows that for any distinct pair of indis@; = v;,. This completes the proof.
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