Complete Analytical Inverse Kinematics for NAO

Nikos Kofinas, Emmanouil Orfanoudakis, and Michail G. Lagoudakis
Intelligent Systems Laboratory, Department of Electronic and Computer Engineering
Technical University of Crete, Chania, Crete 73100, Greece
Email: {nikofinas, vosk, lagoudakis} @intelligence.tuc.gr

Abstract—The design of complex dynamic motions for hu-
manoid robots is achievable only through the use of robot
kinematics. In this paper, we study the problems of forward
and inverse kinematics for the Aldebaran NAO humanoid robot
and present a complete, exact, analytical solution to both
problems, including a software library implementation for real-
time onboard execution. The forward kinematics allow NAO
developers to map any configuration of the robot from its own
joint space to the three-dimensional physical space, whereas
the inverse kinematics provide closed-form solutions to finding
joint configurations that drive the end effectors of the robot
to desired target positions in the three-dimensional physical
space. The proposed solution was made feasible through a
decomposition into five independent problems (head, two arms,
two legs), the use of the Denavit-Hartenberg method, and the
analytical solution of a non-linear system of equations. The
main advantage of the proposed inverse kinematics solution
compared to existing approaches is its accuracy, its efficiency,
and the elimination of singularities. In addition, we suggest a
generic guideline for solving the inverse kinematics problem
for other humanoid robots. The implemented, freely-available,
NAO Kkinematics library, which additionally offers center-of-mass
calculations, is demonstrated in two motion design tasks: basic
center-of-mass balancing and pointing to the ball.

I. INTRODUCTION

Articulated robots with multiple degrees of freedom, such
as humanoid robots, have become popular research platforms
in robotics and artificial intelligence. Our work focuses on
autonomous humanoid platforms with multiple manipulators
capable of performing complex motions, such as balancing,
walking, and kicking. These skills are required in the Standard
Platform League of the RoboCup robot soccer competition [1],
in which all teams compete using the Aldebaran NAO hu-
manoid robot [2], which is our target robot platform.

The design of complex dynamic motions is achievable only
through the use of robot kinematics, which is an application
of geometry to the study of arbitrary robotic chains. However,
past work [3]-[5] has not fully solved the inverse kinematics
problem for the NAO robot, since it focuses exclusively
on the robot legs. Furthermore, the widely-known analytical
solution [3] for the inverse kinematics of the legs is purely
geometric and cannot be generalized to other kinematic chains.
Also, existing numerical solutions [5] are inherently prone to
singularities and, therefore, lack in robustness.

In this paper, we present a complete and exact analytical
forward and inverse kinematics solution for all limbs of
the Aldebaran NAO humanoid robot, using the established
Denavit—Hartenberg convention [6], [7] for revolute joints. The
main advantage of the proposed solution is its accuracy, its

efficiency, and the elimination of singularities. In addition, we
contribute an implementation of the proposed NAO kinematics
as a freely-available software library' for real-time execution
on the robot. This work enables NAO software developers
to make transformations between configurations in the joint
space and points in the three-dimensional physical space and
vice-versa, on-board in just microseconds, as the library is
designed for high-performance real-time execution on the lim-
ited embedded platform of the robot. The implemented NAO
kinematics library, which additionally offers center-of-mass
calculations, is demonstrated in two tasks?: basic center-of-
mass balancing and pointing to the ball. The library has been
integrated into the software architecture of our RoboCup team
Kouretes [www.kouretes.gr] and is currently being used in
various motion design problems, such as dynamic balancing,
trajectory following, dynamic kicking, and omnidirectional
walking. Extrapolating from our work on the NAO, we also
present some guidelines for finding analytical solutions to the
inverse kinematics problem for any humanoid with revolute
joints of up to 6 degrees of freedom (DOF) per manipulator.

II. BACKGROUND
A. The Aldebaran NAO Humanoid Robot

NAO (v3.3) is a 58cm, Skg humanoid robot (Figure 1).
The NAO robot carries a fully capable computer on-board
with an x86 AMD Geode processor at 500 MHz, 256 MB
SDRAM, and 2 GB flash memory running an Embedded Linux
distribution. It is powered by a 6-cell Lithium-Ion battery
which provides about 30 minutes of continuous operation and
communicates with remote computers via an IEEE 802.11g
wireless or a wired Ethernet link. NAO RoboCup edition
has 21 degrees of freedom; 2 in the head, 4 in each arm,
5 in each leg and 1 in the pelvis (there are two pelvis
joints which are coupled together on one servo and cannot
move independently). All joints are position-controlled, using
closed-loop PID controllers and encoders. It also features a
variety of sensors: an Inertial Measurement Unit (IMU) in the
torso, Force Sensitive Resistors (FSR) on each foot, ultrasonic
range sensors on the chest, and two VGA cameras on the head.

B. Transformation Formalism
The translation and orientation of a joint j with respect to
an adjacent joint ¢ in the three-dimensional space can be fully

ILibrary download link: www.github.com/kouretes/NAOKinematics
2Video download link: www.intelligence.tuc.gr/kouretes/NAOKinematics

www.kouretes.gr
www.github.com/kouretes/NAOKinematics
www.intelligence.tuc.gr/kouretes/NAOKinematics

HeadPitch HeadYaw

RShoulderRoll LShoulderRoll
RShoulderPitch LShoulderpitch
REIbowRoll LElbowYaw
REbowYaw = i LEIbowRoll
RWristYaw LWristYaw
RHand LHand

RHipYawPitch LHipYawPitch

RHipPitch LHipPitch

RHipRoll LHipRoll
RKneePitch LKneePitch
RAnklePitch LAnklePitch

RAnkleRoll LAnkleRoll

Fig. 1. NAO v3.3 kinematic chains and joints (Academics Edition, 25 DOF)

. . . . J.
described using a 4 x 4 (affine) transformation matrix 'T';:
T = X y
i [0 0] 1
where X € R3%3 and y € R3. A transformation matrix Tg
provides the translation (y) and orientation (contained in X)
of a coordinate system j with respect to coordinate system
1. A transformation matrix is invertible, if and only if X is
invertible, and is formed as:

D

[0 0] 1

Given a robotic manipulator of /N joints, an equal number of
left-handed Cartesian coordinate systems (frames) are estab-
lished, each affixed to the previous one, and the one-to-one
transformation between them forms a transformation matrix.

For convenience, we enumerate joint frames starting from
an established base frame, typically a fixed point on the robot’s
body. A point p; = [p. py p. 1] described in frame
7 can be transformed to a point p; in another frame ¢ by
cascading the transformations for all intermediate frames:

J _ it lmit2 J
Ti - Ti Ti+1 e Tj—l

and]31 = Tzﬁ]

For the needs of forward and inverse kinematics, we utilize
translations and rotations. A translation transformation has
X = I3 (the identity matrix) and the desired offset as ¢ in
Eq. 1. We denote a parametric translation matrix for §j = ¢
as A(t). It can be trivially shown that A=1(f) = A(—%) and
A(w+z) = A(w)A(Z). A rotation transformation has ij = 0
(no translation) and X in Eq. 1 is an arbitrary rotation matrix
R (R™!' =RT and det(R) = 1). We denote the elementary
rotation matrices about the z,y, z axes as Ryxis(angle). All
rigid body transformations related to kinematics consist of cas-
caded elementary transformations (translations and rotations)
and, therefore, are always invertible.

C. Denavit—Hartenberg Convention

The established formalism for describing transformations
between two frames adjacent to a joint is the Denavit-
Hartenberg (DH) parameters: a, «, d, and . For the NAO,

these parameters are provided by the manufacturer. The current
angle (state) of the joint is 6. Given the parameters of some
joint j, the DH transformation that describes the translation
and orientation of the reference frame of joint j with respect
to the reference frame of the previous joint j — 1 is:

) T T
T/, =Ra(0)A ([, 0 0])R.(0)A([0 0 4]")
Being a product of invertible matrices, a DH transformation
matrix is always invertible.

D. Transformation Decomposition

An arbitrary transformation matrix can be decomposed as a
“translation after rotation” pair:

«<[8 4[5 90 ¢

Using the Yaw-Pitch-Roll convention, any rotation matrix R
decomposes into a product of the three elementary rotations:

R=R. (az)Ry (ay)Rx (ax)

. . T
The orientation vector [ax ay az} can be extracted ana-
lytically from any rotation matrix. Therefore, any position in
the three-dimensional space, described by the six values of

. T . .
a translation vector [z Dy pz] and an orientation vector

T . . .
l[az ay, a.] , defines a unique transformation matrix.

III. NAO FORWARD KINEMATICS SOLUTION

Taking the torso frame of the NAO robot as the base frame,
the forward kinematic equations for the five kinematic chains
of NAO (RoboCup Edition) are the following:

Thee = ARy ToTiR.(5)Ry (5) AL)
Tha = AR ToTI TS TR (3) A" 3)
Th'! = AR ToTI TS TR, (5) AF™R. (—7))
Thye' = AR ToTI TET3 TITER. (1) R, (—5) AF™ (5)
Thw' = AR ToTITE T3 T TR () Ry (- 5) AF™ (6)

where each T; in the equations above is the DH transfor-
mation matrix between joints ¢ and j in the corresponding
chain and the A’s are translation matrices defined by the
specifications of the robot (lengths of limbs) [5].

Should we need to extract the position of some manipulator
b with respect to another a (e.g. head with respect to left leg),
we can construct two such chains T¢, T® from a common
point ¢ (e.g. Base) and combine them as T? = (T%)~ ' T?.

IV. SOLVING THE INVERSE KINEMATICS PROBLEM

Precise control of manipulators and effectors can be
achieved by solving the inverse kinematics problem, whereby
the values 6; of the angles of various joints must be determined
to place the manipulator at a specific target position (transla-
tion and/or orientation). The solution of the inverse problem is
robot-specific and generally under/over-determined kinematic
chains exist. Iterative numerical solutions may converge to a
solution, but, in general, suffer from singularities and poor
performance [8]. On the other hand, analytical solutions are
fast and exact, but require significant effort in extracting them.

A. Inverse Kinematics Methodology

The following seven steps were taken in order to find a
complete solution for the inverse kinematics problem for all
the kinematic chains of the NAO humanoid robot.

1) Construct the numeric transformation: Given a de-
sired target position, denoted by an orientation vector a =
[am Qy az]T and a translation vector p = [px Dy pZ}T
it is easy to reconstruct the target transformation matrix:

T = A(p)R:(a:)Ry(ay)Rs(as)

s

2) Construct the symbolic transformation: Setting all 0
parameters as unknowns in the forward kinematics solution
of the target kinematic chain yields a symbolic matrix:

0 j d
Thase To (00, - - -, 0;) TS

base

3) Form a non-linear system: By equating the above ma-
trices, a non-linear system is formed, since the unknown
0’s appear in transcendental trigonometric forms. Now, the
problem is to find values for the 6’s from 12 equations (the
upper 3 x 4 block) of which only up to six are independent.

T = TP, T (6o, ... ,0,)T

4) Manipulate both sides: The chain can be simplified by
eliminating known terms. Such terms (e.g. the base and the
end transformations) can be removed by multiplying both sides
of the system with the appropriate inverse matrix:

,05)
As soon as we find a solution for some 6;, we can remove in a
similar way the corresponding joint ¢ from the chain, because
the corresponding DH transformation matrix is now known;
this can occur if and only if this joint is the first or the last in
the kinematic chain.

Another way to manipulate the chain is to induce arbitrary
(known) constant transformations at the beginning or the end
of the chain, aiming at simplifying the non-linear system.

Te(The) ' T(TS) ™ = T T (%, .., 0))

(To) T (TS) ™ =T (b0, ...

base

In some kinematic chains we can decouple the orientation
and translation sub-problems. Quite often the target translation
vector can be expressed as a function of fewer joints in the
analytical equation of the kinematic chain or in the analytical
equation of the reverse kinematic chain.

5) Use geometry and trigonometry: It is possible to form
a closed-form solution for some 6; using a geometric model
of the chain. For chains with up to two links (non-zero a
and d parameters) or “arm and wrist” chains commonly found
in humanoids, a geometric approach can easily determine the
values for the joints that lie between the links. These joints can
be modeled as an angle of the triangle formed by the links,
so the value of the joint can be obtained using trigonometry.

The kinematic leg chain of the NAO robot, for example,
has such a joint. Figure ?? shows the triangle formed by the
right leg, the lower leg, and the line that connects the base
with the target point. Upper and lower leg lengths are known

Fig. 2.

Triangle formed by the robot leg

and the third side of the triangle can be computed using the
Euclidean distance between the base of the chain and the end
of the chain. The law of cosines, yields a set of complementary
closed-form solutions for the angle 6.

6) Solve the non-linear system: The resulting equations
are combinations of sind; and cos#;, thus, the closed-form
solution of these equations must utilize the inverse trigono-
metric functions (acos, asin). The transcendental nature of
the acos and asin trigonometric functions has the inherent
problem of producing multiple solutions in [—m, 7]. Without
any restrictions on the valid range of a joint, we must examine
all candidate solutions for each joint and their combinations
for validity. To avoid this multiplicity, solutions that rely on
atan and acot are preferred, but forming them might not be
possible for a particular chain.

7) Validate through forward kinematics: Generally, there
are multiple candidate solutions for the joint values, due to
the existence of complementary and/or supplementary angles.
A validation step is taken to discard invalid candidates. This
validation is performed by feeding each candidate solution to
the forward kinematics of the chain and checking whether
the resulting position matches precisely the target position.
Choosing among the valid solutions, if more than one, can be
addressed independently of kinematics.

B. Applicability

The methodology presented above offers a generic guide-
line for solving the inverse kinematics problem on typical
humanoid robot kinematic chains that have the generic two-
link configuration (found in both the arms and legs). More
specifically, the kinematic chains must have up to five joints
or six joints with three consecutive ones having intersecting
axes [9], [10] to expect a possible solution.

V. NAO INVERSE KINEMATICS SOLUTION

Using the methodology presented above, we find the inverse
kinematics solution for all five kinematic chains of NAO
(RoboCup Edition): head (2 joints), left arm (4 joints), right
arm, left leg (6 joints), and right leg. The left chains are almost
identical to the right ones, thus the solutions are similar. Due

—pz+1 l
92 = asin piﬂ — atan (i) + E
/l12 +l22 l2 2
—pz+1 l
0o = T — asin b= —atan(—l)-‘ri
VI + 122 2 2
01 = Facos P
I cos (92 — %) — I1 sin (0 — %)

provided a target translation (pz, py, pz), or

01 =a. 02 =ay

provided a target orientation (az, ay,az)

Fig. 3. Head Inverse Kinematics Solution

to space restrictions, the solutions for the the left part are
presented in detail, whereas the ones for the right part are
abbreviated. Full details may be found in a longer technical
report [11] .

A. Inverse Kinematics for the Head Chain

The head chain consists of only two joints (HeadYaw,
HeadPitch—in this order), therefore we can solve for either
the translation (p) or the orientation (@) of the target position
to obtain a solution. In the latter case, we can achieve the
desired target orientation simply by setting the HeadYaw and
HeadPitch joints to a, and a, respectively, and assume a,, = 0.
In the former case, we construct the symbolic matrix through
the forward kinematics solution (Eq. 2). Now, we can equate
the translation part from the symbolic matrix with p and
from these equations we can easily find the desired 6 values.
Figure 3 shows the resulting analytical solution, in which [y
and [, are the x and the y part of the end translation and /3
is the z part of the base translation.

B. Inverse Kinematics for the Left Arm Chain

The left arm chain consists of four joints (LShoulderPitch,
LShoulderRoll, LEIbow Yaw, LEIbowRoll—in this order). Fol-
lowing our methodology, the first three steps are straightfor-
ward given the forward kinematics solution (Eq. 3). Next, us-
ing the fourth step, we manipulate our chain to remove known
translations and rotations. Then we invert the chain because
it is easier to extract joint values from the new translation
part. From the translation part of the inverted transformation
matrix we extract the values of 03 and 64. After that we
manipulate again our chain to remome the (now known) DH-
transformation for the last two joints. Finally, we validate all
candidate solutions through the forward kinematics validation
step. Figure 4 shows the resulting analytical solution, in which
S is the base translation vector, [is the offset of the elbow, 5
is the length of the upper arm, and T'; ;) is the (i, j) element
of matrix T.

C. Inverse Kinematics for the Right Arm Chain

The right arm chain is almost identical to the left arm chain.
The only difference is in the forward kinematics solution, since
the a parameter for 5 has a minus sign and some joint have

T = (Af) T(AF) T (Ra(5)

T = (T/) -1
T?%A))
I

: (T<a,4>)
T — asmmn
Iy

7 _ " . 0.
04 = Facos <l3T(2’4) l2T(1’4> COSG&)

asin

05 =

l% + l% cos? 03

o (1) (2

Fig. 4. Left Arm Inverse Kinematics Solution

—1

T = (Rz(% ((Agase)fl T (Ag"dyl))

W2 +1*>—|0-p
0, =+ m—acos | = tl 10 = pll2
21112

T/
{atan (T£274)> if (I2 cos 05 + 11 cos (04 + 05)) # 0

(3,4)
unde fined if (la cos 05 + 11 cos (0a +65)) =0

06 =

1
= ()7 (8RR 5))

05 = asin | — T/(/274) (I2 + Iy cos4) + llT/(/1,4) sin 4

5 112sin204 4+ (2 + 11 00594)2
05 =7 — asin | — T, 4y (l2 + 11 cos ba) + LT 4 sinby
a 112 sin? 04 + (I2 + 11 cos 04)°

T — (T”)_l (TéTi)_l

T
05 = tacos (TI(IQIB)) -7
T/// T///

03 = asin @y 03 = m™ — asin @y

sin (02 + F) sin (02 +)
1117 -
601 = tacos @y + =
sin (92 + g) 2

Fig. 5. Left Leg Inverse Kinematics Solution

mirrored values. Besides this difference, all other steps have
similar results. The analytical solution is the one shown in
Figure 4 with the following differences: (a) there is a minus
sign in front of all the instances of [;, (b) for all the “roll”
joints we must give new limits.

D. Inverse Kinematics for the Left Leg Chain

The kinematic chain of the left leg has six joints
(LHipYawPitch, LHipRoll, LHipPitch, LKneePitch, LAn-
klePitch, LAnkleRoll—in this order), but since the first three
joints have intersecting axes, the problem is possibly solv-
able [9], [10]. We construct both the numerical and symbolic
parts of the system with the help of forward kinematics (Eq. 5).
Following the fourth step, to make the problem easier, we

remove the known translations from the kinematic chain. Then,
to simplify the solution we induce a R (%) transformation at
the start of the chain. In effect, we transform the first joint from
a yaw-pitch joint to a yaw joint, which is simpler to handle.
Close examination of the resulting kinematic chain reveals that
the first four joints are responsible for the translation part and
all six joints are responsible for the orientation part. It would
be convenient, if only three joints were affecting the translation
of the end effector, because in that case we could extract
these joints just from the translation part. Thus, we invert the
transformation matrix to form the reverse chain. Now, only
three joints (LAnkleRoll, LAnklePitch, LKneePitch) affect the
translation. We can now find 64 using the fifth step as we
mentioned above. We focus on the triangle formed by the
UpperLeg, LowerLeg, and the line connecting the base to
the target point. Next, the 65 and 6 angles can be extracted
from the translation part. The solution we found for 6 has
some undefined points, because the denominator of the result
may become zero. These undefined points are discussed in
Section VI.

After we calculate 6,4, 05, and 5 from the translation part,
we can go back to step four and remove the, now, known
DH transformation matrices from the chain. The resulting
kinematic chain consists of only three joints, which control
only the orientation. It is easy to extract the remaining joint
values from the nine equations of the rotation block. Figure 5
shows the resulting analytical solution, in which [y is the
length of the upper leg and /5 is the length of the lower leg.

E. Inverse Kinematics for the Right Leg Chain

The right leg chain is identical to the left leg chain. The only
difference is the DH parameter « of the first joint. Thus, we
must multiply instead with R, (—%). Otherwise, the solution
is exactly the same as the solution shown in Figure 5 with all
instances of (02 + 7) changed to (62 — F).

VI. IMPLEMENTATION

Having completed all kinematics in analytical form, we
created NAOKinematics, a software library for real-time,
onboard execution of NAO kinematics in C++. Given that C++
offers no library for optimized real-time matrix operations, we
relied on our linear algebra framework KMat [12] for such
operations. A Matlab version of the library is also available
for other applications. Our library includes five functions for
calculating the forward kinematics for each chain, given the
corresponding joint values. It also includes five functions,
whose input is the desired target position and output is a set
of solutions, for all the joints of a specified chain. The library
also includes a function for calculating the center of mass of
the robot given a set of values for all joints.

As mentioned before, there are a few target positions for the
legs which lead to an infinity of solutions for the AnkleRoll
joint, when the KneePitch and AnklePitch joints take specific
values and essentially cancel the effect of AnkleRoll on the
translation of the reverse chain. Figure 6 shows one of these
problematic configurations. The locus of these configurations

Fig. 6. An instance of the problematic leg configurations

20N

h
N » o ®
i
’
/
(l
L
7

Knee Pitct

N NN
0.2H] Locus NN - N AN
Leg AN SRR
ot - - —Right Leg Oy SR
T T L L Al L L L h

-1 -08 -06 -04 -0.2 0 02 04 06 08
Ankle Pitch

Fig. 7. Trajectories of motion in a subspace of the leg joints

is a line in the configuration space (Figure 7). To verify that in
practice the robot never reaches any of these configurations,
we let the robot perform the entire range of motions available
to it during operation in a RoboCup field (walk, kicks, stand-
up, etc.) and plotted these motions alongside the problematic
locus. The results are shown in Figure 7. It is clear that no
motion brought the robot to these configurations. In practice,
it is rather unlikely that anyone will consistently give target
positions that drive the joints in that area, during regular use.

VII. RESULTS

A. Real-Time Performance

One of the goals of this work was to implement a software
library for real-time kinematics computations on the robot. We
measured the performance of our implementation for each of
the functions we offer. Table I shows average execution times.

B. Demonstration I: Basic CoM Balancing

In this demonstration, we seek to implement a very basic
balancing method. In particular, we want to make NAO move

TABLE I
ON-BOARD EXECUTION TIMES OF THE NAOKINEMATICS LIBRARY
Kinematics Function Time (ws)
Forward Kinematics for Head 54.28
Forward Kinematics for Arm 66.72
Forward Kinematics for Leg 80.88
Inverse Kinematics for Head 70.79
Inverse Kinematics for Arm 170.55
Inverse Kinematics for Leg 185.29
Calculation of the Center of Mass 394.55

one of its feet to the point of the projection of the Center of
Mass (CoM) on the floor. First, we calculate the translation of
the CoM relatively to the torso frame using forward kinemat-
ics. The problem is that the xz-y plane of the torso frame is
rarely parallel to the floor. Thus, we read off the inertial unit
of the robot the current rotation (angleX and angleY) of the
torso plane. Now, we can calculate the translation of the CoM
relatively to the rotated torso:

Troed = Ry (angleY)R,, (angleX)A (CoM)

Then, we assign a custom value to p, in T 4,3), which
represents the desired torso height from the floor and that
yields T} ,.q- Now we must rotate back to the torso frame:

Thna = (Ry(angleY)RI(angleX))71

/
rotated
Finally, we extract p,, p,, and p, from Tg,,y and we set

[z Py pz]T

. . . . T
matics. The target orientation is set to [am Qy az] =
}T

as the target translation for inverse kine-

[—angleX —angleY 0| , because we do not care about the
rotation about the z-axis. Note that the foot is always parallel
to the floor, excluding any hardware precision errors.

C. Demonstration II: Pointing to the Ball

In this demonstration, our goal is to make the NAO point
to the ball with its stretched arms. Apart from the kinematics,
to realize this task we employed our vision module [12] for
ball recognition, along with the module that filters the belief
of the robot about the ball location. Initially, NAO scans for
the ball. When found, it points to it with the left, the right,
or both arms, depending on where the ball is located (left,
right, or front). The ball observation can be described as a
two-dimensional translation (ps,p,) on the floor. We add the
height of the torso (found through forward kinematics) as the
third coordinate p, to form the ball translation (p,p,,p.) in
the three-dimensional space. We also set a, to zero, because
we are only rotating about the y-axis (up/down) and the z-axis
(right/left). To find the other two orientations, we focus on the
straight line that connects the location of the ball and the point
of the ShoulderPitch joint relatively to the torso frame. The
orientations a,,a, are the angles between this line and the
corresponding axes. Additionally, the target point lies on this
line at a distance equal to the length of the stretched arm from
the ShoulderPitch joint. We run this procedure for both arms
and obtain the solution(s) from inverse kinematics. If both
solutions are returned, the robot raises both arms pointing to
the ball. If only one solution is returned, the robot raises only
one arm; the other arm cannot physically point to the ball.

VIII. CONCLUSION

In this paper, we presented a complete, exact, analytical
solution for the problems of forward and inverse kinematics
of the NAO robot. The main advantage of our solution is its
accuracy, its efficiency, and the elimination of singularities. In
addition, we contributed an implementation of the proposed
NAO kinematics as a freely-available software library for real-
time execution on the robot or for simulations.

Our approach to NAO kinematics is based on standard
principled methods for studying robot kinematic chains. No
complete analytical solution with full implementation for the
NAO robot has been published before. The currently widely-
known solution of team B-Human [3] applies only to the legs,
is purely geometric, and cannot be generalized to other kine-
matic chains. In addition, their work has not studied the effect
of the existing potentially problematic configurations. We have
tried to implement the other published analytical solution for
the legs by team MRL [4], but we were not able to reproduce
their results. Finally, the numerical solution [5] offered by the
manufacturer of the robot, Aldebaran Robotics, is a proprietary
implementation, which unfortunately is inherently prone to
singularities and, therefore, lacks in robustness. It should be
noted that none of the two demonstrations we presented in
this paper could be realized with the existing solutions and
implementations of NAO kinematics.

Since kinematics is the base for several applications related
to robot motion, we expect that our work will be useful not
only to RoboCup SPL teams, but also to any NAO software
developer. We believe that NAO developers can take advantage
of our off-the-shelf NAO kinematics library to work on omni-
directional walk algorithms, dynamic balancing methods, dy-
namic kick engines, etc. Our library can offer the basis for
following dynamic trajectories in real time for walking and
kicking or calculating the center of mass dynamically in real
time for balancing.

Finally, our methodology offers a generic guideline for
addressing the problem of inverse kinematics in humanoid
robots. Apart from extending our work to the Academic
Edition of NAO, which has four additional joints, one of our
future goals is to apply the same methodology to robots similar
to NAO, such as the Darwin-OP humanoid robot, which has
a maximum of six degrees of freedom per kinematic chain.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Mat-
subara, “Robocup: A challenge problem for AL” Al Magazine, vol. 18,
no. 1, pp. 73-85, 1997.

[2] D. Gouaillier and P. Blazevic, “A mechatronic platform, the Aldebaran
Robotics humanoid robot,” in Proceedings of the 32nd IEEE Annual
Conference on Industrial Electronics (IECON), 2006, pp. 4049-4053.

[3] C. Graf, A. Hirtl, T. Rofer, and T. Laue, “A robust closed-loop gait for
the Standard Platform League humanoid,” in Proceedings of the Fourth
Workshop on Humanoid Soccer Robots, 2009, pp. 30-37.

[4] M. G. Jadidi, E. Hashemi, M. A. Z. Harandi, and H. Sadjadian,
“Kinematic modeling improvement and trajectory planning of the NAO
biped robot,” in Proceedings of the Ist Joint International Conference
on Multibody System Dynamics, 2010.

[5] Aldebaran Robotics, “Nao documentation,” 2012, only available online:
www.aldebaran-robotics.com/documentation.

[6] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” ASME Journal of Applied Mechanics,
vol. 22, pp. 215-221, 1955.

[7]1 R.S. Hartenberg and J. Denavit, Kinematic Synthesis of Linkages. New
York: McGraw-Hill, 1964.

[8] S.R. Buss, “Introduction to inverse kinematics with Jacobian transpose,
pseudoinverse and damped least-squares methods,” 2009, available at:
www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksurvey.pdf.

[9] D. Pieper and B. Roth, “The kinematics of manipulators under computer
control,” in Proceedings of the 2nd International Congress on Theory
of Machines and Mechanisms, vol. 2, 1969, pp. 159-169.

www.aldebaran-robotics.com/documentation
www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksurvey.pdf

[10]

(1]

[12]

D. Pieper, “The kinematics of manipulators under computer control,”
Ph.D. dissertation, Stanford University, U.S.A., 1968.

N. Kofinas, “Forward and inverse kinematics for the NAO humanoid
robot,” Diploma Thesis, Technical University of Crete, Greece, 2012,
available at: www.intelligence.tuc.gr/lib/downloadfile.php?id=430.

E. Orfanoudakis, “Reliable object recognition for the RoboCup domain,”
Diploma Thesis, Technical University of Crete, Greece, 2011.

www.intelligence.tuc.gr/lib/downloadfile.php?id=430

	I Introduction
	II Background
	II-A The Aldebaran NAO Humanoid Robot
	II-B Transformation Formalism
	II-C Denavit–Hartenberg Convention
	II-D Transformation Decomposition

	III NAO Forward Kinematics Solution
	IV Solving the Inverse Kinematics Problem
	IV-A Inverse Kinematics Methodology
	IV-A1 Construct the numeric transformation
	IV-A2 Construct the symbolic transformation
	IV-A3 Form a non-linear system
	IV-A4 Manipulate both sides
	IV-A5 Use geometry and trigonometry
	IV-A6 Solve the non-linear system
	IV-A7 Validate through forward kinematics

	IV-B Applicability

	V NAO Inverse Kinematics Solution
	V-A Inverse Kinematics for the Head Chain
	V-B Inverse Kinematics for the Left Arm Chain
	V-C Inverse Kinematics for the Right Arm Chain
	V-D Inverse Kinematics for the Left Leg Chain
	V-E Inverse Kinematics for the Right Leg Chain

	VI Implementation
	VII Results
	VII-A Real-Time Performance
	VII-B Demonstration I: Basic CoM Balancing
	VII-C Demonstration II: Pointing to the Ball

	VIII Conclusion
	References

