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Abstract: Complete blood cell (CBC) counting has played a vital role in general medical examination.
Common approaches, such as traditional manual counting and automated analyzers, were heavily
influenced by the operation of medical professionals. In recent years, computer-aided object detection
using deep learning algorithms has been successfully applied in many different visual tasks. In
this paper, we propose a deep neural network-based architecture to accurately detect and count
blood cells on blood smear images. A public BCCD (Blood Cell Count and Detection) dataset is used
for the performance evaluation of our architecture. It is not uncommon that blood smear images
are in low resolution, and blood cells on them are blurry and overlapping. The original images
were preprocessed, including image augmentation, enlargement, sharpening, and blurring. With
different settings in the proposed architecture, five models are constructed herein. We compare their
performance on red blood cells (RBC), white blood cells (WBC), and platelet detection and deeply
investigate the factors related to their performance. The experiment results show that our models can
recognize blood cells accurately when blood cells are not heavily overlapping.

Keywords: blood cell detection; blood cell counting; deep learning; convolutional neural network

1. Introduction

For an adult, there are about five liters of blood in the body, and blood cells account for
nearly 45% of blood tissue by volume. Three blood cell types are red blood cells (RBC), white
blood cells (WBC, including basophil, lymphocyte, neutrophil, monocyte, and eosinophil)
and platelets. Red blood cells are the main medium carrying oxygen, white blood cells are
a part of the immunity system resisting diseases, and platelets have coagulation function,
which can recover wounds with scabs. Both physiological and pathologic changes affect
the composition of blood clinically. Thus, blood tests have become a direct channel to detect
one’s health status or diagnose diseases. Complete blood cell (CBC) counting is one of the
classical blood tests, which identifies and counts basic blood cells to examine, follow and
manage the variation in blood [1].

CBC counting is often performed by flow cytometers or medical professionals to
obtain reliable test results. However, manual operation is time-consuming, tedious, and
fallible. Scientists began exploiting automated analyzers in the early 20th century. With
the development of computation capabilities, many researchers adopt image processing
techniques and statistical or deep learning models to elevate CBC counting on blood smear
images. However, the blood smear images for CBC counting are usually low resolution
and blurry, making it hard to accurately identify blood cells. Furthermore, blood cells are
sometimes heavily overlapping. We will further survey these studies in Section 2.

Convolutional Neural Networks (CNNs) have been applied successfully in several
visual recognition tasks [2]. Due to their outstanding abilities of learning and extracting
features, CNNs have become a prevalent approach in dealing with medical image anal-
ysis [3]. Well-trained CNNs can capture more useful information and better detect and
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classify objects on input images than traditional image processing methods. In addition,
CNNs can be easily integrated into information systems and have been widely adopted in
big data information processing [4].

In this paper, we propose a novel CNN-based deep learning architecture to detect
and classify blood cells on blood smear images and simultaneously realize accurate CBC
counting. Five models are constructed herein with different settings. The experiments are
carried out on a public blood smear image dataset. In the end, we compare and discuss the
results of the proposed models under different conditions.

In this paper, we introduce the research background, motivation, and objective in
Section 1. We survey related works in the literature in Section 2. We then describe the
proposed architecture in Section 3. We show and discuss the experimental results in
Section 4. Finally, we draw conclusions in Section 5.

2. Related Works

Traditionally, CBC counting was accomplished by manually manipulating the hemo-
cytometer, flow cytometry, and chemical compounds [5]. The professional knowledge of
clinical laboratory analysts influenced the outcomes of cases [6,7]. The entire procedure was
highly time-consuming and error-prone. Later, with well-developed computational skills
and counting methods in image processing, mainstream research explored handcrafted
features and used statistical models to detect and classify blood cells. In recent years,
automated CBC counting is usually accomplished with the use of image processing and
machine learning [5].

2.1. Early History of Complete Blood Cell Counting

The observation of blood cells emerged when van Leeuwenhoek inspected his blood in
1675 [8]. Since the earliest time, scientists have carried on with microscopic investigations.
They observed and analyzed blood cells while continuing to improve microscope technol-
ogy during the 18th and 19th centuries. The first blood cell counting based on a microscope
was accomplished by Vierordt in 1852, and the hemocytometer was launched in 1874,
leading to more accurate results [8,9]. Research on automated blood cell counting started
in the early 20th century. One RBC counting method published in 1928 used photometry
to estimate the blood volume but failed in accurately assessing abnormal cells [10]. Other
approaches integrated photoelectric detectors and microscopes also generated discouraging
counting results over the next twenty years [9]. In the 1950s, the Coulter counter was intro-
duced, which passed cells through an aperture to do the counting and estimate the sizes
of RBC by using the conductivity of the blood as the reference [11]. The Coulter counter
was modified and applied to RBC and WBC counting; the Technicon SMA 4A−7A could
simultaneously examine multiple cells [12]. Automated platelet counts with Technicon
Hemalog-8 were presented in 1970 and integrated into Coulter’s S Plus series analyzers in
1980 [9]. The examination of blood samples mostly employed laboratory analysts. They
operate automated analyzers to collect information, annotate blood smear images, and
recheck them when ambiguous cases are encountered.

2.2. Traditional Image Processing-Based Methods

Madhloom et al. proposed an automated WBC detection and classification process
that used a combination of several image processing techniques to separate the nucleus
from target cells in 2010 [13]. Firstly, they converted images into grayscale and removed
the darkest part as the nucleus from the WBCs. Then they utilized automatic contrast
stretching, histogram equalization, and image arithmetic to localize the nucleus and applied
an automatic global threshold to carry out the segmentation. The nucleuses would be
identified with types of leukocytes after passing through a minimum filter and automatic
threshold. The proposed model finally achieved accuracy between 85 and 98%.

Another piece of research on automatic WBC recognition was proposed by Rezatofighi et al.
in 2011 [14]. They exploited the Gram–Schmidt method to segment nuclei in the beginning
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and then distinguished basophils. A Snake algorithm was used to divide the cytoplasm.
The color, morphology, and texture features were extracted and fed into two classifiers:
SVM (Support Vector Machine) and ANN (Artificial Neural Network). It obtained a 93%
segmentation result and 90% and 96% classification accuracies, respectively.

In addition, Acharya and Kumar proposed an imaging processing technique for RBC
counting and identification in 2018 [15]. They applied the K-medoids algorithm and
Granulometric analysis to separate the RBCs from the abstracted WBCs and then counted
the RBCs by labeling the algorithm and circular Hough transform. A comparison was
taken, and the results demonstrated that the circular Hough transform outperformed in the
counting and the labeling algorithm and was successful in recognizing whether or not the
RBC was normal.

For platelet counting, Kaur et al. proposed an automatic platelet counter in 2016
that employed circular Hough transform to microscopic blood images [16]. They utilized
the size and shape features of platelets and achieved an accuracy of 96%. Moreover,
Cruz et al. proposed an image analysis system able to segment and carry out CBC counting
in 2017 [17]. Microscopic blood images would be processed by HSV thresholding, connected
component labeling, and statistical analysis. The results showed that the proposed system
had over 90% accuracy.

2.3. Machine Learning-Based Methods

With the rapid improvement of deep learning algorithms and computational resources,
adopting deep learning for medical image analysis has become an effective and efficient
approach to abstract information [18]. Various related studies implemented machine
learning techniques in medical research, such as computer-aided diagnosis, medical image
disease detection, and image-guided therapy [19,20]. CNNs, with strong capabilities for
learning and extracting features, have been widely used in several medical fields and
achieved outstanding performances making CNNs also popular in the blood cell counting
and identification domains.

In 2013, Habibzadeh et al. proposed a subcomponent system that classified WBCs into
five different types in low-resolution images [1]. The system employed two kinds of SVM
and one CNN as classifiers, and the latter gained the best results. Su et al. proposed an
ANN-based WBC classification system in 2014 [21]. They segmented WBCs, extracted the
effective features, and fed the features into three kinds of ANNs to recognize the category
of WBCs. The obtained a high recognition rate, which could be 99.11% correct. Similarly,
Nazlibilek et al. proposed a system for automatically counting and classifying WBCs in
2014 [22]. They segmented the blood cells into sub-images and fed them into an ANN
classifier. Combined with PCA (Principal Component Analysis), the ANN classifier’s
success rate reached 95%.

Habibzadeh et al. later proposed a WBC classification system that used pre-trained
models of ResNet and Inception [23] in 2018. The images were augmented, preprocessed
by color distortion, and fed into ImageNet pre-trained ResNet and Inception networks to
abstract useful features for recognition. ResNet V1 50 gained the best detection rate with
an average of 100%, while ResNet V1 152 and ResNet 101 achieved 99.84% and 99.46%,
respectively. Çelebi and Çöteli extended the range of identification, and the proposed
system simultaneously classified RBCs and WBCs by ANN [24]. They fed segmented
images into CNN-based ANN and used the IoU (Intersection over Union) threshold to
examine the overlaps and count each type of blood cell.

2.4. Convolutional Neural Network

The origin of convolutional neural networks (CNN) can be dated back to the early
1960s. Hubel and Wiesel observed the activity of the visual cortex cells of cats and proposed
the “receptive field” concept [25]. Fukushima and Miyake raised the idea of “neocognition”
in 1982 [26], which could be considered the opening of CNN research. The first CNN struc-
ture proposed by LeCun et al. in 1989 was employed in handwritten zip code recognition
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and was later used as the foundation of image classification [27]. The layers in LeNet-5 can
be partitioned into convolutional, pooling, and fully-connected layers. The convolutional
layers are in charge of learning and abstracting features, the pooling layers reduce the
resolution of feature maps to attain shift-invariance, and fully-connected layers aim to
perform high-level reasoning [28].

However, a shortage of computing resources and an improper training algorithm
caused the development of CNNs to stagnate for nearly 20 years. At that time, CNN was
mainly applied to handwritten digit recognition tasks [26,29]. When facing complicated
problems, handcrafted feature extractions and statistical methods became the primary
solutions. Until the 2000s, plentiful efforts had been taken to overcome the storage of
computing resources, and the concept of deep learning algorithms was also introduced [4].
Breakthroughs among various fields successfully brought CNNs back again. AlexNet [30],
which outperformed in the ImageNet competition in 2012, caused CNNs to become a
sensation, attracting attention in many ways. In 2014, Visual Geometry Group (VGG)
proposed the VGG model, which achieved excellent success in the ImageNet competition.
VGG-16 and VGG-19 have been two of the commonly used models [31]. In 2015, the
Inception model was proposed to improve the utilization of computing resources [32]. In
2016, ResNet was proposed to realize the training of deep ANNs [33].

With the significant improvement of computation hardware and training algorithms,
CNNs have been widely exploited in multiple domains, such as handwriting recognition,
face recognition, speech recognition, image classification, object detection, and natural
language processing [34]. As well, ANN-based approaches have been found to be suitable
for big data analysis [4,35].

2.5. Summary

In short, CBC counting-related research can fall into three types: automated analyzer,
image processing-based methods, and machine learning-based methods. An automated
analyzer, which substitutes chemical manipulations and measurement, is currently the
most general method, although it requires lots of time and manpower. With the develop-
ment of hardware and algorithms, computer-aided methods emerged in relevant studies.
Traditional image processing-based methods used various image processing techniques to
extract handcrafted features and statistical classifiers for blood cell detection and recogni-
tion and achieved outstanding scores. On the other hand, machine learning-based methods
built deep structures to capture more non-intuitive but useful features to better carry out
CBC counting.

3. Materials and Methods

In this paper, we propose a new CNN-based deep learning architecture to detect
and identify target cells in blood smear images. In Section 3.1, we describe the proposed
architecture, including the generation of feature maps from input blood smear images
and the detection and classification of blood cells. In Section 3.2, we enumerate the three
measures: Intersection of Union (IoU), Distance-IoU (DIoU), and confusion matrix, used in
this paper to evaluate the performance of our models.

3.1. Proposed Architecture

Figure 1 shows the proposed architecture.
The blood smear images are first preprocessed by four stages: image augmentation,

enlargement, sharpening, and blurring.
CNN, which was devoted to extracting and generating fundamental feature maps,

served as the backbone of the model. In this paper, VGG-16 [31] was adopted. We then
added the Region Proposal Network (RPN) introduced in Faster R-CNN [36–41] to hypoth-
esize blood cell locations. In the RoI (Region of Interest) Pooling layer, the information
from the feature maps and RPN are combined to generate potential feature vectors. The
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following classifier uses these feature vectors to predict the coordinates and categories of
the detected blood cells.

Appl. Sci. 2022, 12, 8140 5 of 16 
 

3.1. Proposed Architecture 

Figure 1 shows the proposed architecture. 

The blood smear images are first preprocessed by four stages: image augmentation, 

enlargement, sharpening, and blurring. 

CNN, which was devoted to extracting and generating fundamental feature maps, 

served as the backbone of the model. In this paper, VGG-16 [31] was adopted. We then 

added the Region Proposal Network (RPN) introduced in Faster R-CNN [36–41] to hy-

pothesize blood cell locations. In the RoI (Region of Interest) Pooling layer, the infor-

mation from the feature maps and RPN are combined to generate potential feature vec-

tors. The following classifier uses these feature vectors to predict the coordinates and cat-

egories of the detected blood cells. 

To improve the performance of small detection, we adopted the feature fusion 

method [42,43] to yield better feature maps. In addition, we leveraged the Convolutional 

Block Attention Module (CBAM) [44] for adaptive feature refinement. 

Image

Proprecessing

VGG-16

Feature Fusion

Convolutional Block Attention Module (CBAM)

Region Proposal Network (RPN)

RoI (Region of Interest) Pooling

Classifier

Label Bounding Box  
Figure 1. The proposed architecture. 

VGG-16 [31] can be considered to be a composition of five blocks with a total of 13 

convolutional layers, 5 pooling layers, and 3 fully-connected layers, as shown in the upper 

part of Figure 2. In the convolutional layers, VGG-16 employs 3 × 3 filters to generate 

feature maps with different resolutions. The pooling layer performs max-pooling by a 2 × 

2 window to reduce the resolution of the feature maps. The last fully-connected layer is a 

softmax layer in charge of classification. VGG-16 has shown its powerful capability in 

many visual recognition applications [34]. 

When an image is processed in VGG-16, the feature maps generated by the convolu-

tion layers will be reduced by max-pooling layers. The last feature maps might have in-

sufficient information for the detection of very small objects, such as platelets. However, 

the feature maps generated in the middle layers still have abundant information. We 

adopted the feature fusion method to yield additional feature maps [42,43]. Feature fusion 

includes three kinds of approaches: feature ranking, feature extraction, and feature com-

bination. Here feature combination was adopted, and the process is illustrated in Figure 

2. The feature maps generated by convolution layers Conv 3-3 and Conv 5-3 were com-

bined to provide information in higher resolution. 

Figure 1. The proposed architecture.

To improve the performance of small detection, we adopted the feature fusion
method [42,43] to yield better feature maps. In addition, we leveraged the Convolutional
Block Attention Module (CBAM) [44] for adaptive feature refinement.

VGG-16 [31] can be considered to be a composition of five blocks with a total of
13 convolutional layers, 5 pooling layers, and 3 fully-connected layers, as shown in the
upper part of Figure 2. In the convolutional layers, VGG-16 employs 3× 3 filters to generate
feature maps with different resolutions. The pooling layer performs max-pooling by a
2 × 2 window to reduce the resolution of the feature maps. The last fully-connected layer
is a softmax layer in charge of classification. VGG-16 has shown its powerful capability in
many visual recognition applications [34].
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When an image is processed in VGG-16, the feature maps generated by the convolution
layers will be reduced by max-pooling layers. The last feature maps might have insufficient
information for the detection of very small objects, such as platelets. However, the feature
maps generated in the middle layers still have abundant information. We adopted the
feature fusion method to yield additional feature maps [42,43]. Feature fusion includes
three kinds of approaches: feature ranking, feature extraction, and feature combination.
Here feature combination was adopted, and the process is illustrated in Figure 2. The
feature maps generated by convolution layers Conv 3-3 and Conv 5-3 were combined to
provide information in higher resolution.
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We further adopted the Convolutional Block Attention Module (CBAM) [44] to em-
phasize the meaningful features. CBAM learns channel attention and spatial attention
separately. It generates channel attention maps by exploiting the inter-channel relationship
between the features and then generates spatial attention maps by utilizing the channel
attention maps. Channel attention focuses on what is meaningful, given the input image.
Spatial attention focuses on the location of informative parts, which is complementary to
channel attention.

We then adopted the architecture of Faster R-CNN [41] for blood cell detection, classi-
fication, and counting.

In 2014, Girshick et al. proposed Region-Based CNN (R-CNN) [36] for object detection.
It associated CNNs with domain-specific fine-tuning. R-CNN consists of three modules:
region proposals, feature extraction, and object category classifiers. Later, Fast R-CNN [39]
was proposed to speed up the computation of detection networks. It generated region
proposals by selective search. RoI (Region of interest) Pooling layer extracted a set of
fixed-size feature maps for projected region proposals.

In 2015, Faster R-CNN was proposed; it introduced a Region Proposal Network (RPN),
sharing feature maps with the CNN to yield region proposals [41]. In the RPN layer, it slid
a window over the feature map to generate region proposals, also known as anchor boxes,
and the corresponding lower-dimensional features. Each feature was fed into two sibling
fully-connected layers in charge of regression and classification. The box-classification layer
determines whether the candidate was positive (object) or negative (background), and the
box-regression layer calculates the deviation of the coordinates between the ground truth
and the candidate. The RoI Pooling layer combines the information of the feature maps and
region proposals (or anchors) to generate fixed-size feature vectors. The following classifier
used these feature vectors to predict the categories and coordinates of the detected objects.

3.2. Evaluation Measures

We used three measures: Intersection of Union (IoU), Distance-IoU (DIoU), and
confusion matrix, for the bounding box and classifier evaluation.

IoU is a classical and popular measure to evaluate the similarity in object detection [45].
It calculates the ratio of intersection to union with the predicted box and ground truth box.
The formula of IoU is shown in Equation (1).

IoU =
Ground Truth Bounding Box ∩ Predicted Bounding Box
Ground Truth Bounding Box ∪ Predicted Bounding Box

(1)

Figure 3 shows the intersection and union of two overlapping boxes. We assumed that
Box A is for the predicted box and Box B is for the ground truth box. The red area is the
intersection, and the green area is the union. The IoU of Boxes A and B was calculated by
dividing the red area by the green area.
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In addition, we measured the Distance-IoU (DIoU) [46] of the predicted box and
ground truth box. The computation of DIoU is shown by Equation (2), where d is the
Euclidean distance between the central points of the two overlapping boxes, and c is the
diagonal length of the smallest rectangle covering the two boxes, as shown in Figure 4.

DIoU = IoU− d2

c2 (2)
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in machine learning and statistics. The precision, recall, and F1 score are calculated by
Equations (3)–(5).

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F1 score =
2× Precision× Recall

Precision + Recall
(5)

For a binary classification, TP, FN, FP, and TN refer to the following:

True Positive (TP): both the actual and predicted classes are positive.
False Negative (FN): a positive sample is predicted as a negative.
False Positive (FP): a negative sample is predicted as a positive.
True Negative (TN): both the actual and predicted classes are negative.

In this research, when a predicted bounding box and a ground truth bounding box
overlay, their IoU and DIoU are higher than the specified thresholds, and they have the
same category (RBC, WBC, platelets, and background); they are considered to be TP; FN,
FP, and TN can be similarly defined.

4. Experiments and Results
4.1. Dataset Description

The Blood Cell Count and Detection (BCCD) dataset [47] is used in this research. It is
a public dataset of annotated blood smear images for blood cell detection. It consists of
364 blood smear images with 640× 480 pixels and an annotation file for details on the image.
Each image involves arbitrary numbers of RBCs, WBCs, and platelets. The annotation file
contains the information related to annotated blood cells, e.g., the coordinates of bounding
boxes and categories. Figure 5 shows one of the blood smear images in the dataset with
bounding boxes and labeled blood cells.
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The dataset was randomly divided into two subsets: 80% of the images were for
training, and 20% of the images were for validation. Table 1 shows the numbers of three
kinds of blood cells for training and validation, respectively.

Table 1. BCCD dataset.

Training (80%) Validation (20%)

Red Blood Cell (RBC) 3310 843
White Blood Cell (WBC) 297 75

Platelets 301 60

4.2. Data Preprocessing

The blood smear images were first preprocessed by four stages: image augmentation,
enlarging, sharpening, and blurring.

To increase the number and diversity of the images, we not only applied horizontal
flipping, vertical flipping, and rotation to the original images but also converted them from
RGB color space into grayscale. Since it is difficult to detect small objects, such as platelets,
we also used bicubic interpolation [48] to enlarge the images.

We then utilized the idea of unsharp masking to sharpen the blurry images. The
procedure of unsharp masking can be divided into three phases: blur the original image,
acquire the mask by deducting the blurred image from the original, and add a weighted
portion of the mask back to the original [49]. In this paper, we computed the mask of an
image by applying a 3 × 3 OpenCV built-in Laplacian filter and then removed a weighted
portion of the mask with a parameter k from the image, shown as Equation (6).

fsharpen(x, y) = foriginal(x, y)− k× fmask(x, y) (6)

We then blurred the images with a 3 × 3 Gaussian kernel to make them smoother.

4.3. Model Setting

We constructed five models with different settings for preprocessing. Some used
enlarged images, and others used sharpened images. Some used RGB images only, while
others used both RGB and grayscale images.

We then preset the parameters of RPN in the five models for blood cell detection on
the images of the dataset. It is crucial to decide the scales and aspect ratios of the anchors
in RPN for target-object detection. We exploited the coordinates of the bounding boxes
in the annotation file. Table 2 displays the size information in the pixels of three types of
blood cells.

Table 2. Blood cell size information in pixels.

Red Blood Cell White Blood Cell Platelets

Min Mean Max Min Mean Max Min Mean Max

x-axis 42 104 168 31 194 338 19 42 167
y-axis 39 100 166 27 174 286 23 40 135

We select 42, 86, and 170 pixels as anchor scales for RPN to detect objects. As well, we
employ 1:1, 1/

√
2:
√

2, and
√

2:1/
√

2 as anchor aspect ratios. As a result, anchors in nine
different sizes are used in RPN. Anchor scales have to be adjusted accordingly for models
using enlarged images.

Table 3 shows the settings of the five proposed models. Models 1, 2, and 3 differ in
the size of the input images. In models 2 and 3, the input images are enlarged by 1.25 and
1.5 times, respectively. Together, they examine the impact of enlarging the input images.
In model 4, the input images are not sharpened in the preprocessing step. Models 1 and
4 examine the effect of image enhancement by sharpening. Model 5 uses the input images
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in the RGB color space only. Models 1 and 5 investigate the potential of grayscale blood
smear images.

Table 3. Model settings.

Model 1 Model 2 Model 3 Model 4 Model 5

Input Size 480 × 640 600 × 800 720 × 960 480 × 640 480 × 640
Enlarge No Yes Yes No No

Anchor Boxes Size [42, 86, 170] [53, 107, 213] [64, 128, 256] [42, 86, 170] [42, 86, 170]
Sharpen Yes Yes Yes No Yes

Images Color Grayscale or RGB RGB

4.4. Experiment Results

Tables 4 and 5 show the experiment results in the validation data of all of the models
under a confidence score of 0.9 and 0.8, respectively. We note that the recall of blood
cell detection also refers to the ratio of the predicted to ground truth boxes. For accurate
blood cell counting, we prefer models with higher recalls. Models 1, 2, and 3, trained with
preprocessed images in both grayscale and RGB color spaces, are much more powerful than
the others. For the WBC recognition task, Model 1 is advantageous. For RBC recognition
tasks, Model 3, trained with enlarged (1.5×) images, achieves a prominent recall and F1
score. Model 5, using only RGB images, achieves the highest precision; however, it scores
worst in recall. For the platelet recognition task, Model 2, trained with enlarged (1.25×)
images, achieves the best F1 scores.

Table 4. Results of the validation data of all models when confidence score is 0.9.

Type Red Blood Cell White Blood Cell Platelets

Index * P R F1 P R F1 P R F1

Model 1 0.737 0.744 0.741 0.761 0.95 0.845 0.498 0.412 0.451
Model 2 0.794 0.673 0.729 0.521 0.614 0.564 0.529 0.492 0.51
Model 3 0.747 0.823 0.783 0.214 0.2 0.209 0.382 0.288 0.329
Model 4 0.731 0.762 0.747 0.704 0.886 0.784 0.381 0.431 0.405
Model 5 0.808 0.517 0.631 0.487 0.936 0.641 0.114 0.067 0.085

* P, R, and F1 refer to precision, recall, and F1-score, respectively.

Table 5. Results of the validation data of all models when confidence score is 0.8.

Type Red Blood Cell White Blood Cell Platelets

Index * P R F1 P R F1 P R F1

Model 1 0.693 0.799 0.742 0.691 0.964 0.805 0.508 0.53 0.519
Model 2 0.761 0.748 0.755 0.536 0.7 0.607 0.47 0.67 0.553
Model 3 0.701 0.867 0.775 0.279 0.271 0.275 0.453 0.576 0.507
Model 4 0.684 0.814 0.743 0.662 0.921 0.77 0.351 0.518 0.418
Model 5 0.763 0.579 0.659 0.414 0.95 0.577 0.14 0.116 0.126

* P, R, and F1 refer to precision, recall, and F1-score.

Figure 6 shows the total training loss of all of the models. The loss might be relevant
to the size of the input image. Model 2 is trained with enlarged images and achieves higher
measurement indices for RBC recognition tasks. Since RBCs are the majority of the BCCD
dataset, the total training loss is quickly reduced at the beginning of the epoch time.

We notice that some blood cells on the input images are unclear and heavily overlap
with each other. The background-like color further causes the successful detection to
be difficult. To investigate the performance of the five models in depth, we selected a
representative image of each kind of blood cell and discussed the experiment results.
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We must note that the annotation files of the BCCD dataset do not label all of the
blood cells for unknown reasons; this has a significant impact on the precision of all of
the models.

4.4.1. Red Blood Cell Detection

RBCs comprise the majority of the BCCD dataset. Figures 7 and 8 show images with
sparse and overlapping RBCs, respectively, while Table 6 shows the experimental results of
the five models under two confidence scores.
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Figure 7. An image with sparse red blood cells.

Table 6. Comparison of the experiment results between Figure 7, Figure 8, and the validation set.

Confidence Score: 0.9 Confidence Score: 0.8

Index * PFig7 RFig7 PFig8 RFig8 Pv Rv PFig7 RFig7 PFig8 RFig8 Pv Rv

Model 1 1 1 0.75 0.429 0.737 0.744 1 1 0.625 0.476 0.693 0.799
Model 2 1 0.929 0.833 0.476 0.794 0.673 1 0.929 0.846 0.524 0.761 0.748
Model 3 0.933 1 0.846 0.524 0.747 0.823 0.875 1 0.813 0.619 0.701 0.867
Model 4 1 1 0.727 0.381 0.731 0.762 0.875 1 0.625 0.476 0.684 0.814
Model 5 1 0.786 1 0.143 0.808 0.517 1 0.786 0.75 0.143 0.763 0.579

* PFig7 and RFig7 refer to the precision and recall of RBC detection on Figure 7, PFig8 and RFig8 refer to those on
Figure 8, and Pv and Rv refer to those on the validation set.
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The models generally can recognize sparse RBCs well and return excellent scores.
Nevertheless, their performance depends on their recognition capabilities for overlapping
blood cell detection. For example, although Models 3 and 5 have impressive precision
for RBC detection, as seen in Figure 8, the differences in recalls between Models 3 and
5 are 38.1% (42.4–14.3%) and 47.6% (61.9–14.3%) under a confidence score of 0.9 and 0.8,
respectively. The recalls of RBC detection in Figures 7 and 8 of Model 5 are 78.5% and
14.3%, respectively. As a result, the recall of RBC detection on the validation set of Model 5
is significantly lower than those of the other models. On the other hand, Model 3 still has
recalls of 52.4% and 61.9% for RBC detection in Figure 8 under confidence scores of 0.9 and
0.8, respectively.

4.4.2. White Blood Cell Detection

WBC detection is usually the easiest task in blood cell counting due to the size and
peculiar color of WBCs. Figure 9 shows an image with two adjacent WBCs. We comprehend
the ability of each model in Table 7.
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Table 7. Comparison of the experiment results between Figure 9 and validation set.

Confidence Score: 0.9 Confidence Score: 0.8

Index * PFig9 RFig9 Pv Rv PFig9 RFig9 Pv Rv

Model 1 1 1 0.761 0.95 1 1 0.691 0.964
Model 2 1 1 0.521 0.614 1 1 0.536 0.7
Model 3 1 0.5 0.214 0.2 1 0.5 0.279 0.271
Model 4 1 1 0.704 0.886 1 1 0.662 0.921
Model 5 1 1 0.487 0.936 1 1 0.414 0.95

* PFig9 and RFig9 refer to the precision and recall of WBC detection on Figure 9, and Pv and Rv refer to those on the
validation set.

As shown in Table 7, all of the models, except Model 3, can precisely identify neigh-
boring WBCs, as seen in Figure 9 under confidence scores of 0.9 and 0.8. Model 1 has the
best precision and recalls of WBC detection on the validation set.

4.4.3. Platelets Detection

Platelets are smaller than RBCs and WBCs. Furthermore, platelets are significantly
fewer than RBCs and WBCs. As a result, platelet detection is always the hardest task in
blood cell counting, especially when the platelets are clustered. We take Figures 10 and 11
as examples for investigation. The experiment results are shown in Table 8.
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Table 8. Comparison of the experiment results between Figure 10, Figure 11, and validation set.

Confidence Score: 0.9 Confidence Score: 0.8

Index * PFig10 RFig10 PFig11 RFig11 Pv Rv PFig10 RFig10 PFig11 RFig11 Pv Rv

Model 1 1 0.5 1 0.25 0.498 0.412 1 0.5 1 0.25 0.508 0.53
Model 2 1 1 1 0.25 0.529 0.429 1 1 0.5 0.25 0.47 0.67
Model 3 0 0 0 0 0.382 0.288 1 0.5 0 0 0.453 0.576
Model 4 1 1 0 0 0.381 0.431 1 1 0.333 0.25 0.351 0.518
Model 5 0 0 0 0 0.114 0.067 0 0 0 0 0.14 0.116

* PFig10 and RFig10 refer to the precision and recall of platelet detection on Figure 10, PFig11 and RFig11 refer to those
on Figure 11, and Pv and Rv refer to those on the validation set.

As shown in Figure 10, platelets are small and unobvious. After enlarging the input
images by 1.25 times and preprocessing, Model 2 can successfully recognize them. However,
in Figure 11, three platelets are clustered. As shown in Table 8, they cannot be recognized
separately, even by the best Model 2. Model 5 performs significantly worse than all of the
others. This reveals the disadvantage of only using RGB images.

4.4.4. Summary

RBCs comprise the majority of the BCCD dataset. When RBCs are dense and heavily
overlapping, RBC detection becomes harder. With suitable preprocessing and the enlarge-
ment of input images, Model 3 performs outstandingly. Model 5, which only uses RBG
images, has high precision for RBC detection; however, its recalls on overlapped RBC
detection are significantly reduced.

WBCs are larger than RBCs and Platelets. WBC detection is usually an easier task in
blood cell counting. With suitable preprocessing, Model 1 outperforms other models, even
when the WBCs are neighboring.

Platelets are few and small. Platelet detection is always the hardest task in blood cell
counting, especially when platelets are clustered. With the proper enlargement of the input
images, Model 2 performs better than the others.

5. Conclusions

In this paper, we propose a novel CNN-based blood cell detection and counting
architecture. In this architecture, we adopt VGG-16 as the backbone. The feature maps
generated by VGG-16 are enriched by feature fusion and block attention mechanism
(CBAM). The concepts of RPN and RoI Pooling from Faster R-CNN are used for blood
cell detection. We used the BCCD dataset of blood smear images for the performance
evaluation of the proposed architecture. The original images were preprocessed, including
image augmentation, enlargement, sharpening, and blurring. Five models with different
settings were constructed. The experiments on the RBCs, WBCs, and platelets detection
were performed under two confidence scores: 0.9 and 0.8, respectively.

For RBC detection, Model 3, which enlarges input images 1.5-fold and uses images in
both RGB and grayscale color spaces, achieved the best recalls: 82.3% and 86.7% under two
confidence scores: 0.9 and 0.8, respectively. Meanwhile, it achieved a precision of 74.7%
and 70.1% under the two confidence scores. Model 5, which uses RBG images only, scores
with an impressive precision; however, it also scores notorious recalls, especially when
RBCs are heavily overlapping.

WBC detection is usually the easiest task in blood cell counting due to the size and
peculiar color of WBCs. For WBC detection, Model 1, which performs image preprocessing
and uses both RBG and grayscale images, outperforms other models. The precision and
recall are 76.1% and 95%, respectively, under a confidence score of 0.9, and 69.1% and 96.4%,
respectively, under a confidence score of 0.8.

Platelets are smaller and fewer than RBCs and WBCs. Platelet detection is harder than
RBC and WBC detections, especially when the platelets are clustered.
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We note that the annotation files of the BCCD dataset do not label all of the blood cells
due to unknown reasons, significantly impacting the precision of all the models.

Future Work

In blood smear images, some blood cells are at the edge of the images. We are currently
working on improving our architecture with the concept introduced in Mask R-CNN [50]
to handle imperfect blood cells. As well, recent deep learning object detection models are
under consideration. We also look for more datasets of blood smear images to include more
blood cell samples for learning.
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