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COMPLETE CHARACTERIZATION OF OPENNESS,
METRIC REGULARITY, AND LIPSCHITZIAN PROPERTIES

OF MULTIFUNCTIONS

BORIS MORDUKHOVICH

Abstract. We consider some basic properties of nonsmooth and set-valued
mappings (multifunctions) connected with open and inverse mapping princi-
ples, distance estimates to the level sets (metric regularity), and a locally Lip-
schitzian behavior. These properties have many important applications to vari-
ous problems in nonlinear analysis, optimization, control theory, etc., especially
for studying sensitivity and stability questions with respect to perturbations of
initial data and parameters. We establish interrelations between these properties
and prove effective criteria for their fulfillment stated in terms of robust gen-
eralized derivatives for multifunctions and nonsmooth mappings. The results
obtained provide complete characterizations of the properties under consider-
ation in a general setting of closed-graph multifunctions in finite dimensions.
They ensure new information even in the classical cases of smooth single-valued
mappings as well as multifunctions with convex graphs.

1. Introduction

Let O: R" —> Rm be a finite dimensional mapping strictly differentiable at
the point x with the derivative (Jacobian) V<P(x) e Rmxn , i.e.,

lim   ||jc - x'\\-l[4>ix) - O(x') - V<D(Jc)(x - x')] = 0.
x ,x'—>x

One of the key results of the classical differential calculus is the so-called
open mapping theorem (principle). It means that
(1.1) <P(jE) 6 int O(U)    for any neighborhood U of X
if the following surjectivity condition is fulfilled:
(1.2) VO(x)R" = Rm.

This result, valid also in Banach spaces, is sometimes referred as the interior
mapping theorem or the Graves theorem; see, for instance, [11, 16-18]. In [46],
Pourciau proves that the result ( 1.1 ) is fulfilled for locally Lipschitzian functions
<t> : R" -» Rm under the condition

(1.3) rank^ = m   for all A e Jc®ix), m < n,
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2 BORIS MORDUKHOVICH

stated in terms of Clarke's generalized Jacobian Jc®(x) cR™" [8, p. 70].
Note that, already from the proof of the Ljusternik tangent space theorem

[34], one can distill the following fact: if <£> is strictly differentiable at x and
the surjectivity condition (1.2) is fulfilled, then there exist a constant a > 0
and a neighborhood U of x such that

(1.4) Bari<t>ix)) C ^(Br(x))   for any Br(x) C U,

where BPiz) means the closed ball with center z and radius p .
The property (1.4) is stronger than (1.1) due to two points: (i) the inclusion

in (1.4) is uniform with respect to all x in the neighborhood U; and (ii) one
keeps a linear rate of openness in (1.4) in comparison with "arbitrary openness"
in (1.1).

This property (1.4), named covering in a neighborhood, has been studied by
Dmitruk, Miljutin, and Osmolovskii [11] for nonsmooth mappings <ï> : R" —>
Rm which are locally Lipschitzian around x . It has been proved by Miljutin in
[11, §5] that the rank condition (1.3) is sufficient for the covering property (1.4),
but this condition is far removed from the necessity for O to enjoy (1.4). Some
close and more general results for the so-called local surjection property, related
to (1.4), have been obtained by Ioffe who has first introduced and evaluated
lower estimates for surjection constants (bounds) in various situations (see, e.g.,
[21 and 23]). In [63], Warga studies a version of (1.4) at the point x and proves
the refined sufficient conditions for the fulfillment of this property in terms of
his "unbounded derívate containers".

Let 0 be a multifunction (set-valued mapping) from R" into Rm with the
graph

gphO:={(x, y)eR" x Rm : y € <D(x)}.

A set-valued counterpart of the covering property (1.4) has been studied by
Mordukhovich in [38] and [39, §5] where a necessary and sufficient condition for
the covering of multifunctions was first obtained. The criterion in [38, Theorem
8] and [39, Corollary 5.2.1] states that if <I> is an arbitrary multifunction with
the closed graph and uniformly bounded values around x, then the condition

(1.5) inf{\\x*\\:x*eD*<I>(x,y)(y*),  \\y*\\ = 1, V e *(*)} > 0
is necessary and sufficient for <1> enjoying the covering property (1.4).

Here y* -» D*i>(x, y)(y*) is the coderivative of $ at (x, y) introduced in
Mordukhovich [37] (see §2). If i> is single-valued and strictly differentiable
at x, then criterion (1.5) coincides with the classical surjectivity condition
(1.2) which appears to be necessary and sufficient for the covering of smooth
mappings. If O: R" -> Rm is locally Lipschitzian around x, then criterion
(1.5) can be expressed in terms of the subdifferential of the real-valued functions
x -> (y*, O(jc)) which was first introduced in [36]; see §2 for more details.

In [29], Kruger considers a local version of the covering property (1.4) in a
neighborhood of a point (x, y) e gphO. He proves some characterizations of
this property in Banach spaces in terms of the corresponding modifications of
the coderivative D*0(x, y). Such a property of multifunctions, called open-
ness at a linear rate around (x, y), has been studied in Borwein and Zhuang
[5]. In that paper, the authors provided some criteria for openness in terms of
Frankowska's variations of multifunctions [15]. We refer to [4, 16, 23, 39] for
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CHARACTERIZATION OF MULTIFUNCTIONS 3

more information about openness (covering) properties of multifunctions, their
modifications, and applications.

Another significant property was actually discovered by Ljusternik [34] and
Graves [17] for smooth mappings O with the surjectivity condition (1.2). This
is the so-called distance estimate
(1.6) dist(x, $-'(y)) < cdist(y, O(x))
valid for all x from a neighborhood of x and for all y from a neighborhood
of O(x), with some constant c > 0. Here

dist(x, Q) := inf{||x - co\\ : œ e Yl}
is the distance function to the set Yl, and

<D-1(y):={xeR'!:y G <t>(x)}
is the inverse mapping to O.

It is well known that property (1.6) and its counterparts for set-valued map-
pings O play a fundamental role in various areas of nonlinear and nonsmooth
analysis, optimization, and their applications (see, e.g., [2-6, 10, 11, 20, 25, 26,
39, 45-49, 58] and references therein). In particular, such properties are very
important for studying perturbed optimization problems where they provide
some stability results and are related to the regularity of constraint systems (the
so-called constraint qualifications). The properties of single-valued and multi-
valued mappings connected with distance estimates like (1.6) are often called
the metric regularity of these mappings around the points under consideration.
One of the principal results for multifunctions with convex and closed graphs
is the Robinson-Ursescu theorem [47, 62] on the metric regularity of such mul-
tifunctions under an inferiority condition.

It has been observed in Dmitruk, Miljutin, and Osmolovskii [11] and in Ioffe
[21] that the distance estimate (1.6) for single-valued mappings is equivalent to
the covering property (1.4) with c = 1/a. Some generalizations of this result
for the case of multifunctions have been recently obtained by Borwein and
Zhuang [5] and Penot [45] who establish the equivalence between openness with
a linear rate around (x, y) e gph<I> and the metric regularity of O around the
same point. Moreover, they prove that these properties of <I> are equivalent to
the so-called pseudo-Lipschitzian property of the inverse mapping O" ' around
(y, x).

The latter property of multifunctions was introduced by Aubin [1] in con-
nection with inverse mapping theorems and sensitivity analysis of optimiza-
tion problems. Various applications of this property to significant questions in
nonlinear analysis, optimization, and optimal control can be found in Aubin
and Ekeland [2], Aubin and Frankowska [3], Dontchev and Hager [12], Mor-
dukhovich [40-43], Rockafellar [54, 56], and elsewhere. This topic is of a great
importance for studying stability and sensitivity properties of constraint systems
depending on parameters (in particular, for the sets of all feasible solutions or
all optimal solutions to a parametrized optimization problem; see, e.g., Fiacco
[14]).

The following sufficient condition for pseudo-Lipschitzness of a closed-graph
multifunction <J> around (x, y) e gphG> has been obtained by Aubin [1] and
Rockafellar [54]:
(1.7) [(x*, 0) e Nciix,y) | gph<D)] =* x* = 0
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4 BORIS MORDUKHOVICH

in terms of Clarke's normal cone [7; 8, p. 51] to gph<t> at (X, y). It follows
from the results in Rockafellar [55] that Clarke's cone Nc((x,y)\ gph<P) is
always a (linear) subspace in R" x R'" if gph O is a Lipschitzian manifold in
the sense of [55], i.e., it is locally representable as the graph of a single-valued
Lipschitz continuous function. The class of such multifunctions O covers,
besides single-valued locally Lipschitzian functions, all maximal monotone re-
lations (in the sense of Minty [35]) and includes subdifferential mappings for
convex functions, saddle functions, strongly subsmooth functions, etc.; see the
detailed analysis in [55].

From here one can conclude that relationship (1.7) is never fulfilled for such
multifunctions O, except the situation when gphi> is locally representable
around (x, y) as the graph of a smooth (i.e., strictly differentiable) single-valued
function. So, the sufficient condition (1.7) for <t> being pseudo-Lipschitzian
around (x, y) is far removed from the necessity: it does not cover even the
case when (nonsmooth) O is single-valued and locally Lipschitzian around x,
i.e., it is pseudo-Lipschitzian automatically.

A necessary and sufficient condition for an arbitrary closed-graph multifunc-
tion O to be pseudo-Lipschitzian around (x, y) e gph O has been obtained by
Mordukhovich [40] in the form

(1.8) Z>*<D(x,y)(0) = {0}
involved the coderivative of <P at (x, y). The difference between conditions
(1.7) and (1.8) is the following: instead of Clarke's normal cone as in (1.7), we
use in (1.8) the nonconvex normal cone JV(-1 gph<I>) in the sense of [36] whose
convex closure coincides with Nd-\ gphO). Despite their nonconvexity, the
normal cone N^ | gph<P) and the coderivative Z)*0 generated by it enjoy some
nice properties important for applications (in particular, robustness and a rich
calculus; see §2 for more details). Note that the mentioned operation of taking
a convexity hull may worsen these properties considerably.

This paper is devoted to a thorough study of openness (covering), metric
regularity, and Lipschitzian properties of multifunctions. We shall consider a
variety of openness and regularity concepts for arbitrary multifunctions, both
local and nonlocal with respect to their images and domains. Then we shall
study interrelations between these properties and their interconnections with
a corresponding Lipschitzian behavior of the inverse mappings. One of the
objects of this paper is to establish the equivalence between suitable openness,
regularity, and Lipschitzian properties of multifunctions in a general setting.
The main goal is to provide complete and effective characterizations of these
properties in convenient and verifiable terms.

For these purposes we use the above mentioned concept of coderivative for
multifunctions [37] and develop the results in Mordukhovich [38-40]. Using
this technique, we prove new criteria for each of the properties under considera-
tion and obtain precise formulas (equalities instead of estimates) for evaluating
the exact bounds of the corresponding regularity, openness, and Lipschitzian
moduli. The results obtained have many significant applications to the stability
and sensitivity analysis in optimization and optimal control problems, necessary
optimality and controllability conditions in such problems, variational inequal-
ities and generalized equations, general aspects of nonsmooth and nonlinear
analysis, etc. Some of these applications can be found in [40-43].
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CHARACTERIZATION OF MULTIFUNCTIONS 5

The organization of the paper is as follows. In §2 we define general construc-
tions of the normal cone to a set, the coderivative of a multifunction, and the
subdifferential of an extended-real-valued function which provide the tools for
obtaining our main theorems. We review some properties of these objects and
formulate several important results used broadly in the paper.

Section 3 is devoted to covering and openness properties of multifunctions.
We consider three notions of this kind, study their interrelations, and prove nec-
essary and sufficient conditions for the fulfillment of these properties in a gen-
eral setting. We also provide explicit formulas for evaluating the exact bounds
of covering and openness moduli. The results obtained ensure open mapping
principles for arbitrary closed-graph multifunctions under the conditions which
appear to be precise analogues (equivalences) of the classical surjectivity condi-
tion (1.2) in nonsmooth and multivalued settings.

Section 4 deals with the concept of metric regularity for multifunctions.
There we introduce several definitions of metric regularity which may be lo-
cal and nonlocal with respect to the image or domain. We prove that one part
of these definitions (local with respect to the domain) is equivalent to the cor-
responding notions of openness in §3. Another part of the regularity properties
introduced (local with respect to the image) appears to be equivalent to the
Lipschitzian properties of the inverse mappings studied in the concluding §5.
In §§4 and 5 we obtain comprehensive criteria for the metric regularity and
Lipschitzian behavior of multifunctions with evaluating the exact bounds of
the corresponding moduli. The results obtained provide necessary and suffi-
cient conditions for an arbitrary closed-graph multifunction possessing the Lip-
schitzian inverse. For convex-graph multifunction these criteria are equivalent
to the interiority condition in the Robinson-Ursescu theorem.

We confine our treatment to the finite dimensional case for two reasons. First
of all, we would not like to obscure the basic ideas with technical and notational
complications. Furthermore, some of the constructions used and the results
obtained (as well as their representations) are peculiar to finite dimensions. To
develop this material to Banach space settings one can employ the corresponding
infinite dimensional extensions of our derivative-like objects studied in [21, 23,
24, 28-32, 39, 60, 61] and elsewhere.

Our notation is basically standard. Recall that clYl, coYl, and cone Yl :=
{ax : a > 0, x e Yl} means, respectively, the closure, the convex hull, and the
conic hull of the arbitrary nonempty set Q ; the set B is always the unit closed
ball of the space in question. For a multifunction i> from R" into Rm we
denote its domain, image (range), and kernel by, respectively,

DomO := {x e R" : <I>(x) ̂ 0},
Im O := {y e <D(x) : x e Dom <!>},

Ker<D:={xeR" : 0 g <D(x)}.
We shall consider the set

lim sup <P(x) := {y e Rm : 3 sequences x¿. —> x, yt —► y
x—*x

with yk e <I>(xfc) for all k = 1, 2,...}
which is called the Kuratowski-Painlevé upper limit of the multifunction i>(x)
as x —> x .
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6 BORIS MORDUKHOVICH

If <p: R" —► R = [-00, oo] is an extended-real-valued function, then, as
usual,

domtp := {x e R" : \<p(x)\ < oc},    and    epiç? := {(x, p) e Rn+X : p > fix)}.

We shall use the symbol lim for the upper limit of such (scalar) functions in
the classical sense. The symbols x(e Yl) —► x and x -^ x mean, respectively,
that x —» X with x e Yl, and x —> x with <p(x) —> #>(x). The adjoint
(transposed) matrix to A is denoted by A*. Throughout the paper we use the
convention that inf 0 = oo, sup 0 = -oo , ||0|| = oo, and a + 0 = 0 + b = 0
for any vectors a and b .

2. Generalized normals, coderivatives, and subdifferentials

In this section we present some background material in nonsmooth analysis
based on the approach in Mordukhovich [36, 37, 39]. Most of this material
with the proofs and discussions of the presented results can be found in [39,
Chapter 1].

We use a geometric approach to the generalized differentiation of nonsmooth
mappings and start with the definition of a normal cone to an arbitrary set.

Let Yl be a nonempty set in R" and

P(x, Yl) := {co eel Yl: \\x - co\\ = dist(x, Yl)}

be the projection (the set of best approximations) of x to Yl.

Definition 2.1. The closed (maybe nonconvex) cone

(2.1) iV(x|r2):=limsup[cone(x-P(x,r2))]
x—>x

is called the normal cone to the set Yl at the point x e cl Yl.

If Q is a convex set, then the normal cone introduced coincides with the
normal cone in the sense of convex analysis [50]. In general, the convex closure
of (2.1) coincides with the Clarke normal cone:

(2.2) 7Vc(x|Q) = clcoJV(x|f2).

(This is actually the "proximal normal formula" in [8, Proposition 2.5.7].)
In spite of its nonconvexity, the normal cone (2.1) has a variety of useful

properties for the analysis and applications to nonsmooth problems (see [39]
and references therein). Moreover, the taking of the convex hull as in (2.2) may
essentially spoil some of these properties. It happens, in particular, when one
considers the Clarke normal cone to graphs of nonsmooth maps and multifunc-
tions, i.e., it always appears in the coderivative constructions below.

For all x e cl Yl let us consider the so-called Fréchet normal cone

(2.3) NF(x\YÏ):= (x* e R" :    ïïm    \\x'-x\\~Hx*, x'-x) <0
[ x'(ea)->x

which coincides (in finite dimensions) with the polar to the (Bouligand) con-
tingent cone; see, e.g., Aubin and Ekeland [2, Chapter 7]. The following repre-
sentation was first obtained in Kruger and Mordukhovich [30, 32] (see also [39,
Theorem 1.1]).
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characterization of multifunctions 7

Proposition 2.2. For any Yl and x e cl Yl one has

N(x\Yl)= lim sup NF(x\Yl).
x(eclC2)-oc

Let us now consider the concept of coderivative for an arbitrary multifunction
O from R" into Rm with the nonempty graph.

Definition 2.3. The multifunction Z)*<P(x, y) from Rw into R" defined by
(2.4) Z)*<D(x, y)iy*) := {x* e R" : (x*, -y*) e N((x, y) | gph<D)}
is called the coderivative of O at the point (x, y) e clgphO. The symbol
D*0(x)(y*) is used in (2.4) when O is single-valued at x and y = <I>(x).

If one replaces the normal cone (2.1) in formula (2.4) by the Clarke normal
cone (2.2), then the construction defined

(2.5) £>c<D(x, y)iy*) := {x* e R" : (x*, -y*) e Nc((x, y) | gphO)}
is called the Clarke coderivative of 4> at (x, y). This multifunction always has
convex values and appears to be a dual object to the so-called (Clarke) derivative
of O at (x, y) introduced by Aubin in [1, 2] through the Clarke tangent cone
to gphO. The coderivative (2.4) is nonconvex-valued and, therefore, it cannot
be a dual object to any tangentially generated derivative of multifunctions. On
the other hand, it follows from Proposition 2.2 that the coderivative (2.4) for
any closed-graph O can be represented as the Kuratowski-Painlevé upper limit
of the contingent coderivative for O at the points (x, y)(e gphO) -> (x, y),
which is the dual construction to Aubin's contingent derivative [1]. Such a
representation of (2.4) has been studied in Ioffe [22] under the name of the
approximate coderivative of O at (x, y).

It is easy to prove the following assertions.

Proposition 2.4. Let <P : R" -» Rm be a strictly differentiable function at x.
Then

Zr<D(x)(y*) = {(V0>(x))*y*}   for all y* e Rm.
Proposition 2.5. Let O be a multifunction from R" into Rm with the convex
graph. Then for any (x, y) e cl gph<P the coderivative (2.4) is represented in
the form

D*<D(x, y)iy*) = {x* e R" : (x*, x) - (y*, y)
= sup[(x*, x) - (y* ,y):(x,y)e gph0>]}.

Note that under the assumptions of Propositions 2.2 and 2.4 the coderivative
(2.4) coincides with the Clarke coderivative (2.5). This is not true in more
general cases. Moreover, in common nonsmooth settings one has

coD*<D(x,y)(y*)^Dc<D(x,y)(y*).
Indeed, let gph O be a nonsmooth Lipschitzian manifold around the point

(x, y) in the sense of Rockafellar [55] (see §1). One can derive from [55, Theo-
rem 3.5] that in this case DJO(x, y)(0) is always a linear subspace of a positive
dimension. But due to Theorem 5.7 stated below, we have D*4>(x, y)(0) = {0}
for any multifunction O which is pseudo-Lipschitzian around (x, y). So, the
coderivatives (2.4) and (2.5) are quite different for significant and sufficiently
broad classes of multifunctions.
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8 BORIS MORDUKHOVICH

One of the principal properties of the coderivative (2.4), which is of a great
importance for applications, is its stability irobustness) with respect to pertur-
bations of the initial data. More precisely, the following assertion holds true.

Proposition 2.6. The coderivative (2.4) always enjoys to be robust in the sense
that

D*<D(x, y)if) = lim sup D*<D(x, y)iy*)
(x,y)(ecX gph9)->(X,p)

y'-*y'

for any multifunctions 0 and points (x, y) e cl gph<P, y* e DomZ)*<P(x, y).

Note that such a robustness may be broken for the Clarke coderivative (see
an example in Rockafellar [51, p. 22]). This robustness property is always
broken for the contingent coderivative of any multifunction <P whose graph is
a nonsmooth Lipschitzian manifold around (x, y).

Let us now consider an extended-real-valued function <p : R" —* R and a
point x e dom tp. We shall associate with tp the multifunction i> from R"
into R defined by

G>(x) = Eyix) := {p e R : p > <pix)}   with gphO = epic?.
Definition 2.7. (1) The set

d-(pix):=D*E<pix,(pix))il)
= {x* GR":(x*, -1)6 Nüx,tpix))\ epitp)}

is called the (first-order) subdiffierential of <p at x e dom tp .
(2) The set

d°°<pix):=D*E,ix,tpix))iO)
= {x* 6 R" : (x*, 0) e yV((x, ?(•*)) I epi <p)}

is called the singular subdiffierential of tp at x .

The sets introduced are always closed, but they may be nonconvex in common
settings (e.g., for tpix) = -\x\ at x = 0 where d~tpiO) = {-1, 1}). For
convex functions tp the subdifferential (2.6) coincides with the classical sub-
differential of convex analysis. When tp is locally Lipschitzian around x, the
set d~(pix) is necessarily nonempty and compact. Then this set is reduced to
the singleton {V^>(x)} if and only if tp is strictly differentiable at x. Note the
following connection

(2.8) dc<pix) = clco[d-<pix) + d°°tpix)]
between subdifferential constructions (2.6) and (2.7) and Clarke's generalized
gradient dc<pix) for an arbitrary function tp : R" —> R. (This follows imme-
diately from the definitions and formula (2.2).) One can easily see that the
normal cone (2.1) to any set Yl at x e Yl is expressed in the form

/V(x | Yl) = d'Six, Yl) = d°°ôix, Q)
where <J(',ß) is the indicator of Yl, i.e., ô(x, Yl) := 0 if x e Yl, and
S(x, Yl) := oo if x ^ Yl. On the other hand, we have the following repre-
sentation [39, Proposition 2.7] of the normal cone

N(x\Yl) = cone[a ~ dist(x, Yl)]   at x e cl Yl
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characterization of multifunctions 9

in terms of the subdifferential of the distance function which is Lipschitzian on
R" . These formulas allow us to study properties of the normal cone (2.1), the
coderivative (2.4), and the subdifferentials (2.6) and (2.7) simultaneously.

The given subdifferential d~tpix) was first introduced in Mordukhovich [36]
by the right-hand formula in (2.6). Properties of this construction have been
studied in detail in the book [39] and in some previous publications, where
a rich calculus and significant applications have been obtained. We refer also
to [9, 21, 22, 28-32, 52, 53, 57] for equivalent (in finite dimensions) limit-
ing representations of the subdifferential (2.6) in terms of the so-called Dini
subdifferentials, Fréchet subdifferentials, and proximal subgradients.

Note that the subdifferential mapping (2.6) is a robust construction with re-
spect to perturbations of the initial point x. Moreover, this subdifferential
appears to be the best (minimal) among any robust generalized subdifferentials
of nonsmooth functions that satisfy certain natural requirements (see some vari-
ants of this result in Ioffe [22, Theorem 9] and Mordukhovich [38, Theorem
4] and [39, Theorem 4.9]). One of these required properties is the following
stationary principle which is trivially fulfilled for the subdifferential (2.6).

Proposition 2.8. If tp : R" -> R has a local minimum at x e dom tp, then
Oed~<p(x).

The singular subdifferentials have appeared in Kruger and Mordukhovich [30]
and Rockafellar [52] in connection with the study of non-Lipschitzian functions.
There one can find the proof of the following assertion (see also [39, Theorem
2.1]).
Proposition 2.9. Let tp : Rn —» R be a lower semicontinuous il.s.c.) function
around x e dom <p. Then for tp being locally Lipschitzian around x, it is
necessary and sufficient that d°°<p(x) = {0}.

For any extended-real-valued function tp on Rn , let us consider the subdif-
ferential multifunction d~<p from R" into R" defined in (2.6) for x G domtp
and d~tp(x) := 0 for x 0 domtp . Then we can introduce the following con-
struction.

Definition 2.10. The set-valued mapping 92,_ç>(x,y) from R" into R" de-
fined by
(2 9) d2--tpix,y)iu) := (D*d-<p)(x,y)(u)

= {veRn:(v,-u)eN((x,y)\gvhd-<p)}
is called the second-order subdifferential of tp at x G dom tp relative to y G
d-tp(x).
Remark 2.11. For any function tp : Rn —► R, we can symmetrically define the
(first-order) superdifferential

d+tp(x):=-d-(-<p)ix)
of tp at x G dom tp and the second-order superdifferential

(2.10) d2>+tpix, y)(u) := -(D*d+tp)(x,y)i-u)
of tp at x relative to y G d+tpix). These superdifferential constructions may
be distinguished considerably from the subdifferential ones because differential
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10 BORIS MORDUKHOVICH

properties of nonsmooth functions tp and -tp axe essentially distinct (see ex-
amples in [39, §2]). So, the subdifferentials and superdifferentials introduced
are constructions of unilateral analysis (in the sense of Moreau [44]), even in
the case of convex (concave) functions. They are able to provide a more precise
study of the local behavior of nonsmooth functions than bilateral constructions
with the classical symmetry d(—g>)(X) = -dtp(x) (such as Clarke's generalized
gradient for locally Lipschitzian functions or Warga's derívate containers). One
can find the results in this vein in Mordukhovich [39]. For the purposes of this
paper, it is sufficient to use the subdifferential constructions only.

Note that if tp e C2 around x with the gradient y = Vtp(x) and the Hessian
matrix V2tp(x), then

d2'-tp(x)(u) = d2'+tpix)iu) = {(V>(x))*w}    for any u G R".

One can also define the Clarke counterpart of the second-order subdifferential
(2.9) in the form

(2 11) d2c(pix,y)iu):=iD*cdctp)ix,y)iu)
= {veRn:iv,-u)eNciix,y)\gohdc<p)}

(cf. Aubin [1]). As it follows from the results of Rockafellar [55], the set (2.11)
is an affine manifold in R" for a broad class of functions tp including con-
vex, saddle, strongly subsmooth ones, etc.; see §1. Therefore, in such cases
the construction (2.11) cannot actually reflect anything other than classical-like
"two-sided" aspects of differentiation. This construction carries, by contrast
with (2.9) and (2.10), little information about the local behavior of <p £ C2 .

In this paper we use the coderivative (2.4) as the primal tool for the analysis
of multifunctions and nonsmooth mappings. For the case of scalar functions
tp : R" —> R this coderivative generates the constructions of the first- and second-
order subdifferentials (2.6), (2.7), and (2.9). On the other hand, if O : R" -> Rm
is a Lipschitzian vector function, then the coderivative (2.4) can be expressed
through the subdifferentials (2.6) of the scalar functions

x-(y*,<D)(x):=(y*,<D(x)>
associated with 3> for all y* G R" . The proof of the following result can be
found in [22, Proposition 8] and [39, Theorem 3.3].
Proposition 2.12. If <I> is single-valued and locally Lipschitzian around x, then
one has
(2.12) D*<S>(x)(y*) = d~(y* ,<&)(x)¿0   forally*eRm.

Note that the analogue of representation (2.12), stated in terms of Clarke's
coderivative and generalized gradient, is never fulfilled for nonsmooth Lip-
schitzian functions O because in this case D*c<&(x)(0) ̂  {0}. At the same
time, we can obtain the interrelation

(2.13) coD*<i>(x)(y*) = {A*y* : A e Jc<S>ix)}   for all y* G Rm
between Clarke's generalized Jacobian and the convex hull of the coderivative
(2.4) for locally Lipschitzian functions. (The latter formula follows from (2.8),
(2.12), and the chain rule in Clarke [8, Theorem 2.6.6].)

Let us now consider some calculus rules for the coderivatives and subdiffer-
entials introduced, which are used in proving the main results of this paper.
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The following theorem is the cornerstone of the generalized differential calculus
for multifunctions and nonsmooth mappings.

Theorem 2.13. Let <t>x and <I>2 be multifunctions from R" into Rm with the
closed graphs, and let y e i>i(x) + 02(x). Let us assume that the sets

S(x, y) := {(yx,y2)e R2m : yx e <D, (x), y2 G <D2(x), yx + y2 = y}

are bounded uniformly around (x, y), and that the following condition is ful-
filled:
(2.14) D*<&1(x,y1)(0)n[-O*(D2(x,y2)(0)] = {0}   V(y,, y2) G S(x, y).
Then

D*i<bx+<!>2)ix,y)iy*)c        [}       [D*^x(x, yx)iy*) + D*4)2(x, y2)(y*)].
(yi ,yi)es(x ,p)

The theorem formulated is proved in Mordukhovich [41, 43] by using the
so-called metric approximation method (abbr. MAM). This method provides
special approximations of questions under consideration by parametric families
of smooth optimization problems without constraints (see [39, Chapters 1-3]
and references therein for more details and various applications). Note that the
first introduction of the normal cone (2.1) in [36] (as well as the subdifferential
(2.6) and the coderivative (2.5) generated by it) was actually a by-product of
using the MAM for obtaining necessary optimality conditions in nonsmooth
problems.

The usage of the MAM in the setting of Theorem 2.13 reflects a variational
approach to the calculus of coderivatives and subdifferentials developed in [38-
43]. The following corollary of the theorem was first obtained in [38, Theorem
2]. We refer also to [9, 22, 24, 28, 29, 39, 53, 57] for some related results and
discussions.
Corollary 2.14. Let (px and (p2 be extended-real-valued functions l.s.c. around
x e dom tpx n dom tp2, and let the following condition be fulfilled:
(2.15) d°°tpxix)ni-d°°tp2ix)) = {0}.
Then one has

d~i<Px + <P2)(x) C d'tpiix) + d-(p2ix).
Remark 2.15. Due to Proposition 2.9, the condition (2.15) is automatically
fulfilled if either tpx or <p2 is locally Lipschitzian around x. Similarly, a
Lipschitzian behavior of one of the multifunctions Oi and <ï>2 ensures the
fulfillment of assumption (2.14) in the general setting of Theorem 2.13 (see
Corollary 5.10).

It is easy to obtain a number of other corollaries of Theorem 2.13 considering
the multifunctions 4>i and <S>2 of the special form. In particular, the theorem
implies some calculus rules for the singular subdifferentials (2.7), the second-
order semidifferentials (2.9) and (2.10), etc. Now we formulate a result about
the subdifferentiation of the marginal function
(2.16) m(x) := inf{tp(y) : y e <P(x)}
at x G dom m important in what follows. For all x G dom m we consider the
set

M(x) := {y G 0>(x) : tpiy) = mix)}
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12 BORIS MORDUKHOVICH

associated with (2.16) where í> is a multifunction from R" into Rm and tp is
an extended-real-valued function.

Theorem 2.16. Let the multifunction cp have the closed graph, let the sets Mix)
be nonempty and uniformly bounded around x, and let the function tp be l.s.c.
around any point y e <t>(x). If

(2.17) 0°Xy)nKerD*(D(x,y) = {0}   for any y e M(x),
then one has
(2.18) d-m(x) c [J [D*<S>(x, y)(y*) : y* e d~tp(y), y e M(x)].

y*,p
The given theorem was obtained in Mordukhovich [38, Theorem 7] and [39,

Theorem 4.6] by using the MAM. One can regard this result as a generalized
chain rule for the composition of a real function and a multifunction. If, in
particular, O is single-valued and locally Lipschitzian around x, then we have
the inclusion

d-(<po<t>)(x)<z     (J     ¿r<y*,0)(x)
yed-(p(p)

which follows from (2.18) and Proposition 2.12. Note that condition (2.17) is
fulfilled automatically if either tp is locally Lipschitzian around y or O(x) =
Rm . The latter case was considered in Rockafellar [53]. Some recent general-
izations and applications of Theorem 2.16 can be found in [40].

Let us now consider a corollary of this theorem for the distance function
from a fixed point to a variable set

pv(x) := dist(u , O(x))

which is a special case of (2.16) for q>(y) = \\v - y\\. Note that in this case the
set M(x) in Theorem 2.16 coincides with the projection P(v, O(x)) of v to
O(x). We say that a multifunction <]> is locally bounded around x if there
exists a neighborhood U of x such that the set <ï>( U) is bounded.

Corollary 2.17. Let O be a closed-graph multifunction firom R" into Rm which
is locally bounded around x e Dom O. Then

d-pvix) c [J[D*ix, y)iy*) : \\y*\\ <l, (y*,y-v) = \\y-v\\, y e P(v , <P(x))]

where y* = (y - v)/\\y -v\\ if v g O(x).
To conclude this section, let us mention a useful assertion (see [38, Theorem

5] and [39, Theorem 5.1]) which can be considered as an extended variant of
Ekeland's variational principle [13] in finite dimensions.

Proposition 2.18. Let tp : Rn —> (-oo, oo] be a l.s.c. proper function which is
bounded below. Let p : Rn —► [0, oo) be a l.s.c. function satisfying the conditions:
pix) -+00 as \\x\\ -> oo, p(0) = 0, and pixx + x2) <pixx) +pix2) for any xx
and x2 in R" . Let positive numbers e and k be given. Then for any x£ G R"
with

tpixf) < inf{tpix) : x e Rn} + e
there exists a point x¿ G R" such that (pixf) < f (xe), pixx - xe) < X, and

<pixf) < fix) + (e/A)p(x - xf)   for all x G R".
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The proof of this assertion is quite elementary (cf. Hiriart-Urruty [19] for
p(x) = ||x||) : the desired vector x¿ is a solution of the unconditional mini-
mization problem:

tp(x) + (e/X)p(x - xe) -» inf,        x G R" ,
which does exist due to the classical Weierstrass theorem in finite dimensions.

3. Covering and openness of multifunctions

In the rest of the paper, í> is a multifunction from R" into Rm with the
closed graph, X e Dom<P, and (x, y) g gphO. In this section we consider
three interrelated notions of covering (openness) for multifunctions and obtain
their complete characterization. Let us begin with the covering property for $
around x which is nonlocal with respect to O(x).
Definition 3.1. We say that <P enjoys the covering property around X if there
exist a number a > 0 and a neighborhood U of x such that for any (x, r)
with Br(x) C U one has Bar(0(x)) c <f>(Br(x)). Each of such numbers a
(corresponding to different neighborhoods) is called the covering modulus for
O around x. The supremum of all covering moduli is called the covering bound
for O around x and is denoted by (covO)(x).

Note that (covO)(x) is the least upper bound of all covering moduli for
<S> around x but may not be a covering modulus itself. Our goal is to prove
effective criteria for the covering property and to evaluate the covering bound
in a general setting. Consider the numbers

(3.1) a(0,x):=mf{\\x*\\:x*eD*0(x,y)(y*), \\y*\\ = 1, y g<D(x)},

(3.2) c(<¡>, X) := inf{c : \\y*\\ < c\\x*\\ if x* G D*Q>(x, y)(y*) and y G <î>(x)}.
Proposition 3.2. If a(Q>, X) > 0, then c(<J>, x) = l/a(Q>, X).
Proof. First let us consider the extreme case #(0, x) = oo. This means that
Z>*<I>(x, y)iy*) = 0 if y* ^ 0. Therefore, the implication
(3.3) [x*GZ)*<D(x,y)(y*), y G <D(x)] => ||y*|| < c\\x*\\
holds for c = 0 only, i.e., c(<l>, x) = 0 in (3.2).

Let 0 < a(<I>, x) < oo . Now we shall prove that implication (3.3) is fulfilled
for any number c > l/a(0, x).   If it is not true, one can find vectors y G
O(x), y* G Rm, and x* G D*<D(x, y)(y*) such that ||y*|| > c||x*||. Setting
y* := y*/\\y*\\ and x* := x*/||y*||, we have

||yl = l,    x*G/r<D(x,y)(y*),    and   ||x*|| < 1/c < a(0, x)
which contradicts the definition of <a(0, x) in (3.1). Therefore, (3.3) holds for
any c > l/a(<I>, x). This implies the inequality c(0, x) < l/a(3>, x).

Let us prove the opposite inequality c(0, x) > l/ai$>, X). Consider a num-
ber c > 0 satisfying (3.3) and vectors y G <P(x), x* G D*<I>(x, y)iy*) with
||y*|| = 1. It follows from (3.3) that ||x*|| > l/c. Therefore, c > l/a(<I>, X)
for any number c > 0 satisfying (3.3). This implies the inequality c(<I>, x) >
l/a(3>, x) and ends the proof of the proposition.   D

Now we obtain several criteria for the covering property with evaluating the
covering bound for O around x .
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14 BORIS MORDUKHOVICH

Theorem 3.3. Let G> be locally bounded around x. Then the following conditions
are equivalent:

(a) O enjoys the covering property around x .
(b)a(<D,x)>0.
(c) There exists a number c > 0 and a neighborhood U of X such that

(3.4) ||y*|| <c||jc*||   foranyx* e D*^(x, y)(y*), xe U, andye^ix).

(d) There exists a neighborhood U of X such that

Ker 7J>*i>(x, y) = {0}   for any x e U and y e <P(x).

(e) KerD*i>(x, y) = {0} for ally e <P(x).
When these properties hold, one has

(3.5) (covO)(x) = a(<D,x) = l/c(0, *).
Proof. Let (a) be fulfilled with a covering modulus a > 0. We shall show that
a < a(0, x) which implies (a) =>■ (b). Proving by contradiction, suppose that
a > a(<&, X). Then for any small number y > 0 we can find vectors x* G R" ,
y* G Rm , and y e i>(x) such that

(x*, -y*)eN((X,y)\ gph<I>),     ||y*|| = l,    and   ||x*||<a-y.

Due to Proposition 2.2, there exist sequences xk —» x, yk ^ y, x^ —> x*, and
y*k^y* as k -> oo such that

(x?, -y*k) G NF((xk , yk) \ gphO) and (xk , yk) e gphi>      for k = 1, 2,... .

Without loss of generality, ||y£|| = 1 and ||x£|| < a - y for all k = 1, 2, ... .
Using formula (2.3), we have

(3.6) lim sup     {x'"*-Xk)-K'y-yk)<0.
(x,y)-.(xk,yk) \\(x - xk , y - yk)\\

ye<P(x)

For convenience let us set ||(x, y)|| := ||x|| + ||y||. Then formula (3.6) implies
that for any e > 0 one can find a sequence ôk J. 0 as k —> oo such that

{yl > y - yk) + e(\\x - xk\\ + \\y - yk\\) >ix*k,x-xk)   foxk= 1, 2, ...

if (x,y) Ggph<I> with IIx-xa-H <ôk and ||y-yfc|| <ôk, k =1,2, ... .
Let us select the sequence {ôk} for e = y/(l + a) and let us set

rk := min^, ôk/a}   as k = 1, 2, ... .

Considering sequences of vectors

*k '■= yk - arkvk   with \\vk\\ = 1,        (y*k,vk) = l   fox k = 1, 2, ... ,

we have \\zk -yk\\ < ark < ôk and

(y*k , 2k - yk) + e(||x -xk\\ + \\zk - yk\\) = -ark + j^iWx - xk\\ + ark)

< -(a-y)rk < (x*k,x-xk)

for all x G R" such that ||x - x^H < rk as k = 1,2, ... . Hence it follows that
zk g í>(x) for all x g Brkixk), otherwise it contradicts (3.6).
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So, there exist sequences {xk} , {rk} , {yk}, and {zk} such that xk -* X,
rk i 0 as k ~* oo , and

(3.7) yk G ®ixk),     \\zk- yk\\ < ark,     zk £ <t>(x)       for any x G Brkixk).

The relations obtained mean that the number a > 0 cannot be a covering
modulus for <P in any neighborhood U. This contradiction proves the required
inequality a < a(í>, x) and implication (a) =*• (b).

Let us prove (b) => (c). Suppose that (c) does not hold. Then for any
sequence of positive numbers ck —► oo as k —> oo we can find sequences of
vectors {xk} , {yk} , {xk}, and {y*k} such that xk -> x and

yke®ixk),    x*keD*<Pixk,yk)iy*k),    \\y*k\\ > ck\\x*k\\       for k = 1, 2, ... .

As ||y£|| > 0, we set y*k := y*kl\\y*k\\ and x*k := x*k/\\y*k\\. Then one has

x*k e D*<S>ixk , yk)iy*k),    m\\ = U    ||*ÍH<l/Cit      fox k= 1,2,....
Due to the boundedness of the sequences {yk}, {yk}, and {x£}, one can
assume that they converge themselves to vectors y G O(x), y* G Rm, and
0 G R" respectively. Passing to the limit as k -> oo and using the robustness
of the coderivative (Proposition 2.6), we get

(3.8) 0 e D*®(x, y)(y*)   with ||y*|| = 1.
This contradicts condition (b). Therefore, (b) =>■ (c).

Implications (c) =>• (d) => (e) are obvious.
Let us prove (e) => (a). Note, first of all, that (e) implies (b). Indeed,

if fl(3>, x) = 0, then there exist (due to the boundedness of i>(x) and the
robustness of the coderivative) vectors y G í>(x) and y* G Rm such that (3.8)
holds true. The latter means that KerD*<I>(x, y) ^ {0}.

Now assuming (e), we prove that any positive number a < a(0, x) is a
covering modulus for <I> in some neighborhood U of X.

Suppose that it is not true for some given positive number a < a(0, x).
Then there exist sequences of the corresponding vectors {x¿J, {yk} , {zk} and
positive numbers {rk} such that xk —* x, rk J. 0, and conditions (3.7) are
fulfilled. For each k = 1, 2,... , let us consider the distance function

(3.9) Pk(x):=dist(zk,<J>(x)).
Using this function, we can rewrite conditions (3.7) in the form

Pk(xk) < ark ,        Pk(x) > 0   for all x G Brkixk) and k = 1,2,... .
Now let us apply Proposition 2.18 to the function

<p(x) := pk(x) + ô(x, Brkixk))

where ¿(-, •) is the indicator function of the given set. Putting

e = ark,    xE = xk,    X = rk-r\,    and   p(x) = ||x||

in Proposition 2.18, we find a vector vk e R" such that

\\Vk-xk\\ <rk-r¡
and vk is a solution of the following unconstrained minimization problem:

(3.10) pkix) + 6ix,Brkixk)) + -^—\\x-vk\\^inf,       xeRn.
1 ~rk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 BORIS MORDUKHOVICH

Moreover, vk e intBrk(xk), i.e., one can actually consider the function in (3.10)
without the second term.

Using Proposition 2.8 in problem (3.10) and then Corollary 2.14, we obtain
the relation

(3.11) \\xk\\<a/(l-rk)   foxallx*ked~pk(vk)andk= 1,2, ... .

For evaluating the subdifferential of function (3.9) at the point vk under the
condition zk £ 0(vk), we employ Corollary 2.17. By virtue of this result, there
exist vectors wk e P(zk , 0(vk)) and yk G Rm such that

x*k e D*®(vk, wk)(y*k)   with \\y*k\\ = I fox k = 1, 2, ... .

It follows from the construction above that vk —> x as k —> oo and the se-
quences {wk} , {x£},and {yf} are bounded. Denote by y, x*, and y* their
corresponding limiting points. It is clear that

||y*|| = l,    yG<D(x),    and   x* e D*®(x, y)(y*)

(due to Proposition 2.6). From (3.11) and (3.1) one has

a > 11*1 >«(*,*)
which ends the proof of implication (e) =*• (a).

The equality (cov<P) = a(<¡>, x) follows immediately from the proofs of
implications (a) => (b) and (e) => (a) above. The second equality in (3.5) is
induced by Proposition 3.1.   D

For the case of single-valued mappings we get the following result.

Corollary 3.4. Let <ï> be single-valued and locally Lipschitzian around X. Then
for <P enjoying the covering property, it is necessary and sufficient that each of
the following equivalent conditions is fulfilled:

(a) One has

a(<D,x) = min{||x*||:x*G9-(y*,(D)(x),  ||y*|| = 1} > 0.

(b) There exist a number c > 0 and a neighborhood U of X such that

\\y*\\ < c\\x\\   ifx* g d~(y*, <D)(x) andxe U.

(c) There exists a neighborhood U of x such that

[0 e d~(y*, <D)(x) and x e U] => y* = 0.

(d) One has
[0ed-(y*,&)(x)]=>y* = 0.

When these properties hold, then

(cov<P)(x) = iz(<D,x) = l/min{c: ||y*|| < c||x*|| ifx*ed~(y*,^)(X)}.
Proof. It follows from Theorem 3.3 by virtue of Proposition 2.12.   D

In the smooth case we obtain from here the classical Ljusternik-Graves the-
orem and provide the exact evaluation of the covering bound.
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Corollary 3.5. Let O : R" -> Rm be strictly differentiable at X. Then the classical
surjectivity condition (1.2) is a criterion for O enjoying the covering property
around X. In this case one has

(3 12)       (cov*)(*) = min{||(V<&(x)ryl : ||yl = 1}
['    ' = l/min{c:||y* || < c||(VO(x)) VII for any y* e Rm}.

Moreover, if m = n and the matrix VO(x) is nonsingular, then

(3.13) (covd))(x) = l/||(V<D(x))-1||.
Proof. If O is strictly differentiable at x, then, due to Proposition 2.4, the
criterion (e) in Theorem 3.3 is reduced to

(VO(x))*y* = 0   for any y* G Rm

which coincides with the surjectivity condition (1.2). The equalities in (3.12)
follow from (3.5), (3.1), and (3.2) by virtue of Proposition 2.4. If m = n and
VO(x) is invertible, then

c($,x) = ||(V<D(x))-,||

due to the definition of the norm for the linear operator A := (V$(x))* from
R" to R" with regard to the well-known relations

(A*rl = (A-x)*   and   \\A*\\ = \\A\\.

This implies (3.13).   D

Now we shall consider a local counterpart of the covering property for a
multifunction <I> around the given point (x, y) from its graph.

Definition 3.6. A multifunction O is said to be open at a linear rate around
(x, y) e gphi> if there exists a number a > 0, a neighborhood U of X , and
a neighborhood V of y such that

(3.14) Bari^ix) nK)c *(£,(*))   for any (x, r) with ßr(x) c U.

Each of such numbers a is called the openness modulus for <3> around (x, y).
The supremum of all openness moduli is called the openness bound for <P
around (x, y) and is denoted by (ope<ï>)(x, y).

Consider the numbers

(3.15) a(<D,x,y):=inf{||x*||:x*G£»*0(x,y)(y*),  ||yl = l},

(3.16) c(<D,x,y):=inf{c: ||y*|| <c||x*|| if x* G 2T<D(x, y)(y*)}-

Similarly to Proposition 3.2, one can prove that if a(G>, X, y) > 0, then

c(Q>,x,y)= l/a(0,x,y).

Now let us obtain an analogue of Theorem 3.3 for the openness property of
<!> around (x, y).
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Theorem 3.7. The following conditions are equivalent:
(a) O is open at a linear rate around (X, y).
(b)a(<D,x,y)>0.
(c) There exists a number c > 0, a neighborhood U of x, and a neighborhood

V of y such that
(3.17) ||y*|| <c||x*||   forallx* eD*<&ix,y)iy*), xeU, andye®(x)nV.

(d) There exists neighborhoods U of x and V of y such that

(3.18) Ker/J>*0)(x,y) = {0}   for all x e U and y e <D(x) n V.

(e)KerD*<D(x,y) = {0}.
When these properties hold, one has

(3.19) (ope<D)(x,y) = a(<D,x,y)= l/c(<ï>, x, y).
Proof. If a > 0 is an openness modulus for 3> around (x, y), then a <
a(Q>, x, y) ; therefore, (a) => (b). This is actually proved in the first part of
Theorem 3.3 for í>(x) = {y} . The same is true for the implication (b) =>• (c).
Implications (c) => (d) =*> (e) are obvious.

It is also clear that (e) => (b). So, for ending the proof of the theorem it suf-
fices to show that if a(<t>, x, y) > 0, then any positive number a < a(<I>, x, y)
is an openness modulus for i> around (x, y). Supposing the opposite, one
finds sequences xk -* X, yk -* y, zk -> y, and rk j 0 as k -> oo such that
(3.7) is fulfilled. Then we consider the distance function (3.9) and follow the
proof of the last part of Theorem 3.3 where wk —► y as k —► oo.   D

Next we shall study a property of multifunctions which occupies an interme-
diate position between the covering and openness properties considered above.

Definition 3.8. We say that a multifunction <P is compact-open at a linear rate
around X G Dom O if, for every compact set V c Rm , there exist a neighbor-
hood U of X and a number a > 0 such that (3.14) is fulfilled.

It is easy to see that the covering property for O around x always implies
the property of compact openness for this multifunction around the same point.
Moreover, if $> is locally bounded around x, then the both properties coincide.
Let us now consider the interrelation between the properties of openness and
compact openness for arbitrary (closed-graph) multifunctions.

Theorem 3.9. The following assertions are equivalent:
(a) <I> is compact-open at a linear rate around X.
(b) <I> is open at a linear rate around (x, y) for every y e O(x).

Proof. First we prove (a) => (b). For any vector y G ̂ (x), let us consider the
closed ball ß£(y) with e > 0. If O is compact-open around x, then for the
compact set V = 5e(y) one can find a neighborhood U of x and a number
a > 0 such that (3.14) holds. Therefore, this number a is an openness modulus
for <i> around (x, y) with the neighborhood U of x and the neighborhood
V :=intBeiy) of y.

Now let us prove the opposite implication (b) => (a) using the compactness
arguments similar to Rockafellar [54, Theorem 2.2]. Given compact set V c
Rm, we suppose first that <î>(x) n V ^ 0 and employ the openness property

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CHARACTERIZATION OF MULTIFUNCTIONS 19

(b) for each y G O(x) n V . In this way one gets parametric families of (open)
neighborhoods {Vy} of the points y G O(jc) n V, corresponding neighborhoods
{Up} of x, and moduli {ay > 0} such that inclusion (3.14) is fulfilled with

a = a9,     V = Vy,    and   U = Uy for every y G <P(x) n V.

Because O(x) n V is compact, we can select from {Vy} a finite covering {V¡} ,
i G I, of the set <D(x) n V. Let

W := I I V,,    U' :=C\Ui,    and   a := mina, > 0.
/e/ ¡el

It is clear that W and [/' are open sets, and the following holds:

(3.20) Bar(®(x) nW)c Q(Br(x))   for any (x, r) with Br(x) c U'.

Consider the compact set V\W for which Q>(X)C\(V\W) = 0. Because gph<P
is closed, for any z e V\W one can find neighborhoods V2 of z and Uz of
x such that

<p(x) n Vz = 0   if x G Uz and z G K\W.

From the family of neighborhoods {Vz} as z e V\W, we select a finite cov-
ering {Vj} , j e J , of the compact set V\W . Considering the corresponding
neighborhoods {Uf} , j e J, of the point x, we define

Ü := p| t/y   and   77 := í/' n Í7.

Then one has
<D(x) n F c <D(x) n W   ifxeU.

From here and (3.20) we obtain inclusion (3.14) with a = a > 0, U = U, and
F = V in the case when 0(*)nF ^ 0 . If 0(x)nF = 0 , then we have W = 0
in the arguments above and one gets the same inclusion (3.14) with U = U.
Therefore, <t> is compact-open at a linear rate around x, i.e., (b) => (a).   D

Using this result and Theorem 3.7, one can obtain effective criteria for the
compact openness property.

Corollary 3.10. The following conditions are equivalent:
(a) O is compact-open at a linear rate around X.
(b) For every compact set V c Rm, there exists a number c > 0 and a

neighborhood U of X such that (3.17) is fulfilled.
(c) For every compact set KcR"1, there exists a neighborhood U of X such

that Í3.18) is fulfilled.
(d) KerZ)*<D(x, y) = {0} for all y e <D(x).

Proof. If O is compact-open around x, then it has the openness property
around any point (x, y) by virtue of Theorem 3.9. For every given compact set
V C Rm , we can use condition (c) in Theorem 3.7 at any point (X, y) G gph O
with y e V . Then following the arguments in Theorem 3.9 directly, we prove
condition (b) in the corollary. Implications (b) =>■ (c) => (d) are trivial.

If (d) holds, then <I> is open at a linear rate around any point (x, y) G gph <t>,
due to Theorem 3.7. This implies condition (a) in the corollary by virtue of
Theorem 3.9.   D
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Note that for multifunctions C> locally bounded around x, all conditions
(a)-(d) in Corollary 3.10 are equivalent to the condition a(0, x) > 0 in The-
orem 3.3.

Remark 3.11. Some constants similar to (3.15) were first introduced by Ioffe
[21] in the case of Lipschitz continuous functions. In fact, that paper contains
the lower estimate of the openness bound

(3.21) (ope<ï>)(x,y)>a(<D,x,y)

for single-valued functions 0. For the case of multifunctions <I>, a lower esti-
mate equivalent to (3.21) has been obtained in [23, Corollary 2.3] by reducing
to the single-valued setting.

The constant a(Q>, X) in (3.1) is introduced by Mordukhovich in [38, 39]
where the equality

(covi>)(x) = a(<i>, X)

has been actually proved (cf. [38, Theorem 8] and [39, Theorem 5.2]).

4. Metric regularity
In this section we shall study various modifications of the metric regularity

property for arbitrary multifunctions <I> operating from R" into Rm . Let us
consider the inverse multifunction O-1 from Rm to R" satisfying the relation

(4.1) x G 0_1(y) #ye O(x) «- (x, y) GgplKP.

Definition 4.1. We say that
(a) <P is locally-metrically regular around (x,y) G gph<I> with modulus

c > 0 if there exists a neighborhood U of x , a neighborhood V of y, and a
number y > 0 such that

(4.2) dist(x, 0_1(y)) < cdist(y, 0>(x))

for any x e U and y e V satisfying

(4.3) dist(y, 3>(x)) < y.

The infimum of all regularity moduli c is called the bound of local-metric reg-
ularity for <P around (x,y) and is denoted by (lregí>)(x, y).

(b) O is compact-metrically regular around X e Dom4> irelative to the im-
age) if, for every compact set V c Rm, there exists a neighborhood U of x
and positive numbers c and y such that (4.2) holds for any x e U and y e V
satisfying (4.3).

(c) $ is global-metrically regular around X e Dom O irelative to the image)
with modulus c > 0 if there exists a neighborhood U of x and a number
y > 0 such that (4.2) holds for any x e U and y G Rm satisfying (4.3). The
infimum of all such moduli c is called the bound of global-metric regularity for
O around x relative to the image and is denoted by (gregO)(x).

Let us establish interrelations between the metric regularity properties under
consideration and the openness (covering) properties of multifunctions from
§3.
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Theorem 4.2. Let ® be a multifunction from R" into Rm with X e Dom <J>
and (x, y) G gph<I>. Then the following assertions hold:

(a) 0 is global-metrically regular around X relative to the image with modulus
c if and only if O enjoys the covering property around X with modulus a= l/c.

(b) O is local-metrically regular around (x,y) with modulus c if and only
if i> is open at a linear rate around (x, y) with modulus a = l/c.

(c) <J> is compact-metrically regular around X relative to the image if and
only if O is compact-open around the same point.
Proof. First we shall prove assertion (a). Let <E> be global-metrically regular
around x with modulus c > 0. Given c, we find positive numbers e and y
such that (4.2) holds for all x G U := intß£(x) and y G Rm satisfying (4.3).
Consider the number S := min{e, yc} and the neighborhood U := int5á(x)
of x. Let

z e 5r/c(<I>(x))   with such (x, r) that Brix) c Ü.

Then x G int/J£(x) and dist(z, d>(x)) < r/c < y. Using the global-metric
regularity property from Definition 4.1 (c) with y = z, one has

dist(x, 0~'(z)) < cdist(z, O(x)) < r.

Selecting w e <I>-1(Z) with ||x-tt;|| = dist(x, <P~'(z)), we get w e Brix) and
z G 0(10) c <l>(ßr(x)). This implies the covering property from Definition 3.1
with a = l/c and U = intBsiX).

Now let us assume that $ enjoys the covering property with modulus a > 0
in the neighborhood U := intß£(x), e > 0. Then we put

ô:=e/2,        U := intBgix),        y:=ae/2

and prove the global-metric regularity property (4.2) for <I> in the neighborhood
U with modulus c = l/a and number y = y in (4.3). Indeed, consider any
vectors x e U and y g Rm such that

y := dist(y, O(x)) < y.

Putting r := y/a, one has y G Barix) and 5r(x) c U. Using the covering
property, we can find such a vector w e 5,(x) that y = <t>iw). Then

dist(x, 0_1(y)) < ||x -w\\<r = (l/a)dist(y, <I>(x)).

This means the global-metric regularity property for <P around X with modulus
c= l/a.

The proof of assertion (b) is quite similar to (a).
Now we shall prove assertion (c). First let us assume that O is compact-

metrically regular around x . Then, taking V := ß£(y) with arbitrary e > 0 in
the definition of compact-metric regularity, one can easily see that O is local-
metrically regular around (x, y) for any y G 4>(x). According to the previous
assertion (b), <I> is open at a linear rate around any such (x, y). Now using
Theorem 3.9, we can conclude that <P is compact-open around x .

Next let us prove the opposite implication in assertion (c). If <I> is compact-
open around x, then, due to Theorem 3.9 and assertion (b) in Theorem 4.2,
this multifunction is local-metrically regular around any point (x, y) G gphO.
Consider an arbitrary compact set V c Rm and suppose first that 0(x)nF ^ 0 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 BORIS MORDUKHOVICH

Then we employ the local-metric regularity property for <S> around any (x, y)
with y G <ï>(x) n F.

Using this property, one can find parametric families of neighborhoods {Vy}
of the points y G 5>(x) n V and {Uy} of x as well as families of positive
numbers {cy} and {yy} such that estimate (4.2) holds true with c = cp when

xeUy,    yeVy,    dist(y, 4>(x)) < y9,    and   yGO(x)nF.
Similarly to the proof of Theorem 3.9, we select from {Vy} a finite covering
{V¡} , i e I, of the set 0(x)nK and consider the corresponding families {{/,},
{c,}, and {y,} as i e I. Denoting

W := I J V,:,     U' := f) Uj,    c := max c¡ < oo,     and   / := min y¡ > 0,
i€/ ¡e/

we get the estimate

dist(x, O-'(y)) < cdist(y, <D(x))
if x g C/', yeW, and dist(y, <D(x)) < /.

Consider now any point z G V\W. Taking into account that <I>(x) n
(V\W) = 0 and gph O is closed, we can find such neighborhoods Vz of z
and tfz of x that
(4.5) yz :=    Jnf ^ {dist(y, O(x))} > 0   for all z eV\W.

ydVz, xeUz

Let us select a finite covering {Vj} , j e J, of the set V\W and consider the
corresponding neighborhoods Uj of x and numbers y¡ in (4.5) as j e J.
Putting

y := min y, > 0   and   U := f] U¡,
jeJ ! Jje/

one has

(4.6) dist(y, O(x)) > y   for any y eV\W and x G ¿7.
Let us finally set

Lf:=U'nU,        y := min{y', y}
and consider any y G (0, y). It follows from (4.6) that if x e U, y e V,
and dist(y, <I>(x)) < y, then y e W. Therefore, for such x and y we have
estimate (4.2) by virtue of (4.4). This implies the compact-metric regularity
property in Definition 4.1 (b) with

V = V,     U = V,    c = c,    and   ye(0,y)
and ends the proof of the theorem in the case when O(x) nK/0.

If $>(x) n V = 0, then we can put W = 0 in the arguments above and
obtain the compact-metric regularity property in (4.2), (4.3) with

V =V,    U=U,    c = c,    and   ye(0,y).   D

From the theorem obtained and the openness (covering) criteria in §3 we can
derive the complete characterizations of the metric regularity properties under
consideration with the evaluation of the exact bounds in terms of constants
(3.1), (3.2) and (3.15), (3.16).
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Corollary 4.3. For O to be local-metrically regular around (x, y) with some
modulus c > 0, it is necessary and sufficient that each of the equivalent conditions
(b)-(e) in Theorem 3.7 be fulfilled as well as c(Q>, x, y) < oo. In this case one
has

(4.7) (lregO)(x,y) = c(0,x,y)=l/a(4>,x,y).
Proof. It follows from Theorems 4.2(b) and 3.7.   D

Corollary 4.4. <P is compact-metrically regular around X relative to the image
if and only if $ is local-metrically regular around (X, y) for every y e gph<P.
For the fulfillment of this property, it is necessary and sufficient that each of the
equivalent conditions (b)-(d) in Corollary 3.10 hold.
Proof. It follows from Theorem 4.2(c) and Corollary 3.10.   Q

Corollary 4.5. Let O be locally bounded around X. Then for <P being global-
metrically regular around X relative to the image with some modulus c > 0, it is
necessary and sufficient that each of the equivalent conditions (b)-(e) in Theorem
3.3 be fulfilled as well as c(<P, x) < oo. In this case one has

(greg$)(x) = c(<D, X) = l/fl(*, *).
Proof. It follows from Theorems 4.2(a) and 3.3.   D

Let us obtain another form for the representation of the regularity bounds
c(0, x) and c(4>, x, y) from (3.2) and (3.16) in terms of the inverse mapping
(4.1). Recall that the norm of any positive homogeneous multifunction F is
defined by

||F||:=sup{||y||:yGF(x),  ||x|| < 1}.
The following result extends equality (3.13) in Corollary 3.5 for a general

case of nonsmooth operators with the multivalued inverse.

Proposition 4.6. For any i>, x G Dom O, and (x, y) G gphO one has

(4.8) c(0),x,y) = ||JD*<I)-1(y,x)||,

(4.9) c(<D, X) = supflizro-'tf, x)|| : y G <D(x)}.
Proof. Let us prove (4.8). It follows from (4.1) that

(-X* ,y*)e N((x, y) \ gph«P) o (y*, -x*) G /V((y, x) | gph<î>),

i.e.,

(4.10) y* G D*®-Xiy, x)(x*) <»-x* G Z)*0(x, y)(-y*).

Therefore, we have to prove that

(4.11) c(<D,x,y) = sup{||y*|| : 3 x* G Z)*0(x, y)(y*) with ||x*|| < 1}.

Let c be any positive number such that

(4.12) [x* G ZT<P(x, y)(y*)] =>■ ||y*|| < c||x*||.
Considering x* with ||x*|| < 1 in (4.12), one gets

(4.13) c>sup{||yl:3x*G£>*0(x,y)(y*),  ||**|| < 1}.
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This implies the right-side inequality (>) in (4.11).
For proving the left-side inequality in (4.11), let us consider any number

c satisfying the strict inequality in (4.13) and show that the given c satisfies
(4.12). If (4.12) is not fulfilled for this c, then there exist vectors x* and y*
such that

x*GZr<D(x,y)(y*)   and   ||y*|| > c||x*||.
One can always assume that X* ̂  0 because otherwise (4.11) is trivial. Setting
x* := x*/||x*|| and y* := y*/||x*||, we get

x*GD*<D(x,y)(y*),     ||**|| = 1,    and   ||y*|| > c
which contradicts the choice of c. This ends the proof of formula (4.8). The
second formula (4.9) follows from (4.8) and the equality

c(<D, x) = sup{c(<É>, x, y) :y G <ï>(x)}.   ü

Next we consider two more metric regularity properties for O which are
nonlocal with respect to the domain.
Definition 4.7. We say that

(a) 4> is compact-metrically regular around y elm (¡> irelative to the domain)
if, for every compact set U c R", there exists a neighborhood F of y and
positive numbers c and y such that (4.2) holds for any x e U and y e V
satisfying (4.3).

(b) O is global-metrically regular around pelmO irelative to the domain)
with modulus c > 0 if there exists a neighborhood V of y and a number
y > 0 such that (4.2) holds for any y e V and x G R" satisfying (4.3). The
infimum of all such moduli c is called the bound of global-metric regularity for
í> around y relative to the domain and is denoted by (gfegi>)(y).

Let us give useful reformulations of the metric regularity properties for O
in a neighborhood of y .
Proposition 4.8. The following assertions hold:

(a) O is compact-metrically regular around y G Im O relative to the domain
if and only if, for every compact set U c R", there exists a neighborhood V of
y and a positive number c such that (4.2) is fulfilled for any y e V and x e U
satisfying the relation

(4.14) $(x)nr/0.
(b) O is global-metrically regular around y g Im O relative to the domain

with modulus c > 0 if and only if there exists a neighborhood V of y such that
(4.2) is fulfilled for any y e V and x e R" satisfying (4.13).

(c) <ï> is local-metrically regular around ix, y) e gph O with modulus c > 0
if and only if there exists neighborhoods V of y and U of X such that (4.2) is
fulfilled for any y e V and x e U satisfying (4.14).
Proof. Let us prove assertion (a). If <ï> is compact-metrically regular around
y, then, for any given compactum U c R" , we have such a neighborhood^
of y and positive numbers c, y that (4.2) holds under the conditions x e U,
y e V, and (4.3). Let us consider V := intßr(y) for arbitrary r e (0, y/2)
and show that

[Vx G 77 with <D(x) nV]=> dist(y, O(x)) < y   for all y e V.
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Indeed, selecting any z e O(x) n V, one has

dist(y, O(x)) < \\y - z\\ < 2r < y   if y G F

Setting V := V n V, we get (4.2) for any y eV and x G 77 satisfying (4.14).
Let us prove the opposite implication in (a). For the given compactum U G

R", we can find such V = intBc(y) as e > 0, that (4.2) holds with some
c > 0 for any y e V and x e U satisfying (4.14). Let us consider another
neighborhood V := int5£/2(y) and the number y := e/2. We want to show
that

[V(x, y) with y eV and dist(y, O(x)) < y] => O(x) n int Be(y) ¿ 0.
Indeed, for any such y one can select z G O(x) satisfying to ||y - z\\ =
dist(y, O(x)). For this z we have

l|z - y|| < ||z - y|| + \\y - y\\ < y + e/2 < e.
Therefore, z G int5£(y) and <P(x) n int5£(y) ^ 0. This ends the proof of
assertion (a). The proof of the other assertions (b) and (c) is quite similar.   D

Now we can obtain the exhausting criteria for the compact- and global-metric
regularity of 4> around y relative to the domain.

Theorem 4.9. The following conditions are equivalent:
(a) O is compact-metrically regular around y relative to the domain.
(b) <P is local-metrically regular around (x, y) for every X e <P-1(y).
(c) For every compact set U c Rn, there exists a number c > 0 and a

neighborhood V of y such that (3.17) is fulfilled.
(d) For every compact set U cR" , there exists a neighborhood V of y such

that Í3.1S) is fulfilled.
(e) KerZ)*4>(x, y) = {0} for all xe®~x(y).

Proof. To prove (a) =>■ (b), it suffices to consider U := BE(X) for any x G
O-1 (y) and e > 0 in the definition of compact-metric regularity relative to the
domain. If (b) holds, then for every given compact set U c R" , we can employ
(due to Corollary 4.3) condition (c) in Theorem 3.7 at any point (X, y) G
gphí> with x G U. Now following the arguments in Theorem 3.7, we prove
implication (b) => (c) in the theorem under consideration. Implications (c) =>
(d) => (e) are obvious.

If (e) is fulfilled, then one has (b) by virtue of Corollary 4.3. To prove
(b) => (a), we have to repeat the arguments in assertion (c) of Theorem 4.2,
replacing the set O(x) n V by the set <S>~x(y) n U for every compactum U c
R".    D

Let us consider the numbers

(4.15) a(0,y):=inf{||xl:x*GD*O(x,y)(y*),  ||y*|| = 1, x G O-'(y)},

(4.16) c(<D,y):=inf{c:||y*||<c||x*||ifx*G£>*<D(x,y)(y*), xGO-'(y)}.

Theorem 4.10. Let 4>~' be locally bounded around y. Then for <P being global-
metrically regular around y relative to the domain with some modulus c > 0,
it is necessary and sufficient that each of the equivalent conditions (a)-(e) in
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Theorem 4.9 be fulfilled with U = R". Moreover, each of these conditions is
equivalent to

(4.17) c(<P,y)<oo.

In this case one has
(4 18) (gTèg<ï>)(y) = c(<I>,y)= l/fl(<D,y)

= sup{pr<D-1(y,x)||:xG<D-1(y)}.
Proof. It is obvious that the global-metric regularity of i> around y always
implies the corresponding compact-metric regularity. If <S>~X is locally bounded
around y, then the opposite is also true. Indeed, due to the local boundedness
property, there exist a compact set U cR" and a neighborhood F of y such
that <&~x(y) C Ù for all y G V . By virtue of (4.1), this means that

(4.19) [(<D(x) n V ¿ 0)] => x G Ü.
Using now the equivalence of the compact-metric regularity property from
Proposition 4.8(a), one can find, for the given compactum U = U, a num-
ber c > 0 and a neighborhood V of y such that (4.2) is fulfilled if y G F
and x e U satisfies to (4.14). Putting V := V n V and taking into account
(4.19), we obtain the global-metric regularity property for O around y with
the modulus c and the neighborhood V . It is easy to see that criteria (c) and
(d) in Theorem 4.9 are fulfilled with U = R" if <P-1 is locally bounded around
y.

Let us show that if <J>-1 is locally bounded around y, then criterion (e) in
Theorem 4.9 is equivalent to (4.17). First suppose that (e) does not hold, i.e.,

(4.20) 0 G zr<D(x, y)(y*)   for some x G ̂ >~l(y) and y* ¿ 0.
Hence there are no such c > 0 that

(4.21) ||y*|| <c||x*||    forallx* GD*<D(x,y)(y*)andx*G«I>-1(y),

i.e., c(«I>, y) = oo in (4.16). This means that (4.17) =s> (e).
Now let us suppose that ¿*(<I>, y) = oo, i.e., there are no such c > 0 that

(4.21) holds. Therefore, one can find sequences of positive numbers ck —► oo
and vectors Xk , xk , y*k with

xk e d>~l(y),    xl e D*<S>ixk,y)iy*k), and   ||x¿|| < 1/Cjt||y¿||
for k= 1,2,....

Putting y*k := y*k/\\y*k\\ and x¿ := x£/||y¿||, one has

(4.22) II4II < l/ck   with x*k e D*<t>ixk , yk)iy*k), xk e <^~xiy), and ||y¿|| = 1.
Passing to the limit in (4.22) as k —► oo along convergent subsequences of
{Xk} , {X*k} , and {y*k} , we get (4.20). Therefore, (e) =*• (4.17).

To conclude the proof of the theorem, we have to check the equalities in
(4.18). The left-hand equality in (4.18) follows from (4.7) and relations

(4.23) c(<D, y) = sup{c(<D, x, y) : x G 0>" ' (y)},

(4.24) (gregO)(y) = sup{(lregO)(x, y) : x G O-1 (y)}
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which can be proved in the same way as Proposition 4.6 (the latter relationship
holds if <P_1(y) is compact). The equality ci$>,y) = l/a(<P,y) is proved
quite similarly to Proposition 3.2. The remaining equality in (4.18) follows
from (4.8) and (4.23).   □

Similarly to Corollaries 3.4 and 3.5, one can obtain corresponding corollaries
of Theorems 4.9 and 4.10 for the cases of single-valued and smooth operators.

Now let us consider some realizations of the results obtained in the case of
multifunctions with closed convex graphs.

Theorem 4.11. Let <t> have the convex graph and let y e Imi). Then the
following conditions are equivalent:

(a) There exists a vector x e 0_,(y) such that O is local-metrically regular
around (X, y) with some modulus c > 0.

(b) í> is compact-metrically regular around y relative to the domain.
(c) For every compact set U c R" , there exist a number c > 0 and a neigh-

borhood V of y such that

\\y*\\ < c\\x"\\   if(x*, x) - (y*, y) = max{(x*, u) - (y* ,v):(u,v)e gph<D}

with x eU and y e <ï>(x) n V.
(d) For every compact set U e Rn , there exists a neighborhood V of y such

that the implication
[(y*, y) = min{(y*, v) : v e ImO}] =» y* = 0

holds if y e O(x) n V with x eU.
(e) One has

(4.25) [(y*, y) = min{(y*, v) : v e Im <D}] =*■ y* = 0.

(f) y is an interior point of the set ImO.
When these properties hold, then
(4.26)

(lreg<D)(x,y)=   sup {||y*|| : (x*, x - x) < (y*, y -y) V(x, y) G gphd>}

= 1/  inf {||x*|| : (x*, x - X) < (y*, y - y) V(x, y) g gph<D}).
lly*ll=i

If, moreover, í>~ ' is locally bounded around y, then each of the conditions
(a)-(f) is a criterion of the global-metric regularity for <S> around y relative to
the domain with some modulus c > 0. In this case the global regularity bound
(gfeg<P)(y) is computed from (4.26) by formula (4.24).
Proof. Due to Proposition 2.4, conditions (c)-(e) in the theorem under con-
sideration coincide with the corresponding conditions (c)-(e) in Theorem 4.9.
Therefore, each of them is a criterion of the compact-metric regularity for a
convex-graph multifunction <t> around x relative to the domain. Note that
condition (e) in Theorem 4.11 does not depend on x G O-'(y). By virtue of
Corollary 4.3, this implies the equivalence of conditions (a) and (b) in Theorem
4.11.

Now let us show that (e) o (f). There is a well-known necessary and suffi-
cient condition for y being a solution to the convex optimization problem in
(4.25):   -y* e /V(y | Imí>). Therefore, (4.25) means that /V(y | Im<D) = {0} .
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The latter is a criterion for y being an interior point of the set Im O.  This
ends the proof of the equivalence of all conditions (a)-(f) in Theorem 4.11.

The formulas in (4.26) for (lreg<D)(x, y) follow from (4.7), (4.8), (3.15),
and Proposition 2.4. The last assertion in the theorem about the global-metric
regularity of O relative to the domain follows from Theorem 4.10.   D

Note that implications (f) =>■ (b) in Theorem 4.11 is the content of the
celebrated Robinson-Ursescu theorem; see [47, 62] and [2, §3.3].

5. Lipschitzian behavior of multifunctions
In this final section of the paper we shall study the following three Lip-

schitzian properties of a multifunction O from R" into Rm with the closed
graph.

Definition 5.1. We say that
(a) <I> is pseudo-Lipschitzian around (X, y) e gph O with modulus / > 0 if

there exists a neighborhood U of x and a neighborhood V of y such that
(5.1) <D(x')nFc<D(x) + /||x'-x||5   for any x, x' G If.
The infimum of all such moduli / is called the bound of pseudo-Lipschitzness
for <I> around (x,y) and is denoted by (plip<l>)(x, y).

(b) 4> is sub-Lipschitzian around X e DomG> if, for every compact set
V cRZ" , there exists a neighborhood U of x and a number / > 0 such that
(5.1) is fulfilled.

(c) <I> is locally Lipschitzian around X e Dom O with modulus / > 0 if
there exists a neighborhood U of x such that (5.1) is fulfilled when V = Rm .
The infimum of all such moduli / is called the bound of local Lipschitzness for
O around x and is denoted by (lip<t>)(x).

Both the properties of pseudo-Lipschitzness, introduced by Aubin [1], and
sub-Lipschitzness, introduced by Rockafellar [54], extend the classical locally
Lipschitzian behavior to the case of unbounded multifunctions. The following
assertions can be found in Rockafellar [54, Theorems 2.1 and 2.2].
Proposition 5.2. For any closed-graph multifunction <j> one has

(a) í> is locally Lipschitzian around x with some modulus I if and only if
O is locally bounded and sub-Lipschitzian around this point.

(b) O is sub-Lipschitzian around X if and only if <P is pseudo-Lipschitzian
around (X, y) with some modulus I for every point y e G>(x).

Now let us prove interrelations between the Lipschitzian properties of í> and
the metric regularity properties of the inverse mapping (4.1).

Theorem 5.3. The following assertions hold:
(a) O is pseudo-Lipschitzian around (X, y) e gph<I> with modulus I if and

only if i>-1 is local-metrically regular around (y, x) e gphO-1 with the same
modulus c = I.

(b) O is sub-Lipschitzian around x e Dom<P if and only if <&~x is compact-
metrically regular around xelraO"1 relative to the domain.

(c) O is locally Lipschitzian around X e DoraO with modulus I if and only
if <t>_1 is global-metrically regular around X e ImO-1 relative to the domain
with the same modulus I.
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Proof. It is easy to see that the Lipschitzian condition (5.1) can be rewritten in
the form

(5.2) dist(y, O(x)) < l\\x - x'\\   for any x, x' G U and y G <D(x') n V.

Due to (4.1), we have from here

x' G<I>_1(y)n U   and    dist(y, <P(x)) < /dist(x, 0_1(y) DBr(X))

for all x e U, y e V, and Br(x) c U . One can see that

dist(x,<P_1(y)n £,.(*)) = dist(x, <D_1(y))

if x G intZ?r(x) and 0_1(y) n intßf(x) ^ 0 . Therefore,

(5.3) dist(y, <D(x)) < /dist(x, <t>~liy))

for all y G F and x G Ü := int£r(x) with 0_1(x) n Ü ¿ 0. According to
Proposition 4.8, this proves that the Lipschitzian properties for O in assertions
(a)-(c) of the theorem imply the corresponding metric regularity for the inverse
mapping O-1 .

On the other hand, if 4>~' has one of the metric regularity properties (a)-
(c) in the theorem under consideration, then estimate (5.3) is fulfilled for any
x e U and y e V with 0~'(y) n U ^ 0. This implies immediately the
Lipschitzian behavior (5.2) for the multifunction <I>.   D

It follows from the results obtained that the metric regularity criteria in §4
provide necessary and sufficient conditions for the Lipschitzian behavior of the
inverse mappings. Let us, in particular, formulate an effective criterion for the
existence of the pseudo-Lipschitzian inverse iinverse mapping principle).

Corollary 5.4. For an arbitrary iclosed-graph) multifunction 0 having the pseudo-
Lipschitzian inverse O-1 around (y, x), it is necessary and sufficient that

(5.4) Ker/J>*O(x,y) = {0}.
Proof. It follows from Theorem 5.3(a) and criterion (e) in Theorem 3.7 due to
Corollary 4.3.   D

Remark 5.5. If the coderivative Z)*4> is replaced in (5.4) by the Clarke coderiva-
tive (2.5), then one has the condition

(5.5) KerZ)cO(x,y) = {0}

which is sufficient for the existence of the pseudo-Lipschitzian inverse but is
far removed from the necessity (see §1). In particular, condition (5.5) is never
fulfilled in the case when the inverse function <P~' is single-valued and (non-
smooth) Lipschitz continuous around y . Due to the duality between Clarke's
normal and tangent cones, condition (5.5) is equivalent to the surjectivity con-
dition

ImDc®iX,y) = Rm

stated in terms of the Clarke (circatangent) derivative of the multifunction C>
(see, e.g., [3, Chapter 5]). Under this surjectivity condition, the existence of the
pseudo-Lipschitzian inverse was first proved in Aubin [1].
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Remark 5.6. If O : R" —► Rm is single-valued and locally Lipschitzian around
x, then by virtue of Proposition 2.12, criterion (5.4) for <t>-1 being pseudo-
Lipschitzian around y = 0(*) is reduced to

[0G¿r<y*,<D)(x)]=*y' = 0.
Due to formula (2.13), this criterion is automatically fulfilled under the rank
condition (1.3). If í> : R" —> R" , then condition (1.3) means that any ma-
trix A G Jc®(X) is nonsingular. The latter implies, moreover, that O-1 is
single-valued around O(x) (see Clarke [8, Theorem 7.1.1]). Note that Kum-
mer [33] has recently obtained a necessary and sufficient condition for a locally
Lipschitzian vector function O having the single-valued and Lipschitz continu-
ous inverse. This condition is expressed in terms of the generalized directional
derivative of O first introduced by Thibault [59].

Now using Theorem 5.3 and the corresponding criteria for the metric reg-
ularity of the inverse mappings, we obtain complete characterizations of the
Lipschitzian properties for closed-graph multifunctions.
Theorem 5.7. The following conditions are equivalent:

(a) O is pseudo-Lipschitzian around (X, y) with some modulus I > 0.
(b) One has

c(*_1 ,y,X) = inf{c : \\x*\\ < c\\y*\\ ifix* G £>*<D(x, y)iy*)} < oo.
(c) There exist a neighborhood U of x, a neighborhood V of y, and a

positive number I such that
(5.6) sup{||x*|| : x* g D"<t>(x, y)(y*)} < WII
forallxelf, ye <£>(x) n V, and y* e Rm .

(d) There exists neighborhoods U of x and V of y such that
(5.7) £>*<D(x, y)(0) = {0}   for all x e U and y G <D(x) n V.

(e) /J*<D(x,y)(0) = {0}.
If these properties hold, then
(5.8) (plipO)(x, y) = ||ZT(p(x, y)\\ = c(Q-1, y, X) = l/a(^~x, y, X)
where

«(O-1 , y, x) = inf{||y*|| : 3 x* G Z)*cp(x, y)(y*) with \\x*\\ = 1} > 0.
Proof. Criteria (b)-(e) for <I> being pseudo-Lipschitzian around (x, y) follow
from Theorem 5.3(a) and Corollary 4.3 by virtue of formula (4.10).  Due to
Theorem 5.3(a), one has

(plip<D)(x, y) = (lregfc-'Xy, x).
Therefore, the equalities in (5.8) follow from (4.7), (4.8), and (4.10).   D

Remark 5.8. Estimate (5.6), first obtained in [37] for locally Lipschitzian mul-
tifunctions 3>, means that the coderivative D*<& has a uniform boundedness
property around (x, y). This is very important, in particular, for limiting pro-
cesses involving adjoint variables (e.g., in problems of dynamic optimization
and control). One can find some utilizations of this property in Mordukhovich
[39, 41] for obtaining necessary optimality and controllability conditions in dif-
ferential inclusions. Note that an analogue of (5.6) with the Clarke coderivative
does not hold.
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Theorem 5.9. The following conditions are equivalent:
(a) 0 is sub-Lipschitzian around X.
(b) For every compact set FcR"1, there exist a neighborhood U of x and

a positive number I such that estimate (5.6) is fulfilled.
(c) For every compact set KcRm, there exists a neighborhood U of X such

that (5.7) is fulfilled.
(d) ¿r<D(x, y)(0) = {0} for all y e <D(x).

Proof. It follows from Theorem 5.3(b) and Theorem 4.9 due to formula (4.10).
These results may also be obtained from the criteria in Theorem 5.7 by using
Proposition 5.3(b) (similarly to the arguments in Corollary 3.10).   D

Using this theorem, now we can provide an effective sufficient condition for
the fulfillment of the main assumption (2.14) in Theorem 2.13 on the calculus
of coderivatives.

Corollary 5.10. For any closed-graph multifunctions <bx and <I>2, property (2.14)
holds if either <5>x or 02 is sub-Lipschitzian around X.
Proof. It follows from criterion (d) in Theorem 5.9.   D

Theorem 5.11. Let d> be locally bounded around X. Then the following condi-
tions are equivalent:

(a) <f> is locally Lipschitzian around X with some modulus / > 0.
(b) One has

c(O)-1, X) = inf{c : \\x*\\ < c\\y*\\ ifix* e D*<S>(x, y)(y*), y e <D(x)} < 00.

(c) There exist a neighborhood U of x and a positive number I such that
estimate (5.6) is fulfilled with V = Rm .

(d) There exists a neighborhood U of X such that (5.7) is fulfilled with V =
Rm.

(e) D*<D(x, y)(0) = {0} for all y e <P(x).
If these properties hold, then

(5.9)     (lip*) = sup{||L>*<D(x, y)|| : y G <D(x)} = c(<S>~x, X) = l/aifc-1, X)

where

a(i)-1, x) = inf{||y*|| : 3 x* G D*<D(x, y)(y*) with \\x*\\ < 1, y G <D(x)} > 0.
Proof. Criteria (b)-(e) for <P being locally Lipschitzian around x follow from
Theorem 5.3(c) and Theorem 4.10 due to formula (4.10). They may also be
derived directly from Theorem 5.9 by virtue of Proposition 5.2(a). Due to
Theorem 5.3(c), we have

(lipO)(x) = (gfêgO-1)(x).

Therefore, the equalities in (5.9) follow from (4.18) and (4.10).   D

Now we formulate a corollary of the results obtained for multifunctions with
closed convex graphs.
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Theorem 5.12. Let <& have the convex graph and let X e Dorn*. Then the
following conditions are equivalent:

(a) There is a vector y e 0(*) such that O is pseudo-Lipschitzian around
(x, y) with some modulus / > 0.

(b) O is sub-Lipschitzian around X.
(c) For every compact set V c Rm, there exists a positive number I and a

neighborhood U of X such that
11*1 < ||y*||   if(x*, x) - (y*, y) = max{(x*, u) - (y* ,v):(u,v)e gph<D}

with x eU and y e O(x) n V.
(d) For every compact set V e Rm , there exists a neighborhood U of X such

that the implication

[(x*, x) = max{(x*, u) : u e Im<D-1}] => x* = 0

holds if x g O-1 (y) n U with y e V.
(e) One has

[(x*, x) = max{(x*, u) : u e ImO"1}] => x* = 0.

(f) x is an interior point of the set ImO"1.
When these properties hold, then
(5.10)

(plip<D)(x,y)=   sup {||jc*|| :(x*,x-X)< (y*, y -y) V(x, y) G gphd>}
llrll<i

- 1/   inf {(x*, x - X) < (y*, y - y) V(x, y) G gph<D}.

If, moreover, O is locally bounded around X, then each of the conditions (a)-
(f) above is a criterion for O being locally Lipschitzian around X with some
modulus / > 0. In this case the bound of local Lipschitzness for <t> around X is
computed from (5.10) by the formula

(lip<D)(x) = sup{(plip<P)(x, y) :y G <D(x)}.
Proof. It follows directly from Theorems 4.11 and 5.3. It may also be obtained
from Theorems 5.7, 5.9, and 5.11 due to Proposition 2.4.   D

Remark 5.13. Using the results obtained in §§3-5 and the calculus rules for
the coderivative and subdifferentials introduced (§2), one can prove the corre-
sponding criteria for the covering (openness), metric regularity, and Lipschitzian
properties for multifunctions represented in the form of various compositions
and combinations with other single-valued and multivalued mappings. In this
way, in [40, 42] we study some problems of the sensitivity analysis for con-
straint systems depending on parameters which include, in particular, various
perturbations in optimization problems and generalized equations.

Remark 5.14. If a multifunction O can be represented as the subdifferential
(superdifferential) mapping

<D(x) := d'tpix)    or   <D(x) := d+fix)
with some extended-real-valued function tp , then its coderivative Z)*0 is ex-
pressed in terms of the second-order semidifferentials (2.9) and (2.10). There-
fore, we employ the second-order semidifferentials introduced for formulating
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the criteria in §§3-5 for these "subdifferential-type" multifunctions. Note that
such kinds of multifunctions occur in studying parametrized variational in-
equalities, gradient inclusions, complementarity problems, etc. (see examples
and applications in [2, 27, 42, 49] and elsewhere).
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