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Complete Characterization of Quantum-Optical Processes

Mirko Lobino,1 Dmitry Korystov,1 Connor Kupchak,1 Eden Figueroa,1 Barry C. Sanders,1 and A. I. Lvovsky1∗
1 Institute for Quantum Information Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada∗

The technologies of quantum information and quantum control are rapidly improving, but full exploitation
of their capabilities requires complete characterization and assessment of processes that occur within quantum
devices. We present a method for characterizing, with arbitrarily high accuracy, any quantum optical process.
Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on
a set of coherent states, i.e. classical fields produced by common laser sources. We demonstrate the capability
of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.

PACS numbers:

Construction of a complex machine requires precise charac-
terization of each component’s properties. In electronics, this
information is obtained from network analyzers, which mea-
sure circuit response to simple oscillatory inputs, and reveal
the device transfer function. Optical quantum technologies,
which can be used to build quantum computers [1], precise
metrological systems [2], and unconditionally secure commu-
nication [3], have similar characterization requirements. In
this context, we are interested in the process associated with
a quantum circuit component, i.e. in being able to predict the
transformation that an arbitrary quantum state will undergo
when subjected to the action of the component.

A quantum processE can be represented by a completely
positive, trace-preserving linear map (superoperator) on the
linear spaceL(H) of all density matrices over Hilbert space
H. It can be expressed as a rank-4 tensor that relates the ma-
trix elements of the outputE(ρ̂) and inputρ̂ states in some
basis:

[E(ρ̂)]lk =
∑

nm

Enm
lk ρnm, (1)

where summation is from 1 todimH.
Characterization of a process (known as quantum process

tomography, or QPT) means finding all components of the su-
peroperator tensor. It can be implemented by determining the
output state for each of the(dimH)

2 elements of a spanning
set ofL(H). Such a direct approach to QPT [4] was exper-
imentally realized on one qubit teleportation [5], the Hamil-
tonian evolution of vibrational states of atoms in an optical
lattice [6], on a two-qubit controlled-NOT gate [7, 8] and Bell-
state filter [9]. As an alternative, ancilla-assisted QPT exploits
an isomorphism between processes and states [10] and has
been used to characterize a controlled-NOT gate [11] and a
general single qubit gate [12, 13]; see [14] for a comparative
review of ancilla-assisted QPT.

Existing QPT suffers from serious shortcomings, includ-
ing either the requirement of an unwieldy set of input states
for direct QPT or a high-dimensional entangled input state for
ancilla-assisted QPT; these shortcomings deleteriously affect
scalability and restrict accessible systems to very low dimen-
sion. In optics, QPT has been applied to processes on one
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and two dual-rail qubits, with post-selection based on photon
coincidences projecting the input and output states onto these
qubit subspaces. This approach cannot provide complete in-
formation about a state or a process because optical losses,
imperfect sources, detector dark counts, and other imperfec-
tions lead to departure from the qubit subspaces. Post-selected
tomography can only estimate the fraction of such phenomena
by comparing the coincidence rate and the photon production
rate [9].

We introduce a scheme that enables complete characteri-
zation of a general quantum-optical process. We use optical
homodyne tomography followed by maximum likelihood re-
construction to obtain full information on the process across
all photon number sectors and also the coherence between sec-
tors. The state reconstruction algorithm provides an efficient
method for compensating losses in homodyne detection [15].
As inputs, we use only coherent states that are readily avail-
able from a laser source, so our method can be easily scaled
up.

We experimentally test our approach by characterizing a
quantum process that consists of a simultaneous absorption
and phase shift. The reconstructed superoperator allows us to
predict, with a fidelity of over 99%, the effect of the process
on a squeezed vacuum.

Our method is based on the fact that any density matrix
can be represented as a sum of coherent states’ density ma-
trices [16, 17]. Although such a representation (the Glauber-
SudarshanP function) may be highly singular, it can be ar-
bitrarily closely approximated with a regularP function. By
measuring the process output for many coherent states and ex-
ploiting the linearity, we can predict the process output for any
arbitrary state.

The Glauber-Sudarshan decomposition of a quantum state
ρ̂ is given by

ρ̂ = 2

∫

Pρ(α)|α〉〈α| d2α (2)

and wherePρ(α) is the state’sP function,α is the coherent
state with mean position and momentum observables(x, p) =

(
√

2Re α,
√

2Im α). We use the convention[x̂, p̂] = i and in-
tegration is performed over the entire phase space. Therefore,
if we know the effect|α〉〈α| 7→ ˆ̺(α) = E(|α〉〈α|) of the pro-
cess on all coherent states, we can predict its effect upon state
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ρ̂:

E(ρ̂) = 2

∫

Pρ(α)ˆ̺(α) d2α. (3)

An obstacle to direct application of this approach is posed
by singular behavior of the functionPρ(α). Indeed, theP
function exists only as a generalized function, more singular
than the Dirac delta function, when the corresponding quan-
tum state has nonclassical features [18].

This can be overcome by applying a theorem proven by
Klauder [19]: for any bounded operatorρ̂ there exists an op-
eratorρ̂L with continuous and rapidly decreasingP function
arbitrarily close toρ̂ in the trace-class norm. The Klauder
approximation is obtained as follows: we assume that the
Wigner function ofρ̂ belongs to the Schwartz classS2, i.e. is
infinitely smooth and rapidly decreasing (which is the case for
all physically plausible density matrices). The Fourier trans-
form of the operator’s Glauber-Sudarshan functionPρ(α) can
be expressed as [18]

P̃ρ(kx, kp) = W̃ρ(kx, kp) exp

(

k2
x + k2

p

4

)

, (4)

whereW̃ρ(kx, kp) is the Fourier transform of the operator’s
Wigner function. The function defined by Eq. 4 always ex-
ists and is infinitely smooth (albeit not necessarily squarein-
tegrable). We multiplỹPρ(kx, kp) by a regularizing function

GL(kx, kp) = e−[f(kx−L)+f(−kx−L)+f(kp−L)+f(−kp−L)]

(5)
with f(y) = y4 exp(−1/y2) for y > 0, f(y) = 0 for y ≤ 0.
This regularizing function is equal to 1 in a square domain
of side 2L and rapidly drops to zero outside. The prod-
uct P̃L,ρ(kx, kp) = P̃ρ(kx, kp)G(kx, kp) now belongs to the
Schwartz class. Applying the inverse Fourier transform, we
obtain the new Glauber-Sudarshan functionPL,ρ(α), which
defines the Klauder approximation̂ρL. By choosingL suffi-
ciently high [20], the operator̂ρL can be made to approximate
ρ̂ arbitrarily well (Fig. 4A).

As an example, we applied the Klauder approximation
to squeezed vacuum, a nonclassical state characterized by a
highly singularP function whose Fourier transform grows ex-
ponentially with increasingkx and/orkp. We tested our pro-
tocol with a state that has a noise reduction in the squeezed
quadrature of−1.58 dB and excess noise in the orthogonal
quadrature of 2.91 dB. The functioñP (kx, kp) was calculated
from the state’s density matrix according to Eq. 4 and subse-
quently regularized as described above usingL = 5.2. Fig.
1A showsP̃L(kx, kp) calculated from our experimental data
and Fig. 1B displays its inverse Fourier transformPL(α). In
Figs. 1C and 1D we compare the Wigner functions of the orig-
inal state and the one obtained from the regularizedP func-
tion. The two states exhibit a quantum fidelity of more than
0.9999.

Although the above method permits finding the process out-
put for an arbitrary input state, it requires one first to deter-
mine the input state’sP function. This step can be avoided
by calculating the process superoperator in the Fock basis,so
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FIG. 1: Regularized Glauber-Sudarshan decomposition of the
squeezed state. (A) Absolute value of the regularized Fourier trans-
form of the squeezed vacuumP function. (B) ApproximatedP func-
tion calculated from the inverse Fourier transform ofP̃L,ρ(kx, kp).
(C) and (D) Wigner representations of, respectively, the measured
and approximated squeezed vacuum states.

the output can be found from the input density matrix accord-
ing to Eq. 1. To this end, we express the Glauber-Sudarshan
function as

Pρ(α) =
∑

mn

ρnmPnm(α), (6)

where Pnm(α) is the P function of the operator|n〉〈m|.
We now replace these functions by their regularized versions
PL,nm(α) and rewrite Eq. 3 as

E(ρ̂) = 2
∑

nm

ρnm

∫

PL,nm(α)ˆ̺(α) d2α, (7)

from which we determine the process superoperator as

Enm
lk = 2

∫

PL,nm(α)̺lk(α) d2α. (8)

Prior to applying the latter result to experiments, a num-
ber of practical issues have to be addressed. First, parameter
L must be chosen to ensure proper approximation of input
states. The second issue is that in a realistic experiment, the
measurement can be done only for coherent states whose am-
plitude does not exceed a certain maximumαmax. Finally, the
experiment can only be performed with a finite, discrete set of
coherent states. Density matrix elements̺lk(α) for an arbi-
trary α, required for calculating the superoperator, must then
be obtained by polynomial interpolation. These matters are
discussed in [20].

A simplification arises for phase-symmetric processes, in
which there is no phase coherence between the “processing
unit” and input states. In this case, if two inputsρ̂ andρ̂1 are
different by an optical phase shift̂U(ϕ), the statesE(ρ̂) and
E(ρ̂1) will differ by the same phase shift:

E [Û(ϕ)ρ̂Û †(ϕ)] = Û(ϕ)E(ρ̂)Û †(ϕ). (9)
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Then, if we know the effect of the process on a coherent state
|α〉, we also know what happens to

∣

∣αeiϕ
〉

, so it is enough
to perform measurements on input coherent states with real,
positive amplitudes. For the process superoperator in the Fock
basis, the phase symmetry implies thatEkl

mn vanishes unless
k − l = m − n.

The process studied in our experiment was electro-optical
amplitude and phase modulation of the optical field. The
process was implemented using an electro optical modulator
(EOM) followed by a polarizer. The field experienced mini-
mal distortion when a bias voltageV1 = 100 V was applied to
the EOM. Switching the voltage toV2 = 50 V produced bire-
fringence, and thus losses at the polarizer, along with a phase
shift.

A continuous-wave Ti:Sapphire laser at 795 nm was the co-
herent state source used for the device characterization. We
reconstructed the input and output states at 11 different input
amplitude levels betweenα1 = 0 andα11 = 10.9. In order
to keep track of the relative phase shift, the EOM voltage was
switched betweenV1 andV2 every 100µs (Fig. 2A, top) while
the phase of the local oscillator was linearly scanned by a
piezoelectric transducer at 100 Hz. The homodyne photocur-
rent was recorded with an oscilloscope. To obtain quadrature
measurements, the photocurrent was integrated over time in-
tervals of 20 ns. The bottom plot in Fig. 2A shows the re-
covered quadrature values after normalization to the vacuum
noise. The time dependence of the local oscillator phase was
recovered from the slow, sinusoidal variation of the average
homodyne photocurrent as a function of time.

In this manner, for each input amplitude, we sampled
50,000 phase and quadrature values for both the input and
output states and used them to calculate density matrices by
likelihood maximization [15, 21] (Fig. 2B). The output state
reconstruction showed a phase shift of36◦ and a loss of 34 %
with respect to the input state.

The interpolated experimental data have been used to de-
termine the process superoperator tensor. We used the phase
symmetry assumption in Eq. 9, which is justified by the fact
that the EOM driver is independent from the master laser. The
elementsEmm

kk of the tensor in the photon number basis are
plotted in Fig. 3A. This plot should be interpreted as follows:
for a given input Fock state|m〉, the values ofEmm

kk give the
diagonal elements of the output density matrix. For example,
the single-photon state|1〉 after passing through the EOM will
be transformed into a statistical mixture of the single-photon
and vacuum states. A theoretical prediction for the process
tensor has been calculated using the Bernoulli transformation
to account for a lossy channel and a phase shift superopera-
tor; the superoperator diagonal elements in the Fock basis are
displayed in Fig. 3B, and these diagonal elements bear close
resemblance to the experimental result. A similar agreement
was also obtained for non-diagonal terms of the superoperator,
but it is not shown here.

For additional verification, we applied this result to pre-
dict the effect of the device on the squeezed vacuum state
described in the previous section. This state was produced
by pumping an optical parametric amplifier (OPA) in bow
tie configuration with the second harmonic of the Ti:Sapphire
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FIG. 2: (A) Time-dependent quadrature values acquired from homo-
dyne detection of a coherent state with inputα = 8.3. Black dots
correspond to the state before the process; red dots, after the process.
The top curve shows the EOM driving voltage. (B) The Wigner func-
tion of the coherent state before and after the process. (C) and (D)
Wigner representations of the measured output squeezed state com-
pared to the one obtained from process tomography.
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FIG. 3: The “diagonal” values of the superoperatorE
mm
kk . (A): as

obtained in the experiment. (B): theoretical model.

laser and using a periodically poled KTiOPO4 crystal as non-
linear medium[22, 23].

The state before (Fig. 1C) and after (Fig. 2C) the process
was reconstructed using homodyne tomography as described
above. By applying the process superoperator to the input
squeezed state, we predict the process output (Fig. 2D). The
maximum (minimum) quadrature noise variance amounted
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to 2.19(−1.07) dB for the measured state, and 2.15(−0.95)
dB for the prediction, corresponding to a quantum fidelity of
0.9935±0.0002.

Whereas here we demonstrate our tomographic method for
single-mode inputs, multimode or multichannel processes can
be characterized using multimode P representation, multiple
homodyne detectors and feeding product coherent states as
inputs. Theoretical and experimental analysis of the multi-
mode setting will be discussed elsewhere.

Our method overcomes significant limitations of previ-
ous optical QPT schemes. Process characterization is not
restricted to a Hilbert space associated with a specific qubit,
and thus reveals the imperfections of a quantum information
processing unit. Additionally, it uses only coherent states as
inputs, which are readily available from the laser and whose
intensities and phases are easily manipulated. This permits
characterization of complex processes employed in quantum
information processing and communication.

Supporting Material. In order to compute the P function
PL,ρ(α) by the Klauder approximation [19] and the superop-
erator terms from

Enm
lk = 2

∫

PL,nm(α)̺lk(α) d2α, (10)

wherePL,nm(α) is the regularized P function of the operator
|n〉〈m|, the values of two parameters must be set: the sizeL
of the Fourier domain, and the maximum coherent state am-
plitude αmax. As evidenced by Fig. 4A, no value ofL can
ensure universally high fidelity for all optical states. How-
ever, for many practical applications it is reasonable to restrict
the input states to subspaceHN = span(|0〉 , . . . , |N〉) with
a limited number of photons. Under this restriction, we can
seek the lowestL that, in the worst case over all density ma-
trices inHN , yields an approximation to the input state with
required fidelityF .

We employed the genetic optimization algorithm [24] to
calculate the required value ofL for several low values ofN
and ascertained that the worst case scenario corresponds tothe
Fock state|N〉. This is not surprising, because theP function
of this state contains the highest order derivative of the Dirac
delta inHN . We assume this rule to hold for arbitraryN .

Restricting the amplitude of coherent states for which the
measurements are performed effectively introduces finite in-
tegration limits in Eq. 1, entailing additional fidelity loss.
Fig. 4B shows the lowestαmax required for approximating the
N -photon Fock state (which, again, appears to be the worst
case inHN ) with a 99 per cent fidelity. Notably, this quantity
is much larger than that expected from the behavior of the cor-
responding Wigner function. This is because the regularized
P function exhibits strong oscillations in a much wider phase
space region than does the Wigner function.

Even with a finiteαmax, reconstructing the superoperator
requires knowing the process output for a continuum of coher-
ent states. In an experiment, we choose a finite set of inputs

|αi〉 from a laser source with varying, but known, amplitudes
and phases, and perform homodyne tomography to determine
the corresponding output density matrices̺lk(αi) in the Fock
basis. For an arbitraryα, density matrix elements̺lk(α) are
then obtained by polynomial interpolation.

The degree of the polynomial overα can be reduced for
Gaussian and near-Gaussian maps, which comprise all linear-
optical processes andχ(2) nonlinearities. For each measured
output ˆ̺(αi) we infer its mean complex amplitude〈â〉 =
Tr (â̺(αi)). Then we apply the displacement operator

̺
〈â〉
i = D(−〈â〉)̺(αi)D

†(−〈â〉). (11)

to center the Wigner function at the origin of the phase
space. The matrix elements̺〈â〉lk , as well as the mean am-
plitude 〈â〉, can now be fitted with a low-degree polynomial
overα, allowing for a highly efficient reconstruction process.
Good performance of this algorithm for Gaussian preserving
maps is explained by the fact that Gaussian states are en-
tirely characterized by the first and second centered moments

(x −
√

2 Re〈â〉)m(p −
√

2 Im〈â〉)n of their Wigner distribu-
tion.
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