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Complete Characterization of the Pareto Boundary for the
MISO Interference Channel

Eduard A. Jorswieck, Erik G. Larsson, and Danyo Danev

Abstract—In this correspondence, we study the achievable rate re-
gion of the multiple-input single-output (MISO) interference channel,
under the assumption that all receivers treat the interference as additive
Gaussian noise. Our main result is an explicit parametrization of the
Pareto boundary for an arbitrary number of users and antennas. The
parametrization describes the boundary in terms of a low-dimensional
manifold. For the two-user case we show that a single real-valued param-
eter per user is sufficient to achieve all points on the Pareto boundary
and that any point on the Pareto boundary corresponds to beamforming
vectors that are linear combinations of the zero-forcing (ZF) and max-
imum-ratio transmission (MRT) beamformers. We further specialize
the results to the MISO broadcast channel (BC). A numerical example
illustrates the result.

Index Terms—Beamforming, interference channel, multiple antenna,
Pareto optimal, performance region.

I. INTRODUCTION

Interference channels (IFC) consist of at least two transmitters and
two receivers. The first transmitter wants to transfer information to the
first receiver and the second transmitter to the second receiver, respec-
tively. This happens at the same time on the same frequency causing
interference at the receivers. Information-theoretic studies of the IFC
have a long history [1]–[4]. These references have provided various
achievable rate regions, which are generally larger in the more recent
papers than in the earlier ones. However, the capacity region of the
general IFC remains an open problem. For certain limiting cases, for
example when the interference is weak or very strong, respectively, the
sum capacity is known [5]. If the interference is weak, it can simply
be treated as additional noise. For very strong interference, successive
interference cancellation (SIC) can be applied at one or more of the re-
ceivers. Multiple antenna IFCs are studied in [10]. Multiple-input mul-
tiple-output (MIMO) IFCs have also recently been studied in [6], from
the perspective of spatial multiplexing gains. In [7], the rate region of
the single-input single-output (SISO) IFC was characterized in terms
of convexity and concavity.

The IFC is a building block in many communication systems, for
example, for ad hoc networks and cognitive radio. It also specializes
to scenarios with cooperation either at the transmitter or at the receiver
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Fig. 1. K-user MISO interference channel under study (illustrated forN = 2

transmit antennas).

side, leading to, for instance, the multiple-access channel (MAC) and
the broadcast channel (BC). For system design it is important to ana-
lyze the achievable rate region of the general Gaussian IFC (as will be
defined in Section II) and to design transmit strategies that operate on
the Pareto boundary of that region. (The Pareto boundary is the set of
rate points at which it is impossible to improve any of the rates without
simultaneously decreasing at least one of the others.)

In this correspondence, we study the multiple-input single-output
(MISO) Gaussian IFC and completely characterize the rate region
achievable by treating interference as additive Gaussian noise. Our
main contribution is an explicit parametrization of the Pareto boundary
for the K-user Gaussian MISO IFC (see Section III, especially
Proposition 1). For the special case of (K = 2) users we show that
any point in the rate region can be achieved by choosing beamforming
vectors that are linear combinations of the zero-forcing (ZF) and the
maximum-ratio transmission (MRT) beamformers (see Section IV-A,
especially Corollary 2). We further specialize the results to the MISO
BC (the BC is a special case of the IFC), see Section IV-B. The special
cases for K = 2 were presented partly in conference papers [9]
and [13].

Notation: The notation for this paper is as follows: (�)�: complex
conjugate; (�)T : transpose; (�)H : Hermitian transpose; III : the identity
matrix; �XXX XXX(XXXH

XXX)�1XXXH : orthogonal projection onto the
column space ofXXX; and �?

XXX
III � �XXX : orthogonal projection onto

the orthogonal complement of the column space ofXXX .

II. SYSTEM MODEL AND PRELIMINARIES

We consider the MISO interference channel withK transmitters and
K receivers, as illustrated in Fig. 1. All base stations BSk have N
transmit antennas each, that can be used with full phase coherency. The
mobiles MSk , however, have a single receive antenna each. We shall

1053-587X/$25.00 © 2008 IEEE
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assume that transmission consists of scalar coding followed by beam-
forming and that all propagation channels are frequency-flat. This leads
to the following basic model for the matched-filtered, symbol-sampled
complex baseband data received at MSk:

yk = hhhTkkwwwksk +

K

l=1;l6=k

hhhTlkwwwlsl + ek (1)

where sl, 1 � l � K is the symbol transmitted by BSl, hhhij is the
(complex-valued) N � 1 channel-vector between BSi and MSj , and
wwwl is the beamforming vector used by BSl. The variables ek are noise
terms which we model as independent and identically distributed (i.i.d.)
complex Gaussian with zero mean and variance �2.

We assume that each base station can use the transmit power P , but
that power cannot be traded between the base stations. Without loss of
generality, we shall take P = 1. This gives the power constraints

kwwwkk
2 � 1; 1 � k � K: (2)

Throughout, we define the signal-to-noise ratio (SNR) as 1=�2. The
precoding scheme that we will discuss requires that the transmitters
(BSk) have access to channel state information (CSI) for some of the
links. However, at no point we will require phase coherency between
the base stations.

In what follows we will assume that all receivers treat co-channel
interference as noise, i.e., they make no attempt to decode and subtract
the interference. The main justification for this assumption is that in
most envisioned applications, MSi would use receivers with a simple
structure. Additionally, interference cancellation is difficult in an envi-
ronment where the receivers do not know the coding and modulation
schemes used by the interfering transmitters. For a general, interfer-
ence-free N � 1 MISO channel with zero-mean Gaussian noise at the
receiver, scalar coding with beamforming is uniformly optimal with re-
spect to the variance of the Gaussian noise. (A more detailed discussion
of this can be found in [8].)

For a given set of beamforming vectors fwww1; . . . ; wwwKg, the fol-
lowing rate is then achievable for the link BSk ! MSk , by using
codebooks approaching Gaussian ones:

Rk(www1; . . . ; wwwK) = log2 1 +
wwwT
khhhkk

2

l6=k

jwwwT
l hhhlkj

2
+ �2

: (3)

We define the achievable rate region to be the set of all rates that can be
achieved using beamforming vectors that satisfy the power constraint:

R

fwww :www 2 ;kwww k �1;1�k�Kg

fR1(www1; . . . ; wwwK); . . . ;

. . . ; RK(www1; . . . ; wwwK)g � K
+ : (4)

The outer boundary of this region is called the Pareto boundary, be-
cause it consists of operating points (R1; . . . ; RK) for which it is im-
possible to improve one of the rates, without simultaneously decreasing
at least one of the other rates. More precisely we define the Pareto op-
timality of an operating point as follows.

Definition 1: A rate tuple (R1; . . . ; RK) is Pareto optimal if there
is no other tuple (Q1; . . . ; QK) with (Q1; . . . ; QK) � (R1; . . . ; RK)
and (Q1; . . . ; QK) 6= (R1; . . . ; RK) (the inequality is component-
wise).

III. EXPLICIT PARAMETRIZATION OF THE PARETO BOUNDARY

The description of the rate region in (4) is not suitable for evaluation
of the Pareto boundary in practice. In this section we present a general,
more useful representation of the boundary.

Proposition 1: Let i be given and fixed. Suppose thathhhij are linearly
independent for j = 1; . . . ; K and that hhhHijhhhij 6= 0 for all j, j0,
j0 6= j.1

Then if wwwi is a beamforming vector that corresponds to a rate point
on the Pareto boundary, there exist complex numbers f�ijgKj=1 such
that

wwwi =

K

j=1

�ijhhh
�
ij (5)

and

kwwwik
2 =1: (6)

Before we give the proof of Proposition 1, note that by settingHHHi

[hhhi1; hhhi2; . . . ; hhhiK ] and ���i [�i1; . . . ; �iK ]T , condition (6) is equiva-
lent to the following quadratic constraint:

���Hi HHHH
i HHHi

�

���i = 1: (7)

Therefore, all f�ijg in (5) are bounded by the inverse of the smallest
singular value of HHHi. Note also that in the signal-to-interference plus
noise ratio (SINR) expressions only terms of the form wwwT

i hhhii
2

or
wwwT
i hhhij

2
occur. Hence, the complex angle of wwwi can be shifted by

an arbitrary amount. This means that without loss of generality, at least
one of the parameters �i1; . . . ; �iK can be chosen real-valued.

Note also that each transmitter k needs to know only its own channels
hhhk1; . . . ; hhhkK to compute the beamforming vectors that achieve rates
on the Pareto boundary.

Proof: Let fuuuimg be an orthonormal basis for the orthogonal
complement of the space spanned by fhhh�i1; . . . ; hhh

�
iKg (under the as-

sumptions made, this space has dimension N �K , thhus if K = N ,
there is nothing to prove). Then let wwwi be an arbitrary beamforming
vector that corresponds to a rate point on the Pareto boundary, and
that satisfies the power constraint kwwwik

2 � 1. Since the set of vec-
tors fhhh�i1; . . . ; hhh

�
iK ; uuui1; . . . ; uuui(N�K)g spans N , we can write

wwwi =

K

j=1

�ijhhh
�
ij +

N�K

m=1

imuuuim (8)

for some set of complex-valued �ij , im.
To verify the proposition we need to show that ifwwwi corresponds to a

rate point at the boundary, then we have im = 0 for m = 1; . . . ; N �
K . The proof goes by contradiction. Suppose im 6= 0 for some m,
say m = m0. Then with www0

i wwwi � im uuuim we have that

Rp(www1; . . . ; www
0
i; . . . ; wwwK) = Rp(www1; . . . ; wwwi; . . . ; wwwK)

for all p = 1; . . . ; K because uuuTim hhhij = 0 for all j = 1; . . . ; K . At
the same time

kwww0
ik

2 =

K

j=1

�ijhhh
�
ij

2

+

N�K

m=1;m6=m

jimj
2

<

K

j=1

�ijhhh
�
ij

2

+

N�K

m=1

jimj
2 = kwwwik

2:

1In a fading environment, this will be the case with probability one as long as
K � N , i.e., the number of antennas at the base station must be larger than or
equal to the number of users.
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In particular, we have that kwww0

ik
2
< 1. Now define

� arg www
0T
i hhhii

and

�
1� kwww0

ik

k���ik
(9)

where

���i �?

[hhh ;...;hhh ;hhh ;...hhh ]hhh
�

ii:

Note that ���i is a nonzero vector since hhhi1; . . . ; hhhiK are linearly inde-
pendent. Thus, � is well-defined and we have � > 0. Also note that
hhhTii���i 2 , hhhTii���i > 0 and that hhhTij���i = 0 for i 6= j. Define

www
00

i www
0

i + �e
j�
���i = wwwi � im uuuim + �e

j�
���i:

Then we have

hhh
T
ijwww

00

i = hhh
T
ijwww

0

i ; j 6= i (10)

hhh
T
iiwww

00

i = hhh
T
iiwww

0

i + �e
j�
hhh
T
ii���i = hhh

T
iiwww

0

i + �hhh
T
ii���i > hhh

T
iiwww

0

i (11)

www
00

i = www
0

i + �e
j�
���i � www

0

i + �k���ik = 1: (12)

Hence, www00

i satisfies the power constraint, while for the rates we have

Ri(www1; . . . ; www
00

i ; . . . ; wwwK) >Ri(www1; . . . ; www
0

i; . . .wwwK)

=Ri(www1; . . . ; wwwi; . . .wwwK)

and

Rp(www1; . . . ; www
00

i ; . . . ; wwwK) =Rp(www1; . . . ; wwwi; . . . ; wwwK)

for p 6= i. It follows that wwwi cannot correspond to a rate point on the
boundary. Thus, we must have im = 0, so wwwi has the form (5).

IV. SPECIAL CASES

A. The Two-User (K = 2) MISO IFC

In this subsection we consider the special case of two users (K = 2).
The main results presented here can be found in [9] as well, but the
proofs there did not exploit Proposition 1 and therefore were somewhat
lengthy.

For K = 2, Proposition 1 specializes to the following corollary.
Corollary 1: All vectors www1 that correspond to points on the Pareto

boundary have the form

www1 = �1
�hhh hhh�11

�hhh hhh11

+ �1

�?

hhh hhh�11

�?

hhh
hhh11

(13)

where �1, �1 are non-negative real-valued scalars that satisfy �21 +
�21 = 1.

The beamforming vector www2 of the second user can be parametrized
similarly.

Proof: We need to show that any vector described by the
parametrization in (5) can also be described via the parametrization
in (13). But this is clear since fhhh�11; hhh

�

12g and �hhh hhh�11;�
?

hhh hhh�11

span the same space. To see this, note that hhh�11 = �hhh hhh�11+�?

hhh hhh�11

and that hhh�12 = �hhh hhh�11 for some complex-valued scalar . Next,

note that the condition in (6) is equivalent to j�1j
2 + j�1j

2 = 1. This

follows because �hhh hhh�11 and �?

hhh hhh�11 are orthogonal by construc-

tion so kwww1k
2 = j�1j

2 + j�1j
2.

It remains to show that �1 and �1 can be chosen non-negative and
real-valued. Due to the power constraint they satisfy j�1j2+j�1j

2 = 1.
Consider the desired-signal part in the rate expression for user 1:

jwwwT
1 hhh11j

2 = �1 �hhh hhh11 + �1 �?

hhh hhh11
2

(14)

and the interference term in the rate expression for user 2:

www
T
1 hhh12

2

= j�1j
2

hhhH11hhh12
2

�hhh hhh11
2
: (15)

The expression in (15) depends only on j�1j
2. From the triangle in-

equality we have that

�1 �hhh hhh11 + �1 �?

hhh hhh11

� j�1j �hhh hhh11 + j�1j �?

hhh hhh11 :

with equality only if arg(�1) = arg(�1). Hence, on the boundary,
�1 and �1 have the same phase. Since the complex angle of www1 can be
shifted by an arbitrary amount, it follows that all points on the boundary
can be achieved by taking �1, �1 non-negative real-valued.

In the remainder of this section, we consider two specific choices of
beamformers, namely maximum-ratio transmission (MRT) and zero-
forcing (ZF). Starting from Corollary 1, we shall show that any beam-
forming vector that corresponds to a rate tuple on the boundary must be
a linear combination of the MRT and ZF beamformers, with real-valued
coefficients.

The ZF point RZF

1 ; RZF

2 is the set of rates which are achieved if
the two BS choose beamforming vectors such that no interference is
created for the other point-to-point link at all. If we assume that both
BS use their maximum permitted power, then BS1 should choose a
unit-norm beamforming vector www1 that is orthogonal to the channel of
the second user, and which at the same time maximizes wwwT

1 hhh11 . This
beamformer is given by (see proof in [12])

www
ZF

1 =
�?

hhh hhh�11

�?

hhh
hhh11

: (16)

(A similar result holds forwwwZF

2 ; interchange the indexes (�)1 and (�)2.)
The MRT beamforming vector for user k, 1 � k � 2 is the vector

that maximizes the transmission rate in the absence of interference.
This is given by [11]

www
MRT

k =
hhh�kk

khhhkkk
; k = 1; 2:

From a game theoretic point of view, one can show that for a one-shot
noncooperative beamforming game on the MISO interference channel,
the MRT beamforming is a unique Nash equilibrium (NE) [12]. For
this reason one could call it the “selfish beamforming strategy.”

We now present a parametrization of the Pareto boundary expressed
in terms of the ZF and MRT beamformers defined above.

Corollary 2: Any point on the Pareto boundary is achievable with
the beamforming strategy

wwwk(�k) =
�kwww

MRT

k + (1� �k)www
ZF

k

k�kwwwMRT

k + (1� �k)wwwZF

k k
(17)

for k = 1; 2, and for some set of real-valued parameters �k, 0 � �k �
1, k = 1; 2.
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Proof: Consider www1 (www2 is handled similarly). Define `1

�hhh hhh11
2

and `2 �?hhh hhh11
2

. Note that `1 + `2 = khhh11k2.
Then

�hhh hhh�11

�hhh hhh11

=
`1 + `2

`1
www
MRT

1 � `2

`1
www
ZF

1 :

Also note thatwwwZF1 is identical to the second basis vector in (13). From
Corollary 1 it then follows that any point on the Pareto boundary is
achievable by taking

wwwk =�k
`1 + `2

`1
www
MRT

k � `2

`1
www
ZF

k

+ 1� �2kwww
ZF

k

=�k
`1 + `2

`1
www
MRT

k

+ 1� �2k � �k
`2

`1
www
ZF

k (18)

where 0 � �k � 1. By construction, the vectors wwwk given by (18)
have unit norm and clearly, any vector given by (18) for some �k , 0 �
�k � 1 is also given by (17) for some �k, 0 � �k � 1.

Corollary 2 shows that we only need to vary the scalar, real-valued
parameters �1, �2 in order to reach any point on the Pareto boundary.
This is much simpler than varying the beamforming vectors, or using
the parametrization in [12].

A consequence of Corollary 2 is that each transmitter needs to know
only its MRT and ZF beamformers to achieve points on the Pareto
boundary. In order to compute these beamformers, knowledge of the
transmitters’ own channel to all other users is sufficient. In a game-the-
oretic framework [9], the parameter �k , 0 � �k � 1 can be interpreted
as the “selfishness” of user k. For �k = 1 the transmitter falls back to
the selfish NE (MRT) solution. For �k = 0 the transmitter acts in a
completely altruistic way and applies the ZF beamformer. Note that
the converse of Corollary 2 does not hold, i.e., many rate tuples that
correspond to beamformers of the form (17) do not lie on the Pareto
boundary. For example, the choice �k = 1 for all k (i.e., all users do
pure MRT) was shown in [12] to be far from the boundary for high
SNR.

The achievable rates in (4) can be expressed as functions of �k as
follows:

R1(�1; �2) = log 1 +
wwwT
1 (�1)hhh11

2

�2 + jwwwT
2
(�2)hhh21j2

;

0 ��k � 1; k = 1; 2:

R2(�1; �2) = log 1 +
wwwT
2 (�2)hhh22

2

�2 + jwwwT
1
(�1)hhh12j2

;

0 ��k � 1; k = 1; 2:

B. The MISO Broadcast Channel

The broadcast channel (BC) is a special case of the IFC, where the
transmitters (BSk here) are collocated and allowed to cooperate. This
section treats this special case for the general K-user case, as well as
for the case of K = 2 users. The channel model simplifies since in the
BC there are only K channel vectors, from the BS to each mobile. We
denote these by hhh1; . . . ; hhhK , where

hhhij = hhhj for all 1 � i; j � K: (19)

For the MISO BC case, a sum-power constraint is applied at the trans-
mitter rather than individual constraints. Denote the transmit power for
user k by Pk � 0. Then the power constraint is K

k=1
Pk � P . We

have the following counterpart to Proposition 1.
Proposition 2: If wwwi is a beamforming vector that corresponds

to a rate point on the Pareto boundary, there exist complex numbers
f�ijgKj=1 such that

wwwi =

K

j=1

�ijhhh
�

j ; kwwwik2 = Pi and
K

i=1

Pi = P: (20)

Proof: The result is a variation of Proposition 1. As an in-
termediate step, one must first show that to achieve points on the
Pareto boundary one must use all available transmit power, i.e., that

K

i=1
kwwwik2 = P holds on the boundary. This fact was shown for

K = 2 in [13, Lemma 1], and can be easily generalized to arbitrary
K .

Next, we consider the two-user (K = 2) MISO BC. The channels
from the two transmitters to the two receivers in the IFC simplify as
follows:

hhh11 = hhh1; hhh12 = hhh2; hhh21 = hhh1; hhh22 = hhh2: (21)

Since a sum-power constraint is applied at the transmitter rather than
individual constraints, the available power P is split between the two
users according to P1, P2, where P1 + P2 = P . We can show that
the characterization of the boundary (Proposition 2) simplifies to the
following.

Corollary 3: Any point on the Pareto boundary of the MISO BC
rate region is achievable with the power allocation 0 � P1, P2 � P ,
P1 + P2 = P and the beamforming vectors

www1(�1) =
�1www

MRT

1 + (1� �1)www
ZF

1

k�1wwwMRT1
+ (1� �1)wwwZF1 k (22)

www2(�2) =
�2www

MRT

2 + (1� �2)www
ZF

2

k�2wwwMRT2
+ (1� �2)wwwZF2 k (23)

for some set of real-valued parameters �1, �2, 0 � �1, �2 � 1.
Proof: The proof follows from Proposition 2 in a similar way as

Corollary 2 follows from Proposition 1. A direct proof is given in [13].

For the MISO BC, other parametrizations (alternative to Proposi-
tion 2 and Corollary 3) exist. By duality theory [14] the optimal beam-
formers for the MISO BC are known to be MMSE beamformers and
take the form

www1 =
p
P1

�2nIII +Q2hhh2hhh
H
2

�1

hhh11

�2nIII +Q2hhh2hhh
H
2

�1
(24)

www2 =
p
P2

�2nIII +Q1hhh1hhh
H
1

�1

hhh22

�2nIII +Q1hhh1hhh
H
1

�1
(25)

whereQ1 andQ2 are the powers in the dual model (see [14] for details).
Comparing the two parametrizations in Corollary 3 and in (24)–(25),
we see that both parametrizations require one non-negative real-valued
parameter for the power allocation and two non-negative real-valued
parameters for the beamforming vectors.

V. ILLUSTRATION

Fig. 2 illustrates the achievable rate region for a two-user two-an-
tenna Gaussian MISO IFC. The points are generated from Corollary 2
by varying �1 and �2 over a grid where 0 � �1 � 1 and 0 � �2 � 1.
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Fig. 2. Pareto boundary for a sample channel realization with N = 2 two
transmit antennas at high SNR 30 dB.

VI. CONCLUDING REMARKS

The motivation for this correspondence has been the recent, huge in-
terest in IFCs as a model for spectrum resource conflicts (see, e.g., [5],
[7], [9], [10], and [12], and the references therein). Our main contribu-
tion has been a characterization of the MISO IFC for arbitrary SNR,
and specifically a parametrization of the Pareto boundary of the rate
region. Our hope is that the results will be useful for future research
on resource allocation and spectrum sharing for situations that are well
modeled via the MISO IFC.
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Multimode Precoding for MIMO Systems: Performance
Bounds and Limited Feedback Codebook Design

Xiaofei Song and Heung-No Lee, Member, IEEE

Abstract—This correspondence investigates the problem of designing the
precoding codebook for limited feedback multiple-input multiple-output
(MIMO) systems. We first analyze the asymptotic capacity loss of a subop-
timal multimode precoding scheme as compared to optimal waterfilling and
show that the suboptimal scheme is sufficient when negligible capacity loss
is allowed. This knowledge is then applied to the design of the limited feed-
back codebook. In the design, the generalized Lloyd algorithm is employed,
where the computation of the centroid is formulated as an optimization
problem and solved optimally. Numerical results show that the proposed
codebook design outperforms the comparable algorithms reported in the
literature.

Index Terms—Given’s rotation, limited feedback codebook design, Lloyd
algorithm, waterfilling.

I. INTRODUCTION

A well-known result of information theory establishes that feedback
does not improve the capacity of a discrete memoryless channel [1].
Nonetheless, for the cases where the channel is selective in either time,
frequency, or space, feedback of the channel state to the transmitter
can bring substantial benefits to the forward communications system
in terms of either capacity, performance, or complexity. The theoret-
ical study of capacity and coding with channel state information at the
transmitter (CSIT) can be traced back as early as to Shannon [2]. More
recently, information-theoretic capacity on channels with both perfect
[3]–[5] and imperfect [6] CSIT and practical coding schemes using
CSIT [7], [8] have been studied.

With the advent of multiple-input and multiple-output (MIMO)
antenna systems, investigation on the potential benefits of CSIT for
MIMO systems has been intensified and design of a practical scheme
to achieve the potential benefits as closely as possible becomes very
important. The channel estimation done at the receiver needs to be
sent back to the transmitter to provide the potential CSIT benefit.
Thus, the study of MIMO system with limited feedback is of practical
interests. In the past, various options in MIMO transmit beamforming
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