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Abstract

Background: The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are
highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the
chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the
number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants.

Principal Findings/Significance: Here we report the complete sequence of the cp genome of Cistanche deserticola, a
holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced
both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss
and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full
set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting
that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch
to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much
shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of
the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal
gene transfer.
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parasitized host’s roots or shoots. This means that these parasitic
plants have reduced (or no) photosynthetic ability, and no longer
need genes that encode photosynthetic proteins. With the selective
constraints on their cp coding genes relaxed, gene losses occur in
these parasitic plants [3]. It is estimated that approximately 1% of
all angiosperm species have resorted to a parasitic lifestyle, which
has independently evolved 12 or 13 times [4]. Compared with a
rapid rise in the number of cp genomes of photosynthetic
organisms available on NCBI (254 in Viridiplantae, as of

Introduction

The chloroplast is an important organelle in the plant cell, and
its central function is to carry out photosynthesis and carbon
fixation. In general, the chloroplast (cp) genome is highly
conserved among seed plants with two copies of a large inverted
repeat (IR) separated by small single copy (SSC) and large single
copy (LLSC) regions [1]. It usually contains 110-130 unique genes,
which can be roughly divided into three large groups according to

their functions: genetic system genes, photosynthesis genes and
conserved open reading frames with miscellaneous functions [2].

However, a small group of angiosperm plants appear to have
escaped from this dominant pattern by evolving the capacity to
gain the water, carbon and nutrients via the vascular tissue of the
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December 4, 2012), there are limited data sets from parasitic
plants, especially from the completely non-photosynthetic species.
In higher plants, the cp genome of holoparasite Epifagus virginiana
in the family Orobanchaceae was sequenced first [5], followed by
four species from the holoparasitic genus Cuscuta [6,7], and three
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mycoheterotrophic plants, including Aneura mirabilis [8], Rhi-
zanthella gardneri [9], and Neotltia midus-avis [10]. However, only
one species of the completely non-photosynthetic plants, E.
virgintana, which exploit other plants via direct connections rather
than by mycorrhizal fungi, has been comprehensively analyzed in
its cp genome structure and composition.

Orobanchaceae, as taxonomically redefined by a series of recent
molecular studies, comprise around 89 genera and more than
2,000 species, making it the largest predominantly parasitic
angiosperm family, the majority of which are facultative or
obligate root parasites [11-16]. It contains all levels of parasitic
ability ranging from nonparasitic to hemiparasitic and holopar-
asitic [12,17]. Therefore, analyses of cp genomes of other
holoparasitic species within the family Orobanchaceae could
confirm the common attributes of non-photosynthetic evolution
and provide point for genetic analysis of cp genome evolution.

In Orobanchaceae, Cistanche is a worldwide genus of holopar-
asitic desert plants. Specifically, C. deserticola, commonly known as
desert-broomrape and traditionally used as an important tonic in
China and Japan, is distributed in Northwest China and the
Mongolian People’s Republic, and is also considered to be an
endangered wild species in recent years due to increased
consumption by humans [16]. C. deserticola is parasitized on the
roots of psammophyte Haloxylon ammodendron (Chenopodiaceae),
which mainly inhabit deserts and semi-deserts due to its high
tolerance to drought and salinity. Similar to E. wvigimiana, C.
deserticola 1s a completely non-photosynthetic species and usually
grows underground. A number of studies about the chemical
components or pharmacological effects of this species have been
reported [1,18,19]. Further analysis of its cp genome structure and
composition could provide new insights on the evolution of the
parasitic cp genome.

Attributed to the direct connections between parasitic plants
and their hosts, which allows the channelling of metabolites, such
as sugars, amino acids and perhaps nucleic acids in the form of
mRNA, direct haustorial contact between them usually facilitates a
horizontal gene transfer (HGT) from a donor to a recipient plant
[20]. HGT, known as exchange of genes across mating barriers,
has played a major role in bacterial evolution. In recent years,
increasing studies have reported HGT being recognized as a
significant force in the evolution of eukaryotic genomes [21,22]. In
plants, the evolutionarily earliest examples of HGT might be the
endosymbioses that gave rise to mitochondria and chloroplasts
[23,24]. Since the emergence of HG'T events, usually detected as
incongruences in molecular phylogenetic trees, a considerable
number of studies have suggested gene exchanges between hosts
and parasites [4,25-30].

Although the HGT involving parasitic plants appears to have
occurred in many parasitic lineages, the majority of reported cases
of HGT have been limited to exchanges between mitochondrial
genes among related species [4,25]. Cases of HG'T mvolving cp
genomes are rare [29]. The disparity in frequency of plant-to-plant
HGT between the mitochondrial and the cp genomes is
considered due to an active homologous recombination system
[31,32]. It is reported that a chloroplast region including 7ps2, trnL-
T, and rbcl. among a group of nonphotosynthetic flowering plants,
Phelipanche and Orobanche species, both from the family Oroban-
chaceae, were detected according to the phylogenetic trees based
on available data [29].

In order to examine the effect of its non-photosynthetic life
history on cp genome content, we sequenced the entire cp genome
of C. deserticola. As a completely non-photosynthetic species from
Orobanchaceae, it shows the same pattern in the process of gene
loss as in chloroplasts of E. virginiana and other parasitic plants. We
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also found that C. deserticola has two copies of a cp gene rpoC2, one
becoming a pseudogene, the other being horizontally acquired
from the host H. ammodendron, according to a homology search and
phylogenetic analysis.

Materials and Methods

Genome Sequencing and Assembly

The spikes of C. deserticola were collected from a plant base in
Bayannur City of Inner-Mongolia area which was introduced from
natural populations located in desert area of Inner Mongolia in
northeastern China. The collecting permit was obtained from the
owner (Jun Wei) of the plant base. The voucher specimen was
deposited in the MOE Key Laboratory for Biodiversity Science
and Ecological Engineering at Fudan University. For c¢p genome
sequencing, total genomic DNA extraction was performed using
the Plant Genomic DNA Kit (Tiangen Biotech Co., China),
following the manufacturer’s instructions. The fragments of cp
DNA were amplified by the polymerase chain reaction (PCR). In
brief, due to loss and pseudogenizations in the cp genome of C.
deserticola, PCR primers were designed using the reported PCR
primers from several sources. The primers of the LSC region were
designed using the reported conserved cp DNA primer pairs,
which including 38 primer pairs as well as eight primer pairs
flanking cpDNA microsatellites tested on 20 plant species from 13
families [33]. Only 14 of the 38 primer pairs are useable in C.
deserticola. 'Then the primers for other regions were designed
according to the primers of the cp genome available in the cp
genome database [34]. Some primers were also developed from
the cp genome sequences of related species (Olea europaea and E.
virginiana) for specific regions. In order to amplify longer fragments,
some of these primers were used combined, and some of them
were designed based on the newly determined sequences of
adjacent regions. By using all above primers, we covered the entire
cp genome of C. deserticola with PCR fragments ranging in size
from 500 bp to 3 kb. The overlapping regions of each pair of
adjacent PCR fragments exceeded 150 bp. The amplified product
was purified, and ligated into TaKaRa pMDI19-T plasmids
(TaKaRa Biolnc, Shiga, Japan), which were then cloned into
Escherichia coli strain DH5a. Multiple (=6) clones were randomly
selected and followed by automated sequencing using ABI 3730xl
DNA Analyzer (Applied Biosystems, Foster City, CA). All
fragments were sequenced 2-10 times (6-fold coverage of the C.
deserticola cp genome on average). All these individual sequences
were excluded vector, primer and low-quality reads, and then
assembled using Sequencher 3.0 software (Gene Codes Corpora-
tion, USA). The inverted repeat regions (IRs) of the cpDNA were
not amplified separately, but primers were designed to amplify the
regions spanning the junctions of LSC/IRA, LSC/IRB, SSC/IRA
and SSC/IRB. Considering two IRs cannot be distinguished by
automated assembly software, we input the reads as two groups
and obtained two large contigs, with each contig including one IR
and its adjacent partial LSC and SSC regions. Then, the two large
contigs were manually assembled into the complete circular
genome sequence.

Genome Annotation and Molecular Evolutionary
Analyses

Initial gene annotations were performed using the chloroplast
annotation package DOGMA (http://phylocluster.biosci.utexas.
edu/dogma/) [35]. Genes that were undetected by DOGMA,
such as psbB, psbK, tmG-GCC, rpoC2, atpB, accD, and yefl, were
identified by Blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The
correctness of the annotation for all genes was additionally verified

March 2013 | Volume 8 | Issue 3 | e58747



by a similarity search against the available plant cp genome
sequences. The regions with similarity to known protein coding
genes but lacking intact open reading frames (ORF) were
identified as pseudogenes. tRNA genes were annotated using
DOGMA and ARAGORN v1.2 (http://130.235.46.10/
ARAGORNY/) [36], and then confirmed by ERPIN (http://
tagc.univ-mrs.fr/erpin/) [37]. The circular gene map of the C.
deserticola cp genome was drawn by GenomeVx [38] followed by
manual modification. An assembled and corrected sequence of C.
deserticola cp genome was deposited in GenBank.

To estimate the selection constraint on the genes remaining in
C. deserticola cp genome, the protein-coding genes that shared
between C. deserticola, FE. virginiana, and related photosynthetic
species O. europaea were chosen to calculate the ratio of the rates of
nonsynonymous and synonymous changes (dN/dS). Nicotiana
tabacum was also included in the analyses to calculate dN/dS for
photosynthetic plants. Alignment was performed using ClustalW
[39]. The pairwise dS, dNV and dN/dS ratios were calculated using
DnaSP ver. 5 [40].

Isolation and Sequencing of Potential HGT Gene (rpoC2)

In this study, we found that C. deserticola harbours another copy
of 7poC2 outwith its own, which corresponds to the phylogenetic
position of the host H. ammodendron. We propose that this copy
arose via horizontal gene transfer. In order to confirm if HGT
occurred across the range of C. deserticola, we sampled 50
accessions from the same plant base in Bayannur City which were
introduced from five natural populations located in Alxa Left
Banner, Alxa Right banner (two populations), and Urad Rear
Banner in the Inner-Mongolia area, as well as Hetian in the
Xinjiang area. In order to confirm if the HG'T occurred across the
range of C. deserticola, total DNA extractions from these materials
and cp 7poC2 genes amplified by standard PCR were performed in
two different labs, thus, eliminating laboratory contamination.
The 7poC2 gene was amplified using primers 4 (5'-GATAGA-
CATCGGTACTCCAGTGC-3") and 16 (3'-TCATTATGG-
GAATGTACACGCG-5") with the following conditions: 94°C
for 2.5 min; 35 cycles each at 94°C for 1 min,55°C for 30 s, 72°C
for 1 min. In H. ammodendron, the five clones of 7poC2 gene were
also checked.

Phylogenetic Analyses of the Potential HGT Gene, rpoC2

All the copies of 7p0C2 sequences detected in C. deserticola and H.
ammodendron were used as queries for BLASTN searches against the
NCBI database (E-value <10~ % [41] to identify and retrieve their
homologs. On the basis of Angiosperm Phylogeny Group III [42],
sampling for the present study focused on members of the clade
Lamiales and Caryophyllales that includes two families Oroban-
chaceae and Chenopodiaceae. Finally, 29 sequences were sampled
for the 7poC2 phylogenetic analyses, using Omza nwara
(NCG_005973) as outgroups. Sequences were unambiguously
aligned manually in BioEdit 7.0.4.1 [43].

Phylogenetic analyses were performed using maximum likeli-
hood in PAUP v. 4.0b10 [44] and Bayesian inference in MrBayes
v. 3.1 [45]. The appropriate ML model of nucleotide substitution
(GTR+I+G) was determined by Modeltest 3.7 [46] according to
the Akaike information criteria (AIC) [47]. Relative clade support
was estimated by ML bootstrap analysis of 100 replicates of
heuristic searches with settings as above. Bayesian analysis was
performed with MrBayes 3.1 using same model (GTR+I+G)
suggested by MrModeltest v2.2 [48]. The settings for the
Metropolis-coupled Markov chain Monte Carlo process were:
three runs with four chains each were run simultaneously for 1#107
generations, which were logged every 1000 generations. Conver-
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gence was considered to have been reached when the variance of
split frequencies was <0.01. The first 2500 generations were
discarded as the transient burn-in period. The 50%-majority-rule
consensus of trees sampled in the Bayesian phylogenetic analysis
was used to construct a phylogram.

Results

The cp Genome Structure of C. deserticola

As expected, the cp genome of C. deserticola [GenBank number:
K(C128846] is greatly reduced in size (102,657 bp) and in gene
content. It is a quadripartite structure typical of the majority of
land plant chloroplast chromosomes with a large single copy (LSC)
region of 49,130 bp separated from 8,819 bp small single copy
(SSC) region by two inverted repeats (IRs), each of 22,354 bp
(Fig. 1). In angiosperms, it is the fourth completely nonphotosyn-
thetic species and the eighth parasitic species of which complete
sequences of the cp genome are now available. Among these
species, the cp genome of C. deserticola is larger than those of other
five holoparasites species (E. vuginiana, R. gardneri, N. midus-avs,
Cuscuta obtusiflora and C. gronovir), but is smaller than those of other
hemiparasitic Cuscuta species, which has more or less green color
distributed throughout the stems and inflorescences (Tables 1, 2).

When the IR is considered only once, the cp genome of C.
deserticola contains 60 genes, encoding 27 proteins, 4 ribosomal
RNAs (rRNA) and 30 transfer RNAs (tRNA). The positions of 61
genes, including 29 unique and 16 duplicated ones in the IRs
regions, were localized on the map (Fig. 1). The cp genome of C.
deserticola has an overall GC content of 36.8%, which is similar to
E. virgimiana (36%) but slightly lower than the photosynthetic
species Nicotiana tabacum (37.8%). Like other land plants [49,50],
GC content is unevenly distributed across the C. deserticola cp
genome. The highest GC content is in the IRs (43%), reflecting the
high GC content of rRINA genes, and the lowest is in the SSC
(27.5%) region.

Although C. deserticola has a relatively larger cp genome
sequence, it also exhibited severe physiological reductions: all
genes required for photosynthesis (encoding photosystem I and 1I
components, cytochrome b6f complex, NAD(P)H dehydrogenase,
photosystem assembly factors (y¢f3, p¢fd) and ATP synthase)
suffered gene losses and pseudogenizations except for psbM.
Additional pseudogenization is also seen in genes encoding cp-
encoded RNA polymerase (rpo), Cytochrome c biogenesis protein
(cesA), and Acetyl-CoA carboxylase (accD). C. deserticola retains
many genes of the translation machinery, including 8 7p/ genes,
11 7ps genes, and an initiation factor, infA. Only 723 is
apparently a pseudogene with nonfunctional reading frames
(Table 1).

In E. virginiana, a total of five tRINAs were pseudogenized and
eight tRNAs were lost [51]. In contrast, C. deserticola retains almost
all the rRNA and tRNA genes: two identical copies of rRNNA gene
clusters (16S-23S-4.55-5S) were found in the IR regions; 30
different tRNAs, which can recognize all 61 codons present in the
cp genes, were identified (Table 1, Fig. 1). Intron content of genes
retained in the C. deserticola cp genome is conserved with other seed
plants: it has 11 genes with introns, six in tRNAs and 5 in protein
coding genes. Two of the 12 intron-containing genes have a single
intron and two genes, ¢/pP and 7ps12, have two introns. All of these
belong to the group II intron, whereas #nLL-UAA is the only group
I intron. Among the tRNA genes, #mmK-UUU has a special role,
since the only RNA maturase gene (matK) found on the cp genome
was located in its intron [52]. Unlike other parasitic plants, C.
deserticola harbours the complete #mK-UUU gene, including its
intron matK gene (Table 1, Fig. 1).
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doi:10.1371/journal.pone.0058747.g001

constraint in fully nonphotosynthetic F. virginiana and C. deserticola
than photosynthetic species O. europaea and N. tabacum (Fig. 2). In
addition, of 15 protein-coding genes shared between FE.viginiana

The examination of pairwise d/N/dS ratio for the alignable genes
shared between C. deserticola, E. virginiana and their autotrophic
relatives demonstrates that most of genes are under greater
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Table 1. Gene contents of plastidome of Cistanche deserticola compared to Nicotiana tabacum and other parasitic plants (based
on this research and previous reports [6,9,67]).
Photosynthesis and energy Ribosomal Transfer
production genes RNA genes RNA genes
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doi:10.1371/journal.pone.0058747.t001
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and C. deserticola, 13 genes have a higher dN/dS in E.virginiana than
in C. deserticola (Fig. 2).

Horizontal Transfer of rpoC2 from Host to Parasitic Plants

We used the general primers of 7p0C2 to amplify the total DNA
of C. deserticola and subsequent cloning. Contrary to our
expectation, the sequences obtained resemble the genes of H.
ammodendron but not C. deserticola, based on sequence similarity
through BLAST and phylogenetic trees (GenBank number:
KC543998, Fig. 3). This raised the possibility that HGT may
have occurred between the parasite and its host. In order to
confirm this result, we ruled out that the results were due to
contamination or mixing-up of templates by repeating the
experiment in a different laboratory. The results of the amplifi-
cation are congruent with the previous results. Then, we
confirmed the presence of the H. ammodendron type copy in 46
accessions out of 50 samples from five C. deserticola populations by
using the same specific primers. Four of the accessions’ lack of
amplification was probably due to poor DNA quality. The
transferred 7poC2 copy (H. ammodendron type) amplified from C.
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Table 2. Global features of Cistanche deserticola plastidome compared to Nicotiana tabacum and other parasitic plants.
Number Number of Number of number of genes

Species Accession no Size (nt) of genes? pseudogenes tRNAs® with introns Reference

Rhizanthella gardneri GQ413967 59,190 37 6 9 4 [9]

Epifagus virginiana NC_001568 70,028 53 18 17 4 [5]

Cuscuta obtusiflora NC_009949 85,280 98 1 24 5 [71

Cuscuta gronovii AM711639 86,744 99 5 24 5 [6]

Neottia nidus-avis JF325876 92,060 74 28 28 8 [10]

Cistanche deserticola KC128846 102,657 77 32 30 14 this study

Cuscuta reflexa AM711640 121,521 115 4 29 16 [6]

Cuscuta exaltata NC_009963 125,373 12 8 29 16 [71

Nicotiana tabacum NC_001879 155,939 151 1 30 23 [68]

Data in this table came from analyses using sequences on GenBank or plastid chromosomes gene maps in their original report.

*Number of genes excluding the pseudogenes. Duplicated genes in the IR regions were counted twice.

Duplicated tRNAs were counted both.

doi:10.1371/journal.pone.0058747.t002

deserticola is about 1050 bp, and covers amino acid positions 98—
443 (nucleotide positions 294—-1329) of the 7poC2 gene of O. europea.
To clarify the evolutionary characteristics of the 7poC2 fragment
transferred from H. ammodendron to C. deserticola, we aligned the
nucleotide sequences of H. ammodendron type rpoC2 amplified from
both of two plants with intact open reading frames of other related
species. The results indicated that the transferred 7poC2 fragment
differed from functional copies in a few point mutations and one
key nucleotide insertion (C in 927 bp), which resulted in several
subsequent premature termination codons and frame shifts
mutations (Fig. 4). Because the H. ammodendron type 1poC2 was
not found in the complete cp genome of C. deserticola, we
speculated it should be transferred into the nuclear or mitochon-
drial genome.

However, C. deserticola’s own 1poC2 copies were not detected by
PCR amplification using specific primers, which make us consider
that this gene was lost or turned out to be a pseudogene. Thus, we
searched the finished cp genome of C. deserticola with rpoC2
homologues by the BLAST method. The results shown that C.

m Cdvs. Qe
M Ntvs. Oe

= Evvs. Oe

Figure 2. Pairwise dN/dS value of C. deserticola (Cd), E. virginiana (Ev) and N. tabacum (Nt) vs. O. europaea (Oe) for all shared protein-
coding genes. *indicates gene lost, “indicates the absence of non synonymous substitutions, Sindicates the absence of synonymous substitutions.

doi:10.1371/journal.pone.0058747.g002
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Figure 3. Phylogenetic evidence for horizontal gene transfer of the plastid rpoC2 from Haloxylon ammodendron to Cistanche
deserticola. Lamiales are coloured in red, and Caryophyllales are coloured in blue. While the ten C. deserticola sequences involved in horizontal gene
transfer are coloured in red. Numbers at nodes are posterior probabilities >0.60 and maximum likelihood bootstrap values >60. The Genebank
number: Oryza nivara, NC_005973; Antirrhinum indicum, GQ997028; Sesamum indicum, NC_016433; Boea hygrometrica, NC_016468; Jasminum
nudiflorum, NC_008407; Olea europaea, NC_013707; Basella alba, HQ843359; Opuntia microdasys, HQ843375; Pereskia aculeata, HQ843376; Portulaca
oleracea, HQ843380; Mollugo verticillata, HQ843373; Bougainvillea glabra, HQ843360; Mirabilis jalapa, HQ843372; Phytolacca americana, HQ843378;
Celosia cristata, HQ843361; Spinacia oleracea, NC_002202; Silene conica, NC_016729; Stellaria media, HQ843386; Cistanche deserticola (HGT),
KC543998.

doi:10.1371/journal.pone.0058747.g003

deserticola also retains its own significant shortened 7p0C2, which has (Fig. 3). The two orders Lamiales and Caryophyllales confirmed as
turned out to be a pseudogene of only 439 bp. well as supported distinct clades in the phylogenetic tree. The
transferred 7poC2 is located in the clade Caryophyllales (host clade)

Phylogenetic Analysis of Transferred rpoC2 Gene but does not cluster inside Lamiales (parasitic clade), which forms
The HGT result was further supported by our phylogenetic a clade with a relatively strong bootstrap support. The retained
analysis. Maximum likelithood and Bayesian trees constructed 1poC2 (C. deserticola type copy) was not used in this analysis because
using the two methods described earlier gave congruent results its sequence was severely fragmented when align with other
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Figure 4. Position of inserted cytosine within the transferred rpoC2 gene. (A) Alignment of the nucleotide sequences of transferred rpoC2
gene amplified from parasite and host with intact open reading frames of other related species. The inserted cytosine was labeled with colored
vertical lines. (B) Inserted cytosine resulted in followed premature termination codon in the transferred rpoC2 in Cistanche deserticola.
doi:10.1371/journal.pone.0058747.g004

homologs. The sequence alignment and the phylogenetic distri- relatives will provide further insights on parasitic cp genome
bution of the 7p0C2 in Chenopodiaceae suggest that the horizontal evolution.
gene transfer happened between the host H. ammodendron and The overlapping PCR products have indicated the reduced
parasitic plant C. deserticola. circular form of the cp chromosomes in C. deserticola. Similar to E.
virginiana, almost all of its photosynthetic genes have been lost or
Discussion have become pseudogenes after the loss of a major metabolic
function. It is different from other heterotrophic plants in many
Gene Losse in the cp Genome of C. deserticola ways: it retains almost all the tRNA genes; the photosynthetic gene
Compared to more than 250 completely sequenced cp genomes psbM remains as residues and others suffered gene pseudogeniza-
of photosynthetic plants, the number of fully sequenced cp tions rather than losses as E. vigimiana; C. deserticola harbours
genomes of non-photosynthetic plants is very small. To date, only complete #nK-UUU gene but not its intron ma/K gene, and so on.
cight heterotrophic species, exhibiting parasitic lifestyles and Some parasitic species exhibit extensive losses of tRNA genes
having strongly reduced cp genomes, have been thoroughly  (Table 1). In E. virginiana, a total of 13 tRNAs were pseudogenized
investigated with respect to their cp genome sequences [5]. In this or lost. As in photosynthetic plants, C. deserticola encompasses
study, we have sequenced the cp genome of C. deserticola, a around 30 tRNA genes in cp genomes, and it is the only one of
holoparasitic species from Orobanchaceae with the expectation parasitic plants which possessed a full cp tRINA set as nonparasitic

that comparison of cp genomic features between these two  plants. This suggests that the loss of the transfer RNA genes from
the cp genome occurred later than those of photosynthesic genes.
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Most of the splicing factors are nuclear-encoded, but one
maturase protein is encoded by a cp gene, matK, which was
located within an intron of /mK-UUU [52,53]. The K gene is
lost in all parasitic angiosperm cp genomes except for C. deserticola
and Neottia nidus-avis (Table 1). In the Neottia cp genome, the intron
matK is a pseudogene with strong divergence of its 5'end
compared to other photosynthetic orchids [10]. In contrast, in
C. reflexa, C. exaltata, and E. virginiana, matk has been retained as a
free-standing gene [52,54]. Unlike other parasitic angiosperm
species, neither the #mK-UUU gene nor its intron matK gene was
missing in (. deserticola. It has been reported that matk is also
needed for splicing other chloroplast group II introns in the cp
genome [55]. Thus the retaining of matK in C. deserticola is not
surprising because its cp genome has retained 9 group Ila introns
(including 72, pl16, 1ps12, clpP, tmnA-UGC, trnl-GAU, rnK-
UUU, tmG-UCC, tnV-UAC). While the #mA gene exists in the C.
deserticola cp genome, which was similar to photosynthetic plants,
this may suggest the plant has undergone fewer losses, either due
to a function of reduced level of holoparasitism, or a recent switch
to this life history [56].

The entire set of chloroplast NAD (P) H dehydrogenase
consisting of 11 genes has been lost or turned into pseudogenes
without exception in C. deserticola. What is interesting is that a loss
of ndh genes was also present in all sequenced cp genomes of
parasitic plants investigated to date, regardless of the degree of
evolutionary degradation of photosynthetic capacity (Table 1). It
was confirmed that cp-encoded ndh genes were first lost in the
transition to heterotrophy [7,57]. It has been speculated that the
condensation of the genome by loss of many non-coding regions
and unimportant parts of the cp genome is an early reaction of the
cp genome to the parasitic lifestyle [6].

After calculating dN/dS for shared cp genes between E.
virgiiana, C. deserticola and two photosynthetic species, an obvious
trend of relaxed selection was revealed in both fully nonphotosyn-
thetic species with higher dV/dS. It may indicate that these genes
were sufering an initial stage of pseudogenization. However, C.
deserticola has lower dN/dS for more genes than F. virgimiana, which
suffered a high degree of gene loss and pseudogenization, further
indicating C. deserticola may undergo reduced level of holoparasit-
ism or a recent switch to this life history. The gene psétM, which
was the only one photosynthetic gene retained in C. deserticola,
showed a higher dN/dS than in photosynthetic species (dN/dS =0),
suggesting advent of relaxed selection and initial stage of
pseudogenization in this gene in C. deserticola. However, some
unexpected high dN/dS were also found in 7633, 7ps7 and 7pl22 in
photosynthetic species. The short length of sequences may reduce
the reliability of dN/dS estimation in these genes [58].

HGT from H. ammodendron to C. deserticola

HGT in parasitic systems has been detected by using
phylogenetic trees when a DNA sequence obtained from a
parasite is placed closer to its host rather than with its closest
relatives. Unexpectedly we had a windfall in the process of
amplifying the cp genome sequence of C. deserticola. One of these
sequences, 7poC2 gene, was present in two copies within this
parasite and one of them was a homolog of their host and led to
conflicting phylogenies. The most reasonable explanation for our
results is that cp 7p0C2 gene in C. deserticola was acquired from its
host, H. ammodendron via HG'T'. In order to confirm the results and
provide special opportunities for studying the evolutionary
dynamics of HGT at the population level, we also collected 50
samples from five populations and successfully amplified trans-
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ferred the 7poC2 gene from 46 accessions. In addition, the events
present in most individuals spanning Xinjiang and Inner
Mongolia, may suggest that the HGT of 7p0C2 probably occurred
in a C. deserticola common ancestor of these populations, which
expanded into its present wide distribution quickly.

So far, the incidence of HGT in the family Orobanchaceae is
high, including one nuclear HGT event which occurred between
parasitic Striga hermonthica (Orobanchaceae) and its host Sorghum
bicolor (Poaceae), as well as a chloroplast region including 7ps2, tml.-
T, and 7bcL. in a group of non-photosynthetic members (Orobanche
and Phelipanche) of Orobanchaceae [29,59]. Our study shows that
cp 1poC2 has transferred from H. ammodendron to C. deserticola via
HGT. However, it is impossible to presume the localization of the
transferred 7poC2 based on the available data. We just could rule
out its location in the c¢p genome according to our completed cp
genome of C. deserticola. This agrees with the reports that events of
foreign DNA transferred into the cp genome are rare [60,61]. The
possibility of disparity between plant mitochondrial and nuclear
genomes vs. cp genomes in rates of HGT is that the mitochon-
drion and nuclear genomes contain much more non-coding DNA
than compact cp genomes [62,63].

As desert plants, H. ammodendron and C. deserticola have developed
an extremely specialized set of morphological, biochemical and
molecular traits to adapt scare nutrients and water in the soil, such
as loss of leaves and the development of haustoria in C. deserticola.
With this feeding organ, C. deserticola can extract water and
nutrients from the parasitized host, including the nucleic acids in
the form of mRNA. It is why HGT appears to be facilitated by the
direct physical association between the parasite and its host in the
parasitic systems.Moreover, C. deserticola 1s a typical root parasite,
meaning they are usually in contact with its host through
meristems. In plants, meristems are less protected than the
germlines in most multicellular animals [22]. Therefore, the genes,
which transferred to the root apical meristem, could have the
opportunity to be integrated in the genome and transmitted to the
next generation.

In our study, either the transferred 7p0C2 or its native copy
appear to be non-functional pseudogenes in C. deserticola. Previous
work has reported plant mtDNA pseudogenes that are transcribed
and edited, so this raises the possibility that some of these genes
may actually be functional [64,65]. The fact is that acquiring a
new gene can lead to an obvious benefit to living in that particular
environment. H. ammodendron, which is distributed across dry
deserts and salt pans, has high tolerance to osmotic and salt stress
[66]. We postulate that C. deserticola could not only obtain the
carbohydrate, minerals and water, but also the straightforward
source of useful genetic information from the neighbour already
adapted to that environment. In the ‘genomic era’, future work is
still needed to discover more HGT events in this pair of host and
parasite by next generation sequencing, especially genes in
mitochondrial and nuclear genomes.
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