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We design and analyze the dynamics of a large network of theta neurons,
which are idealized type I neurons. The network is heterogeneous in that
it includes both inherently spiking and excitable neurons. The coupling
is global, via pulselike synapses of adjustable sharpness. Using recently
developed analytical methods, we identify all possible asymptotic states
that can be exhibited by a mean field variable that captures the network’s
macroscopic state. These consist of two equilibrium states that reflect par-
tial synchronization in the network and a limit cycle state in which the
degree of network synchronization oscillates in time. Our approach also
permits a complete bifurcation analysis, which we carry out with respect
to parameters that capture the degree of excitability of the neurons, the
heterogeneity in the population, and the coupling strength (which can be
excitatory or inhibitory). We find that the network typically tends toward
the two macroscopic equilibrium states when the neuron’s intrinsic dy-
namics and the network interactions reinforce one another. In contrast,
the limit cycle state, bifurcations, and multistability tend to occur when
there is competition among these network features. Finally, we show that
our results are exhibited by finite network realizations of reasonable size.

1 Introduction

The cortex of the brain is structured into a complex network of many func-
tional neural assemblies (Sherrington, 1906; Hebb, 1949; Harris, 2005). Each
assembly typically encompasses a large number of interacting neurons
with various dynamical characteristics. Within this network, communica-
tion among the neural assemblies generally involves macroscopic signals
that arise from the collective behavior of the constituent neurons in each
assembly. It has been proposed that functional behavior arises from these
interactions, and perceptual representations in the brain are believed to be
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encoded by the macroscopic spatiotemporal patterns that emerge in these
networks of assemblies.

In modeling the brain, a microscopic description of individual neurons
and their interactions is important. However, a model for the macroscopic
dynamical behavior of large assemblies of neurons is essential for under-
standing the brain’s emergent, collective behavior (Peretto, 1984; Sompolin-
sky, 1988; Kanamaru & Masatoshi, 2003). In this letter, we construct such
a model using the canonical theta neuron of Ermentrout and Kopell (Er-
mentrout & Kopell, 1986; Ermentrout, 1996). We construct a large hetero-
geneous network, containing both excitable and spiking neurons, that is
globally coupled via smooth pulselike synapses. Then, using the methods
of Ott and Antonsen (2008, 2009) and Marvel, Mirollo, and Strogatz (2009)
(see also Pikovsky & Rosenblum, 2008, 2011), we derive a low-dimensional
“reduced” dynamical system that exhibits asymptotic behavior that is coin-
ciding with that of the macroscopic mean field of the network. We use this
reduced system to classify all the asymptotic macroscopic configurations
that the network can exhibit.

We show that our network exhibits three fundamental collective states: a
partially synchronous rest state (PSR), a partially synchronous spiking state
(PSS), and a collective periodic wave state (CPW). In the PSR state, most
neurons remain at rest but are excitable, and the macroscopic mean field sits
on a stable equilibrium. In the PSS state, the mean field is also on a stable
equilibrium, but typically, most individual neurons spike regularly. These
states are similar to states that have been called asynchronous (Abbott &
van Vreeswijk, 1993; Hansel & Mato, 2001, 2003). We find that they are typi-
cally encountered in cooperative networks in which the internal dynamics
of the neurons and the interneuronal network interactions reinforce each
other. In other parameter regions where the internal dynamics and network
interaction are in competition, a collective periodic state, the CPW state, can
occur. In the CPW state, the phases of the neurons transiently cluster, and
the degree of network coherence waxes and wanes periodically in time in
such a way that the macroscopic mean field exhibits a stable limit cycle.

These three macroscopic states can coexist and transition into each other,
and here we clarify precisely how this happens using our reduced mean
field equation. We obtain a complete bifurcation diagram with respect to
parameters that represent the degree of excitability, heterogeneity, and the
strength of coupling (both excitatory and inhibitory) within the network.
Our model provides a comprehensive description for the asymptotic macro-
scopic behavior of a large network of heterogeneous theta neurons in the
thermodynamic limit.

The remainder of this letter is organized as follows. In section 2, we
describe the basic features of our theta neuron network, and in section 3,
we derive the mean field reduction using the Ott-Antonsen method (Ott
& Antonsen, 2008, 2009; Marvel et al., 2009). Then, in section 4, we use
the reduced mean field equation to identify and describe the three possible
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macroscopic states: PSR, PSS, and CPW. In section 5, we provide a compre-
hensive bifurcation analysis for the macroscopic dynamics of the network.
We summarize and discuss our results in section 6.

2 Microscopic Formulation

The brain contains a huge number of different types of neurons that fea-
ture various dynamical characteristics. Here, we construct a mathematically
tractable network that encompasses three fundamental characteristics: neu-
ronal excitability, pulselike coupling, and heterogeneity.

2.1 Neuronal Excitability: The Theta Neuron. A typical neuron at rest
begins to spike as a constant injected current exceeds a threshold. Neurons
are usually classified into two types based on this behavior (Hodgkin, 1948;
Ermentrout, 1996; Izhikevich, 2007). Type I neurons begin to spike at an
arbitrarily slow rate, whereas type Il neurons spike at a nonzero rate as soon
as the threshold is exceeded. Neurophysiologically, excitatory pyramidal
neurons are often of type I, and fast-spiking inhibitory interneurons are
often of type II (Nowak, Azouz, & Sanchez-Vives, Gray, & McCormick,
2003; Tateno, Harsch, & Robinson, 2004).!

Ermentrout and Kopell (1986; Ermentrout, 1996) showed that near the
firing threshold, type I neurons can be represented by a canonical phase
model that features a saddle-node bifurcation on an invariant cycle, or a
SNIC bifurcation. This model has come to be known as the theta neuron
and is given by

6 = (1—cos@)+ (1+cosh)n, (2.1)

where 6 is a phase variable on the unit circle and 7 is a bifurcation param-
eter related to an injected current. The SNIC bifurcation occurs for n = 0.
For n < 0, the neuron is attracted to a stable equilibrium which represents
the resting state. An unstable equilibrium is also present, representing the
threshold. If an external stimulus pushes the neuron’s phase across the un-
stable equilibrium, 6 will move around the circle and approach the resting
equilibrium from the other side. When 6 crosses 6 = &, the neuron is said
to have spiked. Thus, for n < 0, the neuron is excitable. As the parameter
1 increases, these equilibria merge in a saddle-node bifurcation and disap-
pear, leaving a limit cycle. Consequently, the neuron spikes regularly. This
transition is depicted schematically in Figure 1.

Most theoretical studies consider only these two stereotypical behaviors, but see
Skinner (2013).
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Figure 1: SNIC bifurcation of the theta neuron. For n < 0, the neuron is at
rest but excitable. For > 0, the neuron spikes regularly. The SNIC bifurcation
occurs at 7 = 0. A spike is said to occur when the phase variable 6 crosses 7.

In this letter, we construct our network using only theta neurons. Future
work will consider networks containing mixtures of type I and type II
neurons.

2.2 Coupling via a Pulselike Synapse. We consider a network of N

theta neurons coupled together via a synaptic current I,

0; = (1 —cosb;) + (1+ cost)[n]- + Isyn], (2.2)

with j =1, ..., N. Thus, the synaptic current changes the effective excitabil-
ity parameter of the jth neuron.

We write I, as a collective signal in which each neuron contributes a
pulselike synaptic current depending on its phase angle. Thus,

k N
Isyn = N an ). (2.3)

where P, (6) =a, (1 — cos6)",n € N,and a, is anormalization constant such
that

27
/ P,(6)d6 = 2.
0

The parameter n defines the sharpness of the pulselike synaptic current
P,(0) (Ariaratnam & Strogatz, 2001) such that it becomes more and more
sharply peaked at 6 = 7 as n increases, as shown in Figure 2. The sum
in equation 2.3 is over the entire population, and k is the overall synaptic
strength for the whole network.
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Figure 2: A plot of the synaptic function P, (¢) for different values of the sharp-
ness parameter 7. As n increases from 1 to 9, the shape of the synaptic function
becomes more pulselike around the firing state at 6 = 7.

2.3 Heterogeneity. Neurons in real biological networks exhibit a range
of intrinsic excitabilities. To model this, we assume that the parameter 7 j
for each neuron is different and is drawn at random from a distribution
function g(n). Here we assume a Lorentzian distribution,

1 A

; (77 — 7]0)2 + AZ s (24)

gm) =

where 7, is the center of the distribution and A is its half-width at half-
maximum. Thus, A describes the degree of neuronal heterogeneity in the
network. Since g(1) always includes both positive and negative n’s, our
network therefore contains a mixture of both excitable and spontaneously
spiking neurons, with the ratio being biased in favor of one or the other
depending on the chosen value of 7.

3 Mean Field Reduction of the Network

In the limit N — oo, the system affords a continuum description in which
the network of theta neurons can be described by a probability density
function F (6, n,t) (Kuramoto, 1975, 1984). Thus, F(6, n, t)d0dn gives the
fraction of oscillators that have phases in [0, 6 + df] and parameters in
[n, n + dn]. The time evolution of F is governed by the continuity equation,

OF 9
1 (Fvy) =0, (3.1)
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where v,, the velocity of a neuron, is the continuum version of equations
2.2 and 2.3:

vy=(14n)— 1 —n)cosd +a,k (14 cosb)

2 00
X / de// dn'F(0'.1',t) (1 — cos®')". (3.2)
0 —00

In order to explore the collective behavior of this network, we introduce
the macroscopic mean field (also known as the order parameter) z(t), which
describes the macroscopic coherence of the network and is defined as

21 00
z(t)E/ d9/ dnF @, n, t)e". (3.3)
0 —00

We now derive a reduced dynamical system that exhibits asymptotic
behavior that coincides with the asymptotic behavior of the mean field z(t)
of the network. Our procedure follows Ott and Antonsen (2008, 2009) and
Marvel et al. (2009).

The velocity equation, equation 3.2, can be written in sinusoidally cou-
pled form (Marvel et al., 2009) such that the explicit dependence on the
individual oscillator’s phase 6 occurs only through the harmonic functions
e’ and e :

v = fe +h+ fre (3.4)
with

f= —% [(1 —n) —kH(z,n)] (3.5)
and

h={1+n+kH(z,n)). (3.6)

Here, z is the mean field variable introduced in equation 3.3, n is the sharp-

ness parameter of the synapse as previously described, and H(z, n) = I, /k
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is the rescaled synaptic current given by?

H(zn) =a, | A, + ZAq(zq +z0) ], (3.7)
=1
where
n
Ar= 2 85-204Qjn (3.8)
j.m=0
and
(=1)/=2"n!
Qim = 57 — : (3.9)

2imt(n — jHI(j —m)!

In these equations, z* denotes the complex conjugate of z and §; ; is the
Kronecker delta function on the indices (i, j). Note that H(z, n) = H*(z, n)
is a real-valued function.

Now we adopt the ansatz that the probability density function F can be
written as a Fourier expansion in which the coefficients appear as powers
of a single yet-to-be-determined complex function (1, t):

o0
14+ (@ (. )17 +a(n, e ) 1. (3.10)
q=1

F@O,n,t)= gz(—z)

This ansatz defines a two-dimensional manifold (parameterized by the real
and imaginary parts of «) in the space of all probability density functions. In
Ott and Antonsen (2008), the authors showed that this manifold is invariant
if and only if o satisfies |x(n,t)| <1 as well as the following differential
equation (which is obtained by substituting equation 3.10 into equation
3.1):

& =i(fa® +ha + f*). (3.11)

%In equation 3.7, the gth powers of the order parameter z and their complex conjugates
z* appear More generally, these terms should be replaced by the Daido moments z,(t) =

T do f dnE (8, n, H)e' (Daido, 1996). However, with the the choice of the L0rentz1an
dlstr1but1on for g(n), we have z = =zl forg >0, and z, = (z")7forg < 0.
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The macroscopic mean field can be written as an integral transform of g(1)
with (7, t) as the kernel by substituting equation 3.10 into equation 3.3.
This gives

2(t) = / a1, DY) di. (3.12)

The integro-differential equations defined by equations 3.11 and 3.12
give the general equation of motion for the asymptotic behavior of the
macroscopic mean field z(t). Now, permitting 1 to be complex and analyt-
ically continuing «(n, t) into the upper half of the complex n plane, and
further assuming that g(n) is given by the Lorentzian in equation 2.4, the
integral in equation 3.12 can be evaluated in closed form using the residue
theorem. The result is

z(t) = a(n, +iA, 1),

where 7, is the center and A is the half-width-at-half-maximum of the
natural frequency distribution g(17) given in equation 2.4.

Finally, by substituting f (see equation 3.5) and & (see equation 3.6) into
equations 3.11 and 3.12 and evaluating at the residue, we arrive at the
desired reduced dynamical system:

BETY. 2
IPCER VR

5 5 [—A +iny +ikH(z, m)]. (3.13)

In accordance with Ott and Antonsen (2009), we find that the attractors of
this two-dimensional ordinary differential equation are the attractors of the
macroscopic dynamics for the infinite discrete network given by equations
2.2t024 with N — 003

4 Macroscopic Dynamics of the Network

By analyzing the reduced mean field equation, equation 3.13, we find that
there are three possible asymptotic macroscopic states for the network. Two
of these, which we call the partially synchronous rest (PSR) state and the
partially synchronous spiking (PSS) state, correspond to equilibria of the
macroscopic mean field. The third, which we call the collective periodic

3This method of analysis has been applied to other coupled networks of similar form
(see, e.g., Pikovsky & Rosenblum, 2008, 2011; Abrams, Mirollo, Strogatz, & Wiley, 2008;
Marvel & Strogatz, 2009; Martens, Barreto, Strogatz, Ott, So, & Antonsen, 2009; Abdul-
rehem & Ott, 2009; So & Barreto, 2011; Montbrié & Paz6, 2011; Alonso & Mindlin, 2011;
Omel’chenko & Wulfrum, 2012; So, Luke, & Barreto, 2013).
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Figure 3: Phase portraits of the PSR macroscopic state with n, = —0.2, A = 0.1,
k= -2, and n = 2. (a) The stable node of the PSR state is shown with its local
dynamics calculated using the reduced dynamical system (see equation 3.13).
(b) A trajectory, with transients removed, of the macroscopic mean field for
the PSR state calculated from a network of N = 10,000 theta neurons using
equations 2.2 to 2.4. (c) A magnification of the PSR state shown in panel b.
The dimensions of the box are x = Re(z(t)): —0.5360 to —0.5300; y = Im(z(t)):
—0.8345 to —0.8285. Fluctuations due to finite-size effects are small but visible
in this zoomed-in view.

wave (CPW) state, corresponds to a limit cycle of the macroscopic mean
field.

4.1 Macroscopic Equilibrium States. In the PSR state, the macroscopic
mean field z(t) of the network settles onto a stable node. This state is
predominantly (but not exclusively) observed when the distribution of ex-
citability parameters is such that most neurons are in the resting regime
(e.g., ny + A < 0), and the neurons are coupled through inhibitory synapses
(k < 0). Thus, most neurons are inactive, with their phase angles residing
near their resting states. Nevertheless, some spiking neurons are present.
These come from the tail of the g(n) distribution and have a negligible effect
on the collective behavior of the network. Figure 3a shows an example of
the macroscopic PSR equilibrium, with its local invariant manifolds calcu-
lated using the reduced mean field equation, equation 3.13, using n, = —0.2,
A =0.1,k=-2,and n = 2. (A movie showing both the macroscopic and
microscopic behavior of the PSR state in Figure 3 is available in the online
supplement.) Figures 3b and c show a trajectory, after the initial transient
behavior has been discarded, of the macroscopic mean field z(t) calculated
from a network of N = 10, 000 theta neurons with the same system param-
eters. As expected, the slightly noisy trajectory hovers about the predicted
equilibrium with fluctuations roughly on the order of 1/+/N.

In the PSS state, the macroscopic mean field z(t) settles onto a stable
focus. The collective behavior of the infinite network is again at rest, but
in this case, there is an intrinsic circulation, as the local stability of the
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Figure 4: Phase portraits of the PSS macroscopic state with n, = 0.2, A =0.1,
k=2, and n = 2. (a) The stable focus of the PSS state is shown with its local
dynamics calculated using the reduced model, equation 3.13. (b) A trajectory,
with transients removed, of the macroscopic mean field for the PSS state cal-
culated from a network of N = 10,000 theta neurons using equations 2.2 to 2.4.
(c) A magnification of the the PSS state shown in panel b. The dimensions of
the box are x = Re(z(t)): —0.2815 to —0.2415; y = Im(z(t)): —0.0250 to 0.0150.
Fluctuations due to finite-size effects are small but visible in this zoomed-in
view.

equilibrium is given by a pair of complex eigenvalues (with negative real
parts). This state occurs predominantly (but not exclusively) when most
neurons inherently spike (7, — A 2 0), with the coupling being either ex-
citatory (k > 0) or weakly inhibitory (k < 0). Thus, although most neurons
are active, the network is partially synchronous and organized such that
phase cancellation among the neurons results in a well-defined stationary
macroscopic mean.

Figure 4a shows an example of the macroscopic PSS state obtained using
the reduced system, equation 3.13, with n, = 0.2, A = 0.1, k=2, and n = 2.
(A movie showing both the macroscopic and microscopic behavior of the
PSS state in Figure 4 is available in the online supplement.) As before, panels
b and ¢ show the mean field trajectory z(t) of a network of N = 10, 000
neurons at the same parameter values. The reduced system once again
accurately predicts the ultimate macroscopic state of the network, and finite-
size network effects reveal bouts of coherent circulation about the focus.

Both the PSR and PSS states exhibit stationary behavior in the macro-
scopic mean field z(f) and reflect partially coherent network configurations.
We emphasize here the subtle difference between them: one is a node in the
macroscopic mean field and the other is a focus. This observation suggests
that transient behavior in the macroscopic mean field z(t) resulting from
abrupt perturbations of network parameters should reveal the difference
between these two states.

Figure 5 shows time series of the macroscopic mean field z(t) for both the
PSR (panels a and b) and the PSS (panels c and d) states. For the PSR state, the
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Figure 5: Time series of the real part of the macroscopic mean field x = Re(z(t))
showing the very different responses of the PSR and PSS states to a sudden small
change in n, att = 500. (a) The behavior of the reduced equation, equation 3.13.
(b) The time series calculated using a network of 10,000 theta neurons for the
PSR state. (¢, d) The same for the PSS state. The horizontal dashed lines indicate
the asymptotic values of the macroscopic equilibria at the initial and perturbed
1, values. The parameter values are given in the main text.

system starts with the following parameter set: n, = —0.2, A = 0.1, k = -2,
and n = 2. Then, at t = 500, 7, is abruptly switched from —0.2 to —0.5. The
new asymptotic state remains a PSR state (with Lyapunov exponents A, =
—2.51, —3.94), but the stable node shifts, and the macroscopic mean field
z(t) converges exponentially toward the new asymptotic value. The time
series from both the reduced system (see Figure 5a) and a discrete network
of 10, 000 neurons (see Figure 5b) clearly demonstrates this exponential
convergence.

The results from applying the same procedure to a PSS state (with A =
0.1,k = 2,and n = 2,and , changing from 0.2 to 0.5) are shown in Figures 5c
and 5d. In this case, the perturbed PSS state is characterized by a stable focus
with a pair of stable complex eigenvalues (A, = —0.061 & 3.25i). Thus, the
transient behavior after the parameter shift exhibits prominent oscillations
that do not occur in the PSR case.

The PSR and PSS states are the expected macroscopic states when the
network’s intrinsic dynamics (as parameterized by the excitability param-
eter 1,) and the synaptic interactions (as characterized by the coupling k)
are not in competition. The PSR state tends to occur when a majority of
the neurons are intrinsically at rest (17, + A < 0) and the overall coupling is
inhibitory (k < 0). Conversely, the PSS state tends to occur when a majority
of the neurons inherently spike (7, — A > 0) and the overall coupling is
excitatory (k > 0). In these cases, the internal dynamics and the network
interaction reinforce each other, and the resulting macroscopic dynamics
is a simple equilibrium. We show in the following section that a more
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complicated dynamical state can occur when the intrinsic neuronal dynam-
ics and the network interaction compete with one another.

4.2 Macroscopic Limit Cycle State and Multistability. In the CPW
state, the macroscopic mean field settles onto a stable limit cycle, and z(t)
oscillates in time. We adopt this terminology based on previous work in
which a collective oscillatory state of this type, when viewed from the
microscopic perspective, was described as a wave (Crawford, 1994; Ermen-
trout, 1998; Bressloff, 1999; Osan, Rubin, & Ermentrout, 2002). Here, we
find that this state occurs when most neurons are active (1, > 0) and the
synaptic interaction is inhibitory (k < 0). The microscopic configuration of
the neurons is such that the degree of coherence waxes and wanes in time
as the phases of the neurons corral together and spread apart in a periodic
manner. Thus, the collective oscillation reflects the interplay between the
neurons’ inherent tendency to spike and the suppressive network interac-
tion. Indeed, we show below that the occurrence of CPW states is mediated
by Andronov-Hopf and homoclinic bifurcations of the mean field, and thus
are emergent properties of the network. In particular, the frequency of the
limit cycle for a CPW state is not simply related to the frequencies of the in-
dividual neurons. In addition, the macroscopic limit cycle takes on different
shapes and sizes for different system parameters, thus indicating different
microscopic wave patterns.

A particular example of the CPW state is shown in Figure 6. As before,
panel a shows the attractors predicted by equation 3.13 with 5, = 10.75,
A =05 k=-9, and n=2. (A movie showing both the macroscopic
and microscopic behavior of the CPW state in Figure 6 is available in the
online supplement.) In this case, an attracting CPW limit cycle and a PSR
node coexist. Two unstable equilibria are present as well. Panel b shows
the asymptotic mean field behavior of a network of 10, 000 neurons, where
separate runs with different initial conditions were used to demonstrate the
coexistence of the two attractors. Once again, the reduced mean field equa-
tion gives an excellent prediction for the asymptotic temporal behavior of
the full network.

For most regimes in parameter space, the macroscopic behavior of the
network is found to exclusively approach just one of the above defined
states; there is only a single macroscopic attractor. However, there are sig-
nificant parameter regions in which the network exhibits multistability,
where two or more of these macroscopic states are found to coexist. In-
deed, the example shown in Figure 6 is an example of multistability in
which both a stable CPW state and a stable PSR state coexist. For param-
eters within these multistable regions, the network approaches one of the
stable macrostates depending on how the neurons in the network are con-
figured initially. We find, based on our bifurcation analysis of the mean field
equation (see section 5), that dynamical competition is a necessary ingre-
dient for the emergence of multistability. (A more detailed analysis of the
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Figure 6: (a) Phase portraits of the asymptotic macroscopic states that occur
with network parameters 7, = 10.75, A = 0.5, k = =9, and n = 2. (a) The re-
duced equation, equation 3.13, predicts the coexistence of a stable node (PSR),
a saddle equilibrium, an unstable focus, and a stable limit cycle state (CPW) for
the macroscopic mean field. (b) The asymptotic macroscopic states exhibited by
a finite network with 10,000 neurons. Two mean field trajectories showing the
PSR and CPW states are shown; these were obtained with different initial condi-
tions after transients were discarded. (c) A close-up of a section of the CPW limit
cycle. The dimensions of the box are x = Re(z(#)): 0.5050 to 0.6550; y = Im(z(t)):
—0.0750 to 0.0750. Fluctuations in the trajectory are due to finite-size effects.

multistable state for a similar but nonautonomous network of theta neurons
is reported in So et al. (2013).) (A singular situation occurs with A = 0, cor-
responding to a homogeneous network of neurons. Due to the high degree
of symmetry present in this case, the collective behavior consists of many
coexisting neutrally stable limit cycles, and the overall macroscopic dynam-
ics can be counterintuitively more complicated than the heterogeneous case
studied here. A more detailed analysis of this homogeneous case and other
extensions of this work will be reported elsewhere.)

One can also entertain the notion of unstable macroscopic PSR, PSS, or
CPW states, as we already mentioned. Although these are not typically ob-
servable in the collective behavior of the physical network, we will demon-
strate in the next section that they play an important role in mediating the
transitions among the three classes of observable (attracting) macroscopic
states.

5 Bifurcation Analysis of the Macroscopic States

Having identified the three classes of attractors for the macroscopic mean
field z(t), we now turn our attention to the analysis of the bifurcations
that they can undergo. Specifically, we identify the bifurcations that occur
as the following network parameters are varied: the neurons’ intrinsic ex-
citability parameter 7, the heterogeneity parameter A, and the overall cou-
pling strength k. We consider both excitatory (k > 0) and inhibitory (k < 0)
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interaction among the neurons. The bifurcation set will be illustrated in the
three-dimensional parameter space defined by 7, A, and k, for fixed values
of the synaptic sharpness parameter n. In our examples, we use n = 2 and
n =9, and our results suggest that the bifurcation scenarios described here
are qualitatively robust with respect to n.

We begin by separating the reduced system, equation 3.13, into its real
and imaginary parts, where z(t) = x(t) + iy (t):

x=f,(x,y; ny, A, k)

1 2 4,2
=@x—-1y- WA — (x + Dylny + kH (z, n)],
Y=8,(x, y: ng, A, k)
—1)%2 — 2 1)2 — 12
S WD A S Y kHE ] 6.

2 2

Then, by setting the right side of both of these equations equal to zero, we
obtain two conditions for the macroscopic equilibria of the network (x,, v,)
as a function of the three network parameters:

fn(xe7 ye’ 770’ A, k) = O!
8,(x,, Y, mps AL k) = 0. (5.2)

Now, instead of solving equations 5.2 for x, and y, given particular val-
ues of 7, A, and k, we consider x,, y,, n,, A, and k to be five independent
variables and think of equations 5.2 as two constraints that define a three-
dimensional submanifold on which the equilibria must reside. Algebraic
conditions for the occurrence of a particular kind of bifurcation provide ad-
ditional constraints, thus defining a lower-dimensional surface (or surfaces)
that characterizes the bifurcation of interest.

For a generic codimension 1 bifurcation such as the saddle node (SN)
or the Andronov-Hopf (AH) bifurcation, this procedure results in two-
dimensional surfaces embedded in the full five-dimensional space. We can
visualize these two-dimensional bifurcation sets in the three-dimensional
space defined by the network parameters 7,, A, and k. In sections 5.1 and
5.2, we examine the saddle node and the Andronov-Hopf bifurcations,
respectively. We infer (and numerically verify) that homoclinic bifurcations
are present as well. We describe in section 5.3 the transition between the
PSR and the PSS states in which a macroscopic equilibrium changes from
a node to a focus, or vice versa. We call this a node focus (NF) transition.
This transition is not typically classified as a bifurcation in the traditional
sense, since the stability of the equilibrium does not change, and additional
states are neither created nor destroyed. Nevertheless, it is desirable to
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know where in parameter space this transition occurs, since the type of
equilibrium (i.e., focus or node) can have macroscopic consequences, as
illustrated in Figure 5. Collectively, these results lead to an understanding
of the various bifurcations and transitions that occur in the attractors of the
macroscopic mean field of our network.

5.1 Saddle Node Bifurcation. The saddle node bifurcation is defined
by the condition

det[J(x,, Y. ng> A, k)] = 0, (5.3)

where J(x,, y,, 1y, A, k) is the Jacobian of the system given by equations 5.1.
Since our reduced equation is two-dimensional, all saddle node bifurca-
tions that occur in our network must necessarily involve PSR states. This
is because the creation of a pair of PSS equilibrium states requires at least
three dimensions (two corresponding to the complex-conjugate eigenval-
ues and one along the heteroclinic connection). Note also that the above
determinant condition includes the codimension 2 cusp bifurcation when
both eigenvalues of | are zero simultaneously. The combination of the three
algebraic constraints given in equations 5.2 and 5.3 allows us to solve for 7,
A, and k in terms of the remaining 2 degrees of freedom, x, and y,. We then
plot the SN bifurcation surface parametrically in (5, A, k) by considering
all possible values of (x,,y,) within the allowed state space (||z|| < 1). The
SN bifurcation surfaces obtained in this manner are displayed in Figure 7.
Panels a and b show the surfaces obtained for synaptic sharpness param-
eters n = 2 and n = 9, respectively, and panel c is a magnification of panel
a. Note that these figures extend into the unphysical region where A < 0.
This is done to help the reader visualize the shape of the surfaces, as they
are symmetric across A = 0.

The bifurcation set consists of two similar tentlike structures. The edges
of the tentlike surfaces correspond to parameter values where a codimen-
sion 2 cusp bifurcation occurs. It is notable that these tentlike structures
are predominantly (but not exclusively) located in regions where the inter-
nal excitability parameter 1, and the coupling strength k are of opposite
sign for both excitatory and inhibitory connectivity. This is the dynamically
competitive region mentioned above. Furthermore, the similarity between
the surfaces in a (for n = 2) and b (for n = 9) indicate the robustness of our
results with respect to the synaptic sharpness parameter 7.

Panel a includes two line segments—one parallel to the k axis (with n, =
—0.3, A = 0.08) and the other parallel to the 1, axis (with A = 0.5,k = —9).
Panel c is a magnification of panel a in the vicinity of the former, showing
how this line segment pierces the SN surfaces. These line segments are
keyed to Figures 8c and 1lc, discussed below, in order to clarify which



3222 T. Luke, E. Barreto, and P. So

| _/*/- -
=04 o

Figure 7: The saddle node (SN) bifurcation surfaces in the three-dimensional
parameter space (1,, A, k) for synaptic sharpness parameter (a) n =2 and
(b) n=9. To aid in visualization, the figures extend into the unphysical re-
gion where A < 0 (the surfaces are symmetric across A = 0). The rough edges
in panel a are due to numerical limitations. Panel c is a magnification of panel a.
The black line segments in panels a and ¢ represent paths in parameter space
that are keyed to Figures 8c and 11c.

macroscopic states exist and which bifurcations occur as parameters are
traversed along these lines.

Figure 8a shows a two-dimensional slice through the n = 2 tent at 1, =
—0.3. A typical fold structure with two saddle node curves meeting at
a codimension 2 cusp point is seen. Panel b shows the one-dimensional
bifurcation diagram, plotting y = Im(z) versusk, that results from following
k along the line A = 0.08 (dashed line in panel a; this is the same as the
vertical line segment in Figures 7a and 7c). This diagram shows how the
equilibrium solutions evolve as k increases from zero. Initially there is an
attracting PSS state. This changes into a PSR state at the NF transition point
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Figure 8: (a) A two-dimensional slice of the saddle node bifurcation set shown
in Figure 7a with n, fixed at —0.3. Saddle node (SN) bifurcations occur on the
solid curves, and these meet at a cusp point. (b) A one-dimensional bifurcation
diagram (y = Im(z) versus k) corresponding to the dashed line in panel a at
A = 0.08. The solid lines indicate stable PSR (node) or PSS (focus) equilibria as
labeled, the broken line is an unstable PSR equilibrium, and the open diamonds
indicate node focus (NF) transition points. The circle is the SN bifurcation cor-
responding to the right SN curve in panel a. The other SN point is so close to
an NF point that they cannot be distinguished here and are marked SN/NE.
(c) Schematic representation of the sequence of bifurcations (left) and macro-
scopic states (right) that occur as k traverses the range shown in panel b. This is
the same as the vertical line in Figures 7a and c. The shaded interval indicates
multistability.

indicated by the open diamond atk = 0.1028. As k increases further, this PSR
state gradually migrates toward higher values of y. Then a SN bifurcation
and a NF transition point occur in rapid succession at k = 0.9067 and k =
0.9075, respectively (these points are not resolvable at the resolution shown
in the figure and are therefore marked “SN/NF”). This SN bifurcation
creates new stable and unstable PSR states in a separate region of state
space (near y = —0.08), and at the NF point, the stable PSR changes into a
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Figure 9: The Andronov-Hopf (AH) bifurcation surface in the three-
dimensional parameter space (n,, A, k) for sharpness parameter (a) n = 2 and
(b) n = 9. To aid in visualization, the figures extend into the unphysical region
where A < 0 (the surfaces are symmetric across A = 0). The black line segment
in panel a is the same as the horizontal line segment that appears in Figure 7a
and represents a path in parameter space that is keyed to Figure 11c.

stable PSS state. As k increases further, this stable PSS state persists, while
the unstable PSR state migrates toward smaller values of y and collides
with the coexisting stable PSR state. These annihilate each other via the SN
bifurcation at k = 1.1237. This sequence of events is shown schematically
collapsed onto the k axis in panel ¢, so that it can be compared to the vertical
line segment in Figures 7a and 7c. The shaded region indicates an interval in
which more than one stable attractor exists. Note also that an NF transition
occurs at a negative value of k (—0.5697) that is not visible in panel b.

5.2 Andronov-Hopf Bifurcation. The Andronov-Hopf bifurcation is
defined, for our two-dimensional system, by two conditions,

tr[J(x,, ¥,. ng. A, k)]=0, and
det[/(x,,y,, ny, A, k)] >0 (5.4)

Equations 5.4 combined with equations 5.2 give three equations for five
unknowns, with the additional constraint that det[J] must be greater than
zero. Proceeding as before, we obtain two-dimensional parametric plots
of the AH bifurcation surface, shown in Figure 9. In this case, there is
qualitative similarity between the shapes for n =2 (panel a) and n =9
(panel b) cases, but there are quantitative differences in the location of the
surfaces. Note also the line segment included in panel a (with A =0.5,
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Figure 10: (a) Superimposed two-dimensional slices of both the SN (see Figure
7a) and AH (see Figure 9a) bifurcation sets at k = —9. The saddle node (SN)
curves meet at a cusp point, and a Bogdanov-Takens (BT) point (triangle) occurs
on the left SN curve. The dotted rectangular region in panel a is magnified in
panel b, showing the Andronov-Hopf (AH) and homoclinic (HC) bifurcation
curves. The HC curve was interpolated from the points indicated by the circles,
which were found numerically.

k = —9); this is the same as the horizontal line segment that appears in
Figure 7a and is keyed to Figure 11c.

The result is a tube or funnel-shaped surface that opens and flattens out
on one side. The funnel emanates from the regime of large inhibitory cou-
pling (k « 0) and less heterogeneity (A >~ 0) with 7, ~ 0 (i.e., most neurons
are very close to their SNIC bifurcations), and then opens up and flattens
out for increasing values of 7, (i.e., greater dominance of spiking neurons).
As in the case of the SN bifurcation, the surface occurs most prominently
where there is dynamic competition within the network. However, in this
case, the surface exists only where the competition is specifically between
predominantly active neurons and inhibitory network interaction (1, > 0
and k < 0).

Figure 10a shows the two-dimensional bifurcation diagram that results
from slicing through the n = 2 AH and SN surfaces at k = —9. The two SN
curves again meet at a cusp, and the AH curve intersects the left SN curve
at a codimension 2 Bogdanov-Takens (BT) point. The dotted rectangular
region shown in panel a is magnified in panel b, making it easier to see
the AH curve, as well as the homoclinic (HC) bifurcation curve that also
emerges from the BT point (Kuznetsov, 2004). We identified the latter curve
numerically.*

“Because the HC bifurcation is a global bifurcation, it cannot be specified by a set of
simple algebraic conditions.
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Figure 11: (a) A one-dimensional bifurcation diagram (x = Re(z) versus 1)
corresponding to the dashed lines in Figure 10 at A = 0.5. The solid (dashed)
curves are stable (unstable) PSR and PSS equilibria as indicated. SN denotes
a saddle node bifurcation. The solid black circles indicate the maximum and
minimum values of x for the CPW limit cycle that emerges from the supercritical
Andronov-Hopf (AH) point. The existence of this limit cycle also transitions at
the indicated homoclinic (HC) bifurcation. (b) A magnification of the region
near the node focus (NF) point, showing the other SN bifurcation. (c) Schematic
representation of the sequence of bifurcations (top) and macroscopic states
(bottom) that occur as 5, traverses the range shown in panel a; this is the
same as the horizontal lines in Figures 7a and 9a. The shaded interval indicates
multistability.

To further clarify the identity of the macroscopic network states,
Figure 11a shows the one-dimensional bifurcation diagram (in this case,
x = Re(z) versus 1) obtained by varying 5, along the line A = 0.5 (dashed
lines in Figure 10; these are the same as the horizontal lines in Figures 7a
and 9a). Here, the heavy solid lines represent stable equilibria. The lower
equilibrium branch corresponds to the PSR state, and it persists until it col-
lides with an unstable PSR state in a saddle node bifurcation. Moving along
the upper stable equilibrium with decreasing 7,, the network exhibits the
PSS state before encountering the AH bifurcation, which is supercritical.
At this point, the equilibrium loses stability, and an attracting limit cycle



Macroscopic Behavior of a Network of Theta Neurons 3227

emerges: the CPW state. The amplitude of this limit cycle subsequently in-
creases until it collides with the unstable (uUPSR) equilibrium in a homoclinic
bifurcation.

Figure 11b shows a magnification of the vicinity of the SN/NF point
in panel a, showing both the SN and NF points distinctly. This SN point
corresponds to the left SN curve in Figure 10a and in this case, leads to the
creation of two unstable PSR states.

Finally, the sequence of events in Figure 1la is shown schematically
collapsed onto the 5, axis in panel c, so that it can be compared to the
horizontal line segments shown in Figures 7a and 9a.

5.3 PSR to PSS Transition. In Figures 8 and 11, we indicated that the
stable equilibria depicted there make transitions between the PSR and PSS
states. These transitions occur when the equilibrium changes from a node
(PSR state; real eigenvalues) to a focus (PSS state; complex eigenvalues),
or vice versa. This change is not normally considered a bifurcation since
there is no change in stability or creation of other states. Nevertheless, it is
possible to identify surfaces in the parameter space that correspond to this
transition. We call this transition the node focus (NF) transition.

The NF transition occurs when the discriminant of the characteristic
equation of the Jacobian equals zero, thus signifying the presence of equi-
libria with real eigenvalues of multiplicity 2:

tr[J]?> — 4det[]] = 0. (5.5)

To identify the transition surface, we proceed as before by directly plotting
the two-dimensional parametric surface in the three-dimensional parameter
space (175, A, k) using the three algebraic constraints given in equations 5.2
and 5.5. The result is shown in Figure 12. As before, panels a and b show
the surfaces for n = 2 and n = 9, respectively, and panel c is a magnification
of a. The horizontal and vertical lines of Figures 7a and 9a, which are linked
to Figures 8c and 11c, are included.

Figure 12 reveals two surfaces: a lower surface with an internal pleat
somewhat like a fortune cookie and an upper folded surface like the nose
cone of an airplane. The PSS state occurs in the region in the far upper
right corner of panels a and b. Here, the network dynamics is coopera-
tive in that predominantly spiking neurons (5, > 0) interact via excitatory
synapses (k > 0), leading to an active network. In contrast, in the far lower
left corner of these figures, predominantly resting neurons (n, < 0) inter-
act cooperatively via inhibitory synapses (k < 0), and the network exhibits
the quiescent PSR state. The lower fortune cookie-like surface marks a NF
boundary between these two regions, but the SN and AH bifurcations dis-
cussed above occur nearby as well. Interestingly, however, the upper nose
cone surface encloses another region of PSR states. Within the nose cone,
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Figure 12: The node focus (NF) surface in the three-dimensional parameter
space (1, A, k) for sharpness parameter (a) n =2 and (b) n =9. To aid in vi-
sualization, the figures extend into the unphysical region where A <0 (the
surfaces are symmetric across A = 0). (c) A magnification of panel a. The black
line segments in panels a and c represent paths in parameter space that are
keyed to Figures 8c and 11c.

networks consist of predominantly resting but excitable neurons interacting
via weak excitatory synapses. In this case, the resting states of most neu-
rons are relatively far from their thresholds (1, <« 0), so that weak synaptic
excitation is not sufficient to cause most neurons to fire. Thus, the network
exhibits the PSR state.

It is important to note that the NF transition applies to both stable and
unstable equilibria. In the one-dimensional bifurcation diagram of Figure 8b
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(with A = 0.08, n, = —0.3), the network transverses through both the lower
and upper parts of the nose cone as k increases from 0 to 2.5. The intersection
with the lower, fortune cookie-like surface occurs for a negative value of k,
as indicated in Figure 8c. All these NF transitions involve stable equilibria.

In contrast, the PSR-PSS transition in Figure 11, visible in panel b, in-
volves an unstable equilibrium. This transition corresponds to traversing
the fortune cookie-like surface along the horizontal line shown in Figure
12c (at A = 0.5and k = —9; same as the horizontal lines in Figures 8 and 11).
The NF transition occurs as the repeller (unstable PSR) that was created at
the nearby saddle node bifurcation (at n, = 5.668) changes into an unstable
focus (unstable PSS) at 5, = 5.706. Although these unstable PSR and PSS
states are unobservable in the full network, the stabilization of the PSS state
through the AH bifurcation at , = 10.907 requires the preexistence of this
unstable PSS state.

6 Summary and Discussion

Using the well-known theta neuron model, we constructed a heteroge-
neous network containing a mixture of at-rest but excitable neurons as well
as spontaneously spiking neurons. These were globally coupled together
through pulselike synaptic interactions whose shape depends on a sharp-
ness parameter 1. We applied a recently developed reduction technique
to derive a low-dimensional dynamical equation that completely describes
the asymptotic behavior of the network’s mean field in the thermodynamic
limit of large network size. By analyzing this reduced system, we identi-
fied not only all possible asymptotic states of the mean field, but also the
bifurcations that occur as three network parameters are varied. We also
showed that the predicted behavior derived in this way is exhibited by
finite networks of 10, 000 neurons.

Of course, real neurons are not theta neurons. We caution that real type
I neurons can be expected to be well approximated by theta neurons only
near the onset of spiking. Future work will examine the extent to which our
results carry over to networks of more realistic type I neurons. Neverthe-
less, the theta neuron model does capture important aspects of the generic
behavior of type I neurons, including pyramidal neurons. These make up
the majority of neurons in the mammalian brain (e.g., approximately 80%
in the hippocampus and 70% in the cortex, across many species; Feldman,
1984; Chen & Dzakpasu, 2010). Also, real neuronal networks are clearly
not globally coupled. But since our analysis focuses on the dynamics of the
macroscopic mean field variable defined in equation 3.3, our results are best
interpreted as providing an idealized mesoscopic description of neuronal
dynamics (i.e., describing the behavior of a region of brain tissue that is
small but nevertheless contains many neurons and many connections). No-
table strengths of our network structure are that it includes heterogeneity
in the internal dynamics of the individual neurons (i.e., both resting and
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spiking neurons) and that the coupling is via pulselike synapses of tun-
able sharpness that approximate real IPSPs without being delta functions.
It is also important to note that our approach provides exact results for the
asymptotic mean field behavior, although only in the limit of large system
size. Nevertheless, we showed that the features and dynamics we derived
are in fact exhibited by reasonably sized finite network instantiations.

We found that the asymptotic mean field of our network exhibits only
three possible states: two corresponding to equilibrium solutions, the PSR
and PSS states, and one limit cycle solution, the CPW state. The most ob-
vious solution is perhaps the PSR state, in which the network consists
of predominantly resting neurons that inhibit each other. In the most ex-
treme case, the neurons form a single stationary cluster, and the mean field
assumes a constant value. However, PSR and PSS states can also be real-
ized such that all or a significant portion of the neuronal population spike
regularly. Despite this spiking activity, the mean field for such partially syn-
chronized states remains constant. These states are similar to asynchonous
states that have been described by others (e.g., Abbott & van Vreeswijk,
1993; Hansel & Mato, 2001, 2003). For example, Abbott and van Vreeswijk
(1993) defined the asynchronous state by the requirement that the total in-
put into one neuron from all the others be constant, and they argued that
the existence of these states justifies the use of firing rate models.

We have also described the subtle difference between the PSR and PSS
states—that the former is a node and the latter is a focus. The consequences
of this distinction can be observed in Figure 5, where it is shown that the
mean field responses to perturbations are markedly different. When a PSR
state is perturbed, the mean field relaxes to the equilibrium directly. In
contrast, when a PSS state is perturbed, the mean field displays decaying
oscillations. In this latter case, as the equilibrium microscopic configura-
tion is approached, the neurons alternate between bouts of scattering and
clumping, or desynchronization and resynchronization, in a manner such
that each bout is less severe than the preceding one.

Similar microscopic dynamics underlie the CPW state, except that for
the CPW state, the alternation between the de- and resynchronizing bouts
persists indefinitely. Consequently, the asymptotic mean field approaches a
limit cycle. This state is related to, but is more general than, the synchronous
state described by Wang and Buzsaki (1996). The latter synchronous state
occurs for homogeneous (or very weakly heterogeneous) networks when
the phases of most neurons lock, as in the partially synchronous state
shown in their Figure 5C. In this state, almost all neurons fire together.
Thus, the order parameter of such a network exhibits a CPW state with
a constant order parameter magnitude very close to one and a frequency
of oscillation identical to that of an individual neuron. In contrast, the
CPW states that we describe in this letter are more general in that typi-
cally, the neurons do not phase-lock. Instead, they form clusters of periodi-
cally varying coherence, as is quantified by the oscillating order parameter
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magnitude. The animation provided in the online supplement makes this
point clear. It is important to note that the frequency of oscillation exhibited
by the mean field while on a CPW limit cycle is an emergent property of the
network as a whole. This frequency is therefore not related to the frequen-
cies of the individual neurons in a simple manner. Indeed, in parameter
space regions near the Bogdanov-Takens bifurcation, the CPW frequency
can be very small. Such low-frequency rhythms have been reported in EEG
(Avella Gonzalez et al., 2012), and slow population activities have been ob-
served in hippocampal slice studies (Ho, Striiber, Bartos, Zhang, & Skinner,
2012).

These findings have implications for the interpretation of experimental
measurements of network dynamics. For example, raster diagrams are often
used to identify the presence or absence of synchrony. Our results suggest
that such diagrams may not be sufficient to differentiate between the three
macroscopic states that we have identified here.

The reduced equation, equation 3.13, also gives us the ability to fully
analyze the relevant transitions among these macroscopic states using the
degree of excitability, heterogeneity, and coupling strength (both excitatory
and inhibitory) as bifurcation parameters. The results for two generic codi-
mension 1 bifurcations, the saddle node and Andronov-Hopf bifurcations,
were summarized visually as two-dimensional surfaces in Figures 7 and
9, respectively. We also examined the node focus transition similarly (see
Figure 12). These results are exact only in the limit of large system size.
In finite network realizations, fluctuations can build up when the network
is near a bifurcation. Hence, the occurrence of these bifurcations can be
expected to be blurred somewhat in the parameter space. Nevertheless,
we found that the bifurcations we describe here can be reliably identified
in networks of 10,000 theta neurons. In this letter, we did not investigate
smaller networks.

By examining these bifurcation surfaces, we found that the dynamical
interplay between the internal neuronal dynamics, as parameterized by 7,,
and the interneuronal coupling, parameterized by k, appears to play an
important role in determining the complexity of the possible macroscopic
mean field dynamics of the network. In particular, when the network is
preferentially cooperative, such that 7, and k are of the same sign, the
network tends to settle into one of the macroscopic equilibrium states. In
contrast, when 7, and k are of opposite sign, richer dynamics are seen,
including the CPW state, bifurcations of the macroscopic mean field, and
multistability.

Finally, we note that the results we reported were for two specific values
of the sharpness parameter: n = 2 and n = 9. Further analysis of the effect
of increasing this parameter shows no qualitative change in our results.
Specifically, we found no changes to the three classes of macroscopic states
and no significant qualitative changes to the bifurcation surfaces for values
of n up to n = 15. While we suspect that there may be important differences
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that arise as n — oo, we note that low values of the sharpness parameter
are actually better approximations of real postsynaptic potentials.

Our results provide general predictions for the macroscopic dynamics
of an idealized large network of type I neurons. In a related study (So et al.,
2013), a similar but nonautonomous theta neuron network in which n, was
made to oscillate in time was investigated. Varying this parameter such that
the SNIC bifurcation is repeatedly traversed is a common method of mod-
eling bursting neurons, specifically parabolic bursters. That letter builds on
the results reported here and shows that more complicated behavior, in-
cluding macroscopic quasiperiodicity, chaos, multistability, and final-state
uncertainty, can occur in the nonautonomous case.

Future work will extend our results to include separate and different
interacting populations of neurons, including type II neurons, in order to
model the excitatory and inhibitory and layered structure of the brain’s
neuronal networks.
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