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Complete Complementary Codes and Generalized Reed-Muller Codes

Chao-Yu Chen, Chung-Hsuan Wang, and Chi-chao Chao

Abstract—Due to ideal autocorrelation and cross-correlation
properties, complete complementary codes (CCCs) can be em-
ployed in CDMA systems to eliminate the multiple-access inter-
ference. In this letter, we propose a direct general construction
of CCCs from cosets of the first-order Reed-Muller codes, which
includes previous results as a special case. The larger number
of CCCs constructed by our method can provide advantages in
applications to cellular CDMA systems.

Index Terms—Complete complementary codes, Golay comple-
mentary sets, Reed-Muller codes, CDMA.

I. INTRODUCTION

THE concept of complementary pairs was first proposed

by Golay [1], and then it was extended to Golay comple-

mentary sets (GCSs) in [2], where the aperiodic autocorrela-

tions of all the sequences in a GCS are summed to zero except

at zero shift. Later in [3] the complete complementary codes

(CCCs) were proposed, which can be regarded as a collec-

tion of GCSs with the additional aperiodic cross-correlation

property. Since CCCs have these autocorrelation and cross-

correlation properties, they can be applied to multicarrier

CDMA (MC-CDMA) systems to eliminate the multiple-access

interference (MAI) [4], [5]. Other possibilities include appli-

cations to radar systems and cellular OFDM systems.

A connection between complementary sequences and Reed-

Muller (RM) codes was first proposed in [6]. Then the rela-

tionship was extended to GCSs in [7]–[9]. While a recursive

construction of CCCs was provided in [10], both in [11] and

this letter connections of CCCs and cosets of the first-order

RM codes are proposed. However, only second-order cosets

are considered in [11]; in addition, every CCC constructed in

[11] contains only two distinct GCSs regardless of the order

of the CCC and the other GCSs are obtained by reordering the

sequences in the two distinct sets. In this letter, we provide a

general relationship between CCCs and all the cosets of the

first-order RM codes and can also construct CCCs consisting

of all distinct GCSs. Furthermore, the construction of CCCs

from second-order cosets of the first-order RM codes proposed

in [11] can be regarded as a special case of our general

construction. Therefore, our result can construct much more

CCCs than those in [11], which can provide advantages in

applications to cellular CDMA systems.
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II. COMPLETE COMPLEMENTARY CODES

Let c = (c0, c1, . . . , cn−1) and d = (d0, d1, . . . , dn−1) be

Zq-valued sequences of length n, where ci and di are in the

ring Zq = {0, 1, . . . , q − 1}. In this letter, we consider the

ring Zq for even q. The aperiodic cross-correlation function

ρ(c, d; u) of c and d at displacement u is defined as

ρ(c, d; u) =

{∑n−1−u
k=0 ξck+u−dk , 0 ≤ u ≤ n − 1

∑n−1+u
k=0 ξck−dk−u , −n + 1 ≤ u < 0

where ξ = e2πj/q is a primitive complex qth root of unity. We

also define the aperiodic autocorrelation function ρ(c; u) of a

sequence c at displacement u to be ρ(c; u) = ρ(c, c; u).
Definition 1: [2] A set of N sequences c0, c1, . . . , cN−1

of length n is called a GCS of order N if the autocorrelation

functions satisfy

ρ(c0; u) + ρ(c1; u) + · · · + ρ(cN−1; u) =

{

0, u �= 0

Nn, u = 0.

Definition 2: [3] The N sets of N length-n sequences

{c0
0, c

0
1, . . . , c

0
N−1}, . . . , {cN−1

0 , cN−1
1 , . . . , cN−1

N−1} are called

a CCC of order N if every set is a GCS and every two distinct

GCSs satisfy the additional ideal cross-correlation property

N−1∑

k=0

ρ(ci
k, cj

k; u) = 0, for any u; i, j = 0, . . . , N − 1; i �= j.

One application of CCCs to MC-CDMA systems is to assign

different GCSs in the same CCC to different users and send

the composing sequences in a GCS on different carriers [5].

The receiver then correlates the signals on different carriers

by respective sequences in the GCS, and hence ideal cross-

correlations between different GCSs can eliminate the MAI.

III. CCCS FROM RM CODES

Let the rth-order RM code of length 2m over Z2 be

represented by RM(r, m) and denote the 2m-tuple vectors by

vi = (00 · · ·0
︸ ︷︷ ︸

2i−1

11 · · ·1
︸ ︷︷ ︸

2i−1

00 · · ·0
︸ ︷︷ ︸

2i−1

· · · 11 · · · 1
︸ ︷︷ ︸

2i−1

), i = 1, 2, . . . , m

and v0 = (11 · · · 1) which is the all-one vector. Note that vi

defined above has the property that the jth bit of vi is equal

to ji, where (j1, j2, . . . , jm) is the binary representation of j
with j1 the least significant bit. RM(r, m) is a binary linear

code generated by the generator matrix [12] GRM(r, m) =
[vT

0 , vT
1 , vT

2 , . . . ,vT
m, (v1v2)

T , . . . , (vm−1vm)T , . . . , up to

products of degree r]T , where the product of vectors corre-

sponds to the component-wise product. The generalized rth-

order RM code [7] of length 2m, denoted by RMq(r, m),
is defined as the linear code over Zq generated by the

1089-7798/08$25.00 c© 2008 IEEE
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same generator matrix as that of the binary RM code. It is

straightforward to obtain that any codeword in RMq(r, m)
can be uniquely expressed as a linear combination of rows of

GRM(r, m) over Zq with operations modulo q. The following

theorem provides a direct general construction of CCCs from

cosets of the first-order RM codes, where Nm = {1, 2, . . . , m}
and v0

i = v0, v1
i = vi for vi defined above.

Theorem 1: For any even integer q, any positive integer

m, and any positive integer k ≤ m, let nonempty sets

I1, I2, . . . , Ik be a partition of Nm, mα = |Iα|, and πα be

a bijection from Nmα
to Iα for α = 1, 2, . . . , k. Also let

Q =
q

2

k∑

α=1

mα−1∑

β=1

vπα(β)vπα(β+1)

+

k∑

α=2

mα∑

β=1

2α−1
−1∑

τ=0

λα,β,τvπα(β)

α−1∏

γ=1

v
τγ

πγ(mγ) (1)

where λα,β,τ ∈ Zq and (τ1, τ2, . . . , τα−1) is the binary

representation of τ . For any codeword c ∈ Q + RMq(1, m)

and for p, n = 0, 1, . . . , 2k − 1, if we let

cp
n = c +

q

2

k∑

α=1

nαvπα(1) +
q

2

k∑

α=1

pαvπα(mα)

where (n1, n2, · · · , nk) and (p1, p2, · · · , pk) are the binary

representations of n and p, respectively, and let Gp =
{cp

0, c
p
1, . . . , c

p
2k−1

}, then G0, G1, . . . , G2k
−1 form a CCC of

order 2k and length 2m.

Proof: In the first part, since ρ(d; u) = ρ∗(d;−u) for

any sequence d, to demonstrate that every Gp is a GCS of

order 2k for p = 0, 1, . . . , 2k − 1, we have to show that for

u > 0,

∑

d∈Gp

2m
−1−u∑

i=0

ξdi+u−di =

2m
−1−u∑

i=0

∑

d∈Gp

ξdi+u−di = 0.

For any integer i, let j = i + u; also let (i1, i2, . . . , im)
and (j1, j2, . . . , jm) be the binary representations of i and j,
respectively.

Case 1: If iπα(1) �= jπα(1) for some α ∈ {1, 2, . . . , k},
then for any sequence d ∈ Gp, there exists d′ =
(d′0, d

′

1, . . . , d
′

2m−1) = d + (q/2)vπα(1) ∈ Gp such that

dj − di − d′j + d′i =
q

2

(
iπα(1) − jπα(1)

)
≡

q

2
(mod q).

So we have ξdj−di/ξd′

j−d′

i = ξq/2 = −1 which implies

ξdj−di + ξd′

j−d′

i = 0. Hence, we have

∑

d∈Gp

ξdi+u−di = 0.

Case 2: In this case, we have iπα(1) = jπα(1) for all α =
1, 2, . . . , k. Suppose that iπα(β) = jπα(β) for α = 1, 2, . . . , α̂−

1, β = 1, 2, . . . , mα and β̂ is the smallest integer such that

iπα̂(β̂) �= jπα̂(β̂). Let i′ and j′ be integers that are different

from i and j in only one position πα̂(β̂ − 1), i.e., i′
πα̂(β̂−1)

=

1 − iπα̂(β̂−1) and j′
πα̂(β̂−1)

= 1 − jπα̂(β̂−1), respectively, and

so j′ = i′ + u. For any sequence d ∈ Gp, d can be expressed

as d = Q+
∑m

l=0 glvl where gl ∈ Zq , and then we can obtain

di′ − di =
q

2

(

iπα̂(β̂−2)i
′

πα̂(β̂−1) − iπα̂(β̂−2)iπα̂(β̂−1)

+i′πα̂(β̂−1)iπα̂(β̂) − iπα̂(β̂−1)iπα̂(β̂)

)

+

2α̂−1
−1∑

τ=0

λα̂,β̂−1,τ i′πα̂(β̂−1)

α̂−1∏

γ=1

i
τγ

πγ(mγ)

−
2α̂−1

−1∑

τ=0

λα̂,β̂−1,τ iπα̂(β̂−1)

α̂−1∏

γ=1

i
τγ

πγ(mγ)

+ gπα̂(β̂−1)i
′

πα̂(β̂−1) − gπα̂(β̂−1)iπα̂(β̂−1)

≡
q

2

(

iπα̂(β̂−2) + iπα̂(β̂)

)

+ gπα̂(β̂−1)(1 − 2iπα̂(β̂−1))

+

2α̂−1
−1∑

τ=0

λα̂,β̂−1,τ

(

1 − 2iπα̂(β̂−1)

) α̂−1∏

γ=1

i
τγ

πγ(mγ) (mod q)

where the first equality follows from (1) and the condition that

i and i′ differ in only one position πα̂(β̂ − 1). Note that we

assume β̂ ≥ 3 here. For the case β̂ = 2, we can just remove

those terms involving β̂ − 2 in the preceding equation. Since

iπα̂(β̂−2) = jπα̂(β̂−2), iπα̂(β̂−1) = jπα̂(β̂−1), and iπγ(mγ) =
jπγ(mγ) for γ = 1, 2, . . . , α̂ − 1, we have

dj − di − dj′ + di′ ≡
q

2

(

iπα̂(β̂) − jπα̂(β̂)

)

≡
q

2
(mod q)

which implies ξdj−di + ξdj′−di′ = 0. Hence, we have

∑

d∈Gp

ξdi+u−di + ξdi′+u−di′ = 0.

Combining these two cases, we can obtain that Gp is a GCS

for all p = 0, 1, . . . , 2k − 1.

Then, in the second part, we will show that any two distinct

sets Gs and Gt where 0 ≤ s �= t ≤ 2k − 1 satisfy the ideal

cross-correlation property. For u > 0, we have to show

2k
−1∑

n=0

2m
−1−u∑

i=0

ξcs
n,i+u−ct

n,i =

2m
−1−u∑

i=0

2k
−1∑

n=0

ξcs
n,i+u−ct

n,i = 0

(2)

where we denote cp
n = (cp

n,0, c
p
n,1, . . . , c

p
n,2m−1) for p = s, t

and n = 0, 1, . . . , 2k − 1. Similarly, for any integer i, let

j = i + u.

Case 1: If iπα(1) �= jπα(1) for some α ∈ {1, 2, . . . , k},
then for sequences cp

n = (cp
n,0, c

p
n,1, . . . , c

p
n,2m−1) ∈ Gp, p =

s, t, there exist sequences c
p
n′ = (cp

n′,0, c
p
n′,1, . . . , c

p
n′,2m−1) =

cp
n + (q/2)vπα(1) ∈ Gp such that cs

n,j − ct
n,i − cs

n′,j + ct
n′,i =

(q/2)
(
iπα(1) − jπα(1)

)
≡ q/2 (mod q). So, similar to Case

1 of the first part, we have
∑2k

−1
n=0 ξcs

n,i+u−ct
n,i = 0.

Case 2: In this case, we have iπα(1) = jπα(1) for all α =

1, 2, . . . , k. Let α̂, β̂, i′, and j′ be given as in Case 2 of the first

part. We can also obtain that cs
n,j − ct

n,i − cs
n,j′ + ct

n,i′ ≡ q/2

(mod q), and hence
∑2k

−1
n=0 ξcs

n,i+u−ct
n,i + ξcs

n,i′+u
−ct

n,i′ = 0.

From Cases 1 and 2, we can obtain that (2) holds

for u > 0. Similarly, it can also be obtained that
∑2k

−1
n=0

∑2m
−1+u

i=0 ξcs
n,i−ct

n,i−u = 0 for u < 0. Now, it remains
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TABLE I
COMPARISON OF ∆(k, m) AND ∆New(k, m) FOR m = 4

k 1 2 3 4

Orders of CCCs (2k) 2 4 8 16
∆(k, 4) 12 49 63 64

∆new(k, 4) 12 52 479 2048

to show that

2k
−1∑

n=0

ρ
(
cs

n, ct
n; 0

)
=

2k
−1∑

n=0

2m
−1∑

i=0

ξcs
n,i−ct

n,i = 0.

For any nonnegative integer n < 2k, we have cs
n − ct

n ≡
(q/2)d (mod q) where d = (s1 ⊕ t1)vπ1(m1) ⊕ (s2 ⊕
t2)vπ2(m2) ⊕ · · · ⊕ (sk ⊕ tk)vπk(mk) and ⊕ denotes mod-2

addition; (s1, s2, . . . , sk) and (t1, t2, . . . , tk) are the binary

representations of s and t, respectively. It can be easily

obtained that the Hamming weight of d is 2m−1. Hence,

for i = 0, 1, . . . , 2m − 1, there are 2m−1 pairs (cs
n,i, c

t
n,i)

such that ξcs
n,i−ct

n,i = ξq/2 = −1 and 2m−1 pairs (cs
n,i, c

t
n,i)

such that ξcs
n,i−ct

n,i = ξ0 = 1. So we have ρ (cs
n, ct

n; 0) =
∑2m

−1
i=0 ξcs

n,i−ct
n,i = 0, which completes the proof.

Example 1: For q = 2, m = 6, and k = 3, we let I1 =
{1, 2}, I2 = {3, 4}, I3 = {5, 6}, π1(1) = 1, π1(2) = 2,

π2(1) = 3, π2(2) = 4, π3(1) = 5, and π3(2) = 6. If we denote

Q =
∑3

α=1

∑1
β=1 vπα(β)vπα(β+1) + vπ3(2)

∏2
γ=1 vπγ(2) =

v1v2 + v3v4 + v5v6 + v6v2v4, then for any codeword c in

this third-order coset Q + RM(1, 6), we have that the sets

Cp = {c + p1v2 + p2v4 + p3v6 + n1v1 + n2v3 + n3v5 :
ni ∈ Z2} for p = 0, 1, . . . , 7, where (p1, p2, p3) is the binary

representation of p, form a CCC of order 8 and length 64.

Note that these 8 GCSs are all distinct.

From Theorem 1, we know that every sequence in the coset

Q+RMq(1, m) lies in a CCC and hence the coset consists of

several CCCs. If mα ≥ 2 for all α = 1, 2, . . . , k, then it can

be found that our constructed CCCs of order 2k comprises 2k

all distinct GCSs while the CCCs constructed in [11] contains

only two distinct GCSs, regardless of the order 2k, and the

other GCSs are obtained by reordering the sequences in the

two distinct GCSs. The coset representatives Q given in (1)

can cover all the cosets of RMq(1, m) while only the second-

order cosets are considered in [11]. Furthermore, if we set

mα = 1 for α = 1, 2, . . . , k − 1 in Theorem 1 and the

coset representatives Q given in (1) are restricted to second-

orders, then the coset representatives Q can be reduced to

those proposed in [11].

We denote the numbers of cosets of RM(1, m) which

consists of CCCs of order 2k and can be derived by the

construction in [11] and our construction by ∆(k, m) and

∆new(k, m), respectively. As an example shown in Table I,

it can be found that ∆new(k, m) is much larger than ∆(k, m)
when k increases since our construction can contain high-

order cosets of RM(1, m) while only second-order cosets are

considered in [11].

Note that when CCCs are applied to cellular CDMA sys-

tems, MAI can be eliminated within a cell since each user

within a cell is assigned a different GCS in the same CCC [5].

Hence in order to serve a large number of users within a cell, a

CCC of a large order is desired. Furthermore, different CCCs

should be employed for adjacent cells, and hence it is required

that GCSs assigned in adjacent cells should have low cross-

correlations to achieve low adjacent-cell interference. Since

we can construct much more CCCs than those in [11], we

can have more candidates of CCCs for use in adjacent cells

to obtain low cross-correlations. For example, for order 8 and

length 16, from our construction we can find two binary CCCs

of which the largest sum of mutual cross-correlations of two

different GCSs in the two CCCs over all shifts is 32, of which

the largest possible value could be 8 ·162 = 2048 for any two

sets of order 8 and length 16, while that of CCCs constructed

in [11] is 64.

IV. CONCLUDING REMARK

In this letter, we provide a general connection between

CCCs and cosets of first-order RM codes, which includes

the results in [11] as a special case. Besides applications to

cellular CDMA systems, due to ideal autocorrelation/cross-

correlation properties and low peak-to-average power ratios

[6]–[9], one possible further application of CCCs could be

to replace pseudo-noise sequences as preamble sequences in

cellular OFDM systems [13].
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