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analysis tools for study the anomalous diffusion phenomena in the Langevin equation framework.
For example, a simple computer test for testing the origins of self-similarity is implemented for four
real empirical time series recorded from different physical systems: an ionic current flow through a
single channel in a biological membrane, an energy of solar flares, a seismic electric signal recorded
during seismic Earth activity, and FX rate daily returns.
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I. INTRODUCTION

The importance of Lévy stable distributions or pro-
cesses in physics and related areas has long been known
[1–7]. They are also increasingly important in many other
fields of application. Consequently, a general trend nowa-
days is to put Lévy stable type anomalous diffusion on
a similar footing with Brownian diffusion [8–18]. How-
ever, in what concerns our understanding of a structure
of their self-similarity, the situation is vastly different for
the two types of models.

At the level of the Langevin equation the Lévy mo-
tion is a generalization of the Brownian one which de-
scribes the motion of small macroscopic particles in a
liquid (or a gas) experiencing unbalanced bombardments
due to surrounding atoms. The Brownian motion mim-
ics the influence of the ”bath” of surrounding molecules
in terms of a mean-field, time-dependent stochastic force
which is commonly assumed to be white Gaussian noise.
That postulate is compatible with the assumption of a
short correlation time of fluctuations (much shorter than
the time-scale of the macroscopic motion) and the as-
sumption of weak interactions with the bath. In con-
trast, the Lévy motions describe results of strong colli-
sions between the test particle and the surrounding envi-
ronment, and hence, lead to models of the bath that go
beyond the standard ”close-to-equilibrium” Gaussian de-
scription. The already observed unusual statistical prop-
erties of systems driven by them serve as a challenge
for generalizations of thermostatics trying to explain the
non-Gibbsian phenomena [2, 4, 5].

The notion of self-similarity, originally coined by Man-
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delbrot, has been introduced in 1962 by Lamperti [19].
Historically oldest approach to self-similarity has been
proposed by Kolmogorov in 1940, who introduced frac-
tional Brownian motion, which is a Gaussian self-similar
process with stationary increments. For the details see
Mandelbrot and Van Ness [20] and references therein.
The study of non-Gaussian self-similar processes with
stationary increments was initiated by Taqqu [21]. He
addressed the question what type of limiting distribu-
tions is expected to appear if the stationary sequence
has a stronger dependence violating the validity of cen-
tral limit theorem, and further developed a non-Gaussian
limit theorem originated by Rosenblatt. On the other
hand, the works of Sinai and Dobrushin in the field of
statistical physics appeared independently in the same
time [22]. Since the self-similar processes such as Brown-
ian, fractional Brownian, Lévy stable and fractional Lévy
stable motion are stochastic processes that are invariant
in distribution under suitable scaling of time and space,
so these processes are closely related to the notion of
renormalization in statistical and high energy physics.

A significant difference between Gaussian and Lévy
stable distributions is that the latter have heavy tails and
their variance is infinite. This means that much larger
jumps or flights are possible for Lévy stable distributions,
which causes their variance to diverge. Since many nat-
ural processes follow Lévy stable distributions, [2, 23–
25], the necessity of modeling physical phenomena with
heavy tailed distributions is dramatically increasing in
many fields of physics. In this paper we employ ergodic
theory foundation of ubiquity of Lévy stable self-similar
processes in physics and provide a catalog of models for
anomalous diffusion [2–6]. To be more precise we de-
velop tools for study of diffusion processes described by
the following Langevin-type stochastic differential equa-



tion driven by Lévy stable noise

dXt = b(t, Xt)dt + σ(t, Xt)dZα
t , (1)

where dZα
t stands for the increments of Lévy α-stable

motion Zα
t , 0 < α ≤ 2, see [25].

Section II starts with time and scale invariance of self-
similar processes. Two basic examples: fractional Brow-
nian motion and fractional Lévy stable motion are de-
scribed there in the form of stochastic integrals. Also a
connection with long-memory or long-range dependence
is established. In Section III we provide a theoretical jus-
tification of the recently proposed BMW2 computer test
[26] introduced to detect the origins of the self-similarity
feature of a particular model. Thus it follows that the es-
timated index of self-similarity can reflect a long-memory
effect or infinite variance impact of the process. In Sec-
tion IV we discuss the integral representation of Lévy sta-
ble self-similar processes in the language of nonsingular
flows and exploit the connection with the Hopf decom-
position. This gives a natural physical interpretation of
the BRW decomposition introduced in [27]. We identify
the three components of the BRW decomposition with
mixed fractional motion, harmonizable and evanescent
processes, respectively. The first process corresponds to
a dissipative part and two others to a conservative part
of the dynamics given by the nonsingular flow represent-
ing a Lévy stable and self-similar process. A number of
special examples is discussed in details in order to demon-
strate that the proposed integral representation is user-
friendly and could provide new insights into the mech-
anism underlying a range of natural phenomena. Fi-
nally, in Section V the obtained results are applied to
determine basic features of an empirical data series. We
demonstrate this by studying four empirical time series
recorded from different physical systems: an ionic current
flow through a single channel in a biological membrane,
an energy of solar flares, a seismic electric signal recorded
during seismic Earth activity, and FX rate daily returns.

II. SELF-SIMILARITY OF FRACTIONAL LÉVY
STABLE MOTION

Over the past decade there has been much interest in
the asymptotic behavior of dynamical systems, in par-
ticular in detecting self-similar character of these sys-
tems and testing for the existence of so called ”long
memory” or ”long-range dependence”. It turns out that
the self-similar processes are very important mathemat-
ical objects which can be used to model many physical,
geophysical, hydrological, economical and biological phe-
nomena (see [16–18, 22, 28–38] and references therein).
The mathematical constructions were successfully used
to model diffusion on fractals, currency and stock mar-
ket prices, ionic current flow through a single channel in
a biological membrane, turbulences, communication and
many others. Since the self-similarity property was ob-

served in many real phenomena there is a need to build
efficient estimators of the self-similarity index [30, 31, 38].

A self-similar stochastic process is a process that is
invariant under suitable translations of time and scale.
We mention that the self-similarity is described by a
real positive parameter H > 0 called self-similarity index
which provides information on the investigated time se-
ries structure, correlations and fractal properties. For ex-
ample, the Brownian motion is self-similar with H = 1/2;
it has no memory and its increments have finite variance.

It is well-known that if a process has purely random
increments with infinite variance then the process can
be self-similar with index of self-similarity different from
1/2. An example of H = 1/α self-similar process is
the Lévy stable motion with stationary and indepen-
dent, identically distributed increments with symmetric
α-stable distribution [25, 37]. When one applies to that
process the R/S analysis, the obtained Hurst exponent
equals 1/2 since the estimator shows a lack of memory
[26]. Thus the second origin of the self-similarity is the
process’ increments distribution what is, to our knowl-
edge, neglected by many authors. There is another ex-
ample of even more complicated process — the fractional
Lévy stable motion [25, 37] which has the memory prop-
erty and increments with infinite variance. In this case
the self-similarity index carries information on both, on
long-memory and increments distribution. Hence study-
ing the process’ self-similarity one needs to have robust
statistical tools and clear algorithms to extract informa-
tion on both of the factors. A simple hint is as follows:
if one wants to investigate the self-similarity property,
one needs to distinguish between the long-memory prop-
erty and the process’ increments distribution properties.
Otherwise a wrong conclusion can be drawn. In [26] we
provided an explicit algorithm distinguishing between the
origins of the self-similarity in the case of a given time se-
ries on the base of a simple simulation experiment (com-
puter test).

A. Self-similar processes

As we mentioned above, the self-similar processes are
the ones that are invariant under suitable translations of
time and scale. They are important in probability theory
because of their connection to limit theorems and they
are of great interest in modeling heavy-tailed and long-
memory phenomena. In fact, Lamperti used the term
”semi-stable” in order to underline that the role of self-
similar processes among stochastic processes is analogous
to the role of stable distributions among all distributions.

A process {X(t)}t≥0 is called self-similar [19] if for
some H > 0,

X(at) d= aHX(t) for every a > 0, (2)

where d= denotes equality of all finite-dimensional distri-
butions of the processes on the left and right. The process



X(t) is also called an H-self-similar process and the pa-
rameter H is called the self-similarity index or exponent.
If we interpret t as ”time” and X(t) as ”space” then (2)
tells us that every change of time scale a > 0 corresponds
to a change of space scale aH . The bigger H , the more
dramatic is the change of the space co-ordinate.

Notice that (2), indeed, means a ”scale-invariance” of
the finite-dimensional distributions of X(t). This prop-
erty of a self-similar process does not imply the same for
the sample paths. Therefore, pictures trying to explain
self-similarity by some zooming in or out on one sample
path, are by definition misleading. Why? In contrast
to the deterministic self-similarity, the self-similarity of
stochastic processes does not mean that the same pic-
ture repeats itself exactly as we go closer. It is rather the
general impression that remains the same! A convenient
mathematical tool to observe self-similarity is provided
by so-called quantile lines [25].

Many of the interesting self-similar processes have sta-
tionary increments. A process {X(t)}t≥0 is said to have
stationary increments if for any b > 0,

(X(t + b) − X(b)) d= (X(t) − X(0)) . (3)

B. Fractional Brownian motion

The fractional Brownian motion (fBm) {BH(t)}t≥0 has
the integral representation

BH(t) =
∫ ∞

−∞

(
(t − u)H− 1

2
+ − (−u)H− 1

2
+

)
dB(u), (4)

where x+ = max(x, 0) and B(u) is a Brownian motion
(Bm). It is H-self-similar with stationary increments and
it is the only Gaussian process with such properties for
0 < H < 1 [37]. The classic Brownian motion B(t), used
by Einstein and Smoluchowski, is simply a special case
of the fractional Brownian motion when H = 1/2.

In modeling of long-memory phenomena, the station-
ary increments of H-self-similar processes are of spe-
cial interest since any H-self-similar process with sta-
tionary increments {X(t)}t∈R

induces a stationary se-
quence {Yj}j∈Z

, where Yj = X(j + 1) − X(j); j =
. . . ,−1, 0, 1, . . .. The sequence Yj corresponding to the
fractional Brownian motion is called fractional Gaussian
noise (fGn) [26]. It is called a standard fractional Gaus-
sian noise if VarYj = 1 for every j ∈ Z.

The fractional Gaussian noise has some remarkable
properties. If H = 1/2, then its autocovariance function
r(k) = R(0, k) = 0 for k �= 0 and hence it is the sequence
of independent identically distributed (i.i.d.) Gaussian
random variables. The situation is quite different when
H �= 1/2, namely the Yj ’s are dependent and the time
series has the autocovariance function of the form

r(k) ∼ VarY1 H(2H − 1)k2H−2, as k → ∞. (5)

The autocovariance function r(k) tends to 0 as k → ∞ for
all 0 < H < 1, but when 1/2 < H < 1 it tends to zero so

slowly that the sum
∑∞

k=−∞ r(k) diverges. We say that
in this case the increment process exhibits long-memory
or ”long-range dependence” [30]. Moreover, formula (5)
by the Wiener Tauberian theorem (see [39] Chapt. V.2)
implies that the spectral density h(λ) of the stationary
process fGn has a pole at zero. A phenomenon often
referred to as ”1/f noise”.

If 0 < H < 1/2, then
∑∞

k=−∞ r(k) = 0 and the spec-
tral density tends to zero as |λ| → 0. We say in that
case that the sequence displays a short-memory. Fur-
thermore, as the coefficient H(2H − 1) is negative, the
r(j)’s are negative for all large j, a behaviour referred to
as ”negative dependence”.

C. Fractional Lévy stable motion

The most commonly used extension of the fractional
Brownian motion to the α-stable case is the frac-
tional Lévy stable motion (fLsm) [40–42]. The process{
ZH

α (t)
}

t∈R
is defined by the following integral represen-

tation

ZH
α (t) =

∫ ∞

−∞

(
(t − u)H− 1

α
+ − (−u)H− 1

α
+

)
dZα(u), (6)

where Zα(u) is a symmetric Lévy α-stable motion
(Lsm) [25, 37]. The integral is well defined for 0 < H < 1
and 0 < α ≤ 2 as a weighted average of the Lévy stable
motion Zα(u) over the infinite past with the weight given
by the above integral kernel denoted by ft(u).

The process ZH
α (t) is H-self-similar and has stationary

increments [40]. Let us observe that H-self-similarity fol-
lows from the above integral representation and the fact
that the kernel ft(u) is d-self-similar with d = H − 1/α,
when the integrator Zα(u) is 1/α-self-similar. This im-
plies the following important relation

H = d +
1
α

. (7)

The representation (6) of fLsm is similar to the repre-
sentation (4) of the fractional Brownian motion. There-
fore fLsm reduces to the fractional Brownian motion if
one sets α = 2. When we put H = 1/α we obtain the
Lévy α-stable motion which is an extension of the Brow-
nian motion to the α-stable case. We note, that contrary
to the Gaussian case (α = 2) the Lévy α-stable motion
(0 < α < 2) is not the only 1/α-self-similar Lévy α-
stable process with stationary increments (this is true
for 0 < α < 1 only).

The increment process corresponding to the fractional
Lévy stable process is called a fractional stable noise
(fsn). By analogy with the case α = 2, we say that fsn
has the long-range dependence when H > 1/α and the
negative dependence when H < 1/α. If H = 1/α the in-
crements of fLsm are i.i.d. symmetric α-stable variables.



The asymptotic dependence structure of the fractional
Brownian noise is studied by virtue of the autocovari-
ance function. Since in the α-stable case the second mo-
ment is infinite one has to use another measure of depen-
dence, e.g. the codifference τ(j) which equals the covari-
ance when α = 2 [37]. For most, but not all, values of α
and H , τ decreases as jαH−α for large j. This is analo-
gous to the behaviour of the autocovariance function in
the Gaussian case α = 2. Finally, we note that there is
no long-range dependence when 0 < α � 1 because H is
constrained to lie in the interval (0, 1).

For simulations of the above self-similar processes we
need specific computer generators. Two of such algo-
rithms for generation of fractional Gaussian noise(fGn)
and fractional stable noise (fsn) are described in detail in
[26] and [43].

III. TESTING OF SELF-SIMILARITY

In this section we use the absolute value (AV) method
for estimation of the self-similarity index H . The
method is based on calculating mean value from the pro-
cess realizations and studying its scaling with a sample
length [31]. A time series of length N one divides into
subseries of length m and calculates the first absolute
moment

AV (m) =
1

N/m

N/m∑
k=1

∣∣∣X(m)(k) − 〈X〉
∣∣∣ , (8)

where X(m) is an m-th subseries and 〈X〉 is the overall
series mean.

The obtained statistics scales with the window size and
the absolute value exponent A equals HAV − 1, where
HAV is the self-similarity index

AV (m) ∝ mHAV −1. (9)

Notice, that this estimator gives information on the self-
similarity index. If the variance of the time series is infi-
nite the estimator also works correctly, so it can be used
to investigate, for example, the Lévy stable motion.

To investigate memory of a studied process we apply
the estimator to an original data set obtained as a real-
ization of the process given by (6) and to the surrogate
data. Surrogate data refers to data that preserve cer-
tain linear statistic properties of the experimental time
series, without the deterministic component [44]. It is
commonly used to determine the memory of a process
by means of the local dispersion and nonlinear predic-
tion methods. The surrogate data can be obtained by
several different ways [44, 45]. In this paper we obtain it
by random shuffling of the original data positions.

According to [26] we have he following BMW2 com-
puter test.

• If the self-similarity results from the process mem-
ory only (e.g. fractional Brownian motion) then

the values of the applied estimator should change
to 1/2 for the surrogate data independently on the
initial values.

• If the self-similarity results only from the process’
increments infinite variance (e.g. Lévy stable mo-
tion) then the estimator values should be the same
for the original and surrogate data.

• The self-similarity resulting from both origins (e.g.
fractional Lévy stable motion) should be observed
as a partial change in the estimators values.

In order to justify the above test the behavior of the
estimator was investigated on simulated time series. The
calculations were performed for two cases: fractional
Lévy stable motion for α = 1.8 and the self-similarity
index H taking values {0.6, 0.7, 0.8, 0.90} (Fig. 1 depicts
sample paths of corresponding fractional stable noises for
H = 0.6 and H = 0.9) and Lévy stable motion with the
self-similarity index H taking values {0.6, 0.7, 0.8, 0.9}.
The index of stability α in the latter case ranges from
α = 10/9 to α = 5/3.

We note that in order to simulate fractional Lévy sta-
ble motion we directly applied its integral representa-
tion given by (18) for t = 1/100, 2/100, . . . , 9999/100, 100
(10000 observations). The fractional Lévy stable motion
was also considered and simulated in [43].

The AV estimator calculated for every given case of
the fractional Lévy stable motion and Lévy motion is
presented in Fig. 2. The AV estimator gives information
on both, the memory and distribution of the investigated
process. The values of the estimator should form the line
A = H−1. It is true in both studied cases, cf. circles and
dashed lines in Fig. 2. The estimator values for the sur-
rogate data obtained from fractional Lévy stable motion
and Lévy motion are markedly different. In the case of
the fractional Lévy stable motion values of the estimator
are close to 1/1.8 − 1 ∼ −0.44, cf. plus signs and dotted
line in Fig. 2. The values obtained for the Lévy stable
motion do not change after shuffling and are pretty close
to the value 1 subtracted from the self-similarity index
value H , cf. plus signs and dashed line in Fig. 2.

IV. RELATION TO THE BRW
DECOMPOSITION

In this section we exploit the connection between the-
ory of self-similar Lévy stable processes and ergodic the-
ory of nonsingular flows. We use the integral representa-
tion of an H-self-similar symmetric α-stable (SαS) pro-
cess {Xt}t>0 of the form

Xt =
∫

S

ft(u)dZα(u), t > 0, (10)

where the kernel ft(u) = tH [at(u)f(φt(u))]mt(u)1/α is
represented by means of the tools used in ergodic theory
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FIG. 1: A sample path of the fractional Lévy stable noise for (left panel) H = 0.6 and α = 1/1.8, and (right panel) H = 0.9
and α = 1/1.8.
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FIG. 2: Values of the AV exponent A = HAV − 1 for the original time series (circle) and the surrogate data (plus sign) of (left
panel) the fractional Lévy stable noise and (right panel) the Lévy stable noise.

[46]. Here {φt}t>0 is a nonsingular multiplicative flow
on the phase space (S, µ), {at}t>0 is a cocycle for this
flow taking values in {−1, 1}, mt = d(µ(φt))/dµ and f is
α-integrable with respect to µ [27].

The stochastic process Xt defined in (10) can be inter-
preted, similarly as in Section II, as a weighted average
of the Lévy stable motion Zα(t) over the infinite past
with the weight given by the kernel ft. For the exact
definition we refer the interested reader to [25, 37]. Let
us point out that the stochastic integral (10) is equiva-
lent to the diffusion without drift (i.e. b = 0) and with
diffusion coefficient (σ = ft), see (1).

The self-similarity property of the above integral with
parameter H , follows directly from 1/α-self-similarity of
the process Zα(t) and the following property of the kernel

fct(u) = cH− 1
α ft

(u

c

)
. (11)

It was demonstrated in [27] that every SαS self-similar
process {Xt}t>0 admits a unique BRW decomposition
into three independent parts

{Xt}t>0
d= {X(1)

t }t>0 + {X(2)
t }t>0 + {X(3)

t }t>0, (12)

where the first process on the right-hand side is a mixed
fractional motion (mfm), the second is harmonizable, and
the third one is an H-ss evanescent process.

The Hopf decomposition in ergodic theory of the phase
space S of the integral representation (10) into invariant
parts C and D, such that the flow φt is conservative
on C and dissipative on D, generates a decomposition
of {Xt}t>0 into two independent SαS H-ss processes
{XC

t }t>0 and {XD
t }t>0. The class {XC

t }t>0 generated
by conservative flows consists of harmonizable processes
{X(2)

t }t>0 and evanescent processes {X(3)
t }t>0. The pro-



cess {XD
t }t>0 is a mfm and one can choose a minimal

representation of {XD
t }t>0 of the form (14) below. Fur-

thermore, {XD
t }t>0 is a fractional motion (fm) if and only

if {φt}t>0 restricted to D is ergodic. This is a promising
link between the BRW decomposition of any SαS H-ss
process and the theory of dynamical systems in statisti-
cal physics. The ergodic theory of SαS stationary pro-
cesses is presented in [25]. See also [42] for the one-to-one
correspondence between SαS self-similar and stationary
processes.

The simplest H-ss SαS process is obtained from a ker-
nel of the form

ft(s) = tH− 1
α f

(s

t

)
, t, s > 0, (13)

where f is α-integrable with respect to the Lebesgue mea-
sure. A SαS process with such representation is called
the fractional motion. A superposition of independent
fm processes of type (13) is called the mixed fractional
motion and it has the form

gt(w, u) = tH− 1
α g

(
w,

u

t

)
, t > 0. (14)

We will give a few examples of fm and mfm processes.
We start from d-dimensional case.

Model 1. For f ∈ Lα(Rd), let

ft(s) = tH− d
α f

(s

t

)
, s ∈ R

d, t > 0, (15)

and M be a SαS random measure on R
d with the

Lebesgue control measure. It is easy to check that a
SαS process {Xt}t>0 with such representation is H-
ss. We will show that {Xt}t>0 is a mfm. Indeed,
let W = Sd be the unit sphere in R

d equipped with
the uniform probability measure ν and let g(w, u) =
(cdu

d−1)1/αf(uw), (w, u) ∈ Sd × (0,∞), where cd =
2πd/2/Γ(d/2) is the surface area of Sd. Using polar coor-
dinates, we get for every a1, . . . , an ∈ R, t1, . . . , tn > 0,

∫
Rd

|
∑

ajftj (s)|α ds

= cd

∫
Sd

∫ ∞

0

|
∑

ajt
H− d

α

j f

(
uw

tj

)
|αud−1 duν(dw)

=
∫

Sd

∫ ∞

0

|
∑

ajt
H− 1

α

j g

(
w,

u

tj

)
|α duν(dw), (16)

which proves the claim.
Comparing the kernel from the above example with the

general form (10) we get that S = R
d \{0}, φt(s) = t−1s,

f1(s) = f(s), and d(µ(φt))/dµ = t−d. The following
well-known H-ss processes are special cases of the above
example.

Model 2. Let 1 < α < 2 and H = 1/α. Then a
log-fractional SαS motion [48] {Xt}t>0 is defined by the
kernel

ft(s) = log |t/s − 1| (17)

(see Fig. 3, top left).
Model 3. Let 0 < H < 1, 0 < α < 2 and H �= 1/α.

Put β = H − 1/α. Then a fractional SαS motion [49]
{Xt}t>0 is defined by the kernel

ft(s) = I[s < 0][(t − s)β − (−s)β ]
+ I[0 < s < t](t − s)β , (18)

(see Fig. 3, top right), where I[·] stands for the indicator
function of the s-variable.

We remark only that the Lamperti transformation [42]
maps fm’s onto moving average processes and mfm’s onto
mixed moving averages [50]. Considering above examples
it seems that mfm’s appear more naturally than fm’s.
This is quite opposite to the relation between mixed and
the usual moving averages. It is clear that a Lévy sta-
ble process may have many integral representations with
different kernels defined on various measure spaces. How-
ever, we can identify one property, common to all such
representations, which characterizes mfm’s. Let {Xt}t>0

be a SαS H-ss process with an arbitrary representation
(10). Then X is a mfm if and only if

∫ ∞

0

t−αH−1|ft(s)|αdt < ∞ µ − a.e. (19)

Observe first that this condition is equivalent to∫ ∞
−∞ e−αHt|fet(s)|αdt < ∞ µ−a.e. By [47] and the Lam-

perti transformation this gives the result.
The class generated by conservative flows consists of

harmonizable processes and processes of a third kind
(evanescent). An H-ss SαS process {Xt}t>0 is said
to be harmonizable if its kernel satisfies the condition:
ft1t2(s)f1(s) = ft1(s)ft2(s) for t1, t2 > 0, see [27].

A stochastic process whose minimal representation
(10) contains a conservative flow without fixed points is
called evanescent. This class is not well understood at
present. The following result in [27] is useful to verify
whether or not a process is evanescent. Let {Xt}t>0

be a SαS H-ss process with an arbitrary representa-
tion (10). Then {Xt}t>0 is evanescent if and only if
µ{s ∈ S :

∫ ∞
0 t−αH−1|ft(s)|αdt < ∞} = 0 and µ{s ∈

S : ft1t2(s)f1(s) = ft1(s)ft2(s) for t1, t2 > 0} = 0.
Finally we give examples of the harmonizable and

evanescent processes.
Model 4. Let

ft(s) = tH+is exp(is) − 1
is

|s|−(H−1+ 1
α ), (20)

(see Fig. 3, bottom left). It is easy to check that stochas-
tic process with such kernel is harmonizable.

Model 5. Let

ft(s) = I[0 < s < 1]tH cos (π ‖log t + s‖) , (21)

where ‖x‖ denotes the largest integer not exceeding x
(see Fig. 3, bottom right). Then X(t) defined by the
above kernel does not have a corresponding harmonizable
nor mixed moving average component, so provides an
example of an evanescent component.
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FIG. 3: The kernel of the integral representation of (top left) a log-fractional SαS motion, (top right) a fractional SαS motion for
H − 1/α = 0.1; (bottom left) the real part of the kernel of the integral representation of the complex-valued SαS harmonizable
process for H = 0.8 and H − 1/α = 0.1, (bottom right) the kernel of the integral representation of the evanescent process.

V. EMPIRICAL EVIDENCE

The above formalism can be easily applied to deter-
mine basic features of an empirical data series. Below we
demonstrate this by studying four empirical time series
recorded from different physical systems: an ionic current
flow through a single channel in a biological membrane,
an energy of solar flares, a seismic electric signal recorded
during seismic Earth activity, and FX rate daily returns.

The ionic current was recorded from cell attached
patches of adult locust (Schistocerca gregaria) extensior
tibiae muscle fibres [32, 51, 52]. The potassium current
(see Fig. 4) through a high conductance locust potas-
sium channel (BK channel) was obtained by the patch
clamp technique with sampling frequency 10kHz and at
a voltage of 100mV. The sample presents a time series,
consisting of 250 000 points and covering, therefore, 25s
of recording. The error of measurements of ionic current
is equal to 1pA.

The solar flares energy data were recorded by UHURU

satellite. The captured energy was transmitted by X-rays
emitted during blasts on a solar surface from the 1st of
January 1997 to the 31st of August 2002 [53, 54]. The
time of the blast was recorded with an accuracy of 1min
and the relative error of the energy measurement reads
10−2. The total analyzed sample consists of moments
and energy of 13 015 flares. A part of the time series is
presented in Fig. 4.

The seismic signal is a record of an electrical field
of the Earth surface called SES (Seismic Electric Sig-
nal) [55]. The data were recorded on the 18th of April
1995 in Grevena-Kozani in Greece at the sampling fre-
quency 1Hz. The time series consists of 2 201 obser-
vations covering about 37min. The measurement error
reads 10nV/km. The data are especially interesting since
the SES activity usually precedes an earthquake [55].
The time series is presented in Fig. 4.

The USD/CHF FX rate was recorded from 1985-05-
20 to 1991-04-12 with daily resolution. The data pri-
marily comes from a set of financial data released by
Olsen & Associates for the Second International Confer-
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FIG. 4: A part of patch clamp recording of the single BK channel ionic current (top left); a part of solar flares energy time
series (top right); Seismic electric signal recorded on the 18th of April 1995 in Grevena-Kozani in Greece (bottom left); and
the USD/CHF FX rate daily changes from 1985-05-20 to 1991-04-12 (bottom right).

ence on High Frequency Data in Finance, Zürich, April
1-3, 1998. These data sets are quotations of foreign cur-
rencies and metals available from international vendors
like Reuters, Knight-Ridder and Telerate. The analyzed
time series consists of 1 480 observations and the daily
FX rate changes are presented in Fig. 4.

The procedure presented in Section III (see also [26])
was applied to the above time series. The obtained values
of the parameters are listed in Table I.

Comparing the values of the different estimators for
the original data series and for the surrogate data one
can estimate the components of the self-similarity index
corresponding to the memory of the time series (d) and
to the tails properties of the time series values distribu-
tion (α). The values of the components are presented
in Table II. Let us observe that only for the solar flares
data the self-similarity results from both origins suggest-
ing that proper model should be based on the fractional
Lévy stable motion with H ∼ 0.86 and α ∼ 1.45, see
BMW2 computer test in Section III.

It is clearly seen that the procedure provides a decom-

Data set Hurst DFA HAV

Original time series

Ionic current 0.84 ± 0.08 0.89 ± 0.07 0.88 ± 0.08

Solar flares 0.69 ± 0.05 0.68 ± 0.07 0.86 ± 0.06

SES 0.92 ± 0.06 0.94 ± 0.10 0.89 ± 0.07

FX rate 0.62 ± 0.10 0.51 ± 0.05 0.57 ± 0.08

Surrogate data

Ionic current 0.54 ± 0.05 0.50 ± 0.04 0.48 ± 0.05

Solar flares 0.52 ± 0.04 0.48 ± 0.05 0.69 ± 0.06

SES 0.56 ± 0.07 0.48 ± 0.07 0.49 ± 0.07

FX rate 0.60 ± 0.10 0.50 ± 0.05 0.54 ± 0.07

TABLE I: Values of the Hurst and DFA exponents and the
self-similarity index HAV for the original time series and the
surrogate data for the four different data sets.

position of the self-similarity index into the two compo-
nents representing memory and the tails of the process,



Data set d α Modeling process

Ionic current 0.36 ± 0.08 2.00 ± 0.22 fBm

Solar flares 0.19 ± 0.07 1.45 ± 0.14 fLsm

SES 0.43 ± 0.09 2.00 ± 0.34 fBm

FX rate 0.00 ± 0.05 1.80 ± 0.20 Lsm or Bm

TABLE II: Values of the self-similarity index components
(d, α), and the type of modeling processes for the four an-
alyzed time series.

see formula (7). Nevertheless, it is not clear how to ap-
ply the algorithm for the integral kernel (11) estimation.
The difficulty mainly arises from a lack of any additional
limitations for the class of functions to which can belong
the kernel. So, one can not reduce the problem of finding
the kernel to a parameter or parameters estimation. In-
stead, one has to deal with a non-parametric estimation
problem. However, having the d and α values one can
already correctly classify the studied time series, identify
the process Zα(t) in the integral (10) and reduce the class
of possible kernels. More studies are needed to elucidate
the recognition of the kernel.

VI. CONCLUDING REMARKS

In this paper we demonstrate that all self-similar mod-
els driven by Lévy stable noise are completely described
by formula (10) in the form of a stochastic integral with
respect to the Lévy symmetric stable motion and a de-
terministic kernel ft. The classical Hopf decomposi-
tion in ergodic theory implies decomposition (12) into
three independent components: mfm, harmonizable and
evanescent. The first component corresponds to conser-
vative dynamics, when two others to dissipative dynam-
ics. Next, we provide the five typical H-self-similar mod-
els and characterize the three possible components in the

language of their deterministic kernels ft.
On the level of observed physical time series this leads

to a challenging open problem how to see the ”shape”
of the self-similarity from the data? To be more precise,
how to determine the type of the model from the given
time series data. Details of these ideas are, however, the
subject of the current work and are beyond the scope
of this paper. If one knows how to recognize the form
of the kernel ft from the data (by a shape recognition
procedure), then from our result it follows that this time
series corresponds to a specific part of the BRW decom-
position. For instance, mfm is identified if and only if the
kernel ft satisfies condition (19).

The main findings is that always a deterministic kernel
determines the index of self-similarity H via formula (11).
This provides a catalog of all possible self-similar models
for anomalous diffusion driven by Lévy stable noise. We
also study an explicit algorithm distinguishing between
the origins of the self-similarity of a given time series on
the base of the BMW2 computer test [26]. It turns out
that it suffices to compare the behavior of AV estimator
of H for the original time series and the surrogate data.
We provide here a theoretical justification of this algo-
rithm for self-similar models using general formula (10).
This is illustrated in Section V for four sets of empirical
data recorded from different physical systems.
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