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Abstract

Background: The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and

functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity

and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome

coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed

light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the

two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with

varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant

whose plastid genome has been sequenced, these species represent a series of progression towards total

dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted

photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana.

Results: The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures

are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions

(indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid

genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a)

the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding

promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK,

from the plastid genome and (c) a significant reduction of RNA editing.

Conclusion: Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias

towards a simplification of the plastid gene expression machinery as a consequence of an increasing dependency

on the host plant. A tentative assignment of the successive events in the adaptation of the plastid genomes to

parasitism can be inferred from the current data set. This includes (1) a loss of non-coding regions in

photosynthetic Cuscuta species that has resulted in a condensation of the plastid genome, (2) the simplification of

plastid gene expression in species with largely impaired photosynthetic capacity and (3) the deletion of a significant

part of the genetic information, including the information for the photosynthetic apparatus, in non-photosynthetic

parasitic plants.
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Background
Parasitism among land plants has evolved independently
in a variety of angiosperm families. Although knowledge
of their biology is still rudimentary and limited to a rela-
tively small number of species, it has nevertheless become
apparent that a great diversity exists with respect to the
anatomical and physiological adaptation to a parasitic
lifestyle and the nutritional dependence on the host
plants [1].

The parasitic genus Cuscuta comprises a range of species
with different degrees of adaptation to the parasitic life-
style. While all species have in common that they contain
neither leaves nor roots and obtain both organic and inor-
ganic nutrients in addition to water from their host plant
through haustoria, there is some variation with respect to
the structure and function of the plastids. While in some
species thylakoids and even grana stacks are still present
and the accumulation of photosynthetic pigments has
been observed, many of the Cuscuta species contain plas-
tids with a strongly reduced thylakoid system [2]. These
species accumulate comparatively small amounts of chlo-
rophyll. The chlorophyll content and photosynthetic
activity are influenced by external factors such as nutrient
supply, light intensity and the host plant species [2,3].
However, the net CO2 fixation rate never exceeds the com-
pensation point [1,2,4] such that all Cuscuta species are
placed within the group of holoparasitic plants.

Loss of photosynthesis may directly influence the gene
content of the plastid genome in parasitic plants. While
no comprehensive effort has so far been undertaken to
identify nuclear-encoded plastid proteins in Cuscuta or
other parasitic plants, the plastid genome and its coding
capacity has been under investigation in a number of par-
asitic plants. Here, losses of genes have been reported for
several species, including Cuscuta reflexa [5-7], Conopholis
americana [8], Orobanche hederae [9] and Epifagus virgin-
iana [10]. Especially in the case of Cuscuta, where photo-
synthesis activity ranges from reduced levels to a non-
photosynthetic status [2], differential gene losses from the
plastid genome must be expected. Under the assumption
that a correlation exists between genome structure and
gene content, first hints for genomic adaptations to hol-
oparasitism were seen in hybridization studies on Cuscuta
plastid DNA, in which differences in the genome sizes cor-
relate with photosynthetic capacity [11,12].

Compared to plastid gene expression in green algae, land
plant plastids exhibit several differences. These include
the transcription mechanisms of plastid genes, intron
splicing as well as RNA editing. Contrary to algae, land
plant plastid chromosomes are transcribed by two differ-
ent RNA polymerases. Beside the plastid-encoded RNA
polymerase (PEP) that is thought to be mainly responsi-

ble for the expression of the components of the photosyn-
thetic apparatus and that is present in algae as well, a
nuclear-encoded RNA polymerase (NEP) additionally acts
in land plant plastids. The main activity of the NEP seems
to be the expression of housekeeping genes [13,14].

Introns and RNA editing are common in land plant chlo-
roplasts which distinguish them further from green algal
chloroplasts. Typically, one group I intron and about 20
group II introns are present in the plastid genome of pho-
tosynthetic land plants [15]. Chloroplast RNA editing of
land plants restores conserved amino acid residues at
highly specific sites by a C-to-U conversion at the mRNA
level [16] and occurs usually at functionally relevant sites
[17-21]. The number and location of the editing sites, the
so-called editotype [22], varies between different species,
but – with the exception of Marchantia polymorpha [23] –
at least approximately 30 editing sites per plastid chromo-
some were detected in higher land plants.

Presently, complete plastid genome sequences are availa-
ble from a huge variety of different organisms [24]. How-
ever, the only one for a parasitic plant is that of the
achlorophyllous root parasite E. virginiana [10]. This
genome is presently the smallest known plastid genome
of land plants with a size of 70 kb. Despite this reduction
in size several typical features for plastid genomes were
retained, e.g. the possession of introns and the necessity of
RNA editing [25]. Others, such as the possession of a plas-
tid-encoded RNA polymerase (PEP), are absent.

In order to improve knowledge about the capacities of
parasitic plants, we sequenced the plastid genomes of C.
reflexa and C. gronovii. Together with the plastid genome
of Epifagus, this has allowed a comparative analysis of the
molecular changes that mark the progression towards hol-
oparasitism and an adaptation to a parasitic lifestyle in
land plants.

Results and discussion
Size and structure of plastid chromosomes

Sequence data of entire plastid chromosomes were
obtained for C. reflexa [EMBL: AM711640] and C. gronovii
[EMBL: AM711639] and compared to two selected known
plastid genomes, that of the Solanaceae Nicotiana tabacum
[26,27] and that of Epifagus virginiana [10]. Thus, our data
set contains the plastid genome sequences of three para-
sitic plants and that of N. tabacum. The latter species was
chosen as non-parasitic reference because it belongs to the
same order as Cuscuta, Solanales, and its plastid genome
has been thoroughly analyzed which is why it has served
as reference plant previously [11,12].

In terms of overall size, the plastid chromosome of C. refl-
exa was found to contain 121,521 bp which is very close

http://www.ebi.ac.uk/cgi-bin/dbfetch?AM711640
http://www.ebi.ac.uk/cgi-bin/dbfetch?AM711639
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to the 122 kbp that were estimated based on the extent of
hybridization to tobacco [12]. In contrast, the plastid
chromosome of C. gronovii consists of only 86,744 bp
(Table 1) whereas the plastid chromosome size of E. vir-
giniana with 70,028 bp is still significantly smaller and
remains the smallest sequenced plastid genome of higher
land plants known so far [10]. N. tabacum, in comparison,
possesses a plastid chromosome consisting of 155,939 bp
(Table 1) [26,27]. As expected, the genome size reflects
the declining dependency on one of the major benefits of
plastids, photosynthesis. In comparison with E. virgin-
iana, an additional 17 kbp of plastid genome sequence
was preserved in C. gronovii. This difference is mainly
caused by genes encoding the subunits needed for the
photosynthetic apparatus, which are missing in E. virgin-
iana.

The plastid chromosomes from both Cuscuta species show
a typical organization with a large single copy region
(LSC) and a small single copy region (SSC) separated by
two inverted repeat regions (IRA and IRB) (Table 1; Fig. 1).
It should be noted that in contrast to the predicted overall
size [12], the predicted sizes of the individual regions of
C. reflexa were significantly less accurate, with the LSC and
SSC being some 21 kbp and 3.5 kbp, respectively, larger

Gene Maps of the plastid chromosomes of Cuscuta reflexa and Cuscuta gronoviiFigure 1
Gene Maps of the plastid chromosomes of Cuscuta 
reflexa and Cuscuta gronovii. Genes shown on the right 
hand side are transcribed top down and genes on the left 
hand side bottom up. The large single copy region (LSC) and 
the small single copy region (SSC) are separated by two 
inverted repeats (IRA and IRB). Asterisks indicate intron con-
taining genes. Pseudogenes are marked by Ψ. Dashed lines 
indicate the inverted regions between C. reflexa and C. 
gronovii.

Table 1: Properties of the plastid genomes of Nicotiana tabacum, 

Cuscuta reflexa, Cuscuta gronovii and Epifagus virginiana

N. tabacum C. reflexa C. gronovii E. virginiana

total [bp] 155,939 121,521 86,744 70,028

LSC [bp] 
(% of total)

86,686 
(55.6)

79,468 
(65.4)

50,973 
(58.8)

19,799 
(28.3)

SSC [bp] 
(% of total)

18,571 
(11.9)

8,571 (7.0) 7,063 (8.1) 4,759 (6.8)

IR [bp] (% of 
total)

25,341 
(16.3)

16,741 
(13.8)

14,354 
(16.6)

22,735 
(32.5)

% coding 49% 69% 75% 43%

number of 
genes

113 98 86 40

number of 
genes with 
introns 
(with 2 
introns)

18 (3) 12 (3) 5 (1) 4 (2)
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than anticipated, while the inverted repeat is roughly 12
kbp smaller than reported by these authors. These sub-
stantial deviations demonstrate the value of the more
tedious sequence analysis over hybridization analysis.

Interestingly, the IRA-LSC junction (JLA) in C. reflexa was
found to be within the ycf2 gene. Due to this reduction of
the inverted repeat there is only one copy of rpl2, trnI-cau
and one complete ycf2 gene. Compared to tobacco and
other plastid genomes of higher land plants, C. reflexa
exhibits three sequence inversions within the plastid chro-
mosome, two in the large single copy region comprising
~2 kb and ~13 kb in length, and one of ~1.5 kb length in
the small single copy region. None of these inversions
were detected in either C. gronovii or E. virginiana (Fig. 1).
The 13 kb inversion was already hypothesized by Haber-
hausen et al. in 1992 [5]. The same inversion was also
observed in another species of the subgenus Monogyna, C.
japonica, but is absent from the subgenera Grammica and
Cuscuta [28]. This is consistent with our findings for C.
gronovii, which belongs to the subgenus Grammica. The
two other inversions were also identified only in the plas-
tid genome of C. reflexa and may thus imply that the
inversions are unrelated to parasitism. For both Cuscuta
species, overlapping PCR products indicate the existence
of a circular form of the plastid chromosomes.

Coding potential

Both plastid chromosomes of Cuscuta encode a reduced
amount of genes compared to that of N. tabacum (Table
2). Among the genes that are missing in C. reflexa are the
ndh genes that encode for the subunits of the NADH dehy-
drogenase complex required for chlororespiration.
Besides the loss of these genes, the genes infA, trnK-uuu
and the orf350 were completely eliminated from the plas-
tid genome, and two ribosomal protein genes (rpl23,
rps16) as well as ycf15 were retained only as pseudogenes
(Table 2). With the exception of orf404 (homologous to
the tobacco orf350), all genes and pseudogenes men-
tioned above were also lost in C. gronovii. Further specific
gene losses on the plastid genome of C. gronovii have been
detected for psaI, matK, trnV-uac, rpl32 and the rpo genes.
In addition, there are two tRNA genes whose sequences
were completely eliminated from the plastid DNA, and
four tRNA genes (trnA-ugc, trnG-ucc, trnI-gau, trnR-agc)
that have remained only as pseudogenes (Table 2). The
lack of some tRNA genes on the plastid genome of the
Cuscuta species raised the question whether the codon
usage was altered in response to the tRNA losses. We
therefore performed an analysis of the codon usages in
both species. The typically 30 tRNA genes, which are
encoded on a ptDNA, are considered to be sufficient to
read all 61 sense codons of chloroplast genes [29]. Sur-
prisingly, all 61 sense codons were found in the coding
regions of the genes in both Cuscuta species and seem to

be used, moreover, in a similar proportion as in non-par-
asitic plants that possess a 'full' plastid tRNA set (Table 3).
For example, 77.8% of the lysine residues in tobacco are
encoded by the codon AAA, for which tRNA trnK-uuu is
absent from both Cuscuta ptDNAs. For E. virginiana, an
import of cytosolic tRNAs into the chloroplast was sug-
gested [30,31] which probably must be assumed for Cus-
cuta as well. The mechanism is supposed to be based on
the same co-import with protein factors that seems to be
responsible for the import of cytosolic tRNAs into mito-
chondria [32]. However, it is unclear why some tRNAs
were retained, whereas others were lost. In this context, it
is perhaps noteworthy that the subset of tRNAs conserved
in the plastid genomes of parasitic plant plastids (includ-
ing Cuscuta) shows a remarkable overlap with the set of
mitochondrial encoded tRNAs for which no import has
ever been observed [see also [33]].

It is apparent that many gene losses from the Cuscuta plas-
tid genomes concern genes for the gene expression appa-
ratus such as ribosomal protein genes and tRNA genes but
affect also a few genes involved in photosynthetic carbon
fixation (ndh, psaI in C. gronovii). The deletion of genes
that are typically encoded by the plastid genome in land
plants is, however, not a feature that is characteristic for
plastid genomes of parasitic plants alone. In Pinus thunber-
gii, for example, the ndh genes are not encoded by the
plastid genome either [34], while other photosynthetic
lineages have lost the rpl23 and rps16 genes from their
plastid DNA. Similar to the tRNA genes, it can, at present,
not be ruled out that some or all of these plastid genes
have been transferred to the nuclear genome and are
imported into the plastids from the cytosol. In fact, this
seems to be the case in some non-parasitic plants, for
example, with the ribosomal proteins rpl23 and rps16
which seem to be imported from the nucleus [35-37]. The
same situation is discussed for ribosomal proteins of Epif-
agus [31] and is also likely for Cuscuta since the detection
of photosynthesis-related proteins suggests that plastid
translation is functional [2]. So far, a complete gene loss
can only be safely assumed for the rpo genes of C. gronovii
where their absence has been confirmed by a genome-
wide hybridization [38].

Promoter structures

In several parasitic plant species, among them C. gronovii
and E. virginiana, the rpo genes coding for the PEP-subu-
nits were either truncated or totally deleted from the plas-
tid genome by natural evolution [38-41]. As mentioned
above, the existence of a functional nuclear complement
of these genes is very unlikely in C. gronovii. Transcription
in these plastids, therefore, has to rely on an imported
NEP or a so far unknown nuclear-encoded RNA polymer-
ase different from that known from angiosperms. In E. vir-
giniana all PEP dependent photosynthesis-related genes
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Table 2: Gene content of Cuscuta reflexa and Cuscuta gronovii ptDNA compared to Nicotiana tabacum and Epifagus virginiana

photosynthetic and chlororespiratory 
genes

ribosomal RNA genes transfer RNA genes

Nt Cr Cg Ev Nt Cr Cg Ev Nt Cr Cg EV

atpA + + + Ψ rrn16 + + + + trnA-ugc + + Ψ Ψ
atpB + + + Ψ rrn23 + + + + trnC-gca + + + Ψ
atpE + + + - rrn4.5 + + + + trnD-guc + + + +

atpF + + + - rrn5 + + + + trnE-uuc + + + +

atpH + + + - trnF-gaa + + + +

atpI + + + - trnfM-cau + + + +

ndhA + - - - trnG-gcc + + + -

ndhB + Ψ - Ψ RNA polymerase and maturase genes trnG-ucc + + Ψ -

ndhC + - - - trnH-gug + + + +

ndhD + - - - trnI-cau + + + +

ndhE + - - - Nt Cr Cg Ev trnI-gau + + Ψ Ψ

ndhF + - - - matK + + - + trnK-uuu + - - -

ndhG + - - - rpoA + + - Ψ trnL-caa + + + +

ndhH + - - - rpoB + + - - trnL-uaa + + + -

ndhI + - - - rpoC1 + + - - trnL-uag + + + +

ndhJ + - - - rpoC2 + + - - trnM-cau + + + +

ndhK + - - - trnN-guu + + + +

petA + + + - trnP-ugg + + + +

petB + + + - ribosomal protein and initiation factor 
genes

trnQ-uug + + + +

petD + + + - trnR-acg + + Ψ +

petG + + + - trnR-ucu + + + Ψ
petL + + + - Nt Cr Cg Ev trnS-gcu + + + +

petN + + + - infA Ψ - - + trnS-gga + + + Ψ
psaA + + + - rpl14 + + + Ψ trnS-uga + + + +

psaB + + + - rpl16 + + + + trnT-ggu + + + -

psaC + + + - rpl2 + + + + trnT-ugu + + + -

psaI + + - - rpl20 + + + + trnV-gac + + + -

psaJ + + + - rpl22 + + + - trnV-uac + + - -

psbA + + + Ψ rpl23 + Ψ - Ψ trnW-cca + + + +

psbB + + + Ψ rp132 + + - - trnY-gua + + + +

psbC + + + - rpl33 + + + +

psbD + + + - rpl36 + + + + other protein genes

psbE + + + - rps11 + + + + Nt Cr Cg Ev

psbF + + + - rps12 + + + + clpP + + + +

psbH + + + - rps14 + + + + accD + + + +

psbI + + + - rps15 + + + - ycf1 + + + +

psbJ + + + - rps16 + Ψ - - ycf2 + + + +

psbK + + + - rps18 + + + + ycf3 + + + -

psbL + + + - rps19 + + + + ycf4 + + + -

psbM + + + - rps2 + + + + ycf5 + + + -

psbN + + + - rps3 + + + + ycf9 + + + -

psbT + + + - rps4 + + + + ycf10 + + + -

rbcL + + + Ψ rps7 + + + + ycf15 + Ψ Ψ Ψ
rps8 + + + + orf350 + - + +

+: gene present; -: gene deleted; pseudogenes are indicated by Ψ ; Nt: Nicotiana tabacum; Cr: Cuscuta reflexa; Cg: Cuscuta gronovii; Ev: Epifagus 
virginiana
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were eliminated, as well. This is different in C. gronovii,
which has retained the majority of photosynthesis-related
genes despite the loss of the PEP. In conclusion, a nuclear-
encoded RNA polymerase has to be responsible for the
expression of photosynthesis-related genes at levels suffi-
cient to allow for photosynthesis [42].

In order to investigate what effects this loss of PEP had on
the promoters of plastid genes in C. gronovii, the 5'-regions
of five transcription units known to be transcribed by PEP
in non-parasitic land plants were examined (Fig. 2). In
tobacco and other photosynthetic plastids, the psbA gene
is transcribed monocistronically from a single PEP pro-
moter, which is characterized by a TATA-like sequence
motif and a TGn motif between the -10 and -35 boxes
[43]. While in C. reflexa this typical consensus motif is
highly conserved, C. gronovii exhibits pronounced
changes in the sequence leaving only the -10 box unal-
tered (Fig. 2A). A similar picture emerges with the unique
blue-light responsive promoter (LRP) of the psbD/C
operon (Fig. 2B). This promoter was shown to be acti-
vated by high-irradiance blue and UVA light, low temper-
ature, high salt and high osmotic conditions [44,45]. In
both Cuscuta species this promoter is, however, located
closer to the translation start site than in tobacco (Fig. 2B).
The promoter of psbK [46] shows changes in the -10 and -
35 box in C. gronovii and only one change in the -35 box
of C. reflexa (Fig. 2D). In contrast to the three promoters
controlling photosystem II genes, the promoter of the
psaA/psaB/rps14 operon [47] is remarkably conserved not
only in C. reflexa but also in C. gronovii (Fig. 2C). The atpE
promoter [48] is unaltered in C. reflexa as is the -35 box in
C. gronovii, whereas the -10 box shows two base changes
(Fig. 2E).

It was previously shown for the rbcL gene, that a shift in
transcription start sites accompanied by a replacement of
the typical PEP promoter has taken place [42]. The 5'
region of the new transcription start site revealed striking
similarities to the sequence motifs recognized by the

phage-type NEP so that it can be safely assumed that this
NEP has taken over rbcL transcription in this species. As
detailed above, the complete plastid genome sequence of
C. gronovii has now revealed that other PEP-promoters
seem to be significantly altered (Fig. 2), too, so that
changes similar to those observed for rbcL can be hypoth-
esized and could be part of a systematic and general alter-
ation. As a consequence of these changes, one should
expect that major transcriptional regulations such as
redox control [49] of the expression of the photosynthetic
apparatus are no longer possible.

Splicing

The matK gene, which is coding for a putative maturase
that is thought to be essential for the splicing of several

Table 3: Codon usages for codons for which the tRNAs are not 

encoded on the plastid genome of Cuscuta reflexa and Cuscuta 

gronovii compared to Nicotiana tabacum

Codon (amino acid) Nt Cr Cg

GCT (Ala) 44,52% 43,36% 40,43%

GGT (Gly) 34,42% 30,50% 34,38%

ATC (Ile) 19,72% 17,66% 18,10%

AAA (Lys) 77,81% 79,21% 79,15%

CGT (Arg) 24,95% 20,87% 22,67%

GTA (Val) 38,68% 35,87% 31,07%

Bold italic numbers indicate that the tRNA is missing on the ptDNA 
in the corresponding species. Nt: Nicotiana tabacum; Cr: Cuscuta 
reflexa; Cg: Cuscuta gronovii

Table 4: Appearance of introns in the three parasitic plants 

Cuscuta reflexa, Cuscuta gronovii and Epifagus virginiana

Gene (Nt) C. reflexa C. gronovii E. virginiana

group l:

trnL-uaa intron intron -

group ll:

A1 rps12 
(intron 2)

intron no intron intron

trnI-gau intron ψ ψ
trnA-ugc intron ψ ψ
trnV-uac intron - -

trnK-uuu - - -

clpP (intron 
2)

intron intron intron

A2 atpF intron no intron -

rpl2 no intron no intron intron

B1 petB intron intron -

petD intron intron -

rps16 - - -

rpoC1 intron - -

ycf3 (intron 
2)

intron no intron -

clpP (intron 
1)

intron intron intron

B2 rps12 
(intron1 
trans)

intron intron intron

rpl16 intron intron intron

ndhB ψ - ψ
ndhA - - -

ycf3 (intron 
1)

intron no intron -

trnG-ucc intron ψ -

All intron containing genes in N. tabacum (Nt) are listed. 'intron': 
intron containing gene; 'no intron': gene without intron; 'Ψ ' indicates 
pseudogenes; '-': gene not present in the particular plastid 
chromosome a
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plastid introns [50-54], has been lost from the plastid
genome of C. gronovii. This observation merits attention
since matK was found on all other sequenced plastid
genomes, so far. Therefore, this deletion should be accom-
panied by changes or losses of the affected introns, unless
matK was barely transferred to the nuclear genome of C.
gronovii. The plastid chromosome of tobacco possesses a
total of 21 introns in 18 genes. Only one gene possesses a
group I intron while the remaining introns belong to the
larger group II [15]. The group I intron was retained in
both Cuscuta species while it was lost from the Epifagus
ptDNA (Table 4) [10]. Group II introns are divided into
group IIA and group IIB introns [15] and splicing of the
group IIA introns is postulated to be dependent on the
matK gene product [50-54]. From the 20 group II introns
found in tobacco, eight are of the IIA type. Six of these
introns were retained in C. reflexa. The two absent group
IIA introns in C. reflexa are the rpl2 intron and an intron
in trnK-uuu, for which the gene is eliminated in C. reflexa.
Interestingly, the matK gene, that is encoded within the
trnK-uuu intron in other plastid genomes was retained
and is present as a free-standing gene in C. reflexa. C.
gronovii has retained only one group IIA intron belonging
to the subgroup IIA1, namely intron 2 of clpP (Table 4).
Surprisingly, this intron is spliced from the corresponding
primary transcript despite the lack of the matK gene on the
plastid genome (Fig. 3). Therefore, it may either be possi-
ble that a MatK-like protein is imported from the cytosol

to splice this intron of clpP or, alternatively, that this
intron does not require the matK gene product for splic-
ing. Recently, Hattori et. al. [55] could show in the moss
Physcomitrella patens, that a nuclear-encoded PPR protein
is involved in the splicing process of clpP. There is also one
group IIA intron in atpF, for which MatK and the nuclear-
encoded factor pCRS1 are necessary for splicing [54,56]. If
indeed a different nuclear-encoded factor is responsible
for the splicing of the intron 2 of clpP, the splicing factor
MatK could have been lost completely in C. gronovii in
adaptation to the parasitic lifestyle. All other group IIA
introns known from Epifagus or other plastid genomes
were eliminated in C. gronovii irrespective of the presence
of the corresponding gene (Table 4). Among the twelve
group IIB introns from tobacco plastid genomes, which
are spliced in a matK-independent manner, three were lost
in C. reflexa and seven in C. gronovii (Table 4). The pres-
ence or absence of all introns and their splicing were con-
firmed by PCR and RT-PCR (data not shown).

RNA editing

To determine the editotypes of C. reflexa and C. gronovii,
we first performed an in silico analysis for potential editing
sites. All known editing sites in chloroplasts of higher land
plants were investigated for their occurrence in C. reflexa
and C. gronovii on the DNA level. All potential editing sites
were then analyzed by RT-PCR and sequencing of the
cDNAs (Fig. 4). The average amount of editing sites in
non-parasitic higher land plants is around 30. 17 poten-
tial editing sites were identified in C. reflexa, from which
eleven were found to be completely edited, four are par-
tially edited and two were found to remain unedited. Tak-
ing the gene losses in C. reflexa (ndh genes) into account,
this is in the range of what one would expect and implies
C. reflexa's lack of strong selection in its loss of editing
sites. Interestingly, the UCA at codon position 103 in
rpl20 and the TCA at codon position 83 in rps2 remain
unedited. In other species, these positions are known to
be modified through RNA editing such that they encode
the highly conserved amino acids. Because the position
103 in rpl20 was also found not to be edited in C. gronovii,
it could be possible that the resulting isoform of Rpl20
with a serine at position 103, is specific for the genus Cus-
cuta. Nonetheless, it cannot be ruled out that this isoform
might show an impaired functionality, which can only be
tolerated due to the parasitic lifestyle of the genus Cuscuta.
A different picture emerges for the rps2-83 editing site.
This editing site remains an unedited GCA alanine codon
in C. reflexa whereas in C. gronovii a TCA codon is found
instead, which is also not edited. However, even editing at
this position in C. gronovii could not restore the conserved
leucine. This may indicate that this normally highly con-
served position is no longer conserved as a consequence
of the parasitic lifestyle of Cuscuta.

Table 5: Editing sites in Cuscuta reflexa and Cuscuta gronovii

C. reflexa C. gronovii

gene pos. cons. codon codon

accD 258/
173

L tCg S > L tta L

atpF 31 L cCa P > L ctt L

petB 140 W Cgg R > W tgg W

204 L cCa P > L cta L

petL 2 L ctt L cct P

psbE 72 S Cct P > S cct P

psbL 1 M aCg T > M aCg T > M

rpl20 103 L tca S tca S

rpoB 113 L tCt S > F* not encoded

158 L tCa S > L*

184 L tCa S > L*

189 L tCg S > L

667 F tCt S > F

rpoC1 21 L tCg S > L*

rps2 45 I aCa T > I aCa T > I *

83 L tca S gca A

rps14 27 L tCa S > L tCa S > L*

50 L tCa S > L tCa S > L

'pos.': amino acid position within the gene; 'cons.': conserved amino 
acid at this position; upper-case 'C' indicates the editing site; bold 
indicates that the ratio of edited vs. unedited transcripts depends on 
photosynthetic activity.
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In contrast, only four out of seven potential editing sites
were edited in C. gronovii, two of them are partially edited
(Table 5 and Fig. 4). For three out of the four partially
edited sites in C. reflexa and for one partial editing site in
C. gronovii, we could observe higher editing efficiencies in
photosynthetic active tissue (in the tips of the seedlings of
C. reflexa and C. gronovii grown without a host plant; Fig.
4). In contrast to C. reflexa, C. gronovii shows a pro-
nounced reduction of editing sites compared to other so
far investigated angiosperms. On the one hand, this is the
result of the loss of the rpo genes. On the other hand, the
conserved amino acid is already encoded at the DNA level
at four sites, namely accD-173, atpF-31, petB-140 and petB-
204, which makes editing superfluous. In C. gronovii, in
addition to the rpl20-103 and the rps2-83 editing sites, two
potential editing sites remain unedited at position 72 in
psbE and position 2 in petL, which are edited in C. reflexa
or already have the conserved amino acid encoded at the

DNA level. Moreover, a reduction of the editing efficiency
at rps2-45 and rps14-27 can be seen in C. gronovii in com-
parison to C. reflexa. Thus, we speculate that in C. gronovii
RNA editing might be diminishing with the advanced
adaptation to a parasitic lifestyle.

Conclusion
In the case of phototrophic organisms, parasitism dramat-
ically influences the plant as well as the plastid morphol-
ogy as seen in the case of Cuscuta. Conversely, parasitism
is not necessarily reflected by the genome of the plastids
as can be observed for the two investigated plastid
genomes of C. reflexa and C. gronovii. Only minor changes
are obvious in the plastid genome of C. reflexa and the
parasitic lifestyle of this plant is therefore not obvious
from the structure and coding capacity of the plastid
genome. Analysis of plastid gene expression has shown
that the relative plastid transcript levels in C. reflexa

Comparison of promoter sequences of five PEP promoters in Nicotiana tabacum, Cuscuta reflexa and Cuscuta gronoviiFigure 2
Comparison of promoter sequences of five PEP promoters in Nicotiana tabacum, Cuscuta reflexa and Cuscuta 
gronovii. Double lines indicate the consensus motifs of the -10 and -35 boxes typical of plastid PEP promoters. Other con-
served regions are marked with a single black line. The distance in nucleotides between the transcription start (indicated by a 
rightward arrow) and the translation start (ATG) is given. Black dots represent residues that are identical to the nucleotides of 
N. tabacum shown at the top.
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resemble to a high degree those of other parasitic plants
[11] so that a facultative adaptation to the parasitic life-
style has to be proposed. The relative deficiency in change
at the genomic level might indicate that this species needs
to retain the option of sustaining a host-independent
growth for longer periods of time in its natural environ-
ment. The high ratio of coding versus non-coding
sequence that is characteristic for both Cuscuta species that
were investigated (see Table 1), might indicate, that an
early reaction of the plastid genome to the parasitic life-
style is a loss of unused and possibly unimportant non-
coding parts of the plastid DNA. This essentially results in
a condensation to a smaller, more compact chromosome.
As the adaptations to parasitism become more pro-
nounced and manifest themselves in organisms with

reduced photosynthetic activity like C. gronovii, some cod-
ing regions of the plastid genome, responsible mainly for
plastid gene expression, have become affected. Neverthe-
less, the capacity to synthesize plastid-encoded subunits
of the photosynthetic apparatus is still present, demon-
strating an evolutionary pressure to retain photosynthesis-
related genes at this stage. It is quite intriguing that the
loss of the RNA polymerase genes from the plastid
genome, the maturation of the mRNAs and a significant
reduction of RNA editing preceded alterations in the com-
ponents of the photosynthetic apparatus, and might
explain the low but nevertheless existent photosynthetic
activity of C. gronovii. Thus, a step-by-step reduction in the
plastid genome may be characteristic for the genus Cus-
cuta and perhaps for all parasitic plants. This can range

Splicing of the intron 2 of clpP in Cuscuta gronoviiFigure 3
Splicing of the intron 2 of clpP in Cuscuta gronovii. A: PCR (DNA) and RT-PCR (cDNA) products of clpP overlapping the 
intron 2 B: DNA and cDNA sequences of the region around the exon/intron 2 boundaries of clpP

Sequencing chromatogram excerpts of the editing sites in CuscutaFigure 4
Sequencing chromatogram excerpts of the editing sites in Cuscuta. The uppercase letter indicates the editing site or 
the conserved amino acid at the DNA level; for partial editing sites two chromatograms are shown in photosynthetic active tis-
sue (top) and in pale tissue (bottom).



BMC Plant Biology 2007, 7:45 http://www.biomedcentral.com/1471-2229/7/45

Page 10 of 12

(page number not for citation purposes)

from mild changes in C. reflexa, mainly in the non-coding
regions, to massive rearrangements of gene expression in
C. gronovii to, finally, the loss of all genes for the photo-
synthetic apparatus as evidenced in E. virginiana.

Methods
Plant growth

C. reflexa and C. gronovii were grown in a greenhouse
using Pelargonium zonale as host plant as described by van
der Kooij et al. [2] in a light/dark cycle of 16 h/8 h and day
and night temperatures of 22 and 18°C, respectively.

DNA extraction and sequence analysis

Total cellular DNA was extracted by a CTAB-based
method [57] or with the DNeasy Plant mini Kit (Qiagen,
Hilden, Germany). Sequencing of the plastid chromo-
some of C. reflexa was based on a partial plastid DNA
library containing BamHI, HindIII, PstI and PstI/SalI frag-
ments. The gaps between the restriction fragments were
closed by PCR using Qiagen Taq Polymerase and for long
range PCR the Long PCR Enzyme Mix (Fermentas, St.
Leon-Rot, Germany). A long range PCR approach was
used for the plastid chromosome of C. gronovii. Amplified
PCR products were cleaned up by the PCR clean-up Gel
extraction Kit NucleoSpin® Extract II (Macherey-Nagel,
Dueren, Germany). Clones and cleaned PCR products
were directly sequenced using the DYEnamic ET Termina-
tor Cycle Sequencing Kit (GE-Healthcare, Munich, Ger-
many) on an ABI PRISM® 377 DNA sequencer (Applied
Biosystems, Darmstadt, Germany). All oligonucleotides
used for PCR and sequencing were ordered from MWG
Biotech (Ebersberg, Germany). Sequences were edited
and assembled using the Sequencher 4.6 (Gene Codes
Corporation, Ann Arbor, MI, USA). For the identification
of the coding open reading frames the ORF finder and
blast tools from NCBI were used. tRNAs were identified
with the blast tools from NCBI and the tRNAscan-SE 1.21
[58].

Analysis of editing sites

RNA was isolated by the CTAB-based method also used
for DNA isolation [57]. For cDNA synthesis, the RNA was
treated with DNase I and reverse transcribed using Omnis-
cript® Reverse Transcriptase or the OneStep RT-PCR Kit
(both Qiagen, Hilden, Germany).
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