
NASA Contractor Report 187498

ICASE Report No. 91-4

ICASE

COMPLETE EXCHANGE ON THE iPSC-860

Shahid H. Bokhari

Contract No. NAS 1-18605

January 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

N/kSA
National A#ronmJlic._ and

Space Adminislralion

Lnngley Re._enrch Center

Flampton, Virginia 23665-5225

(_.'A_A-C#-l_7,_98) COMPLETE EXCHANG£ ON THE

iPSC-.-.q.oO Cin,:_l Report. (ICAS£) 33 pCSCL 12A

s3/59

N91-19715

Complete Exchange on the iPSC-860*

Shahid H. Bokhari

Department of Electrical Engineering

University of Engineering _ Technology, Lahore, Pakistan

and

ICASE, NASA Langley Research Center

Hampton, Virginia

Abstract

The implementation of complete exchange on the circuit switched

Intel iPSC-860 hypercube is described. This pattern, also known as

all-to-all personalized communication, is the densest requirement that

can be imposed on a network. On the iPSC-860, care needs to be

taken to avoid edge contention, which can have a disastrous impact

on communication time. There are basically two classes of algorithms

that achieve contention-free complete exchange. The first contains

the classical standard exchange algorithm that is generally useful for

small message sizes. The second includes a number of optimal or

near-optimal algorithms that are best for large messages.

Measurements of communication overhead on the iPSC-860 are

given and a notation for analyzing communication link usage is de-

veloped. It is shown that for the two classes of algorithms, there is

substantial variation in performance with synchronization technique

and choice of message protocol. Timings of six implementations are

given; each of these is useful over a particular range of message size

and cube dimension.

Since the complete exchange is a superset of all communication

patterns, these timings represent upper bounds on the time required

by an arbitrary communication requirement. These results indicate

that the programmer needs to evaluate several possibilities before fi-

nalizing an implementation--a careful choice can lead to very signifi-

cant savings in time.

*Research supported by the National Aeronautics and Space Administration under

NASA contract NAS1-18605 while the author was in residenceat the InstituteforCom-

puter Applicationsin Science & Engineering,Mail Stop 132C, NASA Langley Research

Center,Hampton, VA 23665-5225.

1 Introduction

The complete exchange (all-to-all personalized) communication pattern arises

in many important parallel processing applications. Some examples are

matrix transpose, matrix-vector multiply, certain implementations of the 2-

dimensional FFT and distributed table lookup. The complete exchange is

equivalent to the complete directed graph and is, as such, the densest com-

munication requirement that can be imposed on a network.

We describe the implementation of this pattern on the circuit switched

Intel iPSC-860 hypercube. There are two basic classes of algorithms for

complete exchange on this machine. The first class contains the well known

standard exchange store-and-forward algorithm that uses, for a d-dlmensional

machine, d messages of size 2 d-I blocks each and is useful when the blocks are

small. The second class is made up of a number of optimal or near-optimal

circuit-switched algorithms that use 2 d or 2 d - 1 messages of size 1 block

each and are always better than standard exchange for large enough block

size. Within each class there is substantial variation in performance with

synchronization technique and choice of message protocol. Consequently

there are no less than six implementations, each of which is useful for some

range of message size and hypercube dimension.

In Section 2 of this paper we describe the interconnection network, rout-

ing strategy and communication performance of the Intel iPSC-860. We

show the impact of message protocol and distance on communication time

and also show how edge contention can be disastrous. We discuss the com-

plete exchange pattern in Section 3 and introduce a tabular notation for its

communication link requirements. This is helpful in presenting the various

algorithms that follow in Section 4.

Details of our implementations are given in Section 5. In Section 6 we

present measured timings of the six implementations. We conclude with

Section 7, which contains a discussion of our results and speculations on how

our observations on complete exchange apply to arbitrary communication

patterns.

2 The Intel iPSC-860 hypercube

The interconnection network of a 32 node hypercube is shown in Figure

I. The labeled vertices hanging from each vertex of the network represent

processors of the hypercube. Two processors in the network are connected

if and only if the binary representations of their labels differ in exactly one

bit. An important feature of interprocessor communications in the Intel

hypercube is circuit switching. When two nodes wish to communicate, a

dedicated path is set up between them. Messages then flow through this

path without involving intervening processors. The path between source and

destination is determined by the 'e-cube' routing algorithm: starting with

the right hand side of the binary label of the source processor, we move to

the processor whose label most closely matches the label of the destination

processor.

Since the routing algorithm is fixed, we can encounter edge and node

contention. Edge contention is the sharing of an edge (i.e. a communication

link) by two or more paths. Similarly, node contention is the sharing of a

node.

Figure 1 illustrates paths from 0 to 31 (solid), 2 to 23 "(dashed) and 14

to 11 (dotted). The lengths of these paths (the distance between source and

destination) are 5, 3 and 2 respectively. The paths 0 -* 31 and 2 _ 23 share

the edge 3-7, while the paths 0 _ 31 and 14 --* 11 share node 15.

2.1 Measurements of Communication Overhead

We now provide measurements of the communication overhead on the iPSC-

860. Earlier but more extensive measurements are given in [1]. Detailed

analyses of some aspects of the communication system on the Intel iPSC-2*

and on the iPSC-860 appear in [6, 7, 8].

2.2 Impact of path length

There are two message types (selectable by the programmer) on the iPSC-

860[3]. A message of the FORCED type is discarded upon arrival if no receive

*The iPSC-2 is an earlier hypercube that uses less powerful 80388 processors but has
interconnectlon hardware similar to the iPSC-860.

2

I 00010F

Figure 1: Interconnection network of a 32 node hypercube.

3

0.0006

0.0005

0.0004

J

0.0003

E
t--

0.0002

0.0001

......................... iUN.EO.I_CED._

FORCED

0.0000

0 100 200 300

Messoge Length (Bytes)

7

6

5

4

3

2

1

7

4OO

Figure 2: Impact of path length: 0-400 bytes.

has been posted for it. A message of the UNFORCED type is stored in a system

buffer if it arrives and no receive has been posted for it. The performance

of both types is similar for messages of size 0-100 bytes. Beyond 100 bytes,

an UNFORCED message is preceded by the exchange of 'reserve-acknowledge'

messages that cause space to be reserved in the destination. This process

causes significant overhead as we shall see in what follows.

Figure 2 shows the time required to communicate messages of length 0-

400 bytes between processors that are 1, 2,..., 7 communication links apart.

The time required to send a 0 byte message to a neighboring node (i.e.

distance 1 away) is about 95 #see. (this represents the absolute minimum for

any communication operation on this machine). The time to communicate

a 0 byte message over the maximum distance of 7 is 155 #see. Inspection

of these plots reveals that they are linear, parallel and evenly distributed

from 0 to 100 bytes. The communication time increases at about 10 #see.

per communication link. This is a far from negligible variation: the time

required to send a 4-byte floating point number distance 7 away is nearly

double the time to send it to a neighboring node)

At message length 101 bytes our curves bifurcate into two families. The

lower family represents FORCED messages and the upper family UNFORCED

messages. The separation is due to the overhead of the reservation messages

described above.

The time (in #see.) to communicate a message of length m bytes over

distance d is _ ----95 + 0.394m + 10.3d for FORCED messages. The times for

UNFORCED messages is identical for 0 < m __ 100 and is t -- 164 4- 0.398m 4-

29.9g for m > 100. The time for zero byte messages on the plots is slightly

below what would be predicted by these expressions.

2.3 Impact of edge contention

The contention experiment uses 8 source-destination pairs that are depicted

in Figure 3. The e-cube algorithm generates the following paths.

tThe strategy for communication used here is a8 follows. A receive is posted on the

destination processor, followed by a global synchronization. The source processor then

sends a message and waits for the destination to signal receipt via another global synchro-

nization. The synchronization times are not included in the plotted data. This strategy

leads to timings that are different from those reported in [1] and elsewhere, but accurately

represent the state of affairs in our implementations of complete exchange.

5

2Ioooooio__

oIoooooooiI I

4

7911001111H

47

Iii

15

31

631o1111111_I ' I

127_.i

Figure 3: Communication pattern for edge contention experiment.

0.0035 [8

o

v

E
o--

im

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

7

6
cT_

c,,,

c_
t-

o_
t-

4 c_
Q_

o

5 ._Q

E
55
C

2

0 200 400 600 800

Message Length (bytes)

IOO0

Figure 4: Observations from contention experiment.

0--*1---_3---_ 7--* 15 ---_ 31---_ 63 ---*127 (1)

1434 7_ 15 _ 31---* 63 (2)

3---_ 74 15_31 (3)

7_ 15 (4)

5_ 7 4 154--, 79 (5)

6_ 74 15--.47 (6)

2---_3---, 7_ 15 _ 31---, 95 (7)

4---,5---_ 7---, 15---47---_111 (8)

This experiment has been designed to impose the maximum possible

amount of contention on one edge. Thus we have 8 paths sharing edge

7 _ 15. This experiment was run for message lengths of 0 to 1000 bytes

using FORCED types.

Figure 4 shows a set of line plots from the contention experiment. The

plot labeled 1 shows the time for path (1) (0 _ 127) alone, plot 2 shows the

time for paths (1) and (2) simultaneously and so on. The time required by

eight contending messages of 1000 bytes is more than seven times the time

required for one message.

In contrast with edge contention, which has disastrous impact on commu-

nication time, node contention has no measurable impact on the iPSC-860.

The Intel iPSC-2 and IPSC-860 are among the first commercial examples

of circuit-switched machines. Since circuit switching provides very fast com-

munications, it is generally felt that it eliminates most of the inefficiencies

caused by communication overhead. In particular, it is a common belief that

programmers can ignore the details of the interconnection network. This is

a mistaken belief since, as we shall see later in this paper, very careful con-

sideration of the interconnection is necessary if the full power of the machine

is to be utilized.

3 The Complete Exchange Pattern

When executing the complete exchange on a distributed memory parallel

machine, each of n processors must send a different block to each of the

8

remaining n -- 1 processors.The completeexchangeis required by many im-
portant algorithms. Theseinclude the Alternating Directions Implicit (ADI)

method, which makes heavy use of the matrix transpose which in turn is

essentially equivalent to the complete exchange. Other important examples

include matrix-matrix and matrix-vector multiply, certain implementations

of the 2-d FFT and distributed table lookup.

The complete exchange is equivalent to the complete directed graph and,

as such, is the densest communication requirement that can be imposed on a

network. Any arbitrary communication pattern must necessarily be a subset

of the complete exchange. The time for the complete exchange on a given

machine is an upper bound on the time for an arbitrary communication

requirement.

Because of its generality and widespread applications, it is worthwhile to

investigate the time required to execute this pattern and to develop fast pro-

cedures for it, as we proceed to do in the following Sections. At this point we

present a chart (Figure 5) that depicts the communications requirements of

the transpose algorithm under the 'e-cube' routing algorithm on a hypercube.

The row labels in Figure 5 represent source-destination ordered pairs.

Thus 010--,110 represents the transmission of a message from processor 2

to processor 6. The column labels represent communication links or edges.

These are in groups of 3 to indicate sets of links emanating from a single

node. Thus the group 0___10indicates the 3 links emanating from node 2. The

r_ghtmost of these is the link that connects 010 to 011, the middle link is

the one connecting 010 to 000 and the leftmost is the link connecting 010 to

110.

An x in this chart at position < row, column > indicates that the edge

corresponding to column is used by the e-cube routing algorithm when trans-

mitting from the source to the destination that specifies the row. A dot

indicates that the corresponding edge is not used. Thus the row labeled

010---,101 has x's in the columns 010 011 and 001, corresponding to the

e-cube route 010-,011---_001---_101.

It is an easily verified property of the e-cube routing algorithm that no

message originating in a node whose label's leftmost binary bit is a 0 (1) can

use an edge that lies between two nodes whose labels' leftmost bits are both

1 (0). This permits us to omit half the edges from each row in Figure 5 and

make the chart compact. The two sets of rows in Figure 5 represent two sets

of edge disjoint paths.

000 001 010 011

000->000

000->001 ..x

000->010 .x

000->011 ..x .x

000->100 x

000->101 ..x x

000->110 .x x

000->III ..x .x.... x..

001->000 x

001->001

001->010 .x...x

001->011 x

001->100 x x

001->101 ... x

001->110 .x...x x

001->111 x x..

010->000 x

010->001 x .x.

010->010

010->011 x ...

010->100 x x

010->I01 ... x x .x.

010->II0 x

010->III x x..

011->000 x...x

011->001 x.

011->010 x

011->011

011->100 x x. ..x

011->101 ... x x.

011->110 x x

011->111 x..

100 101 110 111

100->000 x

100->001 ..x x

100->010 .x.... x

100->011 ..x .x.... x..

100->100

100->101 ..x

100->110 .x

100->111 ..x .x

101->000 x x

101->001 ... x

101->010 .x...x x

101->011 x x..

101->100 x

101->101

101->110 .x...x

101->111 x

110->000 x x

110->001 ... x x .x.

110->010 x

110->011 x x..

110->100 x

110->101 x .x.

110->110

110->111 x ...

111->000 x x...x

111->001 ... x x.

111->010 x x

111->011 x..

111->100 x...x

111->101 x.

111->110 x

111->111

Figure 5: Link usage ofthe complete exchange communication pattern on

an 8-node hypecube

10

Every algorithm for complete exchange that transmits one block at a

time generates a schedule for the transmissions shown in the chart of Figure

5. This schedule is simply a numbering of the x's in the chart under the

following constraints.

Constraint Significance

Two x's in the same column cannot

have the same number.

A link cannot be used for the trans-

mission of two messages simultane-

ously.

All x's in the same row must have

the same number.

All links in an e-cube routed chain

are in use simultaneously because of

circuit switching.

Two rows in a group (e.g the group

000->... in Figure 5) cannot have

the same number.

A processor can only transmit on

one link at a time.

The largest number in any schedule determines the time required (in block

transmissions) to execute the complete exchange. This cannot be less than

n- 1 because each processor must send out n- 1 blocks serially.

4 Algorithms for Complete Exchange

A naive algorithm for complete exchange can be described as follows: at

time step i, each processor sends out the block destined for processor i. The

program that executes in each processor is as follows.

procedure naive;

begin

for destination = 0 to n - 1 do

if (destination # mynumber) {no need to send to myself}

send_block_to_processor(destination);

end

11

OO0 001 010 011

000->000

000->001 ..1

000->010 .2..........

000->011 ..3 .3.......

000->I00 4

000->101 ..5 5

000->110 .6.... 6

000->111 .,7 .7.... 7.,

001->000 I

001->001

001->010 .3...3

001->011 4

001->100 5 5

001->i01 .., 6

001->110 .7, ..7 7

001->111 8 8..

010->000 1

010->001 2 .2.

010->010

010->011 3 ...

010->100 6 6

010->101 ... 7 7 .7,

010->110 8

010->111 9 9..

011->000 2...2

011->001 3.

011->010 4

011->011

011->100 7 7...7

011->101 ... 8 8.

011->110 9 9

011->111 a..

100 101 110 111

100->000 1

100->001 ..2 2

100->010 .3 3

100->011 ..4 .4 4..

100->100

100->101 ..5

100->110 .6

100->111 ..7 .7

101->000 2 2

101->001 ... 3

101->010 .4, ..4 4

101->011 5 5..

101->100 6

101->101

101->110 .7...7

101->111 8

110->000 3 3

110->001 ... 4 4 .4.

110->010 5

110->011 6 6..

110->100 7

110->101 8 .8.

110->110

110->111 9 ...

111->000 4 4...4

111->001 ... 5 5.

111->010 6 6

111->011 7..

111->100 8...8

111->101 9,

111->110 a

111->111

Figure 6: Schedule generated by the naive algorithm

12

A little reflection reveals that this algorithm concentrates traf_c on the

links entering node i during time step i. As a result we expect to see con-

tention for links and hence poor performance. Figure 6 shows what can

happen. This Figure is the chart of Figure 5 with the x's replaced by num-

bers to indicate the time step during which a link is utilized, as described in

the previous Section.

In Figure 6 we have assumed that link contention is resolved by granting

a path to the lowest numbered processor. It is possible to demonstrate that

the time required under this assumption (i.e. the highest number in the
3

schedule, 10 in Figure 6) is in- 2. Since optimal (n - 1 step) algorithms are

known, the naive algorithm only serves to show how poor a bad approach

can be} Careless programmers have, nevertheless, been known to use this

algorithm in practice.

4.1 Two n- 1 step Optimal Algorithms

The contention for links that disrupts transmissions can be eliminated by

careful scheduling. A simple algorithm that achieves this is linear.

procedure linear;

begin

for i= l to n-1 do

send_block_to_processor((raynurnber + i)mod(n));

end

The schedule generated by this algorithm is shown in Figure 7. It is easy

to verify that this schedule takes exactly n - 1 steps with no contention.

Seidel et al. have studied the iPSC-2 and iPSC-860's communication sys-

tem in great detail. They have shown [6, 7, 8] that, under certain circum-

stances, it is preferable to decompose a communication requirement into

pairwise exchanges. Their research shows that this can lead to great savings

in communication time. A schedule for the complete exchange that is com-

posed of only pairwise exchanges and takes exactly n - 1 steps is given in

[7]. This is described as follows.

_However _n - 2 is much better than the O(nlogn) standard exchange algorithm for

large n, as can be verified by measurements.

13

000 001 010 011

000->000

000->001 ..i

000->010 .2

000->011 ..3 .3

000->100 4

000->101 ..5 5

000->110 .6 6

000->111 ..7 .7 7..

001->000 7

001->001

001->010 .1...1

001->011 2

001->100 3 3

001->101 ... 4

001->110 .5...5 5

001->111 6 6..

010->000 6

010->001 7 .7.

010->010

010->011 1 ...

010->100 2 2

010->101 ... 3 3 .3.

010->110 4

010->111 5 5..

011->000 5...5

011->001 6.

011->010 7

011->011

011->100 1 1...1

011->101 ... 2 2.

011->110 3 3

011->111 4..

I00 101 110 111

100->000 4

100->001 ..5 5

100->010 .6 6

100->011 ..7 .7 7..

100->100

100->101 ..1

100->110 .2

100->111 ..3 .3

i01->000 3 3

101->001 ... 4

101->010 .5...5 5

101->011 6 6..

101->100 7

101->101

101->110 .1...1

101->111 2

110->000 2 2

110->001 ... 3 3 .3.

110->010 4

110->011 5 5..

110->100 6

110->101 7 .7.

110->110

110->111 1 ...

111->000 1 1...1

111->001 ... 2 2.

111->010 3 3

111->011 4..

111->100 5...5

111->101 6.

111->110 7

111->111

Figure 7: Schedule generated by the linear optimal algorithm

14

procedure pairwise;

begin

fori=l ton-1 do

send_b lock_to_processor(mvnumber @ i);

end

Figure 8 gives the schedule generated by this algorithm for an 8 node

hypercube. The format of this chart is different from the preceding charts.

This is because under pairwise decomposition, our problem becomes one

of scheduling an undirected graph. Each edge of this graph represents a

pairwise exchange between the two nodes at its endpoints. The exchange

between 000 and 101 means that the edges 000->001,001->101 are occupied

at the same time that the edges 101->100,100->000 are occupied. As is

usual with undirected graphs, only n(n - 1)/2 rows need to be specified.

Figure 8 illustrates that (1) procedure pairw±se decomposes the complete

exchange into pairwise exchanges, (2) no two exchanges use the same link

during the same time step, and (3) the total number of steps required is 7

(in general it is n - 1).

4.2 An n step Stable Algorithm

For the linear and pairwise algorithms to function correctly, all communica-

tion steps must start in synchrony. The iPSC-860 is not an SIMD machine

and does not have a master clock or a central instruction issue unit. As such,

we can expect some slight drift in the absolute times at which transmissions

are initiated. This is caused by drifts in the individual clocks of the the

processors as well as by unpredictable operating system overhead. This drift

can be eliminated by using explicit synchronization before each transmission,

a solution that incurs substantial overhead.

The stable algorithm has been designed to tolerate considerable drift in

the timings of the transmissions and does not need synchronization before

each transmission.

15

000--001

000--010

000--011

000 001 010 011 100 101 110 111

• .1 . .1

.2 2

• .3 .3. .3...3

000--100 4 4

000--101 ..5 5 5 5

000--110 .6 6 6 6

000--111 ..7 .7 7.. 7 7. ..7

001--010

001--011

001--100

001--101

001--110

001--IIi

.5. ..5 ..5 .5

.... 2 2

6 6 6 6

...3 3

.7. ..7 7 7 7 .7.

.... 4 4 4 4.

010--011

010--100

010--101

010--110

010--111

........ 6 . .6

3 3 3 3

... 7 7 .7. .7. ..7 7

• ., ° • • 4. o _,. e • o _,, a_. , .,,

........ 1 1 1 1

011--100

011--101

011--110

011--111

100--101

100--110

100--111

7 7...7 ..7 .7 7..

... 4 4 4 4..

...... 1 1 1 1..

.............. 1 . .1

............. 5 5

.............. 2 .2. .2. ..2

101--110 2. ..2 ..2 .2.

101--111 6 6.

110--111 3 ..3

Figure 8: Schedule generated by the pairwise algorithm.

16

procedure stable;

begin

for i= O to n-1 do

begin

if(mynumber < n/2)

destination = (mynurnber × 2 + 1 + i)mod(n)

else

destination = (mynumber × 2 - n + i)mod(n);

if (destination = mynumber)

idle

else

send_block_to_processor(destination);

end;

end

It can be seen in Figure 9 that no column has two consecutive integers

in it. As an example, consider the transmission 010->111, which uses the

edges 010->011 and 011->111 in time step 3. These links are not used

again by another processor until step 5 (when the transmission 001->111

uses 011->111). Thus the drift of a full transmission period can be tolerated

by this schedule. The price of this stability is an increase in the total time

from n - 1 to n. It is impossible to obtain a stable schedule of length n - 1

since an odd number of time periods cannot have the stability property (n

is an even number, since we are dealing with hypercubes).

4.3 The Standard Exchange Algorithm

The standard exchange procedure [4] uses log n transmissions of size n/2

blocks each. All transmissions are along paths of length 1, thus there is

no possibility of contention. This algorithm incurs massive overhead (1)

because of the perfect shuffling of blocks and (2) because each processor

transmits a total of _ log n blocks, rather than n or n- 1 blocks for the the

algorithms discussed above. It is, nevertheless, competitive for small block

sizes since there are only log n transmissions (as opposed to n or n- 1 for the

abovementioned algorithms) and thus the overhead of starting up a message

17

000 001 010 011

000->000

000->001 ..1

000->010 .2..........

000->011 ..3 .3.......

000->100 4

000->101 ..5 5

000->110 .6 6

000->111 ,.7 .7 7..

001->000 6

001->001

001->010 .8...8

001->011 I

001->100 2 2

001->101 ... 3

001->110 .4...4 4

001->111 5 5..

010->000 4

010->001 5 .5.

010->010

010->011 7 ...

010->100 8 8

010->101 ... 1 1 .1.

010->110 2

010->111 3 3..

011->000 2...2

011->001 3.

011->010 4

011->011

011->100 6 6...6

011->101 ... 7 7.

011->110 8 8

011->111 1..

100 101 110 111

100->000 1

100->001 ..2:2

100->010 .3 3

100->011 ..4 .4 4..

100->100

100->101 . .6

100->110 .7

100->111 ..8 .8

101->000 7 7

101->001 ... 8

101->010 .1...1 1

101->011 2 2..

101- > 100 3

101->101

101->110 .5...5

101->111 6

110->000 5 5

110->001 ... 6 6 .6.

110->010 7

110->011 8 8.,

110->100 1

110->101 2 .2.

110->110

110->111 4 ...

III->000 3 3...3

111->001 ... 4 4.

111->010 5 5

111->011 6..

111->100 7...7

111->101 8.

111->110 1

111->111

Figure 9: Schedule generated by the stable algorithm

18

(95/_sec per transmission, see Section 2.1) is not incurred as frequently.

procedure standard;

begin

forj=d-1 downtoOdo

begin

if (bit j of mynumber = 0) then

message= blocks (n/2) to n - 1;

else

message= blocks 0 to (n/2) - 1;

destination = mynumber @ 2J;

send.xnessage_to_processor(destination);

shuffle blocks;

end;

end

5 Implementation Details

We now briefly discuss the relevant details of our implementations of the

algorithms discussed in the preceding Section. After considerable experi-

mentation we have identified six implementations that are useful in the sense

that each one of them outperforms all others for some values of hypercube

dimension and block size.

The message type used is one factor to be considered when implement-

ing an an algorithm on the iPSC-860. The distinction between FORCED and

UNFORCED types has already been discussed in Section 2.1. UNFORCED types

are not competitive beyond 100 bytes because of the overhead of the "reserve-

acknowledge" cycle. For messages up to 100 bytes in size they can sometimes

lead to better performance.

The synchronization technique is another important factor. When

using FORCED message types it is essential for each processor to post receives

for all expected messages in the procedure at the very beginning, and to carry

out a global synchronization after this. Omission of the (expensive) global

synchronization step is fatal as it leads to messages arriving before their

corresponding receives have been posted and thus being discarded by the

operating system. When using UNFORCEDmessages, it is possible to omit this

19

global synchronizationstep sincethesemessagesare storedby the operating
system until the required receivehasbeen posted. The programmer must,
however,be careful to ensurethat there is enoughfree memory available to

the operating systemso that buffers can be allocated for all messagesthat
may arrive without posted receives.

Finally, the issueof pairwise exchanges arisesbecauseof an idiosyn-

crasyof the iPSC's communicationhardware. A receiveand a transmit oc-
curring nearly simultaneouslyat a processorcanproceedconcurrently, while
a short delay causesthem to be carried out serially. This issue has been

researchedin detail by Seidelet al. [6, 7, 8]. It hasbeenshownthat a pair-
wise exchangeis guaranteedto proceedconcurrently if the two processors
involved first exchangea pair of zerobyte "pairwise synchronization" mes-

sages.The time for this pairwisesynchronization is far less than the time for

global synchronization and is negligible for moderate to large messages.

For the linear and stable algorithms we use FORCED message types and

post all receives before a global synchronization step. A complicating factor

in the stable algorithm (Section 4.2) is the need for an idle period. To

ensure the correct operation of the stable scheme, this period must be equal

to the time taken for transmission by non-idling processors. This is achieved

by busy waiting for a period given by the expression for transmission time

of Section 2.2.

There are two implementations each for pairwise and standard. We use

FORCED types in pairwise_F and standard_F and post all receives before a

global synchronization. In addition, we use the pairwise synchronization

technique of [6, 7] §. The second pair of implementations pairwise_U and

exchange_U uses UNFORCED types with no synchronization. The following

table summarizes the details of our implementations.

We post all receives for the pairwise synchronization messages before the global syn-

chronization. This results in better performance than the method proposed in [7] which

does not use global synchronization.

2O

IMPLEMENTATION SYNCHRONIZATION MESSAGE TYPE

linear

stable

pairwise_F

standard_F

pairwise_U

standard_U

Global

Global and pairwise

None

FORCED

UNFORCED

6 Experimental Observations

Figures 10 & 11 show the times for all six implementations against block

sizes for Intel iPSC-860 hypercubes of dimension 1-7. For d = 6 & 7, each

point in the plots is the mazimum of 100 observations; for d = 1 ... 5, each

point is the maximum of 1000 observations. It is important to evaluate

these implementations with respect to their maximum run times, rather than

average or minimum. This is because there is enormous variability in the

run times of implementations that do not use pairwise synchronization (see

Section 6.4, below) and a comparison based on average or minimum run

times would be misleading.

linear, stable and pairwise_F have been plotted for 2 °, 21, .. •, 212 byte

blocks, standard_F,standard_U and pairwise_U have been plotted only up

to 27 bytes, since they are completely uncompetitive for large block sizes.

The labels in Figures 10 and 11 indicate the implementations that make up

the hull of optimality (i.e. the best implementation for a range of block sizes).

6.1 General Observations

As is to be expected, the standard exchange algorithm does well for small

block sizes and the pairwise algorithm is best for large sizes. Because of the

behavior of UNFORCED messages (Figure 2), there is always a drastic jump in

the plots for standard_O and pairwise_U. This jump occurs at 100 bytes

for pairwise_U but, since our plots are for block sizes that are powers of

2, we observe this jump between 28 and 2 r bytes. There are also jumps in

the standard_U plots; these occur at (100/2 a-l) bytes since the standard

exchange algorithm uses messages of size 24-1 blocks for d dimensional hy-

percubes. On our plots we observe jumps between block sizes of 2_'-a and

21

o

Or)

V

E
,--

10-1

10-2

10 -3

10-1

10-2

10-3

d=7 i

!!! !i::::::::i:!!!!!!:.:!::!!!i!!!!!!:i:.!!!
,.._._i_ii:_:::!i_il/.iii.iiii: .[i!_iii_i

: i_ i 0 i

::
........... _.._.._ _........ :

.................. }_ :

¢-_--_,; ;

t I": _:"_: : :........

..._..; _..; ; ; ;
O! _: : : :

:::

J
........ : :--.r_-.: : :

........ i i i i i

20 24 28 212 2 0

block size (bytes)

LEGEND

n linear

o stable

o pairwise-F

+ sfandard-F

pairwise-U

x sfandard-U

d=6 i !
.................i..........................i........1

I I

Figure 10: Comparison of implementations, d = 5, 6, 7

22

(3
ID

(D

E
-4---

10-2

10-3

10-4

: :

........ :. i , , ,

d=3 :

ii!iiiiiiii!iiiiiiiiii!iiiiiiii!!!!iiiiiiiiiiiiii!i
i.......' :........i....L

............ ; "IL-

::

....... i: 1..............................
I

-.-1_. g'l

"4--

i I

d=l :
........ ; ; ; ,

1 0 -2 :::
.......................... t ! [........

....... , , _ :

i
10-3

........... iiiiiI

...... I_airw.!se-.L)

"

: I I
10-4 I i

2 0 2 4 2 8 212

::: - : :-I_::::

::__: : : !..._..

_iiiii !!!iii_i.._i:........ :. ! _.-.
..... :.... _ !..-.__.

! -.- -.- : "_ !!- - -___..

....... t: : ".l/:) , ,
.... • --

.... ;:_ =====================================

......r_............II

i I

......................................,l

......::

.......... ::........ i....... :_....... _

_ :: .::!:!::::!i]!!!':_!!

... _,--

........ , ; ; , ,

...... p:airwise- U........................

........ - : !

:

2 o 2 4 2 s 2_2

block size (bytes)

Figure 11: Comparison of implementations, d = 1,2, 3, 4

23

2s-a bytes.

6.2 Standard Exchange

standard_U is always better than standard_F for small block sizes. This is

because standard_F incurs the overhead of global and pairwise synchroniza-

tion, whereas standard_U does not use any form of synchronization. However

there is ultimately a crossover because of the discontinuity in transmission

times of UNFORCED messages discussed above. In terms of overall optimality,

standard_F is useful only over a small range of message sizes for dimension

7. It is possible that this variant would be of use over a wider range on larger

hypercubes ¶.

6.3 Stable and Linear

The n step stable algorithm is better than the n - 1 step linear algorithm for

large ranges of message sizes in cubes of dimension 5... 7, demonstrating that

the stability property is more useful than the number of steps (recall that

these plots are of mazimum execution time). This phenomenon is clear in

Figure 12, which shows the envelopes of the linear, stable and pairwise-F

implementations. The upper (lower) plot in each envelope indicates the max-

imum (minimum) of 1000 observations. The middle plot is the average. It

can be seen that the spread of linear is slightly more than that of stable,

whereas its average and maxima are well above stable.

6.4 Pairwise Algorithm

pairwise_U is about twice as fast as pairwise_F for blocks of less than 100

bytes. This is again because of the overhead of global and pairwise synchro-

nization. Turning to Figure 12 we can see that the envelope for pairwise_F

is very tight. This demonstrates how useful the pairwise synchronization

procedure is in ensuring concurrent transmit/receive. The large variations

for linear and stable are caused by fortuitous concurrency during some

runs and serial transmit/receives during others.

¶The largest iPSC-860 currently available is d = 7.

24

0.040

0

©

03

(1.)

E

0.035

0.030

0.025

0.020

0.015

O.010

stable

.... -o pal .r_wise-F

/

/

/

. ' ,

/

0.005
• ..

r ::
o.ooo _ i i

0 800

block

I I

400 1 200 1 600 2000

size (bytes)

Figure 12: Detailed comparison of linear, stable and pairwise_F on a dimension

5 iPSC-860. Each set of 3 curves represents the maximum, average and

minimum of 100 observations.

25

To explore the impact of pairwise synchronization further, we show in

Figure 13 what happens to pairwise_F when the pairwise synchronizations

are removed. The plots in the envelopes represent maximum, average and

minimum values, just as in Figure 12. It can be seen that with pairwise syn-

chronization, all timings fall within a very narrow band of constant width.

Without synchronization, the difference between maximum and minimum

values grows with block size. However the minimum times for the unsynchro-

nized variant are generally better than pairwise_F by a constant amount

because the overhead of pairwise synchronization is not being incurred. This

is due to chance pairwise synchronization of all transmissions. This is a very

rare event that does not occur for some block sizes in Figure 13, even though

we have run our experiment for 1000 iterations each at block sizes 0, 1000,

2000, • ...

6.5 Performance on Small Hypercubes

It is interesting to study the evolution of the hull of optimality as we move

from dimension 1 to 3. For dimension 1, pairwise_U and linear domi-

nate small and large messages respectively, pairwise_F is never optimal for

this dimension because pairwise synchronization is achieved by the global

synchronizations used by linear, since each processor sends out only one

message. The extra overhead of pairwise synchronization in pairwise_F is

redundant, pairwise_U and standard_U degenerate into the same algorithm

at this dimension, except that standard_U has the overhead of permutation.

As we move to dimension 2, the overhead of pairwise synchronization in

pairwise_F pays off and it becomes optimal for large messages. It remains

asymptotically optimal for all dimensions beyond 2. At dimension 3, the

overhead of data permutation in standard_U becomes useful, and it becomes

optimal for the smallest messages: this variant is optimal for small messages

for all dimensions beyond 3.

6.6 Regions of Optimality

The following chart summarizes the above discussion by showing the block

size and dimension for which each implementation is best.

26

0.18

d

09

_D

E

id=5

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

IN0... p.a! rwi.s.e

!syn c h r_on iza ti!o n

_'

J :

........ ,,a........... _............ :......
•

" !pairwise :

....... isy .nc h fron ized!

0.00 i

0 2000 4000 6000 8000

block size (bytes)

Figure 13: The impact of removing pairwise synchronization from pairwise_F

on a dimension 5 iPSC-860. Each set of 3 curves represents the maximum,

average and minimum of 1000 observations.

27

7

6

5

4

3

2

1

stand_F

standard_U

pairwise_U

stable

linear

pairwise_F

7 Conclusions

We have discussed the communication performance of the Intel iPSC-860

circuit-switched hypercube and discussed the implementation of the com-

plete exchange on this machine. Our experimental observations show that

avoidance of contention is a major consideration when scheduling communi-

cation on this machine. We have presented six implementations of complete

exchange and have shown that each is useful for some range of message size

and cube dimension. Our observations of the performance of these imple-

mentations show the importance of pairwise synchronization on this machine.

While the overhead of pairwise synchronization is negligible for large mes-

sages, it cannot be ignored for small messages. In the latter case, implemen-

tations without such synchronization offer considerable advantage (but are

applicable only to small messages).

Since the complete exchange is a superset of any arbitrary communication

pattern, the techniques and observations of this paper have broad applica-

bility. In particular, we have found the tabular scheme introduced in Figure

28

5 to be very useful in planning communications. Schedulingtransmission
on hypercubesusing 'e-cube' routing is equivalent to a numbering of the x's

on this table under the constraints stated in Section 3. This scheme can

easily be modified to account for any fixed routing strategy other than the

widely used 'e-cube'. The techniques of this paper are certainly applica-

ble to one-to-all broadcast, all-to-all broadcast and one-to-all personalized

communications [5].

The six implementations we have described fall into two classes. These are

(1) the standard exchange algorithms that are O(nlog n) and are useful for

small message sizes, and (2) the optimal or near-optimal O(n) algorithms that

always perform well for large messages. In a companion paper [9.] we describe

a unified multiphase algorithm that combines both classes into one. It is

shown that standard_F and pairwise_F can be unified into one algorithm

that outperforms either of its constituents over some ranges of message size

and cube dimension. The results of the present paper can be combined with

the results in [2] to obtain even faster algorithms.

In conclusion we can state that due consideration of network topology,

routing strategy, message protocol and synchronization technique is necessary

in order to obtain maximum performance from distributed memory multi-

computers like the iPSU-860. A careless implementation can take 9. to 3

times longer than a carefully thought out schedule. A little attention to the

results of this paper has the potential of improving performance by a factor

of 3 or more without any major changes in code.

Acknowledgements

I wish to thank Tom Crockett for his help with bZuecrab, the 32 node iPSC-

860 at ICASE and for numerous useful discussions. Leigh Ann Tanner gave

me generous assistance with lagrange, the 128 node iPSC-860 at NASA

Ames Research Center.

References

[1] S. H. Bokhari. Communication overheads on the Intel iPSC-860 hypercube.

ICASE Interim l_eport 10, May 1990.

[2] S. H. Bokhari. Multiphase complete exchange on a circuit switched hypercube.

Technical Keport 91-5, ICASE, January 1991.

29

[3] Intel Corporation. iPSC/2 and iPSC/860 programmers reference manual, June

1990.

[4] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on boolean n-

cube configured ensemble architectures. SIAM J. Matriz Anal. Appl., 9(3):419-

454, July 1988.

[5] S. Lennart Johnsson and Ching-Tien Ho. Optimum broadcasting and person-

alized communication in hypercubes. IEEE Trans. Computers, C-38(9):1249-

1268, September 1989.

[6] Ming-Horng Lee and Steve K. Seidel. Concurrent communication on the Intel

iPSC/2. Technical Report CS-TR 9003, Dept. of Computer Science, Michigan

Tech. Univ., July 1990.

[7] Thomas Schmiermund and Steve R. Seidel. A communication model for the

Intel iPSC/2. Technical Report CS-TR 9002, Dept. of Computer Science,

Michigan Tech. Univ., April 1990.

[8] Steve Seidel, Ming-Horng Lee, and Shivi Fotedar. Concurrent bidirectional

communication on the Intel iPSC/860 and iPSC/2. Technical Report CS-TR

9006, Dept. of Computer Science, Michigan Tech. Univ., November 1990.

30

r_ro_31 _Or_uI_'S a_

1. Repo_ No. I
NASA CR-187498

rICASE Report No. 91-4

4. Title and Subtitle

Report Documentation Page

2. Government AccessionNo.

COMPLETE EXCHANGE ON THE iPSC-860

7. Author(s)

Shahid H. Bokhari

3. Recipient'sCatalog No.

5. ReportDate

January 1991

6. Performing Organization Code

8. PerformingOrganization ReportNo.

91-4

10. Work Unit No.

505-90-52-01

11. Contract or Grant No.

NASI-18605

13. Type of Reportand PeriodCovered

Contractor Report

9. PedormingO_anization Name andAddress

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton,VA 23665-5225

12. Sponsoring AgencyName and Add_ss

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

14. SponsoringAgency Code

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell

Submitted to

Conference

1991 International

on Parallel Processing

Final Repo_
16. Abstract

The implementation of complete exchange on the circuit switched Intel iPSC-860 hypercube is described. This pattern,

alsoknown as all-to-a].lpersonalizedcommunication,isthe densestrequirementthatcan be imposed on a network.On

the iPSC-860, careneeds tobe takento avoidedge contention,which can have a disastrousimpact on communication

time.There arebasicallytwo classesofalgorithmsthatachievecontention-freecompleteexchange.The firstcontainsthe

classicalstandardexchange algorithmthatisgenerallyusefulforsmallmessage sizes.The secondincludesa number of

optimalor near-optimalalgorithmsthatare bestforlargemessages.

Measurements of communication overhead on the _PSC-860 aregiven and a notationforanalyzingcommunication

linkusageisdeveloped.Itisshown thatforthe two classesofalgorithms,thereissubstantialvariationinperformance

with syncbxonizationtechniqueand choiceofmessage protocol.Timings ofsiximplementationsare given;each ofthese

isusefulovera particularrangeofmessagesizeand cube dimension.

Sincethe completeexchangeisa supersetofallcommunicationpatterns,thesetimingsrepresentupper bounds on the

time requiredby an arbitrarycommunicationrequirement.Theseresultsindicatethatthe programmer needstoevaluate

severalpossibilitiesbeforefmallzingan implementation--acarefulchoicecan leadtoverysignificantsavingsintime.

17. KeyWords(SuggestedbyAuthor(s))

complete exchange, hypercube, all-to-all

personalized circuit switching, iPSC-860

18. DistributionStatement

59 - Mathematical and Computer Sciences

(General)

61 - Computer Programming and Software

Unclassified - Unlimited

19. SecuriWCla_if. (of thisreport)
iUnclassified

20. SecuriW Cla_if. (of thispa_)

Unclassified

21, No. of pa_s _. Price

32 [A03

NASA FORM 1626OCT86
NASA-Langley, 1991

